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Abstract
In the problem of Scheduling with Interval Conflicts, there is a ground set of items indexed by
integers, and the input is a collection of conflicts, each containing all the items whose index lies
within some interval on the real line. Conflicts arrive in an online fashion. A scheduling algorithm
must select, from each conflict, at most one survivor item, and the goal is to maximize the number
(or weight) of items that survive all the conflicts they are involved in. We present a centralized
deterministic online algorithm whose competitive ratio is O(lg σ), where σ is the size of the
largest conflict. For the distributed setting, we present another deterministic algorithm whose
competitive ratio is 2 lg σ, in the special contiguous case, in which the item indices constitute
a contiguous interval of integers. Our upper bounds are complemented by two lower bounds:
one that shows that even in the contiguous case, all deterministic algorithms (centralized or
distributed) have competitive ratio Ω(lg σ), and that in the non-contiguous case, no deterministic
oblivious algorithm (i.e., a distributed algorithm that does not use communication) can have a
bounded competitive ratio.
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1 Introduction

We study the following abstract problem, which we call Scheduling with Interval Conflicts.
There is a universe U of n items, each with an integer identifier. The input is a collection
C of conflicts, where each conflict C ∈ C is a set containing all the items of U within some
interval on the real line. A conflict represents an event where the specified items compete
for a resource that can be granted to only one item. Conflict resolution is carried out by a
scheduling algorithm that decides which item survives: all other items in the conflict set are
eliminated. The goal of the scheduling algorithm is to maximize the number (or weight) of
items that survive all their conflicts.

Scheduling with Interval Conflicts arises naturally in some scenarios. One interpretation
of the model is when we have a set of permanently-running stations that may interfere
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only with other neighboring stations, where the underlying metric space is a line, and the
interference range in each direction may change in every step. In each step we need to choose
a station that will win the current conflict, if any. The goal is to maximize the number of
stations that never fail.

Another example for our model are tasks that must be processed by a few bounded-
capacity servers located at different sites on the Internet. The tasks are sent to these servers
in the same order, and due to varying congestion conditions in the network, they arrive at
the servers with varying burstiness: for example, the input to server A may be such that at
step t task i arrives, at step t + 1 tasks i + 1, i + 2, i + 3 arrive together, at step t + 2 no
task arrives etc. The input to another server B may exhibit a different burst structure, e.g.,
tasks i and i+ 1 arrive together, and tasks i+ 2 and i+ 3 arrive together. Assume that the
servers can process only one task at a step, and tasks cannot be stored for later processing.
Then a time step in which more than a single task arrives can be represented as an interval
conflict. The main question in our model is which tasks to process and which to drop, so as
to maximize the total number of tasks that receive all the processing they require.

Finally, consider multiple streams of data-frames (e.g., video frames) that need to be
transmitted across the Internet. Since data frames are typically too large to fit in a single
packet, the frames are broken into a number of packets, and reconstructed at the receiver.
However, if a packet is lost in transit, its whole constituent frame (i.e., item) becomes useless.
Interval conflicts arise if the streams pass through a congested router which can forward only
one packet from each burst of packets that arrive together (all other packets are dropped).

Problem variants

In some cases, conflicts need to be resolved without knowledge of other conflicts (for example,
if conflicts arrive in different locations, or if the conflict resolution protocol must be stateless).
We call this variant oblivious (or distributed) scheduling. In some other cases, all previous
conflicts and their outcomes are known to the algorithm when a new conflict arrives. We call
this variant sequential (or centralized) scheduling. Note that both oblivious and sequential
scheduling are online, i.e., no information about future conflicts is available to the algorithm
(the offline variant of the problem is when all conflicts are given ahead of time).

An interesting special case of interval conflicts is when the universe of items contains no
gaps, i.e., the items have identifiers i0, i0 + 1, . . . , i0 + n− 1 (in general, item identifiers are
only required to be totally ordered). We refer to this as the contiguous case.

