Extracting Non-Deterministic Concurrent
Programs
Ulrich Berger

Swansea University, U.K.

—— Abstract

We introduce an extension of intuitionistic fixed point logic by a modal operator facilitating the

extraction of non-deterministic concurrent programs from proofs. We apply this extension to
program extraction in computable analysis, more precisely, to computing with Tsuiki’s infinite
Gray code for real numbers.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.3.1 Specifying and Verifying
and Reasoning about Programs, F.3.2 Semantics of Programming Languages, F.4.1 Mathematical
Logic

Keywords and phrases Proof theory, realizability, program extraction, non-determinism, con-
currency, computable analysis

Digital Object Identifier 10.4230/LIPIcs.CSL.2016.26

1 Introduction

The fact that proofs in constructive systems carry computational content is known as the
Brouwer-Heyting-Kolmogorov interpretation or the Curry-Howard correspondence. It is the
origin of various methods to automatically extract certified programs from formal proofs
which are implemented in proof systems such as Nuprl [8], PX [9], Coq [12], Isabelle [5],
Agda [7], Minlog [3]. The extracted programs are usually functional; other programming
paradigms, such as non-determinism or concurrency, are hardly covered by this methodology.
This may be considered a weakness of program eztraction compared with existing program
verification techniques which do cover these programming paradigms. This paper aims to
narrow the gap between program extraction and verification by introducing Concurrent Fized
Point Logic (CFP), an intuitionistic theory of inductive and coinductive definitions extended
by a modal operator enabling the extraction of non-deterministic concurrent programs.

The development of CFP was triggered by an example from computable analysis, Tsuiki’s
infinite Gray code for real numbers [14], which encodes a real number x € I = [~1,1] ! by
the itinerary of x along the tent map

t:I—=10, t(z)=1-2]z|

More precisely, x is encoded by the stream ag : aq : as : ... where the head of the stream, ay,
equals 0, 1 or L (= undefined) depending on whether x is less, greater, or equal to 0, and
the tail of the stream, a; : az : ..., encodes t(z). Since t(0) = 1 and t(1) = t(—1) = —1, at
most one a; can be undefined, and in that case a;+1 = 1 and ay, = 0 for all k > i + 1.
Infinite Gray code stands out from other encodings of real numbers by the fact that it is
at the same time unique (every real number in I has exactly one Gray code) and computable

! Tsuiki considers reals in the interval [0, 1], but we find it convenient to work with an interval that is
symmetric around 0.

© Ulrich Berger;
37 licensed under Creative Commons License CC-BY

25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Editors: Jean-Marc Talbot and Laurent Regnier; Article No. 26; pp. 26:1-26:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2

Extracting Non-Deterministic Concurrent Programs

(it is computably equivalent to admissible encodings such as the Cauchy- or the signed
digit representation). In contrast, other computable representations of the reals are highly
redundant. For example, a signed digit representation of z € I is any stream dy : dy : da : ...
of signed digits d; € SD = {—1,0,1} such that = € Iz, := [do/2 — 1/2,dp/2 + 1/2] and
dy :do ;... 1is a signed digit representation of 2x — dy. It is easy to see that every non-dyadic
real in I has continuum many signed digit representations. The infinite Gray code’s unlikely
combination of uniqueness and computability is, of course, only possible because it is not
total: dyadic rationals in | — 1, 1[have an infinite Gray code with one undefined digit.
Tsuiki defines the following function transforming infinite Gray code into signed digit rep-

and continues with the stream s; we also use the function swap 0 = 1; swap 1 = 0):
gtos (0:s) = -1 : gtos s

gtos (1:b:s)
gtos (a:l:c:s)

1 : gtos (swap b : s)

0 : gtos (a : swap ¢ : s)

Since the pattern a:1:c:s in the third line overlaps with those in the first and second line,
this definition cannot be executed in a deterministic functional language, but should rather
be viewed as a system of rewrite rules from left to right. Tsuiki introduced (and implemented
in Prolog) two-head Turing machines that are able to execute definitions as the one above:
Initially, the machine’s first head reads the first input digit and its second head reads the
second input digit. If the computation of the first input digit terminates first, the first or
second line fires, if the computation of the second input digit terminates first, the third line
fires and the second head moves one position to the right (while the first head continues
to wait for the computation of the first input digit to terminate, which may or may not
happen eventually). This is an example of a non-deterministic concurrent computation with
potentially incompatible results of the different threads. One can show that no continuous
function can translate Gray code into signed digit representation. The closest to infinite
Gray code one seems to get with traditional program extraction is a program that works on
so-called pre Gray code, i.e., streams representing constructions of infinite Gray code [4].

In this paper, we extend the method of program extraction developed in [1] in order to
be able to extract concurrent programs such as gtos above from proofs of their specification.
Our basic formal system is essentially the one considered in [1] and is called IFP in this paper
(Intuitionistic Fixed Point Logic). It comprises intuitionistic first-order logic with inductive
and coinductive definitions and a realizability interpretation (Sect. 2). An important feature of
program extraction in IFP is the fact that proofs can be carried out in any non-computational
theory (Sect. 2). The correctness of the extracted programs will then be proven in the same
theory. This makes it possible to extract programs from proofs in an abstract axiomatic
setting.

Our leading example is the structure R of the real numbers with 0, 1, addition and
multiplication, which we specify in IFP by the disjunction-free axioms of Archimedean
ordered fields (replacing V by — A — if required). The set of natural numbers N can be
defined in IFP as the least subset of the reals that contains 0 and is closed under the +1
function. Hence IFP includes Heyting Arithmetic. We define predicates C and G as the
largest predicates on I satisfying

Clz) < \/ x €y AC(2x — d)
desD
G(z) < (x£0—>z<0Vz>0)AG(t(x))

U. Berger

The signed digit representations of x will be the realizers of C(z), and the Gray code of z
will be a realizer of G(x). Hence, in order to extract a program that translates Gray code
into signed digit representation, we may attempt to prove G C C. Since there can be no
deterministic program accomplishing the transformation, this proof cannot be carried out in
IFP alone, but some extra principle is needed. The following Disjunction Principle

(DP) (AVB)A(PYC) = (AVBVC)

suffices, where A \Ij B is shorthand for (P — AV B)A (=P — AAB) and P,Q, A, B, C range
over non-computational formulas. Using (DP) (with P:=xz #0,Q:=2 #0, A=z €14,
B: =z €Iy, and C := z €), we show G C C (Theorem 12). In order to extract a
program from the proof of G C C one needs a realizer of (DP) which, unfortunately, does
not exist in IFP. To solve this problem, we embed, in Sect. 5, IFP into Concurrent Fixed
Point Logic (CFP), where (DP) is realizable (Lemma 30). CFP extends the language of IFP
by a modal operator S and extends programs by families Fam ¢ of programs (i) (where
i ranges over a countable index set Z) that are to be executed non-deterministically and
concurrently. This is expressed by an operational semantics (Sect. 6) that allows Fam ¢ to
reduce to (i) for every i € Z. A family Fam ¢ realizes a formula of the form S(A), where A
is computational, if (i) ¢ (i) yields a result for at least one ¢ € Z and (ii) for any i € Z, if ¢(4)
yields a result b, then b realizes A (Sect. 5). The proof rules for CFP given in Sect. 5 endow
the modality S with the structure of a strong monad which can be seen as a proof-theoretic
analogue of Moggi’s monadic computational lambda-calculus [10]. With some coding effort
the countably infinite non-determinism represented by the construct Fam ¢ can be simulated
by binary non-deterministic choice as considered, for example, in [6]. The denotational
semantics introduced in Sect 6 could be simplified accordingly. In order not to distract the
readers attention from the main issues of this paper, we refrain from carrying out these
simplifications.

There exists a rich literature on modelling and verifying non-deterministic and concurrent
programs (e.g. [13, 11, 6] and many others). The novelty of our work lies in the fact that we
extract these programs from ordinary mathematical proofs together with a formal certificate
of their correctness.

