We study first-order logic (FO) over the structure consisting of finite words over some alphabet A, together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the Σ₁ (i.e., existential) fragment is undecidable, already for binary alphabets A. However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable. We show that if |A| ≥ 3, then a relation is definable in the existential fragment over A with constants if and only if it is recursively enumerable. This implies characterizations for all fragments Σ_i: If |A| ≥ 3, then a relation is definable in Σ_i if and only if it belongs to the i-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the Σ_i-fragments for i ≥ 2 of the pure logic, where the words of A^* are not available as constants.
@InProceedings{baumann_et_al:LIPIcs.STACS.2022.7, author = {Baumann, Pascal and Ganardi, Moses and Thinniyam, Ramanathan S. and Zetzsche, Georg}, title = {{Existential Definability over the Subword Ordering}}, booktitle = {39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)}, pages = {7:1--7:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-222-8}, ISSN = {1868-8969}, year = {2022}, volume = {219}, editor = {Berenbrink, Petra and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.7}, URN = {urn:nbn:de:0030-drops-158178}, doi = {10.4230/LIPIcs.STACS.2022.7}, annote = {Keywords: subword, subsequence, definability, expressiveness, first order logic, existential fragment, quantifier alternation} }
Feedback for Dagstuhl Publishing