1.1 Our Contribution
In this paper we introduce and formalize the problem of Scheduling with Interval Conflict
(abbreviated sic below), and give deterministic online algorithms and lower bounds on the
competitive ratio of deterministic algorithms. We start off with the special case of contiguous
conflicts. It turns out that contiguous conflicts allow for an oblivious (and hence distributed)
algorithm, guaranteeing competitive ratio of O(lg σ), where σ is the maximal number of
items in a conflict. However, no competitive oblivious algorithm exists if item identifiers are
not contiguous, as we show. We then give a sequential algorithm whose competitive ratio is
also O(lg σ). The algorithm works also in the case of weighted items and non-contiguous item
identifiers. Both algorithms are matched by a Ω(lg σ)-lower bound on the competitive ratio
of any deterministic online algorithm, even sequential algorithms for unweighted contiguous
sic.

Several additional results are omitted for luck of space. One is a simple algorithm in
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the case of resource augmentation, that is 1-competitive when allowed to accept two items
per conflict. Another is an oblivious O(lg σ/b)-competitive algorithm for the generalized
problem when b items may survive each conflict. Finally, we present an alternative sequential
algorithm whose competitiveness is expressed in terms of the depth of the interval structure,
where depth is defined to be the maximal number of conflicts that any single item is involved
in.

1.2 Related Work
The offline version of our problem, finding a maximum subset of points with no two in a
common interval, is easily solvable in polynomial time (see Section 2). A related minimization
problem is finding the minimum number of points intersecting all intervals, or alternatively
minimum clique partition. A 2-competitive online algorithm for the latter problem is given
and shown to be the best possible in [6].

Note the unusual characteristic of our problem is that the solution only decreases as more
of the input arrives. Little is known about online maximization problems of this sort; the
only related result we are aware of is [3].

A different dual problem is the interval selection problem, where we seek a maximum
cardinality subset of disjoint intervals. In the online version, the intervals that arrive over
time must be irrevocably accepted or rejected. Randomized algorithms for different cases
are known [9, 1, 2]; the result closest in spirit to ours is an O(logm)-competitive algorithm
(originally for call control on the line) [1], where m is the number of possible interval
endpoints. In general, however, a Ω(n) lower bound holds for the competitive ratio of
randomized algorithms [2], where n is the number of intervals. Interval selection can be seen
as an instance of scheduling with conflicts, which has been studied extensively (see, e.g.,
the surveys of [7, 10]), but to the best of our knowledge, we are the first to consider online
conflicts in the form of groups of consecutive items.

The problem of multi-packet frames (sketched above) was introduced in [8], where it is
shown that if packet ordering is arbitrary (namely conflicts are not necessarily intervals), then
the competitive ratio is Ω(σ) even for two-packet frames. A general framework that deals
with transmission of multi-packet frames is described in [3]. The problem is modeled as an
online version of Set Packing, nearly tight bounds of Θ̃(k

√
σ) are proven on the competitive

ratio of randomized algorithms for Online Set Packing, and a Ω(σk−1) deterministic lower
bound is shown, where k is the maximum size of a set and σ is the maximum number of sets
that contain the same element. In our terms, it is assumed there that each item is involved
in up to k conflicts, and conflicts need not be intervals.

1.3 Paper Organization
The remainder of this paper is organized as follows. In Section 2 we formalize the problem
and present the basic arguments we use in analyzing our algorithms. We study oblivious
algorithms in Section 3, and sequential algorithms are considered in Section 4. In Section 5
we prove a lower bound on the competitive ratio of online algorithms. Some concluding
remarks are given in Section 6.

2 Preliminaries and Basic Argument

In this section we formalize the problem, define the concepts and notation we use, and present
the basic argument we employ in the analysis of our algorithms.
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1 2 3 4 5 6 7 8

(a) P = {5}

1 2 3 4 5 6 7 8

(b) P = {1, 3, 6, 8}

Figure 1 An instance of sic with two possible solutions. Rectangles represent conflicts, and dots
represent items that were selected as survivors in conflicts. The instance contains eight items and
five conflicts whose size is at most 4 (i.e., σ = 4). In Figure 1a (top), only one item survives all
conflicts, while an optimal solution can have four such items (Figure 1b).

