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Abstract
In a probabilistic cellular automaton (PCA), the cells are updated synchronously and indepen-
dently, according to a distribution depending on a finite neighborhood. A PCA can be viewed as
a Markov chain whose ergodicity is investigated. A classical cellular automaton (CA) is a partic-
ular case of PCA. For a 1-dimensional CA, we prove that ergodicity is equivalent to nilpotency,
and is therefore undecidable. We then propose an efficient perfect sampling algorithm for the
invariant measure of an ergodic PCA. Our algorithm does not assume any monotonicity property
of the local rule. It is based on a bounding process which is shown to be also a PCA.
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1 Introduction

Cellular automata (CA) are dynamical systems in which space and time are discrete. A
cellular automaton consists of a lattice (e.g. Zd or Z/nZ) divided in regular cells, each cell
containing a letter of a finite alphabet. The cells evolve synchronously, each one evolving in
function of a finite number of cells in its neighborhood, according to a local rule.

To take into account randomness, one is led to consider probabilistic cellular automata
(PCA) [17]. For PCA, time is dicrete and the cells evolve synchronously as for CA, but the
difference is that for each cell, the new content is randomly chosen, independently of the
others, according to a distribution depending only on a finite neighborhood of the cell.

Let us mention a couple of motivations. First, the investigation of fault-tolerant com-
putational models was the motivation for the russian school to study PCA [17, 6]. Second,
PCA appear in combinatorial problems related to the enumeration of directed animals [11].
Third, in the context of the classication of CA (Wolfram’s program), robustness to random
errors can be used as a discriminating criterion [5, 14].

We focus our study on the equilibrium behavior of PCA. Observe that a PCA may be
viewed as a Markov chain over the state space AE , where A is the alphabet and E is the
set of cells. The equilibrium is studied via the invariant measures of the Markov chain. A
PCA is ergodic if it has a unique and attractive invariant measure. Finding conditions to
ensure ergodicity is a difficult problem which has been thoroughly investigated [17, 6]. When
a PCA is ergodic, it is usually impossible to determine the invariant measure explicitly, and
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simulation becomes the alternative. Simulating PCA is known to be a challenging task,
costly both in time and space. Also, configurations cannot be tracked down one by one
(there is an infinite number of them when E is infinite) and may only be observed through
some measured parameters. The point is to have guarantees upon the results obtained from
simulations.

In this context, our contributions are as follows. First, we prove that the ergodicity of a
CA on Z is undecidable. This was mentioned as Unsolved Problem 4.5 in [16]. Since a CA is
a special case of a PCA, it also provides a new proof of the undecidability of the ergodicity
of a PCA (Kurdyumov, see [17, Chap. 14], and Toom [15]). Second, we propose an efficient
perfect sampling algorithm for ergodic PCA. Recall that a perfect sampling procedure is
a random algorithm which returns a configuration distributed according to the invariant
measure. By applying the procedure repeatedly, we can estimate the invariant measure with
arbitrary precision. We propose such an algorithm for PCA by adapting the coupling from
the past method of Propp & Wilson [12]. When the set of cells is finite, a PCA is a finite state
space Markov chain. Therefore, coupling from the past from all possible initial configurations
provides a basic perfect sampling procedure, but a very inefficient one since the number of
configurations is exponential in the number of cells. Here, the contribution consists in an
important simplification of the procedure. We define a new PCA on an extended alphabet,
called the envelope PCA (EPCA). We obtain a perfect sampling procedure for the original
PCA by running the EPCA on a single initial configuration. When the set of cells is infinite,
a PCA is a Markov chain on an uncountable state space. So there is no basic perfect sampling
procedure anymore. We prove the following: If the PCA is ergodic, then the EPCA may or
may not be ergodic. If it is ergodic, then we can use the EPCA to design an efficient perfect
sampling procedure (the result of the algorithm is the finite restriction of a configuration
with the right invariant distribution). The EPCA can be viewed as a systematic treatment
of ideas already used by Toom for percolation PCA (see for instance [16, Section 2]).

The perfect sampling procedure can also be run on a PCA whose ergodicity is unknown,
with the purpose of testing it. We illustrate this approach on Majority, prototype of a PCA
whose equilibrium behavior is not well understood.

2 Probabilistic cellular automata

Let A be a finite set called the alphabet, and let E be a countable or finite set of cells. We
denote by X the set AE of configurations.

We assume that E is equipped with a commutative semigroup structure, whose law is
denoted by +. In examples, we consider mostly the cases E = Z or E = Z/nZ. Given K ⊂ E
and V ⊂ E, we define V +K =

{
v + k | v ∈ V, k ∈ K}.

A cylinder is a subset of X having the form {x ∈ X | ∀k ∈ K,xk = yk} for a given finite
subset K of E and a given element (yk)k∈K ∈ AK . When there is no possible confusion, we
shall denote briefly by yK the cylinder {x ∈ X | ∀k ∈ K,xk = yk}. For a given finite subset
K, we denote by C(K) the set of all cylinders of base K.

Let us equip X = AE with the product topology, which can be described as the topology
generated by cylinders. We denote byM(A) the set of probability measures on A and by
M(X) the set of probability measures on X for the σ-algebra generated by all cylinder sets,
which corresponds to the Borelian σ-algebra. For x ∈ X, denote by δx the Dirac measure
concentrated on the configuration x.

I Definition 2.1. Given a finite set V ⊂ E, a transition function of neighborhood V is a
function f : AV → M(A). The probabilistic cellular automaton (PCA) P of transition
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function f is the application P :M(X)→M(X), µ 7→ µP, defined on cylinders by:

µP (yK) =
∑

xV +K∈C(V +K)

µ(xV +K)
∏

k∈K

f((xk+v)v∈V )(yk) .

Let us look at how P acts on a Dirac measure δz. The content zk of the k-th cell
is changed into the letter a ∈ A with probability f((zk+v)v∈V )(a), independently of the
evolution of the other cells. The real number f((zk+v)v∈V )(a) ∈ [0, 1] is thus to be thought
as the conditional probability that, after application of P , the k-th cell will be in the state a
if, before its application, the neighborhood of k was in the state (zk+v)v∈V .

Let u be the uniform measure on [0, 1]. We define the product measure τ =
⊗

i∈E u on
[0, 1]E .

I Definition 2.2. An update function of the probabilistic cellular automaton P is a deter-
ministic function φ : AE × [0, 1]E → AE (the function φ takes as argument a configuration
and a sample in [0, 1]E , and returns a new configuration), satisfying for each x ∈ AE , and
each cylinder yK ,

τ({r ∈ [0, 1]E ;φ(x, r) ∈ yK}) =
∏

k∈K

f((xk+v)v∈V )(yk).

In practice, it is always possible to define an update function φ for which the value
of φ(x, r)k only depends on (xk+v)v∈V and on rk. For example, if the alphabet is A =
{a1, . . . , an}, one can set

φ(x, r)k =


a1 if 0 ≤ rk < f((xk+v)v∈V )(a1)
a2 if f((xk+v)v∈V )(a1) ≤ rk < f((xk+v)v∈V )({a1, a2})
...
an if f((xk+v)v∈V ({a1, a2, . . . , an−1}) ≤ rk ≤ 1.

(1)

For a given initial configuration x0 ∈ AE , and samples (rt)t∈N, r
t ∈ [0, 1]E , let (xt)t∈N ∈

(AE)N be the sequence defined recursively by xt+1 = φ(xt, rt). Such a sequence is called a
space-time diagram. It can be viewed as a realization of the Markov chain. Examples of
space-time diagrams appear in Figures 1 and 2.

Classical cellular automata are a specialization of PCA.

I Definition 2.3. A deterministic cellular automaton (DCA) is a PCA such that for each
sequence (xv)v∈V ∈ AV , the measure f((xv)v∈V ) is concentrated on a single letter of the
alphabet. A DCA can thus be seen as a deterministic function F : AE → AE .

In the literature, the term cellular automaton denotes what we call here a DCA. Deter-
ministic cellular automata have been widely studied, in particular on the set of cells E = Z,
see Section 3. For a DCA, any initial configuration defines a unique space-time diagram.

I Example 2.4. Let A = {0, 1}, E = Z, and V = {0, 1}. Consider 0 < ε < 1 and the
local function f(x, y) = (1− ε) δx+y mod 2 + ε δx+y+1 mod 2 . This defines a PCA that can
be considered as a perturbation of the DCA F : AE → AE defined by F (x)i = xi + xi+1
mod 2, with errors occuring in each cell independently with probability ε.

I Example 2.5. LetA = {0, 1}, E = Zd, and let V be a finite subset of E. Consider 0 < α < 1
and the local function: f((xv)v∈V ) = α δmax(xv, v∈V ) + (1−α) δ0 . The corresponding PCA is
called the percolation PCA associated with V and α. The particular case of the space E = Z
and the neighborhood V = {0, 1} is called the Stavskaya PCA. In Figure 1, we represent two
portions of diagrams of the percolation PCA for E = Z and V = {−1, 0, 1}.
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Time

(a) α = 0.5 (b) α = 0.6

Figure 1 Space-time diagrams of the PCA of Example 2.5, for V = {−1, 0, 1}.

2.1 Invariant measures and ergodicity
A PCA can be seen as a Markov chain on the state space AE . We use the classical terminology
for Markov chains that we now recall.

I Definition 2.6. A probability measure π ∈M(X) is said to be an invariant measure of
the PCA P if πP = π. The PCA is ergodic if it has exactly one invariant measure π which
is attractive, that is, for any measure µ ∈M(X), the sequence µPn converges weakly to π
(i.e. for any cylinder C, limn→+∞ µPn(C) = π(C)).

A PCA has at least one invariant measure, and the set of invariant measures is convex and
compact. This is a standard fact, based on the observation that the setM(X) of measures
on X is compact for the weak topology, see for instance [17]. Therefore, there are three
possible situations for a PCA:

(i) several invariant measures; (ii) a unique invariant measure which is not attractive;
(iii) a unique invariant measure which is attractive (ergodic case).

I Example 2.7. Consider the PCA of Example 2.4. Using the results in [17, Chapters 16
and 17], one can prove that the PCA is ergodic and that its unique invariant measure is the
uniform mesure, i.e. the product of Bernoulli measures of parameter 1/2.

I Example 2.8. Consider the percolation PCA of Example 2.5. Observe that the Dirac
measure δ0E is an invariant measure. Using a coupling with a percolation model, one can
prove the following, see for instance [16, Section 2]. There exists α∗ ∈ (0, 1) such that:

α < α∗ =⇒ (iii) : ergodicity, α > α∗ =⇒ (i) : several invariant measures.
The exact value of α∗ is not known but it satisfies 1/|V | ≤ α∗ ≤ 53/54.

The existence of a PCA corresponding to situation (ii) had been a long standing conjecture,
but an example has recently been presented in [3]. The PCA of Example 2.5 exhibits a phase
transition between the situations (i) and (iii). In Section 5, we study a PCA that may have
a phase transition between the situations (ii) and (iii). It would provide the first example of
this type.

3 Ergodicity of DCA

DCA form the simplest class of PCA, it is therefore natural to study the ergodicity of DCA.
In this section, we prove the undecidability of ergodicity for DCA (Theorem 3.4).

Remark. In the context of DCA, the terminology of Definition 2.6 might be confusing.
Indeed a DCA P can be viewed in two different ways: (i) a (degenerated) Markov chain;
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(ii) a symbolic dynamical system. In the dynamical system terminology, P is uniquely
ergodic if: [∃!µ, µP = µ]. In the Markov chain terminology (that we adopt), P is ergodic if:
[∃!µ, µP = µ] and [∀ν, νPn w−→ µ], where w−→ stands for the weak convergence. Knowing if
the unique ergodicity (of symbolic dynamics) implies the ergodicity (of the Markov theory)
is an open question for DCA.

The limit set of P is defined by LS =
⋂

n∈N P
n(AE). In words, a configuration belongs to

LS if it may occur after an arbitrarily long evolution of the cellular automaton. Observe that
LS is non-empty since it is the decreasing limit of non-empty closed sets. A constructive way
to show that LS is non-empty is as follows. The image by P of a monochromatic configuration
xE is monochromatic: xE → yE . In particular, there exists a monochromatic periodic orbit
for P , and we have: xE

0 → xE
1 → · · · → xE

k−1 → xE
0 =⇒ {xE

0 , x
E
1 , . . . , x

E
k−1} ⊂ LS.

Recall that δu denotes the probability measure concentrated on the configuration u. The
periodic orbit (xE

0 , . . . , x
E
k−1) provides an invariant measure given by (δxE

0
+ . . .+ δxE

k−1
)/k.

More generally, the support of any invariant measure is included in the limit set.

I Definition 3.1. A DCA is nilpotent if its limit set is a singleton.

Clearly, a DCA is nilpotent iff LS = {xE} for some x ∈ A. The following stronger
statement is proved in [4], using a compactness argument:

[ P nilpotent ] ⇐⇒ [ ∃x ∈ A,∃N ∈ N, PN (AE) = {xE} ] .

In that case, for any probability measure µ on AE , we have µPN = δxE , so that P is ergodic
with unique invariant measure δxE . This proves the following proposition.

I Proposition 3.2. Consider a DCA P . We have: [ P nilpotent ] =⇒ [ P ergodic ].

If we restrict ourselves to DCA on Z, we get the converse statement.

I Theorem 3.3. Consider a DCA P on the set of cells Z. We have:

[ P nilpotent ] ⇐⇒ [ P ergodic ] .

Proof. Let P be an ergodic DCA. Assume that there exists a monochromatic periodic orbit
(xZ0 , . . . , xZk−1) with k ≥ 2. Then µ = (δxZ

0
+ · · ·+ δxZ

k−1
)/k is the unique invariant measure.

The sequence δxZ
0
Pn does not converge weakly to µ, which is a contradiction. Therefore, there

exists a monochromatic fixed point: P (xZ) = xZ, and δxZ is the unique invariant measure.
Define the cylinder C = {v ∈ AZ | ∀i ∈ K, vi = x}, whereK is some finite subset of Z. For

any initial configuration u ∈ AZ, using the ergodicity of P , we have: δuP
n(C) −→ δxZ(C) = 1.

But δuP
n is a Dirac measure, so δuP

n(C) is equal to 0 or 1. Consequently, we have
δuP

n(C) = 1 for n large enough, that is, ∃N ∈ N,∀n ≥ N, ∀i ∈ K, Pn(u)i = x.

In words, in any space-time diagram of P , any column becomes eventually equal to
xxx · · · . Using the terminology of Guillon & Richard [8], the DCA P has a weakly nilpotent
trace. It is proved in [8] that the weak nilpotency of the trace implies the nilpotency of the
DCA. (The result is proved for cellular automata on Z and left open in larger dimensions.)
This completes the proof. J

Kari proved in [10] that the nilpotency of a DCA on Z is undecidable. (For DCA on Zd,
d ≥ 2, the proof appears in [4].) By coupling Kari’s result with Theorem 3.3, we get:

I Corollary 3.4. Consider a DCA P on the set of cells Z. The ergodicity of P in undecidable.
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The undecidability of the ergodicity of a PCA was a known result, proved by Kurdyumov,
see [17], see also Toom [15]. But the undecidability of the ergodicity of a DCA, which is a
stronger result, was in fact mentioned as Unsolved Problem 4.5 in [16].

Corollary 3.4 can also be obtained without Theorem 3.3, by directly adapting Kari’s proof
to show the undecidability of the ergodicity of the DCA associated with a NW-deterministic
tile set.

4 Sampling the invariant measure of an ergodic PCA

Generally, the invariant measure(s) of a PCA cannot be described explicitly. Numerical
simulations are consequently very useful to get an idea of the behavior of a PCA. Given
an ergodic PCA, we propose a perfect sampling algorithm which generates configurations
exactly according to the invariant measure.

