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—— Abstract

In the packed string matching problem, each machine word accommodates a characters, thus
an n-character text occupies n/a memory words. We extend the Crochemore-Perrin constant-
space O(n)-time string matching algorithm to run in optimal O(n/«a) time and even in real-time,
achieving a factor a speedup over traditional algorithms that examine each character individually.
Our solution can be efficiently implemented, unlike prior theoretical packed string matching work.
We adapt the standard RAM model and only use its AC® instructions (i.e., no multiplication)
plus two specialized AC® packed string instructions. The main string-matching instruction is
available in commodity processors (i.e., Intel’s SSE4.2 and AVX Advanced String Operations);
the other mazimal-suffiz instruction is only required during pattern preprocessing. In the absence
of these two specialized instructions, we propose theoretically-efficient emulation using integer
multiplication (not AC?) and table lookup.
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1 Introduction

Hundreds of articles have been published about string matching, exploring the multitude
of theoretical and practical facets of this fundamental problem. For an n-character text T'
and an m-character pattern z, the classical algorithm by Knuth, Morris and Pratt [21] takes
O(n + m) time and uses O(m) auxiliary space to find all pattern occurrences in the text,
namely, all text positions 4, such that T[i..i +m — 1] = z. Many other algorithms have
been published; some are faster on the average, use only constant auxiliary space, operate
in real-time, or have other interesting benefits. In an extensive study, Faro and Lecroq [12]
offer an experimental comparative evaluation of some 85 string matching algorithms.
Packed strings. In modern computers, the size of a machine word is typically larger
than the size of an alphabet character and the machine level instructions operate on whole
words, i.e., 64-bit or longer words vs. 8-bit ASCII, 16-bit UCS, 2-bits biological DNA, 5-bits
amino acid alphabets, etc. The packed string representation fits multiple characters into one
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larger word, so that the characters can be compared in bulk rather than individually: if the
characters of a string are drawn from an alphabet X, then a word of w > log, n bits fits up
to « characters, where the packing factor is a = logfﬁ > log|s n.t

Using the packed string representation in the string matching problem is not a new idea
and goes back to early string matching papers by Knuth, Morris and Pratt [21, §4] and Boyer
and Moore [6, §8-9], to times when hardware character byte addressing was new and often less
efficient than word addressing. Since then, several practical solutions that take advantage of
the packed representation have been proposed in the literature [2, 4, 11, 15, 16, 25]. However,
none of these algorithms improves over the worst-case O(n) time bounds of the traditional
algorithms. On the other hand, any string matching algorithm should take at least Q(n/«)
time to read a packed text in the worst case, so there remains a gap to fill.

Existing work. A significant theoretical step recently taken introduces a few solutions
based on either tabulation (a.k.a. “the Four-Russian technique”) or word-level parallelism
(a.k.a. “bit-parallelism”). Fredriksson [15, 16] used tabulation and obtained an algorithm
that uses O(n®m) space and O( — 4+ n°m + occ) time, where occ denotes the number of

log
pattern occurrences and € > 0 denotes an arbitrary small constant. Bille [5] improved these

bounds to O(n® + m) space and O(log‘ o Tt occ) time. Very recently, Belazzougui [3]

showed how to use word-level parallelism to obtain O(m) space and O(7% 4+ % + m + occ)
time. Belazzougui’s algorithm uses a number of succinct data structures as Well as hashing:
for « < m < n/a, his time bound is optimal while space occupancy is not. As admitted by
the above authors, none of these results is practical. A summary of the known bounds and
our new result is given in Table 1, where our result uses two instructions described later on.

Table 1 Comparison of packed string matching algorithms.

Time Space Reference
O(logm — +nm + occ) O(nm) Fredriksson [15, 16]
O(3 g\EI — +m + occ) O(n® 4+ m) Bille [5]

O(Z 4+~ +m + occ) O(m) Belazzougui [3]
O(Z 4+ 2 + occ) o(1) This paper

Our results. We propose an O(n/a + m/«) time string matching algorithm (where the
term m/« is kept for comparison with the other results) that is derived from the elegant
Crochemore-Perrin [9] algorithm. The latter takes linear time, uses only constant auxiliary
space, and can be implemented in real-time following the recent work by Breslauer, Grossi and
Mignosi [7] — benefits that are also enjoyed in our settings. The algorithm has an attractive
property that it compares the text characters only moving forward on two wavefronts without
ever having to back up, relying on the celebrated Critical Factorization Theorem [8, 22].
We use a specialized word-size packed string matching instruction to anchor the pattern
in the text and continue with bulk character comparisons that match the remainder of the
pattern. Our reliance on a specialized packed string matching instruction is not far fetched,
given the recent availability of such instructions in commodity processors, which has been a
catalyst for our work. Our algorithm is easily adaptable to situations where the packed string
matching instruction and the bulk character comparison instruction operate on different
word sizes. The output occurrences are compactly provided in a bit-mask that can be spelled