2.1 Problem Statement and Notation

Scheduling with Interval Conflicts (abbreviated sic) is defined as follows. There is a set U of
n integer items. The input is a collection C of conflicts, where each conflict C ∈ C contains all
items of U within some interval on the real line. Namely, C = U ∩ [min(C),max(C)]. In this
paper we also consider the Contiguous Model, where U is a set of consecutive integers. The
size of the largest conflict is denoted by σC , namely σC

def= max {|C| : C ∈ C} (the subscript
is omitted when the instance is clear from the context). A feasible schedule is a set of items
P ⊆ U containing at most one item from any given conflict, i.e. |P ∩C| ≤ 1 for every C ∈ C.
An item in P is said to be a survivor of its conflicts, while the other items were eliminated.
If item i survives conflict C 3 i by algorithm A, we say that A delivers i from C. The goal is
to find a maximum cardinality feasible schedule, i.e. maximize the number of items surviving
all their conflicts (see example in Figure 1).

In the weighted case, each item i has a real-valued weight w(i) > 0 and the objective is
to find a maximum weight subset of weights satisfying the conflict constraints. For a set S of
items, w(S) def=

∑
i∈S w(i).

We consider two models of algorithms. In the oblivious model, the selection of a survivor
from a conflict is a function of that conflict only, which allows for distributed conflict
resolution. In the sequential model, conflicts arrive over time, i.e., they are ordered as a
sequence C1, C2, . . ., and the resolution of conflict Ct may be a function of the full history
C1, . . . , Ct.

We note that simple heuristics for sic may perform poorly. For example, selecting the
leftmost item in each given conflict is Ω(n)-competitive as demonstrated by the instance in
Figure 2. The same goes for the sequential strategy of picking the leftmost item among the
items that were not eliminated in previous conflicts. (We assume that the top conflict is the
first to arrive.)

2.2 Characterizing Optimal Solutions

The offline version of sic can be reduced to maximum independent set in proper intervals
graphs, which is solvable in polynomial time [5]. The reduction is as follows. First, remove
all conflicts that are properly contained in other conflicts. It follows that there is a total
order on the remaining conflicts, and therefore we may view each item as a node in a proper
interval graph, where an interval is now a contiguous sequence of conflicts. Now finding an
optimal schedule amounts to finding a maximum independent set in the above mentioned
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1 2 3 4 5 · · · n− 1 n

. .
.

Figure 2 An instance of sic with n items and n− 1 conflicts (all of size 2, i.e., σ = 2). If one
selects the leftmost item in each given conflict, only one item (number 1) survives all conflicts, while
by always picking the odd-numbered items (represented by dots in the figure), one gets an optimal
solution of size dn/2e.

interval graph. Similarly, one may find a maximum independent set in an interval graph by
solving an offline sic instance.

We give a more direct description below. First, we provide an upper bound on the optimal
solution due to duality. Let opt(C) denote an optimal solution of sic to instance C, and let
U(C) =

⋃
C∈C C denote the set of items involved in conflicts in C.

I Observation 1. For all C′ ⊆ C: If U(C′) = U(C), then |opt(C) ∩ U(C)| ≤ |C′|.

Observation 1 motivates a simple polynomial offline algorithm for sic. Briefly, the idea is to
scan the item set from left to right (the examples in Figure 1 may help the reader), initially
selecting the leftmost item. The next element selected, following a selected element ij , is then
inductively the leftmost element among those that are not in conflicts that contain ij , i.e.,
ij+1 = min{i′ : i′ > ij and ∀C, |{ij , i′} ∩ C| ≤ 1}. This forms a feasible solution, since for
any consecutively chosen items ij and ij+1, there is no conflict containing both ij and ij+1.
To prove that the selected elements constitute an optimal solution, let C ′j be the conflict that
contains ij and ij+1 − 1. Since

⋃
j C
′
j = U(C), optimality follows from Observation 1.