2 Intuitionistic Fixed Point Logic

We briefly recall (and slightly improve) the system IFP of Intuitionistic Fixed Point Logic
and its realizability interpretation as defined in [1].

IFP is intuitionistic first-order predicate logic with inductive and coinductive definitions
given as least and greatest fixed points of strictly positive predicate transformers. The
formulas of TFP, are P(t), X(1), ANB, AV B, A — B, Vz A, Iz A, (u®)(#) (inductive
definitions) and (v ®)(f) (coinductive definitions), where P ranges over predicate constants,
X ranges over predicate variables, t ranges over tuples of first-order terms of a given signature,
x ranges over object variables and ® ranges over strictly positive predicate transformers.
The latter are of the form AXAZ. A where Z and t have the same lengths and A is strictly
positive in X i.e. X does not occur free in any premise of a subformula of A which is an
implication 2. Predicate constants and variables have fixed arities. We assume that there is
a 0-ary predicate constant L for falsity and an equality predicate.

A predicate is either a predicate constant P, a predicate variable X, an abstraction
AZ.A, an inductive predicate u ®, or a coinductive predicate v ®. The application, P(f), of

2 In [2] it is shown that this condition can be weakened to provable monotonicity.

26:3

CSL 2016

26:4

Extracting Non-Deterministic Concurrent Programs

a predicate P to a list of terms ¢ is a primitive syntactic construct, except when P is a an
abstraction, A\Z A, in which case P(f) stands for A[f/Z]. We will use abbreviations such as
P C Q for VZ.P(Z) — Q(Z) and will sometimes write {z | A} for Az A, etc. We will also
write P (&) £ A[P/X] for P = p AX\Z A and similarly for v.

The proof rules of IFP are the usual ones of intuitionistic predicate calculus with equality
augmented by rules expressing that u ® and v ® are the least and greatest fixed points of the
operator ® (as is well-known, the fixed point property can be replaced by inclusions):

a rrep P
Sur 1 4~ 1 on
TFo(ud)Cpd o0 b CP uctio
PEPCOP) (o
TFodC o) Coclosure m Coinduction

Realizability is formalized in an extension RIFP of IFP by an extra sort of realizers and program
terms (programs for short) of this new sort. Programs are untyped A-terms with pairing,
injections and recursion, more precisely, variables a, b, c,d, e, f, g, ..., the constant nil, and
the composite terms (M, N), inl(M), int(M), Aa.M, m;(M) (i = 1,2), case M of {inl(a) —
L;inr(b) — R}, (M N), reca. M. The free variables of a program are defined as usual
(the constructs Aa, reca and inl(a) —, inr(a) — in a case term bind the variable a).
In order to keep programs readable, we will use pattern matching in a slightly liberal
way by allowing wildcards, nested patterns and possibly omitting patterns in which case
realizers matching an omitted pattern are mapped to the default value nil. For example,
case M of {inl(inr(_)) — N} stands for the nested case analysis case M of {inl(a) —
case a of {inl(ag) — nil; inr(a;) — N}; inr(b) — nil} where a and a; are not free in N.
Closed programs built from nil by pairing (-, -) and the injections inl(-), inr(-) are called data.
All axioms and rules for IFP, including closure, induction, coclosure and coinduction and
the rules for equality, are extended to RIFP. In addition, we add the equations

m (M1, Ma)) = M; (i=1,2)
case inl(M) of {inl(a) — L; inr(b) = R} = L[M/a
case inr(M) of {inl(a) — L; inr(b) - R} = R[M/}]
(Ma.M)N = M][N/a]
reca.M = Mireca.M/a)

We define simultaneously non-computational and faithful formulas (abbreviated nc and ff).
nc formulas without free predicate variables will be called ncc formulas.

The class of nc formulas contains all atomic formulas (i.e. P(f) and X ()) and is closed

under all logical operators except disjunction (but including inductive and coinductive

definitions). In addition, if A is ff and B is nc, then A — B is nc.

The class of ff formulas contains all ncc formulas and is closed under all logical operators

except implication, universal quantification and coinductive definitions.

Note that all disjunction-free formulas without free predicate variables (which is the class of
formulas called non-computational in [1]) are ncc.

Realizability assigns to every IFP-formula A a unary RIFP-predicate r(A). Intuitively,
the RIFP-formula r(A)(a), which we will usually write ar A, states that a “realizes” A. The
definition of ar A is relative to a fixed one-to-one mapping from IFP-predicate variables X
to RIFP-predicate variables X with one extra argument place of the new sort. If the formula
A has the free predicate variables X, ..., X,,, then the formula ar A has the free predicate

U. Berger

variables X1,..., X,,. For ® = AX\Z A we set r(®) = AX (b, Z) br A.
arX(f) = X(a,t)
arP(f) = P(f)
ar(AANB)=ar(BAA) = (arA)AB if Bisncc
) = A—brB if Aisncc
Otherwise cr(AANB) = m(c)rAAm(c)rB
) Ja (c =1inl(a) Aar A) V Ib(c = inr(b) A br B)
fr(A—=B) = Va(arA— (fa)rB)
aroxA = ox(ard) (¢=V,3)
ar(0@)(F = (or(@®)(a,i) (o=p)

» Lemma 1. If A is an ncc formula, then ar A is equivalent to A, provably in RIFP.
Proof. See Appendix. <

» Theorem 2 (Soundness). From a proof in IFP of AT + A, where A consists of ncc
formulas, one can extract a program term M such that RIFP proves A;drT'F- (M @)r A.

Proof. The proof is as in [1]. <

In the following we will apply the Soundness Theorem with A being the axioms of Archimedean
ordered fields, written as ncc formulas, and T a set of formulas for which we have (or construct)
programs realizing them. We are free to add stability, ~—A — A, for ncc formulas A to A,
since, clearly, =—A — A is ncc if A is.

3 Cauchy and signed digit representation of real numbers

In this section we introduce real numbers in IFP. We define predicates A and C which corres-
pond, via realizability, to the (fast) Cauchy representation and the signed digit representations,
respectively, and prove their equivalence.

We let (R,0,1,+,-,<) be the structure of real numbers, of which we will only use that it
is an Archimedean ordered field. In order for the axioms to be ncc we write the Dichotomy
axiom as 7 < y Ay < x — x = y. As explained at the end of the previous section, we
may assume stability of ncc and hence atomic formulas, that is, -——x <y — x < y, etc. The
Archimedean principle, written as an ncc formula, is

(AP) Ve.(YneN|z| <2™) - 2=0
where the set of natural numbers, N C R, is defined inductively as
N(z) £ 2 =0VN(z —1)

(recall that this stands for N= g AXAz.x =0V X (2 — 1)). The integers and the rational
numbers, Z,Q C R are defined by

Z={zx|zeNV—zecN} Q={q|FkeN.k>0nkqeZ}
The function max : R — R is introduced (i.e. added to the signature) and axiomatized by
max(z,y) <z <zAy<z

and the absolute value is defined by |z| := max(x, —).

26:5

CSL 2016

26:6

Extracting Non-Deterministic Concurrent Programs

The set of real numbers in I that can be approximated by rational numbers is defined by
A={zecl|¥neN3igeQnl.|z—q| <27"}.

A realizer of “x € A” is a fast rational Cauchy-sequence converging to x.
Let SD = {—1,0, 1} be the set of signed digits (hence d € SD means d = —1vd = 0vd = 1)
and set Iy :=[d/2 —1/2,d/2 +1/2] C 1. We define C C R coinductively by

CL{zecR|3deSD.xclyA2c—deC}.

Classically, C = I. A realizer of “z € C” is a stream of signed digits dy, d1, ... such that

xr = idi27(i+1) .
=0

Therefore, C corresponds to the signed digit representation of real numbers in I.

» Lemma 3.

(@) If x € A and y € T with y = ax + b for some a,b € Q, then y € A.
(b) If x € C and b € Q is such that t + b €1, then x +b € C.

(c) Ifx € C and 2x + b €1, whereb € Q, then 2z + b € C.

(d) If x € C, then —z € C.