A perfect sampling procedure for finite Markov chains has been proposed by Propp
& Wilson [12] using a coupling from the past scheme. Perfect sampling procedures have
been developed since in various contexts. Let us mention some related works. For more
information see the annotated bibliography: Perfectly Random Sampling with Markov Chains,
http://dimacs.rutgers.edu/~dbwilson/exact.html/.

The complexity of the algorithm depends on the number of all possible initial conditions,
which is prohibitive for PCA. A first crucial observation already appears in [12]: for a
monotone Markov chain, one has to consider only extremal initial conditions. To cope with
more general situations, Huber [9] introduced the idea of a bounding chain for determining
when coupling has occurred. The construction of these bounding chains is model-dependent
and in general not straightforward. In the case of a Markov chain on a lattice, Bušić et al.
[2] proposed an algorithm to construct the bounding chains.

Our contribution is to show that the bounding chain ideas can be given in a particularly
simple and convenient form in the context of PCA via the introduction of the envelope PCA.

4.1 Basic coupling from the past for PCA
We present first the algorithm for a PCA on a finite set of cells, and then for an infinite set
of cells.

Finite set of cells. Consider an ergodic
PCA P on the alphabet A and on a finite set
of cells E (for example Zm = Z/mZ). Let
π be the invariant measure on X = AE . A
perfect sampling procedure is a random al-
gorithm which returns a state x ∈ X with
probability π(x). Algorithm 1 is a presenta-
tion of the Propp & Wilson, or coupling from
the past (CFTP), perfect sampling procedure,
written here in the context of PCA.

I Proposition 4.1 ([12]). If Algorithm 1
stops almost surely, then the PCA is ergodic
and the output is distributed according to the
invariant measure.

Algorithm 1: Basic CFTP algorithm for
a finite set of cells
Data: Update function φ : X × [0, 1]E → X of

a PCA. Family (r−n
k )(k,n)∈E×N of i.i.d.

r.v. uniform on [0, 1].
begin

t = 1 ;
repeat

R−t = X ;
for j = −t to −1 do

Rj+1 = {φ(x, (rj
i )i∈E) ; x ∈ Rj}

t = t+ 1
until |R0| = 1 ;
return the unique element of R0

end

STACS’11
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The proof is based on the following idea: if we had run the Markov chain from time −∞
up to 0, then the result would obviously be equal to the output of the algorithm. But if we
start from time −∞, the Markov chain has reached equilibrium by time 0.

Infinite set of cells. Assume that the set of cells E is infinite. Then a PCA defines a
Markov chain on the infinite state space X = AE , so the above procedure is not effective
anymore. However, it is possible to use the locality of the updating rule of a PCA to still
define a perfect sampling procedure. (This observation already appears in [1].)

Let P be an ergodic PCA P and denote by π its invariant distribution. In this context, a
perfect sampling procedure is a random algorithm taking as input a finite subset K of E and
returning a cylinder xK ∈ C(K) with probability π(xK).

To get such a procedure, we use the fol-
lowing fact: if the PCA is run from time −k
onwards, then to compute the content of the
cells in K at time 0, it is enough to consider
the cells in the finite dependence cone of K.
This is illustrated here for the set of cells
E = Z and the neighborhood V = {−1, 0, 1},
with the choice K = {0}.

-3

-2

-1

t E = Z

-4

0

More formally, let V be the neighborhood of the PCA. Given a subset K of E, the
dependence cone of K is the family (V−t(K))t∈N of subsets of E defined recursively by
V0(K) = K and V−t(K) = V + V−t+1(K). Let φ : X × [0, 1]E → X be an update
function, for instance the one defined in (1). For a given subset K of E, we denote
φ−t : AV−t(K) × [0, 1]V−t(K) → AV−t+1(K) the corresponding restriction of φ. With these
notations, the algorithm now consists in setting at each step R−t = AV−t(K) and computing
Rj+1 = {φj(x, (rj

i )i∈Vj(K)) ; x ∈ Rj} ⊂ AVj+1(K) for j = −t to −1. This is done until we get
|R0| = 1.