L Assume that || is a power of two, w is divisible by log, |%|, and the packing factor « is a whole integer.
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out as an extensive list of text positions in extra O(occ) time.

Unlike the prior theoretical work, our solution has a cache-friendly sequential memory
access without using large external tables or succinct data structures, and therefore, can also
be efficiently implemented. The same specialized packed string matching instruction could
also be used in other string matching algorithms, e.g. the Knuth-Morris-Pratt algorithm [19,
§10.3.3], but our algorithm also works in real-time and uses only constant auxiliary space.

Model of computation. We adapt the standard word-RAM model with w-bit words and
with only AC? instructions (i.e., arithmetic, bitwise and shift operations but no multiplication)
plus two other specialized AC? instructions. The main word-size packed string matching
instruction is available in the recent Advanced String Operations in Intel’s Streaming SIMD
Eaxtension (SSE4.2) and Advanced Vector Extension (AVX) Efficient Accelerated String and
Text Processing instruction set [18, 20]. The other instruction, which is only used in the
pattern preprocessing, finds the lexicographically maximum suffix. Specifically, adopting the
notation [d] = {0,1,...,d — 1}, the two instructions are the following ones:

Word-Size String Matching (wssm): find occurrences of one short pattern x that fits in
one word (up to « characters) in a text y that fits in two words (up to 2« — 1 characters). The
output is a binary word Z of 2« — 1 bits such that its ith bit Z[i| = 1 iff y[i..i + |z| — 1] = «z,
for i € [2a — 1]. When i + || — 1 > «, this means that only a prefix of z is matched.

Word-Size Lexicographically Maximum Suffix (wslm): given a packed string x that
fits in one word (up to « characters), return position ¢ € [a] such that z[i.a — 1] is
lexicographically maximum among the suffixes in {z[j..cc — 1] | j € [a]}.

If these instructions are not available, then we can emulate them, but our proposed
emulations cause a small slowdown of loglogw as shown in Table 2.
Table 2 Bounds in the word-RAM when the w-bit wssm and wslm instructions are not available.

Time Space Reference
(@] (w + % + =+ occ) 0o(1) This paper

2 Packed String Matching

In this section we describe how to solve the packed string matching problem using the two
specialized word-size string matching instructions wssm and wslm, and standard word-RAM
bulk comparisons of packed strings.

» Theorem 1. Packed string matching for a length m pattern and a length n text can be
solved in O( + Z) time in the word-RAM extended with constant-time wssm and wslm
instructions. Listing explicitly the occ text positions of the pattern occurrences takes an
additional O(occ) time. The algorithm can be made real-time, and uses just O(1) auziliary

words of memory besides the read-only = +  words that store the input.

The algorithm behind Theorem 1 follows the classical scheme, in which a text scanning
phase is run after the pattern preprocessing. In the following, we first present the necessary
background and then describe how to perform the text scanning phase using wssm, and the
pattern preprocessing using wslm.
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2.1 Background

Critical Factorization. Properties of periodic strings are often used in efficient string
algorithms. A string u is a period of a string z if x is a prefix of u* for some integer k, or
equivalently if = is a prefix of uz. The shortest period of x is called the period of x and its
length is denoted by 7(x). A substring or a factor of a string x is a contiguous block of
symbols u, such that x = z’uzx” for two strings 2’ and 2. A factorization of x is a way to
break x into a number of factors. We consider factorizations of a string x = wv into two
factors: a prefix u and a suffiz v. Such a factorization can be represented by a single integer
and is non-trivial if neither of the two factors is equal to the empty string.

Given a factorization x = uwv, a local period of the factorization is defined as a non-empty
string p that is consistent with both sides v and v. Namely, (i) p is a suffix of u or u is a
suffix of p, and (i7) p is a prefix of v or v is a prefix of p. The shortest local period of a
factorization is called the local period and its length is denoted by p(u,v). A non-trivial
factorization x = uv is called a critical factorization if the local period of the factorization is
of the same length as the period of z, i.e., pu(u,v) = w(uv). See Figure 1.

albaaaba ablaaaba abalaaba

ba ba aaab aaab a a
(a) (b) (c)

Figure 1 The local periods at the first three non-trivial factorizations of the string abaaaba. In
some cases the local period overflows on either side; this happens when the local period is longer
than either of the two factors. The factorization (b) is a critical factorization with local period aaab
of the same length as the global period abaa.

Crochemore-Perrin algorithm. Although critical factorizations may look tricky, they
allow for a simplification of the text processing phase of string matching algorithms. We
assume that the reader is familiar with the Crochemore-Perrin algorithm [9] and its real-time
variation Breslauer-Grossi-Mignosi [7]. Observe that Crochemore and Perrin use Theorem 2
to break up the pattern as = uv for non-empty prefix v and suffix v, such that |u| < 7 (z).

» Theorem 2. (Critical Factorization Theorem, Cesari and Vincent [8, 22]) Given any
|7(z)| — 1 consecutive non-trivial factorizations of a string x, at least one is critical.

Then, they exploit the critical factorization of x = uv by matching the longest prefix z
of v against the current text symbols, and using Theorem 3 whenever a mismatch is found.

» Theorem 3. (Crochemore and Perrin [9]) Let x = wv be a critical factorization of the
pattern and let p be any local period at this factorization, such that |p| < max(|u|,|v]). Then
Ip| is a multiple of w(x), the period length of the pattern.

Precisely, if z = v, they show how to declare an occurrence of z. Otherwise, the symbol
following z in v is mismatching when compared to the corresponding text symbol, and the
pattern x can be safely shifted by |z| + 1 positions to the right (there are other issues for
which we refer the reader to [9]).

To simplify the matter in the rest of the paper, we discuss how to match the pattern
suffix v assuming without loss of generality that |u| < |v|. Indeed, if |u| > |v|, the Crochemore-
Perrin approach can be simplified as shown in [7]: use two critical factorizations, x = uv
and ' = u/v’, for a prefix 2’ of x such that |2/| > |u| and |u/| < |V/].
both «" and v’ suitably displaced by |z| — |2’| positions from matching v, guarantees that x

In this way, matching
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occurs. This fact enables us to focus on matching v and v’, since the cost of matching u’ is
always dominated by the cost of matching v’, and we do not need to match u. For the sake
of discussion, it suffices to consider only one instance, namely, suffix v.

We now give more details on the text processing phase, assuming that the pattern
preprocessing phase has correctly found the critical factorization of the pattern x and its
period m(x), and any additional pattern preprocessing that may be required (Section 2.3).

While other algorithms may be used with the wssm instruction, the Crochemore-Perrin
algorithm is particularly attractive because of its simple text processing. Therefore, it is
convenient to assume that the period length and critical factorization are exactly computed
in the pattern preprocessing burying the less elegant parts in that phase.

2.2 Text processing

The text processing has complementary parts that handle short patterns and long patterns.

A pattern x is short if its length is at most «, namely, the packed pattern fits into a single
word, and is long otherwise. Processing short patterns is immediate with wssm and, as we
shall see, the search for long patterns reduces to that for short patterns.

Short patterns. When the pattern is already short, wssm is repeatedly used to directly
find all occurrences of the pattern in the text.

» Lemma 4. There exists an algorithm that finds all occurrences of a short pattern of length
m < « in a text of length n in O(g) time using O(1) auziliary space.

Proof. Consider the packed text blocks of length o + m — 1 that start on word boundaries,
where each block overlaps the last m — 1 characters of the previous block and the last block
might be shorter. Each occurrence of the pattern in the text is contained in exactly one such
block. Repeatedly use the wssm instruction to search for the pattern of length m < « in
these text blocks whose length is at most a + m — 1 < 2« — 1. <

Long patterns. Let = be a long pattern of length m > «: occurrences of the pattern in the
text must always be spaced at least the period 7(z) locations apart. We first consider the
easier case where the pattern has a long period, namely m > 7(z) > «, and so there is at
most one occurrence starting within each word.

» Lemma 5. There exists an algorithm that finds all occurrences of a long-period long pattern
of length m > (x) > «, in a text of length n in O(2) time using O(1) auziliary space.

Proof. The Crochemore-Perrin algorithm can be naturally implemented using the wssm
instruction and bulk character comparisons. Given the critical factorization x = uw, the
algorithm repeatedly searches using wssm for an occurrence of a prefix of v of length min(|v|, @)
starting in each packed word aligned with v, until such an occurrence is discovered. If more
than one occurrence is found starting within the same word, then by Lemma 3, only the
first such occurrence is of interest. The algorithm then uses the occurrence of the prefix
of v to anchor the pattern within the text and continues to compare the rest of v with the
aligned text and then compares the pattern prefix u, both using bulk comparison of words
containing « packed characters. Bulk comparisons are done by comparing words; in case of
a mismatch the mismatch position can be identified using bitwise xor operation, and then
finding the most significant set bit.

A mismatch during the attempt to verify the suffix v allows the algorithm to shift the
pattern ahead until v is aligned with the text after the mismatch. A mismatch during the
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attempt to verify w, or after successfully matching u, causes the algorithm to shift the pattern
ahead by 7(z) location. In either case the time adds up to only O(%) |

When the period of the pattern is shorter than the word size, that is w(x) < «, there
may be several occurrences of the pattern starting within each word. The algorithm is very
similar to the long period algorithm above, but with special care to efficiently manipulate
the bit-masks representing all the occurrences.

» Lemma 6. There exists an algorithm that finds all occurrences of a short-period long
pattern of length m, such that m > o > w(x), in a text of length n in O(2) time using O(1)
auzxiliary space.

Proof. Let p be the prefix of x of length 7(z), and write = p"p’, where p’ is a prefix of p.
If we can find the maximal runs of consecutive ps inside the text, then it is easy to locate
the occurrences of x. To this end, let k& < r be the maximum positive integer such that
k-m(z) < a while (k+ 1) - 7(z) > a. Note that there cannot exist two occurrences of p*
that are completely inside the same word.

We examine one word w of the text at a time while maintaining the current run of
consecutive ps spanning the text word w’ preceding w. We apply wssm to p* and w'w, and
take the rightmost occurrence of p* whose matching substring is completely inside w’w. We
have two cases: either that occurrence exists and is aligned with the current run of ps, and
so we extend it, or we close the current run and check whether p’ occurs soon after. The
latter case arises when there is no such an occurrence of p*, or it exists but is not aligned
with the current run of ps. Once all the maximal runs of consecutive occurrences of ps are
found (some of them are terminated by p’) for the current word w, we can decide by simple
arithmetics whether z = p"p’ occurs on the fly. <

Real-time algorithm. As mentioned in Section 2.1, the Crochemore-Perrin algorithm can
be implemented in real time using two instances of the basic algorithm with carefully chosen
critical factorizations [7]. Since we are following the same scheme here, our algorithm reports
the output bit-mask of pattern occurrences ending in each text word in O(1) time after
reading the word. Thus, we can obtain a real-time version as claimed in Theorem 1.

2.3 Pattern preprocessing

Given the pattern x, the pattern preprocessing of Crochemore-Perrin produces the period
length 7(z) and a critical factorization & = uv (Section 2.1): for the latter, they show that
v is the lexicographically maximum suffix in the pattern under either the regular alphabet
order or its inverse order, and use the algorithm by Duval [10]. The pattern preprocessing of
Breslauer, Grossi and Mignosi [7] uses Crochemore-Perrin preprocessing, and it also requires
to find the prefix 2’ of z such that |z’| > |u| and its critical factorization &’ = u'v" where
|u/| < |[v|. Our pattern preprocessing requires to find the period 7’ for the first o characters
in v (resp., those in v'), along with the longest prefix of v (resp., v') having that period. We
thus end up with only the following two problems:

1. Given a string z, find its lexicographically maximum suffix v (under the regular alphabet

order or its inverse order).
2. Given a string = = wv, find its period 7(z) and the period of a prefix of v.

When m = O(%), which is probably the case in many situations, we can simply run the
above algorithms in O(m) time to solve the above two problems. We focus here on the case
when m = Q(2), for which we need to give a bound of O(%}) time.
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» Lemma 7. Given a string x of length m, its lexicographically mazimum suffix v can be
found in O() time.