Proof. See Appendix. |
» Theorem 4. C = A.

Proof. “C C A”: We show Vn € NVz € C3g € QNI.|z —¢q| < 27" by induction on n. If
n =0, set ¢ =0. For n+1 assume € C. Let d € SD such that « € [; and 2z—d € C. By i.h.
we have ¢ € QNI with |(22—d) —¢q| < 27™. Hence |z —(¢+d)/2| = |(2z —d) —q|/2 < 2~ (+1),

For “A C C” we use coinduction. Assume x € A. We have to find d € SD such that
x €y and 22 —d € A. Since x € A we have ¢ € Q such that |z —¢| < 1/4. If ¢ < —1/2 we
know z € I_;, and from Lemma 3 (a) it follows that 22 + 1 € A. Similarly, if ¢ > 1/2 we
know x € I; and 22 — 1 € A. Otherwise x € Iy and 2z € A.]

4 Infinite Gray code

In this section we introduce infinite Gray code via a coinductive predicate G and prove its
equivalence to the Cauchy and signed digit representation, using the (in IFP not realizable)
Disjunction Principle to prove G C C.

Let t(z) = 1 — 2|z| be the tent map, which maps I onto itself, and set

D(z)=2#0—2<0Vz>0.
We define G C R coinductively by
G(z) £ |z| < 1 AD(x) A G(t(z)).

Classically, we clearly have G = I. A realizer of “x € G” is a stream of partial Booleans
representing the itinerary of x along the tent map. Such a realizing stream can have at most
one undefined item, namely if t"(z) = 0, in which case the item with index n is undefined.
In this case, t("*1)(z) = 1 and t"(z) = 0 for m > n + 1, hence the items after the undefined

U. Berger

one are 1,0,0,0,.... In the proof of Theorem 5 below we use the axiom of countable choice
for rational numbers (AC*) and Markov’s principle (MP), which are both realizable.

(AC¥) (VneN3g e QA(n,q)) — 3f :N—= QVn € NA(n, f(n)) where A is ncc.
(MP) (Vn e N.A(n) vV -A(n)) A (——3In € NA(n)) — In € N A(n) where A is ncc.

It is easy to see that (AC®) is realized by the identity function, Aa.a, and (MP) is realized
by unbounded search through the (unary representations of) natural numbers, which can be
coded as Af . (recg.Aa.case fa of {inl(_) — a; inr(_) — g (inr(a))}) (inl(nil)).

» Theorem 5 (AP, AC*,MP). ACG

Proof. By coinduction. Assume A(z). We have to show D(z) and A(t(z)). The latter is easy:
To show A(t(x)), fix n € N. Let ¢ € QN1 such that |z — ¢| < 27+, Then t(¢q) € QNI
and [t(z) — t(g)| = 2I|2] — lgl| < 2lz— g <27

Now we show D(z). Assume z # 0. By (ACY), there exists a sequence of rational
numbers g, such that Vn € N|z — ¢,| < 27". We show —Vn € N|g,| < 217", Assume
Vn € N|g,| < 217" Then Vn € N|z| < 2|g,| < 227". By (AP) it follows x = 0, contradicting
the assumption x # 0. By (MP) it follows that there exists n € N such that |q,| > 27", If
qn > 0, then we have g, > 27", which, together with |z — ¢,| < 27", implies z > 27" > 0.
Similarly, if g, < 0, then we have ¢, < —2!=" which, together with |z — ¢,| < 27", implies
< =27" <0. <

In Lemma 6 below we use the Disjunction Principle discussed in the Introduction:
P Q
(DP) (AVB)A(PVC)— AVBVC.

» Lemma 6 (DP). Ifz € G, then x € I for some d € SD.

Proof. Assume = € G. Then D(z) and D(t(x)). In order to apply (DP), set A:=x €14,
B:i=zel),C:=x€ly, P:=x#0,and Q :=t(x) # 0. Hence, it suffices to show that the
premises of (DP) hold. P — AV B is D(x). To show =P — A A B, assume —(z # 0), that
is, x = 0. Then clearly x € I_; and z € I;. To show @ — C'V P, assume t(z) # 0. Then
t(z) <0V t(x) > 0, since D(t(z)). If t(x) <0, then |z| > §, hence x # 0. If t(z) > 0, then
x € Iy. Finally, to show =@ — C' A P, assume —(t(z) # 0), that is, t(x) = 0. Then |z| = %,
hence = € Iy and = # 0. <

» Lemma 7. Ifz € G, then —z € G and |z| € G.

Proof. Assume x € G. Then D(z
D(—z) A G(t(—2)) and also D(—=z

A G(t(z)). Since t(z) = t(—z) = t(|z|) it easily follows
A G(t(|z])). Hence G(—z) and G(|z]). <

O

» Lemma 8. If [z| <1 and G(£}L), then G(z). Equivalently, if 0 <z <1 and G(z), then
G(2z - 1).

Proof. Assume |z| < 1 and G(ZEL). Then G(t(%EL)), that is, G(—z), since the assumption
|z| <1 implies t(£f!) = —2. Hence G(z), by Lemma 7. <

» Lemma 9. If G(x), then G(t(z)).
Proof. Obvious. <

» Lemma 10. If 0 < z < 1 and G(x), then G(1 — z).

26:7

CSL 2016

26:8

Extracting Non-Deterministic Concurrent Programs

Proof. Assume 0 <z <1 and G(z). Since 0 < 1 —z < 1, it suffices to show G(t(1 — z)).
The assumption = < 1 implies that t(1 — x) = 2z — 1. Hence G(2x — 1), by Lemma 8. <«

» Lemma 11. If |z| <1 and G(%), then G(z). Equivalently, if —
G(2z).

<z <3 and G(x), then

1 1
2 2

Proof. Assume |z| < 1and G(§). Hence G(t(§)). Since t(§) = 1—|z|, we have G(1—|z|) and
therefore G(|x|), by Lemma 10 and since 0 < 1— || < 1. Hence G(t(x)) (since t(|z|) = t(x)),
by Lemma 9. Furthermore D(§) which implies D(z). It follows G(x). <

» Theorem 12 (DP). G C C.

Proof. By coinduction. Assume G(x). We have to find d € SD such that z € I; and
G(2z — d). By Lemma 6 (which was proven using DP), there exists d € SD such that = € I.
By the Lemmas 9 (note that if € I_;, then 2z+1 = t(x)), 8, and 11 we have G(2z—d). <«

5 Concurrent Fixed Point Logic

In this section we introduce Concurrent Fixed Point Logic, CFP, extending IFP.
CFP extends the language of IFP by a modal operator S. The proof calculus of IFP is
extended by the rules

THA T'HS(A) T,AFS(B) '+ S(A)

s) T'FS(B) R

(S"€) if A is ncc

which will be justified by the Soundness Theorem 16. The rules (S*) and (S™) state
that S is a strong monad (see [10] for an analogous construction for a computational
lambda-calculus). They immediately imply monotonicity, (A — B) — S(A) — S(B), and
idempotency, S(S(A)) <> S(A), and that S interacts nicely with the logical operators, for
example, S(A A B) <» S(A) AS(B), S(A — B) — S(A) — S(B) and S(Vz A) — Va S(A).

The modality S can be viewed as a predicate transformer by setting S(P) = AZ. S(P(Z)).
In particular, S(AZ.A) = AZ.S(A). Hence, if ® = AXAZ.A is a monotone predicate
transformer, we can form the composition ® 0 S = AX . ®(S(X)) = AX\Z. A[S(X)/X] =
AXNE . A[NY.S(X(y))/X]. We call a predicate variable guarded in a formula A if every
free occurrence of X in A is within a disjunctive or existential subformula of A. We call a
predicate transformer ® = AXAZ. A guarded if X is guarded in A.