Next proposition is an easy extension of Proposition 4.1.

I Proposition 4.2. If the procedure stops almost surely, then the PCA is ergodic and the
output is distributed according to the marginal of the invariant measure.

4.2 Envelope probabilistic cellular automata (EPCA)
The CFTP algorithm is inefficient when the state space is large. This is the case for PCA:
when E is finite, the set AE is very large, and when E is infinite, it is the dependence cone
described above which is very large. We cope with this difficulty by introducing the envelope
PCA.

For simplicity, we assume that P is a PCA on the alphabet A = {0, 1} (as previously,
the set of cells is denoted by E, the neighborhood by V ⊂ E and the local function by f).
Most of the results can be easily extended to the case of a general alphabet.

Definition of the EPCA. Let us introduce a new alphabet: B = {0,1, ?}. A word on
B is to be thought as a word on A in which the letters corresponding to some positions are
not known, and are thus replaced by the symbol “?”. Formally we identify B with 2A − ∅
as follows: 0 = {0}, 1 = {1}, and ? = {0, 1}. So each letter of B is a set of possible letters
of A. With this interpretation, we view a word on B as a set of words on A. For instance,
?1? = {010, 011, 110, 111}.
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We will associate to the PCA P a new PCA on the alphabet B, that we call the envelope
probabilistic cellular automaton of P .

I Definition 4.3. The envelope probabilistic cellular automaton (EPCA) of P , is the PCA
env(P ) of alphabet B, defined on the set of cells E, with the same neighborhood V as for P ,
and a local function env(f) : BV →M(B) defined for each y ∈ BV by

env(f)(y)(0) = min
x∈AV , x∈y

f(x)(0), env(f)(y)(1) = min
x∈AV , x∈y

f(x)(1)

env(f)(y)(?) = 1− min
x∈AV , x∈y

f(x)(0)− min
x∈AV , x∈y

f(x)(1).

Observe that env(P ) acts like P on configurations which do not contain the letter “?”.
More precisely,

∀y ∈ AV , env(f)(y)(0) = f(y)(0), env(f)(y)(1) = f(y)(1), env(f)(y)(?) = 0 . (2)

It implies next proposition. The converse statement is not true, see the counter-examples
in Section 4.3.3.

I Proposition 4.4. If the EPCA env(P ) is ergodic then the PCA P is ergodic.

Construction of an update function for the EPCA. Let us define the update
function φ̃ : BE × [0, 1]E → BE of the PCA env(P ), by:

φ̃(y, r)k =


0 if 0 ≤ rk < env(f)((yk+v)v∈V )(0)
1 if 1− env(f)((yk+v)v∈V )(1) ≤ rk ≤ 1
? otherwise.

(3)

The value of φ̃(y, r)k in function of rk can be represented as follows:

0

min
x∈AV , x∈(yk+v)v∈V

f(x)(0) min
x∈AV , x∈(yk+v)v∈V

f(x)(1)

1 rk

0 ? 1

Let φ be the natural update function for the PCA P defined in (1). Observe that φ̃
coincides with φ on configurations which do not contain the letter “?”. Furthermore, we have:

∀r ∈ [0, 1]E , ∀x ∈ AE , ∀y ∈ BE , x ∈ y =⇒ φ(x, r) ∈ φ̃(y, r) . (4)

4.3 Perfect sampling using EPCA
We propose two perfect sampling algorithms, for a finite and for an infinite number of cells.
We show that in both cases, the algorithm stops almost surely if and only if the EPCA is
ergodic. The ergodicity of the EPCA implies the ergodicity of the PCA but the converse is
not true: we provide a counterexample for each case, finite and infinite.

We also give sufficient conditions of ergodicity of the EPCA.

4.3.1 Algorithms
The algorithm for a finite set of cells is given in Algorithm 2. For an infinite set of cells, we
consider the dependence cone of a finite set of cells K (see Section 4.1).

