
Backdoors to q-Horn
Serge Gaspers1, Sebastian Ordyniak2, M. S. Ramanujan3, Saket
Saurabh3, and Stefan Szeider4

1 The University of New South Wales and National ICT Australia
sergeg@cse.unsw.edu.au

2 Masaryk University, Brno
sordyniak@gmail.com

3 The Institute of Mathematical Sciences, Chennai
{msramanujan | saket}@imsc.res.in

4 Institute of Information Systems, Vienna University of Technology
stefan@szeider.net

Abstract
The class q-Horn, introduced by Boros, Crama and Hammer in 1990, is one of the largest known
classes of propositional CNF formulas for which satisfiability can be decided in polynomial time.
This class properly contains the fundamental classes of Horn and Krom formulas as well as the
class of renamable (or disguised) Horn formulas. In this paper we extend this class so that its
favorable algorithmic properties can be made accessible to formulas that are outside but “close”
to this class. We show that deciding satisfiability is fixed-parameter tractable parameterized by
the distance of the given formula from q-Horn. The distance is measured by the smallest number
of variables that we need to delete from the formula in order to get a q-Horn formula, i.e., the size
of a smallest deletion backdoor set into the class q-Horn. This result generalizes known fixed-
parameter tractability results for satisfiability decision with respect to the parameters distance
from Horn, Krom, and renamable Horn.

1998 ACM Subject Classification G.2.1, F.2.2

Keywords and phrases Algorithms and data structures. Backdoor sets. Satisfiability. Fixed
Parameter Tractability.

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.67

1 Introduction

The satisfiability problem (SAT) is a well-known fundamental problem in Computer Sci-
ence [3]. Many hard combinatorial problems including problems from the domains of hard-
ware and software verification, Artificial Intelligence, planning and scheduling can be en-
coded as SAT instances [2, 4, 15, 17, 23]. However, the problem is known to be NP-hard
and thus we cannot hope to solve it polynomial time [7]. In spite of this, over the last
two decades, SAT-solvers have become quite successful in solving formulas with hundreds
of thousands of variables that encode problems arising from various application areas (see,
e.g., [14]), but theoretical performance guarantees are far from explaining this empirically
observed efficiency. In fact, there is an enormous gap between theory and practice.

The discrepancy between theory and practice can be potentially explained by the pres-
ence of a certain “hidden structure” in real-world problem instances. One such “hidden
structure” in real-world instances of SAT is the presence of small backdoor sets [24]. There
are three variants of backdoor sets with respect to a particular base class C of polynomial-
time decidable CNF formulas: strong C-backdoor sets, where for each truth assignment to

© Gaspers, Ordyniak, Ramanujan, Saurabh, and Szeider;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 67–79

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.67
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

68 Backdoors to q-Horn

the backdoor variables, the reduced formula belongs to C; deletion C-backdoor sets, where
deleting all backdoor variables and their negations from the formula moves the formula into
the base class C; and weak backdoor sets where, for at least one truth assignment to the
backdoor variables, the reduced formula belongs to C and is satisfiable. Given a backdoor
set of a formula with respect to a particular tractable base class C, the satisfiability of the
formula can be decided by guessing an assignment to the variables in the backdoor set and
deciding the satisfiability of the reduced formula, which is guaranteed to be in C, using a
sub-solver for C. An equivalent view of this is to consider the size of the backdoor set to
be the “distance” of the formula from the class C. The objective is to extend the favorable
algorithmic properties of the class C to formulas which are “close” to this class. Ideally, we
would want the class C to be as large as possible.

In a 1990 paper [5], Boros, Crama and Hammer introduced an interesting class of CNF
formulas, later called q-Horn [6], with favorable algorithmic properties: both recognition as
well as satisfiability decision of q-Horn formulas can be carried out in linear-time [5, 6]. This
class q-Horn properly contains the fundamental classes of Horn and Krom formulas [22], and
the class of renamable (or disguised) Horn formulas [16, 1]:

Horn (renamableHorn (q-Horn) Krom.