We embed IFP into CFP by defining for every IFP-formula A a CFP-formula AS (if
d = AX\T. A, we set 5 = \XA\T. A%):

AS = A if Ais atomic, i.e. of the form P(t) or X (f)
(AANB)® = ASAB®
(A= B = 45 BS
(AVB)S = S(A%v BS)
(Vo A)® = VaAS
(Fz A)S = S(3z A5)
(v@)(1)° = (v@°)()
((<I>)(tq))S = (u @S)(ﬂ if @ is guarded
((@)(f})s = (u (‘PS o S))(f) if ® is not guarded

U. Berger 26:9

The guardedness condition for ® = AX XA in p ® is satisfied in all inductive definitions given
by two or more “rules” (for example the natural numbers are defined by two rules) since
then the predicate variable X occurs only within a disjunction.

» Lemma 13. CFP proves S(AS) — AS (hence S(AS) « AS) for all formulas A without
free predicate variables.

Proof. See Appendix. <

» Theorem 14 (Concurrent embedding). If ' Fipp A, then I'S Fopp AS for all formulas A
without free predicate variables.

Proof. See Appendix. The proof depends crucially on Lemma 13. <

Realizability for CFP is formalized in a system RCFP that extends both CFP and RIFP.
We extend the programming language introduced in Sect. 2 by constructs for concurrent
computation, where the latter is modeled by a family of computations indexed by a set 7
which is the least set containing the constant x and with 4,j the elements L(¢), R(¢) and
(,7). We denote elements of Z by index terms, denoted s, t, ..., which are first-order terms
built from index variables «, 3,... and the constant * using the constructors L(_), R(_),
and (_,). Closed index terms can be identified with elements of Z and will be called indices
and denoted i, 7, k,.... Concurrent program terms are defined like the program terms in
Sect. 2, but with the extra constructs of non-deterministic choice (a)M (binding o in M),
index application M - s, and pattern matching on indices

case s of {#* - K; L(a) > L; R(a) = M; (o, 8) = N}

(binding o in L and M and «, in N). In a pattern matching we may omit some of
the clauses in which case the omitted clauses have the default value nil. For example,
case s of {(a, 8) = M} stands for case s of {* — nil; L(_) — nil; R(_) — nil; (o, 8) = M}.
We use the abbreviation («, 8) M for the term A\vy.case v of {(«, 3) = M} and define, for
later use, the terms

return = Aa{«)inr(a)
bind := AcAf{q,B)case ¢-a of {inl(a) = (fa)-B;inr(_) — nil}

The logical language of RCFP extends the language of RIFP by a sort of indices and
quantification over indices. The specification of programs is extended in RCFP by the
equations

(@)M)-s = M[s/a]

case * of {...} = K
case L(s) of {...} = L[s/q]
case R(s) of {...} = M][s/q]
case (s,t) of {...} = N][s,t/a,p]

where {...} = {* - K; L(a) = L; R(a) > M ; (o,) — N}.
Realizability for formulas of the form S(A) is defined as

crS(A) = 3Jo,a(c-a=inl(a)) A Ya,a(c-a=inl(a) — arA)

We do not stipulate closure of nc or ff formulas under S. Therefore, the sets of nc and ff
formulas remains unchanged and the Lemma 1 remains valid for RCFP:

CSL 2016

26:10

Extracting Non-Deterministic Concurrent Programs

» Lemma 15. If A is an ncc formula in CFP, then ar A is equivalent to A.

» Theorem 16 (Soundness for CFP). From a proof in CFP of A, T'F A, where A consists
of nce formulas, one can extract a concurrent program term M such that RCFP proves
AjarTH(Ma)rA.

Proof. Tt suffices to verify the realizability of the new proof rules (S1), (S7), (S"¢), that is,
to find realizers of the formulas

(a) A S(4),

(b) S(A) = (A —S(B)) = S(B),

(c) S(A) — A if A is nce.

It is easy to see that return realizes (a) and bind realizes (b). We show that Ac.nil realizes
(c). Assume crS(A). We have to show nilr A, that is A, by Lemma 15. Since c¢r S(A), there
exist o and a such that ¢-«a = inl(a) and ar A. Hence A, by Lemma 15. <

A program a concurrently realizes an IFP-formula A, written a cr A, if a realizes AS, that
is, ar AS. Combining the Embedding Theorem (Thm. 14), the Soundness Theorem for CFP
(16) and the fact that realizability of AS is equivalent to A for non-computational formulas
(Lemma 1), one obtains:

» Theorem 17 (Concurrent Soundness). From a proof of AT bipp A, where A is non-
computational, one can extract a concurrent program M that maps concurrent realizers of I’
to a concurrent realizer of A, that is A,dcrT Fepp (M - d) cr A.

In order to understand what kind of extracted program we can expect from the proof of
(G C €)%, which will be obtained from the proof of G C C (Theorem 12) using Theorem 14
and the realizer of (DP®) (Lemma 30), let us write out this formula:

(GCC)P® = V&.G5x) — C3x)

CS) £ S(\/ ze€lgAC5 22 —d))
deSD

GSx) £ (x#0—=S@<0Vae>0)AG+t(x))

One sees that the predicates C5 and G5 are almost the same as the original C and G except
that the digits of the streams realizing C° or G5 can now be computed non-deterministically
and concurrently. The extracted program will be able consume and produce such streams.

6 Semantics of concurrent programs and program extraction for CFP

In this section we define an operational big-step semantics for concurrent program terms and
show that it fits with a domain-theoretic semantics (Adequacy Theorem 21). Combined with
a denotational Soundness Theorem (Theorem 18) and a Faithfulness Theorem (Theorem 20)
we obtain that from a proof of a data-formula A (see below) from assumptions I" one can
extract a concurrent program that computes from concurrent realizers of I' (non-concurrent)
data realizing A.

The denotational model of realizers for CFP is the Scott-domain D defined by the
recursive domain equation

D=14+D+D+DxD+ (D — D)+ D*

where 1 is the one-point domain, + denotes the separated sum, x denotes the topological
product, (D — D) denotes the continuous function space, and D? denotes the Z-fold

U. Berger 26:11

topological product of D. Only the last component DZ is new, the rest is as in [1] Sect 5.
The components of the sum on the right-hand side of the equation above are embedded into
D via the constructors Nil : D, Ing,Iny : D — D, Pair: D x D — D, Fun: (D — D) — D,
Fam : DT — D. Every concurrent program term M has an obvious denotation [M]¢ € D in
any given environment £ that maps all its free index variables to elements of Z and all its
free object variables to elements of D. For example, [Aa M]¢ = Fun(Ma’ € D . [M]¢[a — d'],
[{)M]§ = Fam(i € Z.[M¢la — i, [(MN)]¢ = F(IN]E) if [M]¢ = Fun(f), and
[(M - 9)]€ = o([s]€) if [M]€& = Fam(ep), otherwise these terms have value L. If M is closed
(i.e. has neither free index nor object variables), we omit the environment.

» Theorem 18 (Denotational soundness). If RCFP proves I' b B, then B holds in every
model of T' that interprets the sort of realizers as D. In particular, if B is of the form Mr A,
then [M] € D realizes A in that model.

We call a CFP-formula a parametric data formula if every subformula of the form A — B
or v ®(t) is non-computational. A data formula is a parametric data formula without free
predicate variables. Furthermore, data terms are defined, as in [1], as the terms built from Nil
by injections and pairing. As in [1] we identify data terms with the corresponding elements
in D and call them simply data

Our main result is analogous to the Program Extraction Theorem in [1] and refers to a
big-step operational semantics. First we introduce closures which are inductively defined as
pairs (M, n) where M is a term and 7 is a finite mapping from object variables to closures.
A walue is a closure (M, n) where M is an intro term, that is, either Nil or an injection or
a pair or a A-abstraction or a choice term, (a)M. The bigstep reduction relation ¢ — v
between closures ¢ and values v is inductively defined as in [1], but with additional five rules:

(M,n) — ()Mo, ") (Mo[s/al,n') — v
(M s,m) — v

In the remaining four rules we use the abbreviation

—

C:=%— M,; L(a) = Mp; R(e) = My (o, 8) = M
(M.,n) — v (Mo[s/op],n) — v (My[s/apl,n) — v
(case * of {C},n) — v (case L(s) of {C},n) — v (case R(s) of {C},n) — v
(M|s,t/a, B],m) — v
(case (s,t) of {C},n) — v
Note that neither the denotational semantics nor the bigstep operational semantics exhibit
any kind of non-determinism or concurrency. These features come into play only through
the printing relation, c = d, between closures ¢ and data d, defined below. It is inductively
defined as in [1], but with five additional rules concerned with non-deterministic choice:
c— (o)M,n) (M,n) —=d
c=d

In the remaining four rules (where p = 0,1) « must occur free in ¢ and 8 must be fresh:

clx/a] = d cL(a)/al = d cR(a)/a] = d cl(a,B)/a] = d
c—=—d c—=—d c=—d c—=—d

If M is a closed term, then we write M = d instead of (M,) = where (is the empty
mapping. Essentially, these rules allow to reduce a closure ¢ with a choice parameter « to
cli/a] for any i € Z. The way the rules are set up, one can do the instantiation c[i/«a] lazily
and incrementally, by only specifying the outer shape of ¢ in one step.