STACS’11
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Finite set of cells. The idea is to con-
sider only one trajectory of the EPCA - the
one that starts from the initial configuration
?E (coding the set of all configurations of the
PCA). The algorithm stops when at time 0,
this trajectory hits the set AE .

Infinite set of cells. Once again, we
consider only one trajectory of the EPCA: at
each step , we set c = ?V−t(K) and compute
c = φ̃j(c, (rj

i )i∈Vj(K)) ∈ BVj+1(K) for j = −t
to −1. This is done until we get c ∈ AK .

Algorithm 2: Perfect sampling using
the EPCA for a finite set of cells

Data: Update function φ̃. Family
(r−n

k )(k,n)∈E×N of i.i.d. r.v.
uniform on [0, 1].

begin
t = 1 ;
repeat

c = ?E ;
for j = −t to −1 do

c = φ̃(c, (rj
i )i∈E)

t = t+ 1
until c ∈ AE ;
return c

end

I Proposition 4.5. The algorithms above (finite and infinite cases) stop almost surely if and
only if the EPCA is ergodic. In that case, the output of the algorithm is distributed according
to the unique invariant measure of the PCA.

Proof. The argument is the same in the finite and infinite cases. We give it for the finite
case. Assume first that Algorithm 2 stops almost surely. By construction, it implies that
for all µ0, the measure µ0 env(P )n is asymptotically supported by AE . Therefore, we can
strengthen the result in Proposition 4.4: the invariant measures of env(P ) coincide with
the invariant measures of P . In that case, env(P ) is ergodic iff P is ergodic. Now recall
that the update functions of P and env(P ) satisfy (4). Thus, Algorithm 1 also stops almost
surely. Furthermore, if we use the same samples (r−n

k )(k,n)∈E×N, Algorithms 1 and 2 will
have the same output. According to Proposition 4.1, this output is distributed according to
the unique invariant measure of P . In particular, P is ergodic. So env(P ) is ergodic.

Assume now that the EPCA is ergodic. The unique invariant measure π of env(P ) has to
be supported by AE . Also, by ergodicity, we have δ?E env(P )n w−→ π. This means precisely
that Algorithm 2 stops a.s. J

4.3.2 Criteria of ergodicity for the EPCA
I Proposition 4.6. Let the set of cells be finite. The EPCA env(P ) is ergodic if and only if
we have env(f)(?V )(?) < 1. This condition can also be written as:

min
x∈AV

f(x)(0) + min
x∈AV

f(x)(1) > 0 . (5)

In particular, on a finite set of cells, if the PCA has positive rates (i.e. ∀u ∈ AV ,∀a ∈
A, f(u)(a) > 0), then Algorithm 2 stops a.s.

For an infinite set of cells the situation is more complex. Condition (5) is not sufficient to
ensure the ergodicity of the EPCA. A counter-example is given in Section 4.3.3. First, we
propose a rough sufficient condition of ergodicity

I Proposition 4.7. Let α∗ ∈ (0, 1) be the critical probability of the percolation PCA with
neighborhood V , see Examples 2.5 and 2.8. The EPCA env(P ) is ergodic if

env(f)(?V )(?) < α∗ (6)
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and non-ergodic if

min
x∈BV −AV

env(f)(x)(?) > α∗. (7)

4.3.3 Counter-examples
Recall Proposition 4.4: [EPCA ergodic] =⇒ [PCA ergodic]. We now show that the converse
is not true.

Let us consider the PCA Majority defined at the beginning of Section 5. For n odd, the
PCA is ergodic on the set of cells Zn = Z/nZ, by Proposition 5.1. However the associated
EPCA satisfies env(f)(???) = δ?. According to Proposition 4.6, the EPCA is not ergodic.

Consider the PCA of Example 2.4. This PCA has positive rates, in particular, it satisfies
(5). So the EPCA is ergodic on a finite set of cells. Now let the set of cells be Z.

The PCA is ergodic for ε ∈ (0, 1), see Example 2.7. Consider now the associated EPCA
env(P ). Assume for instance that ε ∈ (0, 1/2). We have

env(f)(u) =
{
f(u) if u ∈ {0,1}V

εδ0 + εδ1 + (1− 2ε)δ? otherwise .