The fact that this class is so large serves as an additional motivation for choosing it as our
base class of interest. In this paper, we study the problem of finding small backdoor sets
with respect to the class of q-Horn formulas and obtain algorithmic as well as hardness
results.

1.1 Contribution
The main contribution of this paper is an algorithm that, given a CNF formula F of length
` with n variables and an integer k ≥ 0, runs in time O(6kk`n), and either returns a deletion
q-Horn-backdoor set for F of size at most k2 + k, or concludes correctly that no such set of
size at most k exists. As a consequence, we obtain that SAT is fixed-parameter tractable with
the size of the smallest deletion q-Horn-backdoor set as the parameter, as we can use this
algorithm to reduce the satisfiability problem of a CNF formula F of distance k from being
q-Horn to testing the satsfiability of 2O(k2)-many q-Horn formulas. Our result simultaneously
generalizes the known fixed-parameter tractability results for SAT parameterized by the
deletion distance from the class of renamable Horn formulas [20] and from the class of Krom
formulas [19].

At the highest level, our algorithm works by finding a bounded number of variables
whose deletion results in an instance with an optimal solution strictly smaller than that
of the original instance. By repeatedly computing such a set and deleting it, we obtain
the approximate solution. The main technical part of the paper is the algorithm to com-
pute the bounded set of variables with the required properties. This algorithm relies on a
characterization of q-Horn formulas in terms of their quadratic cover by Boros, Hammer,
and Sun [6]. We use this characterization to model the problem of finding a small deletion
q-Horn-backdoor set as a problem of hitting certain types of paths in an auxiliary digraph
related to the formula. Using this characterization, we show that if we are guaranteed that
an optimal solution hits all paths between a carefully chosen pair of vertices in this digraph,
then we can compute in polynomial time a set of variables whose size is bounded by some
f(k) such that (a) there is a minimal (though not necessarily optimal) solution containing
these variables and (b) deletion of these variables results in a formula whose solution is
strictly smaller than the solution for the formula we started with. A standout feature of

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 69

our algorithm is that at its core, it reduces to computing flows in a directed graph whose
size is linear in the input size. As a result, our algorithm is quite efficient not only with
respect to the dependence of the running time on the parameter, but also with respect to
the dependence on the input size, along with having only a small hidden constant factor in
the asymptotic running time. Finally, towards the end of the paper we also provide param-
eterized complexity results regarding the detection of weak and strong backdoor sets with
respect to the class q-Horn.

1.2 Related Work
The parameterized complexity of finding small backdoor sets was initiated by Nishimura
et al. [19] who showed that for the base classes of Horn formulas and Krom formulas, the
detection of strong backdoor sets is fixed-parameter tractable. Their algorithms exploit the
fact that for these two base classes, strong and deletion backdoor sets coincide, and that
deletion backdoor sets with respect to Horn and Krom can be characterized in terms of
vertex covers and hitting sets of certain graphs and 3-uniform hypergraphs associated with
the input formula, respectively. For base classes other than Horn and Krom, strong backdoor
sets can be much smaller than deletion backdoor sets, and their detection is more difficult.
In particular, for the base classes of renamable Horn and q-Horn, there are formulas that
have a strong backdoor set of size 1 but require an arbitrarily large deletion backdoor set.
In fact, Razgon and O’Sullivan [20] showed that the detection of deletion backdoor sets with
respect to the base class renamable Horn is fixed-parameter tractable although the detection
of strong backdoor sets is W[2]-hard [13]. For more recent results, the reader is referred to
a survey on the parameterized complexity of backdoor sets [13].

2 Preliminaries

2.1 Formulas
We assume an infinite supply of propositional variables. A literal is a variable x or a negated
variable x̄; if y = x or y = x̄ is a literal for some variable x, then we write ȳ to denote x̄ or x,
respectively. For a set S of literals we put S̄ = { x̄ : x ∈ S }; S is consistent if S ∩ S̄ = ