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ABSTRACT. Given a bipartite graph G = (Vc,Vt, E) and a non-negative integer k, the NP-complete
MINIMUM-FLIP CONSENSUS TREE problem asks whether G can be transformed, using up to k edge
insertions and deletions, into a graph that does not contain an induced P5 with its first vertex in Vt

(a so-called M-graph or Σ-graph). This problem plays an important role in computational phyloge-
netics, Vc standing for the characters and Vt standing for taxa. Chen et al. [IEEE/ACM TCBB 2006]
showed that MINIMUM-FLIP CONSENSUS TREE is NP-complete and presented a parameterized al-
gorithm with running time O(6k · |Vt| · |Vc|). Recently, Böcker et al. [IWPEC ’08] presented a refined
search tree algorithm with running time O(4.83k(|Vt| + |Vc|) + |Vt| · |Vc|). We complement these
results by polynomial-time executable data reduction rules yielding a problem kernel with O(k3)
vertices.

1 Introduction

The MINIMUM-FLIP CONSENSUS TREE problem arises in computational phylogenetics in

the context of supertree construction. Given a binary matrix, the task is to “flip” a mini-

mum number of entries of the matrix in order to obtain a binary matrix that admits what is

called a perfect phylogeny. These are matrices from which a rooted phylogenetic tree can be

inferred [15, 21].

In this work, we employ a graph-theoretic formulation of the problem, whichwas intro-

duced by Chen et al. [4]: the binary input matrix A is represented by a bipartite graph G =
(Vc,Vt, E) where an edge between two vertices i ∈ Vc and j ∈ Vt is drawn iff Ai,j = 1.

The matrix then admits a perfect phylogeny iff the graph does not contain an M-graph as

an induced subgraph. An M-graph is a path of five vertices with the first vertex belonging

to Vt. An example of such an M-graph is depicted in Fig. 1. Then, the flipping of a matrix

entry Ai,j from 0 to 1 corresponds to the insertion of the edge {i, j}, and from 1 to 0 corre-

sponds to the deletion of the edge {i, j}. The MINIMUM-FLIP CONSENSUS TREE problem is

then defined as follows.

Instance: A bipartite graph G = (Vc,Vt, E) and an integer k ≥ 0.

Question: CanG be changed by up to k edgemodifications into an M-free graph,

that is, a graph without an induced M-graph?
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Figure 1: An M-subgraph with t1, t2, t3 ∈ Vt and c1, c2 ∈ Vc.

Chen et al. [4] showed that MINIMUM-FLIP CONSENSUS TREE is NP-complete, which

motivates the study of the MINIMUM-FLIP CONSENSUS TREE problem in the context of

parameterized algorithmics [19]. Other than previous work [1, 4] on parameterized algo-

rithms for MINIMUM-FLIP CONSENSUS TREE, which mainly dealt with the development of

depth-bounded search trees, here we deal with polynomial-time data reduction with prov-

able performance guarantee, that is, kernelization. Kernelization is considered as one of the

theoretically and practically most interesting algorithmic methods of parameterized algo-

rithmics [6, 14, 17, 19]. Roughly speaking, the goal is to derive a problem kernel which is an

instance “equivalent” to the original one but with (hopefully) much smaller size; in partic-

ular, the size of the problem kernel shall only be a function of the parameter k. Moreover,

the problem kernel needs to be computable in polynomial-time—so this is closely related to

polynomial-time preprocessing.

Known results and previous work. The MINIMUM-FLIP CONSENSUS TREE was intro-

duced by Chen et al. [4] who also proved its NP-completeness and described a factor-2d

approximation algorithm for graphs with maximum degree d. Furthermore, they showed

fixed-parameter tractability with respect to the number of flips k by describing a simpleO(6k ·
mn) search tree algorithm that is based on the forbidden induced subgraph characterization

with M-graphs. Recently, Böcker et al. [1] improved the running time to O(4.83k(|Vc| +
|Vt|) + |Vc| · |Vt|) by employing a refined branching strategy that leads to a search tree of

size O(4.83k). This theoretically proven running time acceleration was also practically con-

firmed by computational experiments [1].

From a graph-theoretic point of view, MINIMUM-FLIP CONSENSUS TREE belongs to the

class of so-called Π-EDGE MODIFICATION problems: Given a graph G, a graph property Π,

and an integer k ≥ 0, the question is whether G can be transformed by at most k edge modi-

fications into a graph with property Π. A lot of work has been put into classifying Π-EDGE

MODIFICATION problems with respect to their classical complexity [3, 18, 24]. Recently, pa-

rameterized algorithmics—in particular kernelizations—for Π-EDGE MODIFICATION prob-

lems have attracted special attention. For instance, there is a series of papers studying the

kernelizability of CLUSTER EDITING and some of its variations [7, 9, 11, 13, 22]. Also vertex

deletion problems such as UNDIRECTED FEEDBACK VERTEX SET with its cubic-size prob-

lem kernel [2]—very recently improved to a quadratic-vertex problem kernel [23]—have

been studied, underpinning the importance of kernelization in the wide area of graph mod-

ification problems. Furthermore, even exponential-size kernels such as those for CLIQUE

COVER [10] and BICLIQUE COVER [8] are of importance, since they often provide the only

known way to show that a problem is fixed-parameter tractable. Damaschke [5] investi-

gated kernelization in the context of enumerating all inclusion-minimal solutions of size



282 A CUBIC-VERTEX KERNEL FOR FLIP CONSENSUS TREE

at most k. In this scenario, when designing reduction rules one has to guarantee that all

inclusion-minimal solutions of size at most k are preserved. Kernels that fulfill these addi-

tional constraints are called full kernels. In this setting, Damaschke [5] presents a full kernel

consisting of O(6k) matrix entries for the following problem closely related to MINIMUM-

FLIP CONSENSUS TREE: Given a binary matrix and a non-negative integer k, enumerate all

inclusion-minimal sets of at most k flips that transform the matrix into a matrix that admits

an unrooted perfect phylogeny.

Our contributions. In this work, we provide several polynomial-time data reduction rules

for MINIMUM-FLIP CONSENSUS TREE that lead to a problem kernel containing O(k3) ver-

tices. This is the first non-trivial kernelization result for MINIMUM-FLIP CONSENSUS TREE.

Combining our kernelization algorithmwith the search tree by Böcker et al. [1], we achieve a

running time ofO(4.83k + poly(|Vc|, |Vt|)) instead of the previousO(4.83k · poly(|Vc|, |Vt|)).
Furthermore, we describe one of the data reduction rules in a fairly abstract and general

way, making it applicable to a wide range of Π-EDGE MODIFICATION problems. Due to the

lack of space, several details are deferred to a full version of the paper.

2 Preliminaries

The open neighborhood NG(v) of a vertex v ∈ V is the set of vertices that are adjacent to v

in G = (V, E). For a set of vertices V ′ ⊆ V, the induced subgraph G[V ′] is the graph over

the vertex set V ′ with edge set {{v,w} ∈ E | v,w ∈ V ′}. For V ′ ⊆ V we use G − V ′

as abbreviation for G[V \ V ′] and for a vertex v ∈ V let G − v denote G − {v}. For two

sets X and Y with X ∩ Y = ∅, let EX,Y denote the set {{x, y} | x ∈ X ∧ y ∈ Y}. As an

abbreviation for E{x},Y we write Ex,Y. For two sets E and F, define E∆F := (E \ F) ∪ (F \ E)
(the symmetric difference). Further, for a bipartite graph G = (Vc,Vt, E) and a set F ⊆
EVc,Vt define G∆F := (Vc,Vt, E∆F). Sometimes we refer to a vertex c ∈ Vc as c-vertex, and

to a vertex t ∈ Vt as t-vertex. A graph property Π is called hereditary if it holds for all

induced subgraphs of a graph G with Π. That is, the class of graphs with a hereditary

graph property Π is closed under vertex deletion. Clearly, all graph properties that can be

described by a (possibly non-finite) set of forbidden induced subgraphs (such as M-freeness

for example) are hereditary. Two c-vertices c1 and c2 are said to be in conflict if there exists an

induced M-graph containing both of them. It is not hard to see that two vertices c1, c2 ∈ Vc

are in conflict iff

(NG(c1) \ NG(c2) 6= ∅) ∧ (NG(c1) ∩ NG(c2) 6= ∅) ∧ (NG(c2) \ NG(c1) 6= ∅).