By applying Proposition 4.7, env(P ) is non-ergodic if 1− 2ε > α∗.

5 The majority PCA: a case study

The Majority PCA is one of the simplest examples of PCA whose behaviour is not well
understood. Therefore, it provides a good case study for our sampling algorithms.

Given 0 < α < 1, the PCA Majority(α), or simply Majority, is the PCA on the alphabet
A = {0, 1}, with set of cells E = Z (or Zn = Z/nZ), neighborhood V = {−1, 0, 1}, and
transition function

f(x, y, z) = α δmaj(x,y,z) + (1− α) δ1−y ,

where maj : A3 → A is the majority function: the value of maj(x, y, z) is 0, resp. 1, if there
are two or three 0’s, resp 1’s, in the sequence x, y, z. This PCA thus consists in choosing
independently for each cell to apply rule 232 (with probability α) or to flip the value.

I Proposition 5.1. Consider the Markov chain on the state space {0, 1}Zn which is induced
by the Majority PCA on set of cells Zn. The Markov chain has a unique invariant measure
ν. If n is even then ν = (δ(01)n/2 + δ(10)n/2)/2; if n is odd then ν is supported by {0, 1}Zn .

Let us consider now the PCA Majority on Z. Let x = (01)Z ∈ {0, 1}Z be the configuration
defined by: ∀n ∈ Z, x2n = 0, x2n+1 = 1. The configuration (10)Z is defined similarly. The
probability measure µ = (δ(01)Z + δ(10)Z)/2 is clearly an invariant measure for the PCA
Majority. It can be viewed as the “limit” over n of the invariant measures of the PCA on
Z2n. What about the “limits” of the invariant measures of the PCA on Z2n+1? Do they
define other invariant measures for the PCA on Z?

I Conjecture 5.2. There exists αc ∈ (0, 1) such that Majority(α) has a unique invariant
measure for α < αc, and several invariant measures for α > αc.

We propose a partial result relying on ideas of Regnault [13].
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(a) The value of cn as a function of n, for different α.

(b) α = 0.5

(c) α = 0.3

Figure 2 Experimental study of Majority(α) (the configurations at odd times only are represented
on the space-time diagrams).

I Proposition 5.3. Let pc be the percolation threshold of directed bond-percolation in N2. If
α ≥ 3

√
1− (1− pc)4, then Majority(α) has several invariant measures. It is in particular the

case if α ≥ 0.996.

We also tried to come up with some numerical evidence. To study the PCA Majority
experimentally, a first idea would be to consider the same PCA on the set of cells Zn, n odd,
but this does not work well. First, computing exactly the invariant measure is impossible
except for small n. Second the efficient perfect sampling is not available since the EPCA is
not ergodic.

Instead, we used approximations of the PCA by a (non-homogeneous) PCA on the set of
cells Dn = {−n, . . . , n}, with random boundary conditions : at each step, the contents of
cells −n and n are updated using values of the cells −(n+ 1) and n+ 1 chosen uniformly at
random in {0, 1}. Again, computing exactly the invariant measure is impossible except for
very small windows. But now, the EPCA is ergodic, and the perfect sampling algorithms
become effective.

Let µn be the unique invariant measure for the set of cells Dn. Define

cn = µn{x ∈ X | x0 = x1 = 0}+ µn{x ∈ X | x0 = x1 = 1} .

One can prove that if lim supn cn > 0, then there exists a non-trivial invariant measure for
the PCA Majority on Z (this relies on the compactness ofM(X)).

The experimental results appear in Figure 2, with a logarithmic scale. We ran the
sampling algorithms 10000 times, up to a window size of n = 1024. We show on the figure
the confidence intervals calculated with Wilson score test at 95%.

It is reasonable to believe that the top two curves do not converge to 0 while the bottom
three converge to 0. This is consistent with the visual impression of space-time diagrams. It
reinforces Conjecture 5.2 with a possible phase transition between 0.4 and 0.45.
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