I will discuss the now-ancient question of where BQP, Bounded-Error Quantum Polynomial-Time, fits in among classical complexity classes. After reviewing some basics from the 90s, I will discuss the Forrelation problem that I introduced in 2009 to yield an oracle separation between BQP and PH, and the dramatic completion of that program by Ran Raz and Avishay Tal in 2018. I will then discuss very recent work, with William Kretschmer and DeVon Ingram, which leverages the Raz-Tal theorem, along with a new "quantum-aware" random restriction method, to obtain results that illustrate just how differently BQP can behave from BPP. These include oracles relative to which NP^{BQP} ̸ ⊂ BQP^{PH} - solving a 2005 open problem of Lance Fortnow - and conversely, relative to which BQP^{NP} ̸ ⊂ PH^{BQP}; an oracle relative to which 𝖯 = NP and yet BQP ≠ QCMA; an oracle relative to which NP ⊆ BQP yet PH is infinite; an oracle relative to which 𝖯 = NP≠ BQP = PP; and an oracle relative to which PP = PostBQP ̸ ⊂ QMA^{QMA^{…}}. By popular demand, I will also speculate about the status of BQP in the unrelativized world.
@InProceedings{aaronson:LIPIcs.FSTTCS.2021.1, author = {Aaronson, Scott}, title = {{BQP After 28 Years}}, booktitle = {41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)}, pages = {1:1--1:1}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-215-0}, ISSN = {1868-8969}, year = {2021}, volume = {213}, editor = {Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.1}, URN = {urn:nbn:de:0030-drops-155124}, doi = {10.4230/LIPIcs.FSTTCS.2021.1}, annote = {Keywords: quantum computing, complexity theory, oracle separations, circuit lower bounds} }
Feedback for Dagstuhl Publishing