3 Oblivious Algorithms

In this section we consider oblivious algorithms. Oblivious algorithms are attractive because
they can be implemented in a distributed system. The main result of this section is an
oblivious algorithm for unweighted contiguous sic, whose competitive ratio is 2 lg σ. We also
show that if the instance is not contiguous, then no oblivious algorithm can be competitive.

3.1 Oblivious Algorithm for Contiguous sic
In this section we present a simple 2 lg σ-competitive algorithm for unweighted contiguous
sic. We note that the algorithm needs not know σ in advance.

The basic idea of the algorithm is to assign to each item a fixed priority, and the conflict
resolution rule is to always prefer the item with the highest priority. Specifically, our
algorithm, Priority, defines the priority of item i by

p(i) def= max
{
` ∈ Z | i is divisible by 2`

}
. (1)
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i: 1 2 3 4 5 6 7 8 9 10

p(i): 0 1 0 2 0 1 0 3 0 1

Figure 3 Execution of Algorithm Priority on an instance with ten items and seven conflicts. The
dots represent the items that were chosen by the algorithm. The computed solution is P = {4, 8, 10},
while the optimum is {1, 3, 6, 9}.

For example, if i is odd, then p(i) = 0, and if i = 2` then p(i) = `.1
One nice consequence of this definition is the following observation:

I Observation 2. If i` < ir and p(i`) = p(ir) = p for some p, then there exists i` < i < ir
such that p(i) > p.

Observation 2 implies that any conflict contains exactly one item with maximum priority,
and hence Algorithm Priority is well-defined: Upon arrival of conflict C, the algorithm
delivers the unique item with highest priority (as defined by (1)) among the items in C. See
Figure 3 for an example. Note that the algorithm makes decisions without knowing or even
estimating σ, and that it is completely distributed: the identity of the winner of a conflict is
independent of other conflicts.

Next, observe that even though σ, the size of the largest conflict, is unknown, we need
only to concern ourselves with lg σ priorities.

I Observation 3. Each conflict contains at most one item i with p(i) ≥ lg σ.

Observation 3 implies that given conflicts whose length is bounded by σ, all priorities greater
than or equal to lg σ are indistinguishable from the viewpoint of Algorithm Priority.

We now turn to prove that the competitive ratio of Algorithm Priority is at most 2 lg σ.
We use the following concept.

I Definition 4. Let C be an instance and let A be an algorithm for sic. A sequence of items
i0, i1, . . . , im is an elimination chain of length m if for all 0 < j ≤ m we have that item ij
eliminates item ij−1 when A runs on C.

Note that an elimination chain of length m contains m+ 1 items, but implies the existence
of m conflict intervals. Elimination chains have the following property.

I Lemma 5. Let C be an instance and let A be an algorithm for sic. Suppose that i0, . . . , im
is an elimination chain for C under A. Then the interval [i′, i′′] can be covered by m conflicts,
where i′ = min {ij | 0 ≤ j ≤ m} and i′′ = max {ij | 0 ≤ j ≤ m}.

Proof. By Definition 4, for any 0 < j ≤ m there exists a conflict Ij ∈ I such that ij−1 ∈ Ij

and ij ∈ Ij . It follows, by induction on m, that
⋃m

j=1 Ij ⊇ [i′, i′′]. J

1 For an efficient implementation (in AC0), e.g. to use in routers, it suffices to extract the smallest bit set,
using the bit-wise operations (i XOR (i− 1)) AND i.
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Lemma 5 implies the following consequence. Say that an algorithm is reasonable if it delivers
an item from each conflict C, i.e. it does not eliminate items without a reason.