For our data reduction we crucially use a structure called critical independent set.

DEFINITION 1. Given an undirected graph G = (V, E), a set I ⊆ V is called a critical inde-

pendent set if for any two vertices v,w ∈ I it holds that v and w are non-adjacent, NG(v) =
NG(w), and I is maximal with respect to this property.

All critical independent sets of a graph can be found in linear time [16]. Given a

graph G = (V, E) and the collection I = {I1, I2, . . . , Iq} of its critical independent sets,
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where q ≤ n, the critical independent set graph ofG is the undirected graph (I , E)with {Ii, Ij} ∈
E iff ∀u ∈ Ii, v ∈ Ij : {u, v} ∈ E.

A bipartite graph G = (X,Y, E) is called a chain graph if the neighborhoods of the ver-

tices in X form a chain [24]. That is, there is an ordering of the vertices in X, say x1, x2, . . . , x|X|,

such that NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(x|X|). It is easy to see that the neighborhoods of Y

also form a chain if G is a chain graph. Moreover, a bipartite graph is a chain graph iff it

is 2K2-free [24] (herein, a 2K2 is the graph that consists of two independent edges). Since

every M-graph contains an induced 2K2, the set of chain graphs is contained in the class

of M-free graphs. One of our data reduction rules is based on identifying and reducing the

size of subgraphs of the input graphs that are chain graphs and additionally have a special

neighborhood structure.

Parameterized algorithmics [19] aims at a multivariate complexity analysis of prob-

lems. This is done by studying relevant problem parameters and their influence on the

computational complexity. The decisive question is whether a given parameterized prob-

lem is fixed-parameter tractable (FPT) with respect to the parameter k. In other words, here

we ask for the existence of a solving algorithm with running time f (k) · poly(n) for some

computable function f . A core tool in the development of parameterized algorithms that has

been recognized as one of the most important contribution of parameterized algorithmics to

practical computing [6, 14, 17, 19] is polynomial-time preprocessing by data reduction rules,

often yielding a problem kernel. Herein, the goal is, given any problem instance G with pa-

rameter k, to transform it in polynomial time into a new instance G′ with parameter k′ such

that the size of G′ is bounded from above by some function only depending on k, k′ ≤ k,

and (G, k) is a yes-instance iff (G′, k′) is a yes-instance. We call a data reduction rule correct

if the new instance after an application of this rule is a yes-instance iff the original instance

is a yes-instance. An instance is called reduced with respect to some data reduction rule if

the data reduction rule has been exhaustively applied.

3 A Universal Rule for Critical Independent Sets

In this section, we describe a polynomial-time data reduction rule for parameterized graph

modification problems that applies to a certain kind of hereditary graph property and is a

generalization of a rule that was developed for BICLUSTER EDITING [22]. Here, we prove

the new result that this reduction rule can be applied to a wide range of Π-EDGE MODIFI-

CATION problems, including MINIMUM-FLIP CONSENSUS TREE.

The basic idea of the data reduction is to show that, for some graph properties, vertices

that belong to the same critical independent set are subject to the “same” edge modifica-

tions. Therefore, large critical independent sets can be reduced. First, we give a description

of these graph properties. Let Π be a hereditary graph property. We call Π critical indepen-

dent set preserving (cisp) whenever for all forbidden induced subgraphs F of Π, there are no

two vertices u, v ∈ V(F) that form a critical independent set in F (that is, all critical indepen-

dent sets of F have size one). Note that M-freeness is a cisp graph property: all vertices in

an induced M-graph have different neighborhoods. Therefore, the following lemmas and

reduction rule apply directly to MINIMUM-FLIP CONSENSUS TREE. First, we can show that

cisp graph properties are closed under a certain vertex-addition operation.
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LEMMA 2. Let G = (V, E) be a graph fulfilling a cisp graph property Π. Let G′ be the graph
that results by adding to G a new vertex x 6∈ V and making it adjacent to NG(v) for an
arbitrary vertex v ∈ V. Then, G′ also fulfills Π.

Using Lemma 2, we can show that for graph modification problems for cisp properties

there is an optimal solution that treats the vertices of a critical independent set equally.

LEMMA 3. Let I ⊆ V be a critical independent set in G = (V, E), and let Π be a cisp graph
property. Then there exists a minimum-cardinality edge modification set S such that G′ :=
G∆S fulfills Π and I is part of a critical independent set in G′.

With Lemma 3 at hand, the following data reduction rule is not hard to see.

REDUCTION RULE 1. Let I ⊆ V be a critical independent set. If |I| > k+ 1, then delete |I| −
(k + 1) arbitrary vertices from I.

LEMMA 4. Reduction Rule 1 is correct and can be exhaustively applied inO(|V|+ |E|) time.

This general data reduction rule also applies to the COMPLETION and DELETION ver-

sion of a Π-EDGE MODIFICATION problem for a cisp graph property Π. Examples for graph

modification problems to which this rule can be applied are CHAIN DELETION and CO-

TRIVIALLY PERFECT DELETION.‡

4 Specific Data Reduction Rules for Minimum-Flip Consensus
Tree

In this section, we present three further polynomial-time data reduction rules that together

with Reduction Rule 1 produce an O(k3)-vertex kernel. The first reduction rule is obvious.

REDUCTION RULE 2. Remove M-free connected components from the input graph.

The next reduction rule removes c-vertices from G that do not appear in an M-graph.

REDUCTION RULE 3. Let G = (Vc,Vt, E) be a bipartite graph. If there exists a vertex c ∈ Vc

that is not in conflict with any other vertex in Vc, then remove c.

LEMMA 5. Reduction Rule 3 is correct and can be exhaustively applied in O(|Vc|2 · |Vt|)
time.

PROOF. Let G be the original graph and let G′ := G − c, where c ∈ Vc is not in conflict

with any other c-vertex. First, we prove the correctness of Reduction Rule 3. To this end, we

show the following.

Claim: (G, k) is a yes-instance iff (G′, k) is a yes-instance.

“⇒:” Follows directly because M-freeness is a hereditary graph property.

“⇐:” This direction is based on the observation that graph G′ can be decomposed into

two edge disjoint subgraphs G1 and G2 that can be solved independently from each other,

‡Definitions and kernelization results for these problems have been obtained by Guo [12].
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Figure 2: Correctness of Reduction Rule 3. a) Partition of the vertices in Vc depending on

their relation to c. The neighbors of c are colored gray. b) The graphs G1 (induced by V≤c

and N(c)) and G2 (induced by V>c,Vr, and Vt) .

without creating a new conflict containing c. We need the following notation.

V>c := {c′ ∈ Vc | N(c) ( N(c′)},

V≤c := {c′ ∈ (Vc \ {c}) | N(c′) ⊆ N(c)}, and

Vr := Vc \ (V≤c ∪V>c).

See Fig. 2 a) for an example. Note that, since c is not in conflict with any other vertex c′ ∈
Vc − c, either NG(c) ∩ NG(c′) = ∅ or c′ ∈ (V≤c ∪ V>c). In particular, this implies that for

every vertex c′ ∈ Vr it holds that NG(c) ∩ NG(c′) = ∅.

Let F′ be a solution for (G′, k). We show that from F′ we can compute a solution F

for (G, k). Let V2 := Vr ∪ V>c. Consider the two graphs G1 := G[V≤c ∪ NG(c)] and G2 :=
G[V2 ∪ Vt]. See Fig. 2 b) for an example. Observe that F1 := F′ ∩ EV≤c,NG(c) is a solution

for G1 and F2 := F′ ∩ EV2,Vt is a solution for G2, since G1 and G2 are induced subgraphs of G′.

Furthermore, note that F1 ∩ F2 = ∅ since V≤c ∩ V2 = ∅. As a consequence, |F1| + |F2| ≤
|F′| ≤ k.

Consider the graph G2. It is easy to observe that NG(c) is contained in a critical indepen-

dent set in G2. This can be seen as follows: since NG(c) ⊂ NG(c′) for every vertex c′ ∈ V>c

and NG(c) ∩ NG(c′′) = ∅ for every vertex c′′ ∈ Vr, every vertex t ∈ NG(c) is adjacent in G2

to exactly the vertices in V>c. Since NG(c) is a critical independent set in G2, according to

Lemma 3 there exists a minimum-cardinality solution F′2 for G2 such that NG(c) is contained
in a critical independent set in G2∆F′2. Clearly, |F

′
2| ≤ |F2|.

Based on these facts, we show that F := F1 ∪ F′2 is a solution for (G, k). First of all, note
that by the discussion above |F| = |F1|+ |F′2| ≤ |F1|+ |F2| ≤ k. Second, no two vertices in Vc

are in conflict, and hence, G∆F is M-free. This can be seen as follows. Since F1 is a solution

for G1, any two vertices c1, c2 ∈ V≤c are not in conflict in G∆F. The same holds true for any

two vertices in V2, since G2∆F′2 is M-free. Moreover, since for every vertex c′ ∈ V≤c it holds

that NG∆F(c
′) = NG1∆F1(c

′) ⊆ NG(c) = NG∆F(c), c is not in conflict with any vertex in V≤c.

Finally, since NG(c) is a critical independent set in G2∆F′2, we know that for every c′ ∈ V2

either NG∆F(c
′) ∩ NG(c) = ∅ or NG(c) ⊆ NG∆F(c

′) and hence c′ is not in conflict with any
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vertex c′′ ∈ V≤c ∪ {c}. Therefore, G∆F is M-free.

For the running time consider the following. For each pair of vertices c1, c2 ∈ Vc, we

can determine in O(Vt) time whether they are in conflict by checking for each vertex t ∈ Vt,

whether it is adjacent to c1, c2, or both. Each c-vertex that is in conflict with some other

vertex is marked. Finally, unmarked vertices are removed from the graph. This can be

performed in O(|E|) time. The overall running time is thus O(|Vc|2 · |Vt|).

The structurally “deepest” reduction rule shrinks subgraphs of the input graph that

resemble “local” chain graphs. We call such a subgraph P-structure:

DEFINITION 6. LetG = (Vc,Vt, E) be a bipartite graph. A tuple (CP, TP) of two subsets CP ⊆
Vc and TP ⊆ Vt forms a P-structure if the following three properties are fulfilled:

1. G[CP ∪ TP] is a chain graph,
2. for all c′, c′′ ∈ CP it holds that N(c′) \ TP = N(c′′) \ TP, and
3. for all t′, t′′ ∈ TP it holds that N(t′) \ CP = N(t′′) \ CP.

It is easy to see that for a P-structure (CP, TP) of a bipartite graph G the neighborhoods

in G of the vertices in CP (and TP) also form a chain (since “outside” of the P-structure they

have the same neighbors). Moreover, note that the vertices of a P-structure form a subgraph

that is M-free.

REDUCTION RULE 4. Let (CP, TP) be a P-structure in a bipartite graph G = (Vc,Vt, E).
Let TP = {t1, t2, . . . , tl} such that N(t1) ⊆ N(t2) ⊆ . . . ⊆ N(tl). If l > 2(k + 1), then remove
tk+2, tk+3, . . . , tl−(k+1) from G.

LEMMA 7. Reduction Rule 4 is correct and can be exhaustively applied in polynomial time.

We can find P-structures in polynomial time by trying all possibilities for choosing the

four “endpoints” t1, tl , c1, cq of the chain, where N(t1) ⊆ N(tl) and N(cq) ⊆ N(c1). It is not
hard to see that in the case that t1, tl , c1, cq are indeed endpoints of a P-structure, we can

reconstruct the corresponding P-structure as follows:

CP = (N(tl) \ N(t1)) ∪ {c1} ∪ {c′ ∈ Vv | N(c′) = N(c1)}

and analogously

TP = (N(c1) \ N(cq)) ∪ {tl} ∪ {t′ ∈ Vt | N(t′) = N(tl)}.

To recognize the cases that t1, tl , c1, cq are not the endpoints of a chain, we have to check

whether the found vertex sets indeed form a P-structure. This approach works clearly in

polynomial time, although there seems to be room for improving the efficiency, a task for

future research.

5 Mathematical Analysis of the Problem Kernel Size

In this section, we bound the maximum number of vertices in a reduced instance. We need

the following notation concerning rooted trees. We use node to refer to a vertex of a tree. For

a rooted tree T let L(T) denote the leaves of T (that is, the nodes of degree one). The nodes
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Figure 3: An M-free graph G and the corresponding tree Tcis(G).

in V(T) \ L(T) are denoted as inner nodes. The root of T is denoted by r(T). Moreover, for a

node v ∈ V(T), the subtree rooted at v is denoted by Tv. We classify the children of a node

as follows. We refer to a child of a node as its leaf child if it is a leaf , otherwise it is called

its non-leaf child. We speak of the leaves (inner nodes) of a forest to refer to the union of the

leaves (inner nodes) of the trees of the forest.

Given a connected and M-free graph G = (Vc,Vt, E), one can construct a rooted tree T

with node set Vt ∪ Vc and with L(T) = Vt such that ti ∈ Vt is a descendant of cj ∈ Vc

iff ti ∈ NG(cj), see [4, 15, 21] for details. Note that the critical independent set graph of

an M-free graph is M-free. Hence, we can find a tree with the property that every leaf

one-to-one corresponds to a critical independent set of the t-vertices and every inner vertex

one-to-one corresponds to a critical independent set of the c-vertices. For an M-free graph G,

this tree is denoted by Tcis(G). Figure 3 shows an M-free graph G together with Tcis(G).

The following easy observations are helpful in the analysis of the kernel size.

1. Every inner vertex of Tcis has at most one leaf child, and

2. every inner vertex with at most one non-leaf child has exactly one leaf

child.

Now, we arrive at our main result.

THEOREM 8. MINIMUM-FLIP CONSENSUS TREE admits an O(k3)-vertex problem kernel .

PROOF. Consider a reduced instance (G = (Vc,Vt, E), k). We show that if (G, k) is a

yes-instance, then the number of vertices in Vc ∪Vt is bounded by O(k3).

If (G, k) is a yes-instance, then there exists an optimal solution S of size at most k. That

is, the graph GS := G∆S is M-free. Vertices that are involved in an edge modification are

called affected in the following. Let Xc denote the c-vertices that are affected by an edge

modification in S and let Yc denote the c-vertices that are not affected by any edge modifi-

cation. Analogously, we define Xt and Yt. Note that since every edge modification involves

a c-vertex and a t-vertex, we have that |Xc| ≤ k and |Xt| ≤ k.

Let GS,1,GS,2, . . . ,GS,p denote the connected components of GS. Recall that for every

connected component Ti := Tcis(GS,i) denotes the rooted tree corresponding to the critical

independent set graph of GS,i. Moreover, let T denote the forest containing all Ti. Recall that

the leaves of T one-to-one correspond to the critical independent sets of Vt in GS and that
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the inner nodes of T one-to-one correspond to the critical independent sets of Vc in GS. For

a node z ∈ V(T), let C(z) denote the set of vertices contained in the critical independent set

corresponding to z. Moreover, for Z ⊆ V(T), we define C(Z) :=
⋃

z∈Z C(z).
We partition the set of inner nodes into three sets A, B, and Q as follows. The set A

contains all inner nodes z for which it holds that either C(z)∩ Xc 6= ∅ or z has a leaf child w

with C(w) ∩ Xt 6= ∅. Note that A has cardinality at most 2k since there are at most 2k

affected vertices. Moreover, let B contain the inner nodes that are not contained in A and

that have at least two non-leaf children. Finally, Q contains all inner nodes not contained

in A ∪ B.