Proof. Duval’s algorithm [10] is an elegant and simple linear-time algorithm that can be
easily adapted to find the lexicographically maximum suffix. It maintains two positions
and j, one for the currently best suffix and the other for the current candidate. Whenever
there is a mismatch after matching k characters (x[i + k] # z[j +k]), one position is “defeated”
and the next candidate is taken. Its implementation in word-RAM is quite straightforward,
by comparing « characters at a time, except when the interval [min(s, j), max(i,7) + k]
contains less than « positions, and so everything stays in a single word: in this case, we can
potentially perform O(«) operations for the O(«) characters (contrarily to the rest, where we
perform O(1) operations). We show how to deal with this situation in O(1) time. We employ
wslm, and let w be the suffix thus identified in the word. We set i to the position of w in the
original string x, and j to the first occurrence of w in x after position ¢ (using wssm). If j
does not exist, we return ¢ as the position of the lexicographically maximum suffix; otherwise,
we set k = |w| and continue by preserving the invariant of Duval’s algorithm. |

» Lemma 8. The preprocessing of a pattern of length m takes O(%) time.

3 Word-Size Instruction Emulation

Our algorithm uses two specialized word-size packed string matching instructions, wssm
and wslm, that are assumed to take O(1) time. In the circuit complexity sense both are
AC" instructions, which are easier than integer multiplication that is not AC?, since integer
multiplication can be used to compute the parity [17]. Recall that the class AC® consist of
problems that admit polynomial size circuits of depth O(1), with Boolean and/or gates of
unbounded fan-in and not gates only at the inputs.

While either instruction can be emulated using the four Russians’ technique, table lookup
limits the packing factor and has limited practical value for two reasons: it sacrifices the
constant auxiliary space and has no more cache friendly access. We focus here on the easier
and more useful main instruction wssm and propose efficient bit parallel emulations in the
word-RAM, relying on integer multiplication for fast Boolean convolutions.

» Lemma 9. After a preprocessing of O(w) time, the w/loglog W-bit wssm and wslm
instructions can be emulated in O(1) time on a w-bit word RAM.

3.1 Bit-parallel emulation of wssm

String matching problems under general matching relations were classified in [23, 24] into
easy and hard problems, where easy problems are equivalent to string matching and are
solvable in O(n + m) time, and hard problems are at least as hard as one or more Boolean
convolutions, that are solved using F'F'T and integer convolutions in O(nlogm) time [1, 14].
To efficiently emulate the wssm instruction we introduce two layers of increased complexity:
first, we observe that the problem can also be solved using Boolean convolutions, and then,
we use the powerful, yet standard, integer multiplication operation, that resembles integer
convolutions, to emulate Boolean convolutions. In the circuit complexity sense Boolean
convolution is AC?, and therefore, is easier than integer multiplication.

String matching and bitwise convolution via integer multiplication. Consider the

Boolean vectors tg - --t,—1 and pg - - - pm—1: we need to identify those positions k, such that
ti+i = pi, for all ¢ € [m]. Given a text and a pattern, where each of their characters is
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encoded in log, |X| bits, we can see them as Boolean vectors of length log, |3| times the
original one. We can therefore focus on binary text and pattern. We want to compute the
occurrence vector ¢, such that ¢; indicates if there is a pattern occurrence starting at text
position k € [n] (so we then have to select only those ¢; that are on log, |X| bit boundaries
in ¢). In general, we have

= N (trri=m) = \ (i A7) |V V (i Api)

1=0,...,m—1 1=0,...,m—1 1=0,...,m—1

Define the OR-AND Boolean convolution operator ¢ = a <7 b for the Boolean vectors
a=ap_1---ag, b=>by_1---by, and ¢ = Cp4m—1---Co, to be

e = \/ (@p—i A bm—i—1)-

i=max{0,k—(n—1)},...,min{m—1,k}

Then, the occurrence vector ¢ can be computed by taking the least n significant bits
from the outcome of two convolutions, ¢ = (¢ v D) V (t v p). Treating the Boolean vectors as
binary integers with the left shift operator <, we can compute a 37 b using standard integer
multiplication a x b, but the sum has to be replaced by the OR operation:

a7 b= \/ [(a < i) xb;] = axb (where + is replaced by V).

1=0,...,m—1

Observe the following to actually use the plain standard integer multiplication a x b. Since
the sum of up to m Boolean values is at most m, it can be represented by L = [logm + 1]
bits. If we pad each digit of a and b with L zeros, and think of each group of L + 1 bits as
a field, by adding up at most m numbers the fields would not overflow. Thus, performing
the integer multiplication on the padded a and b gives fields with zero or non-zero values
(where each field actually counts the number of mismatches). Adding the two convolutions
together we get the overall number of mismatches, and we need to identify the fields with
no mismatches, corresponding to occurrences and compact them. In other words, if we use
padded vectors t/, ¢, p/, and p/, we can compute r = (t' x p’) + (f x p’) and set & = 0 if and
only if the the corresponding field in r is non-zero.

We use the constant time word-RAM bit techniques in Fich [13] to pad and compact.
Note that in each field with value f we have that 0 — f is either 0, or borrows from the next
field 1s on the left side. Take a mask with 1 in each field at the least significant bit, and
subtract our integer m from this mask. We get that only zero fields have 0 in their most
significant bit. Boolean AND with the mask to keep the most significant bit in each field,
then shift right to the least significant bit in the field. The only caveat in the above “string
matching via integer multiplication” is its need for padding, thus extending the involved
vectors by a factor of L = ©(logm) = O(logw) since they fit into one or two words. We now
have to use L machine words, incurs a slowdown of Q(L). We next show how to reduce the
required padding from L to loglog a.

Sparse convolutions via deterministic samples. A deterministic sample (DS) for a
pattern with period length 7 is a collection of at most [log 7| pattern positions, such that any
two occurrence candidate text locations that match the pattern at the DS must be at least 7
locations apart [26]. To see that a DS exists, take m consecutive occurrence candidates. Any
two candidates must have at least one mismatch position; add one such position to the DS
and keep only the remaining minority candidates, removing at least half of the remaining
candidates. After at most [log 7| iterations, there remains only one candidate and its DS.
Moreover, if the input characters are expanded into log, |X| bits, then the DS specifies only
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[log 7] bits, rather than characters. Candidates can be eliminated via Boolean convolutions
with the two bit vectors representing the Os and 1s in the DS, that is, sparse Boolean vectors
with at most [logm] set bits. The period m, the DS, and the other required masks and
indices are precomputed in O(w) time.

Consider now how we performed string matching via integer multiplication in the previous
paragraph. Then, the padding in the bitwise convolution construction can be now reduced
to only L' = [loglogm + 1] bits instead of L bits, leading to convolutions of shorter
O(wloglogm) = O(wloglogw) bit words and slowdown of only O(loglogw) time. Using
w-bit words and O(w)-time preprocessing, we can treat O(w/loglogw) bits in O(1) time
using multiplication, thus proving Lemma 9.

3.2 wssm on contemporary commodity processors

Benchmarks of packed string matching instructions in "Efficient Accelerated String and Text
Processing: Advanced String Operations" Streaming SIMD Extension (SSE4.2) and Advanced
Vector Extension (AVX) on Intel Sandy Bridge processors [18, 20] and Intel’s Optimization
Reference Manual [19] indicate remarkable performance. The instruction Packed Compare
Explicit Length Strings Return Mask (PCMPESTRM) produces a bit mask that is suitable
for short patterns and the similar instruction Packed Compare Explicit Length Strings Return
Index (PCMPESTRI) produces only the index of the first occurrence, which is suitable for
our longer pattern algorithm.

Faro and Lecroq kindly made their String Matching Algorithms Research Tool (SMART)
available [12]. Benchmarks show that for up to 8-character patterns, the raw packed string
matching instructions outperformed all existing algorithms in SMART. The Crochemore-
Perrin algorithm with packed string matching instructions performed very well on longer
patterns. These preliminary experimental results must be interpreted cautiously, since on
one hand we have implemented the benchmarks very quickly, while on the other hand the
existing SMART algorithms could benefit as well from packed string matching instructions
and from other handcrafted machine specific optimization; in fact, a handful of the existing
SMART algorithms already use other Streaming SIMD Extension instructions.

4 Conclusions

We demonstrated how to employ string matching instructions to design optimal packed
string matching algorithms in the word-RAM, which are fast both in theory and in practice.
There is an array of interesting questions that arise from our investigation. (1) Compare
the performance of our algorithm using the hardware packed string matching instructions
to existing implementations (e.g. Faro and Lecroq [12] and platform specific strstr in glibc).
(2) Derive Boyer-Moore style algorithms that may be faster on average and skip parts of the
text [6, 27] using packed string matching instructions. (3) Extend our results to dictionary
matching with multiple patterns [3]. (4) Improve our emulation towards constant time with
w-bit words and AC® operations. (5) Find critical factorizations in linear-time using only
equality pairwise symbol comparisons: such algorithms could also have applications in our
packed string model, possibly eliminating our reliance on the wslm instruction.
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