I Proposition 6. The competitive ratio of any reasonable algorithm for sic is at most 2m−1,
where m is the length of the longest elimination chain of the algorithm.

Proof. Fix an instance C. Say that an item i′ is dominated by an item i if there is an
elimination chain that starts with i′ and ends with i. For each item i, let D(i) be the set of
items dominated by i. Now, consider a reasonable algorithm A, and let P be the set of items
delivered by A running on C. Clearly, each item i was either delivered by A, i.e., i ∈ P , or
eliminated, in which case i ∈ D(i′) for some i′ ∈ P (because A is reasonable). In addition,
we have by Lemma 5 that D(i′) can be covered by the conflicts of two elimination chains:
one starting from min(D(i′)) and one that starts from max(D(i′)). Both of them end in
the same interval. We can therefore conclude that the set of all items can be covered by
(2m− 1)|P | intervals. The result now follows from Observation 1. J

Using Proposition 6 and Observation 3 we can easily bound the competitive ratio of
Algorithm Priority.

I Theorem 7. The competitive ratio of Algorithm Priority is at most 2 lg σ.

Proof. By Observation 3 and the fact that under Priority an item i is eliminated by an
item i′ if and only p(i) < p(i′), we have that the length of any elimination chain under
Priority is at most lg σ. The theorem therefore follows directly from Proposition 6. J

In the full version of the paper we explain how to extend Algorithm Priority to the
capacitated case, where the number of survivors from a conflict may be some parameter
b ≥ 1.

3.2 A Lower Bound for the Non-Contiguous Case
One may wonder if a similar result holds in the non-contiguous case. This turns out to be
far from the case. We argue that no deterministic oblivious algorithm is competitive in the
general (non-contiguous) case even if σ = 2.

I Theorem 8. The competitive ratio of any deterministic oblivious algorithm for sic is Ω(n),
even for the unweighted case and for σ = 2.

Proof. Fix a deterministic oblivious algorithm alg. By definition of obliviousness, the
decision of alg for a given conflict C depends only on its items. Let n be a number and
let N = 2n. We 2-color the edges of an N -vertex clique KN as follows. Edge (vi, vj), for
i < j, is colored blue if alg prefers vi over vj , and otherwise red. By Ramsey’s theorem [4],
KN contains a monochromatic subgraph of logN = n vertices. If follows that there is either
an increasing or a decreasing sequence of n items i1, . . . , in such that alg prefers i` over
i`−1, for any ` ∈ {2, . . . , n}. We introduce the conflicts {i`−1, i`}, for ` ∈ {2, . . . , n}. Then,
only in will survive the execution of alg, whereas {i` : ` is odd} is a feasible solution of size
n/2. J

4 Sequential Algorithms

In this section we present an O(lg σ)-competitive sequential algorithm for sic, extending
algorithm Priority to the weighted and non-contiguous case.
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In describing our algorithm, we say that item i fired item i′ if i was the first item to
eliminate i′. In the remainder of this section we say that an item i0 is dominated by item
im if there is an elimination chain i0, i1, . . . , im such that ij fires item ij−1, for every j. Let
D(i) be the set of items that are dominated by i. Note that if i survives then D(i) 6= ∅, and
in particular i ∈ D(i). Observe that each item is dominated by exactly one surviving item,
hence D(i) ∩D(i′) = ∅ for each pair of surviving items i and i′.

We now describe the algorithm in the weighted case. Define the weight class of item i

to be c(i) = blgw(i)c, the base-2 logarithm of the item weight rounded down to an integer.
Our algorithm is called Seq, and it proceeds as follows.

With each item i, we associate two values left(i) and right(i) (initially both zero), referred
to as the left and right levels of i, respectively. When an interval I arrives, the algorithm
determines the highest weight class of active items in I. If there is only one active item of the
highest weight class, it simply survives. Otherwise, let l and r be the leftmost and rightmost
active items of the highest weight class. The algorithm compares left(l), the left level of l,
and right(r), the right level of r. If left(l) > right(r), then l survives and right(l) is set to
right(r) + 1; otherwise, r survives and left(r) is set to left(l) + 1. (The algorithm arbitrarily
favors r, in case of a tie.) Notice that left(i) and right(i) may increase and decrease during
execution.

Fix some optimal solution opt. The following upper bound is what motivates the num-
bering of the levels. Let mi be the larger of the levels of i, namely mi = max{left(i), right(i)}.
Also, let ni = maxi′∈D(i) mi′ be the largest level of an item in D(i).

I Lemma 9. w(opt ∩D(i)) = O(ni · w(i)).

Proof. Let l1, . . . , lt be the sequence of items in D(i) such that l1 is the leftmost item in
D(i) and, inductively, lj+1 is the item that fired item lj . Observe that the sequence extends
monotonically from left to i, with lt = i. According to the survival rule of the algorithm, the
weight classes of the items are monotonically non-decreasing, and for a pair of items lj and
lj+1 in the same weight class, the left levels are strictly increasing, namely left(lj+1) > left(lj).
It follows that there are at most ni items from the item set {l1, . . . , lt} in each weight class.
Hence, the sum of the weights of the items l1, . . . , lt is bounded by

t∑
j=1

w(lj) < 2
t∑

j=1
2c(lj) ≤ 2ni

∑
c≤c(i)

2c < 2ni · 2c(i)+1 ≤ 4ni · w(i) . (2)

Let D−(i) (D+(i)) be the subset of items in D(i) to the left (right) of i, up to and
including i. That is, D−(i) ∪D+(i) = D(i) and D−(i) ∩D+(i) = {i}. Partition D−(i) into
ranges [lj+1, lj ], for j = 1, . . . , t− 1. Observe that lj+1 must be in the largest weight class
among the items in the range [lj , lj+1], for all j = 1, . . . , t− 1. (Namely, if there was a item
in [lj + 1, lj+1 − 1] belonging to a larger weight class, the largest such item could not have
been eliminated without either lj or lj+1 being also eliminated.) Since opt can contain at
most one item from each range [lj , lj+1], it follows from (2) that

w(opt ∩D−(i)) < 2
t∑

j=1
w(lj) ≤ 8ni · w(i) .

Applying the same arguments to D+(i) yields that w(opt ∩D(i)) ≤ 16ni · w(i), implying
the lemma. J

We now show that high levels imply very large intervals.
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I Lemma 10. ni = O(lg σ).

Proof. Let D̂(i′) be the set of items dominated by i′ that are from the same weight class,
c(i′), as i′.

I Claim 1. |D̂(i′)| ≥ 2mi′ , for any item i′ in D(i).

Proof. The proof is by induction on mi′ . The base case mi′ = 0 is trivially true, since
i′ ∈ D̂(i′). For the inductive step, suppose that mi′ ≥ 1. Consider the most recent conflict I
that i′ survived and in which an item from class c(i′) was fired. Let l and r be the leftmost and
rightmost active items in I, respectively, such that c(l) = c(r) = c(i′), when I was presented.
Observe that i′ ∈ {l, r}. By the inductive hypothesis, |D̂(l)| ≥ 2ml and |D̂(r)| ≥ 2mr . If
mi′ = max{ml,mr}, then we are done. Suppose then that mi′ = max{ml,mr}+ 1, which
happens only when ml = mr. Since D̂(l) and D̂(r) are disjoint, we have that

|D̂(i′)| ≥ |D̂(l)|+ |D̂(r)| ≥ 2ml + 2mr = 2mi′ .

and the claim follows. J

I Claim 2. D̂(i′) is covered by at most 2mi′ intervals.

Proof. Let l1, l2, . . . , lt be the sequence of items defined such that l1 is the leftmost item in
D̂(i′) and, inductively, lj+1 is the item that fired lj , for j = 1, . . . , t− 1. Also, let Ij be the
interval presented upon which lj+1 fired lj , for j = 1, . . . , t− 1. Clearly, I1, . . . , It−1 cover
the items to the left of lt = i′, up to and including i′. According to the survival rule of the
algorithm, the left levels of the items are strictly increasing. It follows that t ≤ mi′ + 1. By
symmetry, mi′ intervals also cover the items in D̂(i′) to the right of i′. J

We resume with the proof of Lemma 10. Let i′ ∈ D(i) such that ni = mi′ . By the
two claims above, some interval covers at least |D̂(i′)|/(2mi′) ≥ 2mi′−1/mi′ items. Hence,
σ ≥ 2mi′−1/mi′ , or ni = mi′ ≤ lg σ(1 + o(1)). J

The following theorem is now immediate from Lemmas 9 and 10 when observing that the
sets {D(i) : i survived} partition the set U of items.

I Theorem 11. The competitive ratio of the oblivious algorithm Seq for the weighted and
non-contiguous case is O(lg σ).

5 A Lower Bound on the Competitive Ratio

In this section we show that the competitive ratio of any deterministic online algorithm for
contiguous sic is Ω(lg σ). Our lower bound construction is sequential, namely the conflicts
arrive one by one, and the algorithm knows the complete history when a new conflict arrives.
Since any algorithm for oblivious sic can be used in the sequential model, the lower bound
holds for oblivious sic as well.

Fix a deterministic online algorithm A. Based on the way A picks items to survive
conflicts, we construct in an online fashion a sequence of conflicts along with an optimal
scheduling denoted by opt. To facilitate the description, define a conflict I to be active with
respect to algorithm A if upon arrival, I contains a item that was not already eliminated by
A in previous conflicts. W.l.o.g., we consider only algorithms that always deliver an item
from an active interval.
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Epoch q:

Epoch q + 1:

It−1

· · ·
︷ ︸︸ ︷q − 1

a o

It

· · ·
︷ ︸︸ ︷q − 1 It+1

· · ·︸ ︷︷ ︸
q

Figure 4 Construction of epoch q + 1: The case where a < o. Gray boxes represent positive
intervals. It is split into two parts: the left part is combined with It−1, while the right part becomes
a positive interval.

In general, there can be conflicts that are active with respect to A, opt, or both. We call
a conflict interval neutral if it is active with respect to both A and opt, and positive if it is
active with respect to opt only (there will be no “negative” intervals in our construction).

The conflict sequence consists of a sequence of epochs satisfying the following epoch
invariant:

In each epoch, all conflicts are disjoint and their union is {1, . . . , n}.
The set of items delivered by A and by opt from epoch q ≥ 1 are disjoint.
In epoch q there are q− 1 positive intervals between any two consecutive neutral intervals.

Note that the last property means that after epoch q, the optimal number of surviving items
is q times larger than the number of items delivered by A.

We now describe the construction of epochs inductively. Assume that n is an even integer.
The first epoch consists of n/2 intervals of size 2: for every t ∈ [1, n/2], the tth interval
is [2t − 1, 2t]. Let A1 be the set of items that are delivered by the algorithm after the
first epoch. Clearly |A1| = n/2. The optimal solution is the complement of A1, namely
opt1 = {1, . . . , n} \ A1. It is straightforward to verify that the epoch invariant holds for
q = 1 (the last property follows from the fact that all intervals in epoch 1 are neutral).