Next, we bound the number of the vertices contained in the critical independent sets

corresponding to the nodes in A ∪ B and their leaf children. To this end, we show the

following.

1. For every inner node x not contained in A, there exists at least one node y ∈ V(Tx)
with y ∈ A.

2. The cardinality of B is at most 2k.

3. Let LA,B denote the leaves adjacent to the nodes in A ∪ B. The number of vertices

contained in the critical independent sets corresponding to the nodes in A ∪ B ∪ LA,B

is O(k2).
1.) Assume that there exists an inner node x ∈ V(T) \ (L(T)∪ A) such thatV(Tx)∩ A =

∅. That is, no vertex in C(V(Tx)) is affected. Consider a vertex c ∈ C(x). We show that c

is not contained in any conflict in G, contradicting the fact that G is reduced with respect

to Reduction Rule 3. First, for every vertex y ∈ C(V(Tx)), it holds that NG(y) ⊆ NG(c)
since NGS

(y) ⊆ NGS
(c) and S does not affect c or y. Second, for every vertex y ∈ C(V(T) \

V(Tx)), it holds that NGS
(c) ∩ NGS

(y) = ∅ or NGS
(c) ⊆ NGS

(y). But since neither c nor any
vertex in NGS

(c) is modified, this implies that NG(c) ∩ NG(y) = ∅ or NG(c) ⊆ NG(y). This
means that c is not contained in any conflict in G.

2.) Consider the forest T′ that results from deleting all leaves of T. Note that B is

a subset of the nodes from T′ with at least two children. From 1) it follows directly that

the leaves of T′ are contained in A and, hence, their number is bounded by 2k. Since the

number of inner nodes with at least two children is bounded by the number of leaves, we

get that |B| ≤ 2k.

3.) First, note that |A ∪ B| ≤ 4k since A and B each have cardinality at most 2k. More-

over, |LA,B| ≤ 4k since every inner node has at most one leaf child. For every node y ∈
A ∪ B ∪ LA,B, define C ′(y) := C(y) \ (Xc ∪ Xt). For every y ∈ A ∪ B ∪ LA,B, since no ver-

tex in C ′(y) is affected, C ′(y) forms a critical independent set in G and—since G is reduced

with respect to Reduction Rule 1—we thus get that |C ′(y)| ≤ k + 1. Putting all together, we

obtain

|C(A ∪ B ∪ LA,B)| ≤ |Xc| + |Xt| + ∑
y∈A∪B∪LA,B

|C ′(y)| ≤ 2k + 4k(k + 1).

It remains to bound the number of the vertices contained in C(Q ∪ LQ), where LQ de-

notes the leaves adjacent to the nodes in Q. Observe that each inner node contained in Q

(and hence not contained in A ∪ B) has exactly one leaf and one non-leaf child. That is,

in the the forest T′ := T − L(T) these vertices have degree two. Recall that all leaves

of T′ (see 2.) above) are contained in A and hence |L(T′)| ≤ 2k. Consider a path P =
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x

r

y1

y2

y3

{c1, c2}

z

Tz

{c4, c5}t1, t2

t3, t4

{c3}

P

c1 c2 c3 c4 c5

t1 t2 t3 t4

t5

t5

Figure 4: A degree-two-path P and the corresponding chain graph. Herein, C(y1) = {c1, c2},
C(y2) = {c3}, C(y3) = {c4, c5}, and C(y4) = {c6}.