CSL 2016

26:12

Extracting Non-Deterministic Concurrent Programs

» Theorem 19 (Program Extraction). From a proof of a data formula A in CFP from
concurrently realizable assumptions one can extract a concurrent program term M such
M = d for some data d provably realizing A.

The main building blocks for the proof of the Program Extraction Theorem are the
Soundness Theorem (Theorem 16), the Computational Adequacy Theorem and the Faithful-
ness Theorem below. The latter two refer to the relation d € data(a), for a € D and data d,
which is defined inductively as follows:

(i) Nil € data(Nil).

(ii) If d € data(a), then In, d € data(In, a) for p =0, 1.
(i) If d, € data(a,) for p = 0,1, then Paird; d; € data(Pairagay).
(iv) If d € data(yi) for some i € Z, then d € data(Fam).

» Theorem 20 (Faithfulness). If a € D concurrently realizes a data formula A, then data(a)
is nonempty and all d € data(a) realize A, provably in IFP.

Proof. See Appendix. <

» Theorem 21 (Computational Adequacy). If d € data([M]), then M = d.

The proof of Computational Adequacy is quite involved and will occupy the rest of this
section.

Proof of the Program Extraction Theorem from Soundness, Computational Adequacy
and Faithfulness. From a proof of a data formula A in CFP from realizable assumptions, one
obtains by Soundness a concurrent program term M realizing A. More precisely, [M] realizes
A. By Faithfulness, there is a data d € data([M]) such that d provably deterministically
realizes A. By Computational Adequacy, M = d. <

Now we develop the necessary machinery to prove Computational Adequacy. For a closure
c we let ¢ be the closed term represented by ¢, that is,

(M n) = M[n(z)/z | z € FV(M)].

The proof is done through the following series of lemmas whose proofs can be found in the
Appendix.

» Lemma 22 (Correctness).
(a) Ifc— v, thenkc=1.
(b) If c=d, then F d € data([¢]).

» Lemma 23 (Instantiation).
(a) If cfi/a] = d, then ¢ = d.
(b) If c — ({(a)M,n) and (M[i/a],n) = d, then ¢ = d.

» Lemma 24 (lrreducibility of values). For values v, v’
v—v Gff v=1".

Let Dy be the set of compact elements of D. Every a € Dy has a natural rank, rk(a) € N,
satisfying properties rk1 — rk4. The first three properties are as in [1], the fourth is
rk4 If Fam ¢ is compact, then for every i € Z, i is compact with rk(pi) < rk(Fam).

U. Berger

To every a € Dy we assign a set of closures Cl(a) by recursion on rk(a). The definition is as
in [1], with the extra clause

Cl(Fam ¢) = {c| Ja, M,n.c — ({a)M,n) AVi € T.(M[i/a],n) € Cl(pi)}
A similar assignment of closures to the compact elements of a semantic domain is used in [15].

» Lemma 25 (Monotonicity). If a,b are compact elements in D such that a © b, then
Cl(a) 2 CI(b).

» Lemma 26 (Printing of data). If c € Cl(a) and d € data(a), then c = d.
» Lemma 27 (Reducibility of closures). ¢ € Cl(a) iff ¢ — v for some v € Cl(a).

We write n € C1(§) if n and £ have the same domain and n(x) € Cl({(x)) for every object
variable z and n(«) = £(«) for every index variable « in the common domain.

» Lemma 28 (Approximation). If n € Cl(§), a € Dy and a C [M]¢, then (M,n) € Cl(a).

» Lemma 29. If d € data(a), then d € data(ag) for some compact ag C a.

Proof of the Adequacy Theorem (Theorem 21). Assume d € data([M]) where M is closed.

By Lemma 29, d € data(a) for some compact a C [M]. By Lemma 28, (M, () € Cl(a). B
Lemma 26, M = d. |

7 Realizing the Disjunction Principle

In this Section we show that the Disjunction Principle can be concurrently realized.

Recall that in Theorem 12 we proved in IFP that G C C, with the help of (DP). By
Concurrent Soundness (Theorem 16), we can extract from this proof a concurrent program
transforming infinite Gray code into signed digit representation, provided we can concurrently
realize (DP).

» Lemma 30. The Disjunction Principle can be concurrently realized.

Proof. The embedding of the Disjunction Principle, (DP)%, is
P 9 s s
(AVB)>AN(PVC)> = (AvBVC)

where (A v B)S = (P — S(AV B))A (=P — AAB), (PgC)S =(Q—=S(PVO))AN(—Q —
PAC)and (AV BV C)S =S(S(AV B) V(). Since CFP proves that S(S(AV B) v O) is
equivalent to S((AV B) V C) (easy exercise), it suffices to realize the formula

(x) (AVB)SA(PYC)® - S((AVB)VO)

where P, Q, A, B, C are ncc formulas. The following program realizes (x): fpp = Ac.
() .case v of {L(a) — case m1(c) - a of {inl(inl(_)) — inl(inl(inl(nil)));

)}

)3}

In order to show that fpp realizes (x), we assume a := 71 (c) realizes (4 \/ B)S and b := my(c)

inl(inr(_)) — inl(inl(inr(nil))
R(B) — case ma(c) - f of {inl(inr(_)) — inl(inr(nil)

Q
realizes (P V C)°. We show that fpp c realizes S((A V B) V C). The assumptions mean:

26:13

CSL 2016

26:14

Extracting Non-Deterministic Concurrent Programs

(1) If P, then a concurrently realizes AV B, i.e.

(1.1) a-ig =inl(ag) for some g, aop,

(1.2) If a-i =inl(a’), then a’r (AV B), that is, o’ = inl(_) and A, or @’ = inr(_) and B.
(2) If @, then b concurrently realizes PV C, i.e.

(2.1) b-jo = inl(bg) for some jo, bo,

(2.2) It b- j =inl(d'), then ¥'r (P Vv C), that is, ¥’ =inl(_) and P, or b’ = inr(_) and C.
(3) If =P, then A and B.

(4) If =Q, then P and C
In the proof that fpp(a,b) realizes S((AV B) V(') we argue classically, admitting case analysis
on P and Q.

The first condition holds since, if P holds, then, by (1), fpp(a,d) - L(4p) is of the form
inl(_). If P does not hold, then @ holds, by (4), and therefore b - jo = inl(by), by (2.1). By
(2.2), by = inr(__), since P does not hold. Hence fpp(a,bd) - R(jo) is of the form inl(_).

To verify the second condition, assume fpp(a,d) - k = inl(c). We have to show that ¢
realizes (A V B) V C. By the definition of fpp(a,b), k is of the form L(7) or R(j).

If k = L(7), then either a - ¢ = inl(inl(_)) and ¢ = inl(inl(nil)), or else @ - i = inl(inr(_))
and ¢ = inl(inr(nil)). If P holds, then a concurrently realizes AV B, by (1). Hence, if
a-i = inl(inl(_)), then A holds, hence inl(nil) realizes AV B and consequently ¢ = inl(inl(nil))
realizes (A V B) vV C. The case that a -4 = inl(inr(_)) is similar. If P does not hold, then A
and B hold, by (3), hence inl(nil) and inr(nil) both realize AV B. It follows in any case that
c realizes (AV B) Vv C.

If k = R(j), then b- j = inl(inr(_)) and ¢ = inr(nil). If @ holds then C holds by (2.2). If
@ does not hold, then C holds by (4). In either case ¢ realizes ((AV B) Vv C. <

In order to understand fpp we express its behaviors in terms of overlapping defining
equations that ignore the indices in (€ Z) labeling the different choices. Ignoring also the
leading inl(-) of the inputs and outputs, which only flag up a valid result, we obtain (writing
(a,b) for {a,b))

fDP (inl(_),b) = inl(inl(nil))
fDP (inr(_),b) = inl(inr(nil))
fDP (a,inr())

inr(nil)

These equation must be interpreted as non-deterministic rewrite rules, similar to the program
gtos in the introduction.

8 Extracting programs for infinite Gray code

We conclude by extracting the programs from the proofs of the Lemmas 6-11 in Sect. 4, and
assembling them, via program extraction from the proof of Theorem 12, to yield the main
program transforming infinite Gray to signed digit representation. Since the proofs are so
short it is easy to read off the extracted programs from the proof “by hand”.

For signed digit streams (that is, realizers of C(z)) we display the possible digits
inl(inl(nil)), inl(inr(nil)), inr(nil) as -1,1,0, respectively. For infinite Gray codes (that
is, realizers of G(x)) we display the possible digits inl(nil), inr(nil) as 0,1, respectively. Note
that with this display the program £DP (which will be used in the next program) reads

fDP (0,b) = -1

fDP (1,Db) 1

fDP (a,1) 0

Furthermore, we display nested pairs like (a, (b, s)) as a:b:s.

U. Berger

Lemma 6. If z € G, then x € I; for some d € SD.

f6 (a:b:s) = fDP (a,b)

Lemma 7. (a)Ifz € G, then —z € G. (b) If z € G, then |z| € G.

f7a (a:s) = swap a : s where {swap 0 = 1; swap 1 = 0}
f7b (a:s) = 1:s

Lemma 8. If 0 <2 <1 and G(z), then G(2z — 1).

£f8 (a:s) = f7a s

Lemma 9. If G(z), then G(t(z).

f9 (a:s) = s

Lemma 10. If 0 <z <1 and G(z), then G(1 — x).

f10 s =1 : f8 s

Lemma 11. If —3 <2z < 3 and G(z), then G(2z).

f11 (a:s) = a : f9 (f10 s)

Theorem 12. G C C.

f12 s = let { d = f6 s } in
d : case d of {-1 -> f12 (f9 s); 0 —> f12 (f11 s); 1 -> f12 (f8 s)}

Hence

f12 (0:s) = -1 : f12 s
f12 (l:a:s) =1 : £12 (swap a : s)
£12 (a:l:c:s) =0 : £f12 (a : swap ¢ : s)

Again, the equations above should be read as overlapping rewrite rules. Observe that the
equations for £12 correspond exactly to the equations given for the program gtos shown in
the introduction.

9 Conclusion

We introduced a logic and realizability interpretation for the extraction of non-deterministic
concurrent programs and applied it to extract Tsuiki’s program converting infinite Gray code
for real numbers into signed digit representation. Through the Soundness and Computational
Adequacy Theorems, extracted programs come with formal proofs of their correctness and
termination.

Although we are still far from a fully fledged method of certified code generation for
non-deterministic and concurrent programs, we believe that our application to infinite Gray
code (which was done on paper) can be viewed as a proof of concept that makes it worthwhile
to implement this method in a suitable proof system.

Regarding further applications, computable analysis holds plenty of other inherently
non-deterministic problems (for example, root finding or inversion of matrices with real
valued entries) to which our method can be applied.

26:15

CSL 2016

26:16

Extracting Non-Deterministic Concurrent Programs

—— References

1

10

11

12

13

14

15

U. Berger. Realisability for induction and coinduction with applications to constructive
analysis. Jour. Universal Comput. Sci., 16(18):2535-2555, 2010.

U. Berger and T. Hou. A realizability interpretation of Church’s simple theory of types.
Mathematical Structures in Computer Science, 2016. To appear.

U. Berger, K. Miyamoto, H. Schwichtenberg, and M. Seisenberger. Minlog — a tool for
program extraction for supporting algebra and coalgebra. In CALCO-Tools, volume 6859
of LNCS, pages 393—-399. Springer Verlag, Berlin, Heidelberg, New York, 2011. doi:10.
1007/978-3-642-22944-2_29.

U. Berger, K. Miyamoto, H. Schwichtenberg, and H. Tsuiki. Logic for Gray-code compu-
tation. In Concepts of Proof in Mathematics, Philosophy, and Computer Science, Ontos
Mathematical Logic 6. de Gruyter, 2016. To appear.

S. Berghofer. Program Extraction in simply-typed Higher Order Logic. In Types for Proofs
and Programs (TYPES’02), volume 2646 of LNCS, pages 21-38. Springer Verlag, Berlin,
Heidelberg, New York, 2003.

A. Bucciarelli, T. Ehrhard, and G. Manzonetto. A relational semantics for parallelism and
non-determinism in a functional setting. Annals of Pure and Applied Logic, 163(7):918-934,
2012.

C. M. Chuang. Eztraction of Programs for Exact Real Number Computation Using Agda.
PhD thesis, Swansea University, 2011.

R.L. Constable. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, New Jersey, 1986.

S. Hayashi and H. Nakano. PX: A Computational Logic. MIT Press, 1988.

Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55-92, 1991.

C.-H.L. Ong. Non-determinism in a functional setting. In Proc. of LICS’93, pages 275-286,
1993.

C. Paulin-Mohring. Inductive definitions in the system Coq; rules and properties. In
M. Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applications, pages 328—
345. LNCS Vol. 664, 1993.

G.D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3):452-487, 1976.

H. Tsuiki. Real Number Computation through Gray Code Embedding. Theoretical Com-
puter Science, 284(2):467-485, 2002.

G. Winskel. The Formal Semantics of Programming Languages. Foundations of Computing
Series. The MIT Press, Cambridge, Massachusetts, 1993.

A Appendix: Proofs

Lemma 1. If A is an ncc formula, then ar A is equivalent to A, provably in RIFP.

Proof. For a predicate P let KP = A(a, &) P(Z) (that is, P is extended by an extra dummy
first argument ranging over realizers). For a predicate Q with first argument ranging over
realizers let 3Q = A\¥3a Q(a,¥) and V Q = AZVa Q(a, ¥). Note that 3 is left adjoint to K,
that is 3Q C P iff @ C K'P, and V is right adjoint to K, that is P CV Q iff KP C Q. Hence
K(VQ)CQCK(3Q). In addition, if @ = KP, then VQ =3 Q = P. For an IFP-formula
A, let

Ki = {X=KX|X freein A}
4 = {EIX:X\XfreeinA}

We show, more generally, that RIFP proves

http://dx.doi.org/10.1007/978-3-642-22944-2_29
http://dx.doi.org/10.1007/978-3-642-22944-2_29

U. Berger

(a) KaF A < ar A for nc formulas A.
(b) 34 F A+ Jaar A for ff formulas A.
The proof is by simultaneous induction on A.
For (a), the only non-obvious cases are implication as well as inductive and coinductive
definitions.

Consider A — B where A is ffc and B is nc. W.l.o.g. let us assume that A is not ncc.

Hence cr (A — B) is Ya(ar A — (c¢- a)r B). By induction hypothesis (a) this is equivalent
to Va(ar A — B) and hence, by induction hypothesis (b) and since K4 F 34, to A — B.
Consider (u®)() where ® = AXA\# A. We have to show (ur(®))(a,1) < (u®)(). We

show more generally pr(®) = K (1 ®). We show the inclusion pr(®) C K (u ®) by induction.