The more interesting part is the inductive step. Let Aq and optq be the set of active
items with respect to A and opt, respectively, immediately after epoch q. Assume that the
invariant holds for epoch q. We construct epoch q + 1 and optq+1 as follows. Number the
neutral intervals of epoch q sequentially I1, I2, . . ., starting from the leftmost neutral interval.
This numbering skips the positive intervals between neutral intervals. Let It = [`t, rt] be
the tth neutral interval, where t is even. We break It into two parts as follows. Let a and
o be the indices of items that are delivered from It by Aq and optq, respectively in epoch
q. We proceed by two cases. If a < o, then we introduce the conflict interval [o, rt] and
extend It−1 to the right up to o− 1 (see Figure 4). Otherwise, if a > o, then we introduce
the conflict interval [`t, o] and extend It+1 to the left up to o+ 1 (see Figure 5). Notice that
an odd neutral interval from epoch q can be either extended to the left, or to the right, or
in both directions, or not extended at all. Finally, positive intervals from epoch q that are
not covered by the above intervals are added to epoch q + 1. Figure 6 illustrates a complete
example.

It remains to determine optq+1. Let I ′t be the extended version of an odd interval It

from epoch q. optq+1 will deliver the active item from It. Since It does not intersect any
even neutral interval, optq+1 may deliver an item in any part of an even neutral interval
that was added to epoch q + 1. Also, since It does not intersect any positive interval from
epoch q, optq+1 may deliver an item in any positive interval that was not merged with an
odd neutral interval from epoch q.

The first and second properties of the invariant are clearly satisfied by the construction.
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Epoch q:

Epoch q + 1:

It−1

· · ·
︷ ︸︸ ︷q − 1

o a

It

· · ·
︷ ︸︸ ︷q − 1 It+1

· · ·︸ ︷︷ ︸
q

Figure 5 Construction of epoch q + 1: The case where a > o. Gray boxes represent positive
intervals. It is split into two parts: the right part is combined with It+1, while the left part becomes
a positive interval.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a o o a a o o a a o a o o a o a a o

a o o a o o a o o o a o a o

a o o o a o o o a o

Figure 6 The lower bound construction with n = 18 and three epochs. The gray boxes represent
positive intervals.

To see that the last property of the invariant holds, observe that any extended odd neutral
interval remains neutral. We claim that there are q positive intervals between any consecutive
neutral intervals. Let It be an even neutral interval that was split in the construction of
epoch q + 1. If a < o the interval [o, rt] is positive because [o, rt] ∩ Aq = ∅. Moreover, all
positive intervals between It and It+1 remain as they were. Similarly, if a > o the interval
[`t, o] is positive, because [`t, o] ∩Aq = ∅, and all positive intervals between It and It−1 are
left unchanged. Hence, there are q positive intervals between any two consecutive neutral
intervals in epoch q + 1.

The following lemma bounds the size of intervals.

I Lemma 12. Let σq be the maximum interval size in epoch q. Then σq ≤ 2 · 5q−1.

Proof. By induction on the number of epochs. In the base case (epoch 1), σ1 = 2. For the
inductive step, observe that an interval in the epoch q + 1 may consist of (i) an odd neutral
interval, (ii) parts of two even neutral intervals, (iii) 2(q− 1) positive intervals. Since positive
intervals that are created in epoch q′ are of size smaller than σq′−1 and due to the inductive
hypothesis, we have that

σq+1 < σq + 2σq + 2
q−1∑
q′=1

σq′ ≤ 3σq + 2
q−1∑
q′=1

σq′ < 5σq ,

and the lemma follows. J

We can now prove the lower bound.

I Theorem 13. The competitive ratio of any deterministic online algorithm for sequential
sic is Ω(lg σ), even in the contiguous case.

Proof. Let A be a deterministic algorithm. Construct instance I as described above. The
epoch invariant implies that after q epochs, |opt(I)| ≥ q(|A(I)|− 1). Hence, the competitive
ratio of A is Ω(q). Let σ be a given parameter. By Lemma 12 we have that σq ≤ 2 · 5q−1,
and therefore, setting q = blog5(σ/2)c = Ω(lg σ) we have σq ≤ σ, and the result follows. J
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6 Conclusion

In this paper we have introduced the problem of scheduling with interval conflicts and
proved tight bounds on the competitive ratio of online algorithms to solve them. It would
be interesting to consider other conflict topologies, and to understand to which degree
randomness can help.
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