({x, y1}, {y1, y2}, . . . , {yl−1, yl}, {yl , z}) in T′ with yi ∈ Q for all 1 ≤ i ≤ l and x, z ∈
A ∪ B. Such a path is called a degree-two-path in the following since by the above discus-

sion degT′(yi) = 2 for all 1 ≤ j ≤ l. Further, for every yi, let wi denote the leaf child

of yi in T. Note that in the forest T′, there are at most 8k degree-two-paths since L(T′) ⊆
A and |A ∪ B| ≤ 4k. In the following, we bound the length of each degree-two-path

by 2(k + 1). Hence, for each such path we have

l

∑
i=1

(|C(yi)| + |C(wi)|) ≤ l · (2(k + 1)) ≤ (2(k + 2)) · 2(k + 1)

vertices in G. Adding up over the at most 8k degree-two-paths, this amounts to 8k · 2(k +
1)(2(k + 2)) ≤ 32k(k + 1)(k + 2) vertices, yielding the bound of O(k3) vertices in total.

Next, we bound the length of each degree-two-path. To this end, consider such a

degree-two-path P = ({x, y1}, {y1, y2}, . . . , {yl−1, yl}, {yl , z}) in T′, that is, x, z ∈ A ∪ B

and yi ∈ Q for all 1 ≤ i ≤ l. Without loss of generality, we assume that yl is a descendent

of y1. See Fig. 4 for an example. Let CP :=
⋃l

i=1 C(yi) and TP :=
⋃l

i=1 C(wi).
We show that (CP, TP) forms a P-structure in G. First, note that CP ⊆ Vc and TP ⊆

Vt. Next, note that G[CP ∪ TP] forms a chain graph. This can seen as follows. In GS a

vertex in C(y1) is clearly adjacent to all vertices in TP, a vertex in C(y2) is adjacent to all

vertices in TP \ C(w1), a vertex in C(y3) is adjacent to all vertices in TP \ C({w1,w2}), and
so on. Hence, GS[CP ∪ TP] is a chain graph and, since no vertex in CP is involved in an

edge modification, we have that G[CP ∪ TP] forms a chain graph, too (see Fig. 4). Next,

we show that CP and TP fulfill the second and third property of a P-structure. On the one

hand, every vertex in CP is adjacent in GS to all vertices contained in the critical independent

sets corresponding to the leaves in Tz and, hence, for all c, c
′ ∈ CP, we have NGS

(c) \ TP =
NGS

(c′) \ TP. Since no vertex in CP is affected, this implies that NG(c) \ TP = NG(c′) \ TP for
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all c, c′ ∈ CP. On the other hand, every vertex t ∈ TP is adjacent in GS (and hence in G) to

all c-vertices contained in a critical independent set on the path from the root r to z. Hence,

for any two vertices t, t′ ∈ TP it holds that NG(t) \ TP = NG(t′) \ TP. In summary, (CP, TP)
forms a P-structure.

Finally, we show that l ≤ 2(k + 1). Assume towards a contradiction that l > 2(k +
1). This implies that |TP| > 2(k + 1), too, since every yi has exactly one leaf child that

corresponds to a (non-empty) critical independent set of Vt. Hence, |TP| > 2(k + 1) and

thus all conditions to apply Reduction Rule 4 are fulfilled: a contradiction to the fact that G

is reduced.

Applying the technique of interleaving [20] to our kernelization and the search tree

algorithm by Böcker et al. [1], we obtain an “additive FPT” algorithm for MINIMUM-FLIP

CONSENSUS TREE.

COROLLARY 9. MINIMUM-FLIP CONSENSUS TREE can be solved in running timeO(4.83k +
poly(|Vc|, |Vt|)).

6 Conclusion

As to future research, first of all, we want to implement and test the efficiency of our data

reduction rules. Second, improving the polynomial running time of our data reduction

rules is desirable. Obviously, obtaining data reduction rules that lead to a quadratic-vertex

or linear-vertex kernel remains as an open question. Moreover, studying edge-weighted

problem variants would be theoretically interesting. Finally, it would be interesting to adapt

our data reduction to yield a full kernel (see [5]) for MINIMUM-FLIP CONSENSUS TREE.
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