Hence, we have to show r(®)(K(u®)) € K(u®), that is, arA — A under the extra

assumptions that X = K (4 ®) and X = p®. But the extra assumptions imply X = K X.

Hence, induction hypothesis (a) applies. The other inclusion, K (u ®) C pr(®), is equivalent
to u® C V(ur(®)). We show p® C V(ur(®P)) by induction. Hence, we have to show
OV (ur(®))) CV(ur(P)), that is, A — ar A under the extra assumptions X =V (ur(P))
and X = pr(®). Since K(V(ur(®))) C ur(®) and ar A is monotone in X (and A is

independent of X), it suffices to show that A — ar A follows form the extra assumptions

X =V (ur(®)) and X = K (V (ur(®))). But this is guaranteed by induction hypothesis (a).

For coinduction, the proof is obtained by dualization, that is, by inverting all inclusions
and implications and replacing u, “induction”, V by v, “coinduction”, 3, respectively. More

precisely, consider (v ®)(f) where ® = AX\# A. We have to show (vr(®))(a,t) <> (v ®)(t).

We show more generally vr(®) = K(v®). We show the inclusion K (v ®) C vr(®) by
coinduction. Hence, we have to show K (v @) C r(®)(K (v ®)), that is, A — ar A under the

extra assumptions that X = K (v ®) and X = v ®, which holds by induction hypothesis (a).

The other inclusion, v r(®) C K (v ®), is equivalent to (v r(®)) C v ®, where for a predicate
P, 3P = Ad3a P(a,Z). We show I(vr(®)) C v ® by coinduction. Hence, we have to show
F(wr(®)) C (3 (vr(P))), that is, ar A — A under the extra assumptions X = 3 (v r(P))
and X = vr(®). Since vr(®) C K (3 (ur(®))) and ar A is monotone in X, it suffices to show

that ar A — A follows form the extra assumptions X = 3 (vr(®)) and X = K (3 (v r(®))).

But this is guaranteed by induction hypothesis (a).
For (b), the only non-obvious case is induction.

Consider (u®)(f) where ® = AXAZ A. We have to show Ja (ur(®))(a,t) < (u®)(f).

We show more generally 3 (pr(®)) = u®. The inclusion 3 (pr(P)) C p P is equivalent to
pr(®) C K (p®). We use induction. Hence, we have to show r(®)(K (x®)) C K (u), that
is, Juar A — A under the extra assumptions that X = K (u ®) and X = p®. But the
extra assumptions imply X = K X and hence 3X = X. Hence, induction hypothesis (b)
applies. The other inclusion, p® C p 3 (pr(P)), can be shown by induction. Hence, we
show ®(3 (ur(®))) € I (ur(®)). Since I (pr(P®)) = I (r(P)(ur(P))), this equivalent to
X =3 (ur(®),X = ur(®) F A — Jaar A. Since the assumptions in this sequent imply
X =3 X, this is implied by induction hypothesis (b). <

Lemma 3

(a) f z € A and y € T with y = az + b for some a,b € Q, then y € A.
(b) If z € Cand b € Qis such that z +b €[, then z + b € C.

(c) If z € C and 22 4+ b € I, where b € Q, then 2z + b € C.

(d) If z € C, then —x € C.

26:17

CSL 2016

26:18

Extracting Non-Deterministic Concurrent Programs

Proof.
(a) Let z € A and y € I with y = ax + b where a,b € Q. Let n € N. Let k € N such that
la| < 2F Since z € A there is ¢ € Q such that |z — ¢| < 27("+*). Hence

lax + b — (ag + b)| = |a||z — q] < 2F/2"+F =277

Let ¢ = —1ifag+b< —1,=1if ag+b> 1, and = aq + b otherwise. Then ¢ € QNI
and laz +b—¢'| <27

(b) Define P:={z€l|3eQ.2+be C}. Weshow P C C by coinduction. Let z € P,
that is z € I and x + b € C for some b € Q. We have to find d € SD such that x € I
and 2z —d € P. Since z + b € C we find dy,d; € SD such that 2(x +b) — dy € C
and 4(x +b) — 2dg — d; € C. Hence |4(x +b) —2dg — di| < 1, ie. |z —a] < 1/4
where a := dy/2 + d1/4 — b. Therefore x € IN[a —1/4,a+ 1/4]. Choose d € SD such
that TNfa—1/4,a +1/4] C I5. Then z € 1. With ¢ := 2b+d — dy € Q we have
2 —d+c=2(x+b) —do € C, hence 2x —d € P.

(c) If x € C, then 2z — e € C for some e € SD. Hence 2z + b € C, by part (b), provided
2v+bel

(d) Let P(z) = —x € C. We show P C C, by coinduction. Assume —z € C. Let d € SD
such that —z € Iy and 2(—z) —d € C. Then z € I_4 and —(2z — (—d)) € C, i.e.
P2z — (—d). <

Lemma 13. CFP proves S(A4%) — AS (hence S(A4%) «+» AS) for all formulas A without free
predicate variables.

Proof. For a formula A we set 'y = {S(X) C X | X is not guarded in A}. Note that if A
has no free predicate variables, then I' 4 = 0.

We show more generally I' 4 Fcpp S(A%) — AS, by induction on A.

The cases where AS is of the form S(...), that is, AV B and 3z A, are trivial since the
modality is idempotent.

For the case P(t) the assertion holds by the rule (S°).

For the case X (f) the assertion holds since X is not guarded in X (%).

Cases AN B and A — B. First note that Tynp = Tasp = T4 UT5. S((AA B)S) is
S(AS A BS), which implies S(A4%) A S(B®). By induction hypothesis, this is equivalent to
AS A BSie. (AN B)S. For implication the argument is similar.

Cases Yz A. S((Vx A)S) is S(Vx AS), which implies V2 S(4%). By induction hypothesis
and the rule (S*), this is equivalent to Vo A5, i.e. (Vz A)S.

Case (v ®)(t). Tt suffices to show S(v ®5) C v ®5. Define P := v (®5 0 §). Assuming
® = AXAZ. A, we have Ty C T',p U {S(X) C X}. Hence, by induction hypothesis,
I',s,5(X) C X Fcepp S(A%) — AS. In the following, we reason in CFP and assume I', 3.
Since S(S(X)) C S(X), it follows S(AS[S(X)/X]) — AS[S(X)/X], i.e. S((®° 0 S)(X)) C
(®508S)(X). In particular, for X := P we obtain S(P) C P, since (®50S)(P) = P. Therefore,
it suffices to show that v ®5 = P. By (St), 5 C 505, hence v ®° C P, by the monotonicity
of the greatest fixed point operator. Since S(P) C P we have P = ®5(S(P)) C ®5(P), by
the monotonicity of ®5. Hence P C v ®S, by coinduction.

Case (1 ®)(t) where ® is not guarded. S(u(®° 0 8)) C 1 (P 0 S) is shown in a similar
way as S(P) C P was shown in the previous case, since there we used only the fixed point
property.

Case (u®)(t) where ® is guarded. We reason in CFP assuming T, ¢. Let ® be AX 7. A.
Since X is guarded in A, we have I',, ¢ = I'4. Hence, by induction hypothesis, S(A%) — AS,
i.e. S(®5(X)) C ®5(X). Consequently, S(u®%) = S(®5(u ®5)) C &5(u @5) = p ®5. <

U. Berger

Theorem 14 (Concurrent embedding). If I Fipp A, then I'S Fcepp AS for all formulas A
without free predicate variables.

Proof. Induction on derivations.

The assumption rule is trivial and the rules for the connectives where the embedding is
defined homomorphically, that is, conjunction, implication, universal quantification as well
as induction and coinduction, are straightforward using the induction hypothesis.

Disjunction introduction.

r-A
'-AvB

By induction hypothesis, I'S = AS. Hence I'S - A5 v BS by disjunction introduction. Hence
'S - S(A8 v BS) by the rule (ST)
Disjunction elimination.

I'-AVB T,ArC T,BFC
TFC

By induction hypothesis, 'S = S(AS v BS), 'S, AS |- C5, and 'S, BS - CS. By the last two
sequents, the rule (S*) and disjunction elimination, we have I'S; AS v BS - S(C®). Hence
I'S - S(C9), by the rule (S7). With Lemma 13 it follows I'S - CS.

Existence introduction.

I+ Alt/a]
'H3dz A

By induction hypothesis, I'S - (A[t/x])S. By existence introduction and since (A[t/x])3 is
the same as AS[t/z] it follows I'S - 3z AS. Hence I'S - S(3x A%), by the rule (ST).
Existence elimination.

I'F3zA T,AFC
TFC

By induction hypothesis, T'S S(3z A5) and T'S, AS - CS. Applying the rule (S*) to the
second sequent yields 'S, AS - S(C®) and furthermore 'S, 3z AS - S(C®), using existence
elimination (since the embedding and the modality don’t introduce new free variables). With
the rule (S7) it follows 'S - S(C®) and hence I'S - O3, using Lemma 13. <

Theorem 20 (Faithfulness). If a € D concurrently realizes a data formula A, then data(a)
is nonempty and all d € data(a) realize A, provably in IFP.

Proof. For an n + 1-ary predicate P whose first argument is of type D we define a predicate
P’ of the same arity by P'(a,Z) := Vd € data(a) P(d,Z), and extend this to predicate
substitutions by setting 0'(X) := (6(X))’. We show that for a parametric data formula A

r(A%)0' C (r(A)0)

In particular, for a data formula A we have r(AS) C r(A), i.e. if a realizes AS, then r(A)’(a)
holds, that is, d realizes A for all d € data(a). The proof is by induction on A. We only look
at the case A = p ®1, since the other cases are easy. We show by induction u (r(®%) ') C P’
where P := p (r(®)6). Hence we have to show (r(®%)6') P’ C P':

(1(0%)0') P' = (x(0%) X) (0'[X := PI)' € (x(®) X) (¢/[X = P])' = (x(@)6) P = P' . «

26:19

CSL 2016

26:20

Extracting Non-Deterministic Concurrent Programs

Lemma 22 (Correctness).
(a) If ¢ —> v, then Fe =7.
(b) If c = d, then I d € data([¢]).

Proof. Easy, by induction along the definitions of ¢ — v and ¢ = d. |

Lemma 23 (Instantiation).
(a) If c[i/a) = d, then ¢ = d.
(b) If c — ({(a)M,n) and (M]i/a],n) = d, then ¢ = d.

Proof. Part (a) is proved by induction on 4. Part (b) follows immediately from (a). <

Lemma 24 (Irreducibility of values). For values v, v’
v—v iff v=0".

Proof. This follows immediately from the rules of the big-step reduction relation. <

Lemma 25 (Monotonicity). If a,b are compact elements in D such that ¢ T b, then
Cl(a) 2 CI(b).

Proof. Induction on the maximum of rk(a) and rk(b). In the case a = Fam ¢ C Fam v with
wi C i for all i € Z, we have Cl(pi) D Cl(3 i), by induction hypothesis. Let ¢ € Cl(b). We
show ¢ € Cl(a). Let ¢ — ((a)M,n) such that (M[i/a],n) € Cl(¢ i) for all i € Z. Hence
(Mli/a],n) € Cl(pi) for all ¢ € Z, which proves that ¢ € Cl(a).

The other cases are as in [1], Lemma 12. <

Lemma 26 (Printing of data). If ¢ € Cl(a) and d € data(a), then ¢ = d.

Proof. Induction on the definition of data(a). In the case a = Fam ¢, the hypotheses of the
lemma imply that we have d € data(pig) for some ig € Z and ¢ — ({a)M,n) such that
(M[i/a],n) € Cl(p1) for all i € Z. Therefore, by induction hypothesis, (M[io/al,n) = d.
By Lemma 23, c = d.

The other cases are easy. |

Lemma 27 (Reducibilty of closures). ¢ € Cl(a) iff ¢ — v for some v € Cl(a).

Proof. Induction on rk(a). We only consider the case a = Fam ¢ since the other cases are
as in [1], Lemma 13.
If ¢ € Cl(a), then ¢ — ((@)M,n) and (M[i/a],n) € Cl(pi) for all i € Z. Set v :=
({a) M, n), which is a value. By rule (i), v — v. Hence v € Cl(a), by the above.
Conversely, if v € Cl(a), then v — ({(a)M, n) for some a, M, n such that (M[i/a],n) €
Cl(p1i) for all : € Z. Since ((a)M,n) is a value, it follows, by Lemma 24, that v = ((a) M, 7).
Hence, if ¢ — v, then ¢ € Cl(a).

U. Berger

Lemma 28 (Approximation). If n € Cl(§), a € Dy and a C [M]E, then (M,n) € Cl(a).

Proof. As in [1], Lemma 15, we replace in the statement of the lemma the value [M]¢ by
its nth approximation [M]"¢ and show,

(+) for all n € N, if n € Cl(§),a € Dy and a C [M]"¢, then (M,n) € Cl(a),

by induction on n. Since ([M]™¢)nen is an increasing sequence with [M]¢ as its supremum,
it follows that for compact a, (+) is equivalent to the statement of the lemma.

We assume a # | (for a = L the statement is trivial) and look only at the cases where M
is formed by one of the new constructs. Since [M]°¢ = L we are in the step of the induction.
Hence we assume a = [M]" €.

Case M = (a)N. Then [M]"T!¢ = Fam ¢ where @i = [N[i/a]]"¢. Since a # L we have
a = Fam g where ¢oi C pi and ¢g i is compact for all ¢ € Z. Since v := (M, n) is a value,
we have v — v, and, by induction hypothesis, (N[i/a],n) € Cl(¢g 7). Hence (M, n) € Cl(a).

Case M = case k of {x = N,; L(a) = No; R(a) = Ny; (o, 8) = N}.

Subcase k = . Then [M]"*1¢ = [N.]"¢. By induction hypothesis (N,7n) € Cl(a). By
Lemma 27, (N,,n) — v for some value v € Cl(a). Hence (M,n) — v.

Subcase k = L(i) for some i € Z. Then [M]""¢ = [N,]"¢[a + i]. By induction
hypothesis (No, n[a — i]) € Cl(a). By Lemma 27 (implication from left to right), (No, n[a —
i]) — v for some value v € Cl(a). Hence (M,n) — v, By Lemma 27 (implication from
right to left).

Subcase k = R(7) for some ¢ € Z. Similar to the case above.

Subcase k = (4, 5) for some i,7 € Z. Similar to the previous case.

Case M = N ig. By assumption, a C [M]"T1¢ = [N]"¢ ig. Since a # L, [N]"¢ = Fam ¢,
for some ¢ € DT. Define pg € D by ¢o(ig) := a and ¢(i) := L for i # ig. Then Fam g
is compact and Fam ¢y C [N]"¢. By induction hypothesis, (N,n) € Cl(Fam). Hence
(N,n) — ({@)No,n) € Cl(pgig) = Cl(a). By Lemma 27, Ny[ip/a] — v € Cl(a) and
consequently N iy —> v. Therefore N ig € Cl(a). <

Lemma 29. If d € data(a), then d € data(ag) for some compact ag C a.

Proof. Easy induction on the definition of d € data(a). We only look at rule (iv), that is,
d € Fam ¢ because d € data(pig) for some iy € Z. By induction hypothesis, d € data(ag)
for some compact ag T pig. Define ¢y € DT by ¢gio := a and ¢gi := L for i # ig. Then
Fam g is compact and Fam ¢y C Fam ¢, and, by rule (iv), d € data(Fam ¢g). <

26:21

CSL 2016

	Introduction
	Intuitionistic Fixed Point Logic
	Cauchy and signed digit representation of real numbers
	Infinite Gray code
	Concurrent Fixed Point Logic
	Semantics of concurrent programs and program extraction for CFP
	Realizing the Disjunction Principle
	Extracting programs for infinite Gray code
	Conclusion
	Appendix: Proofs

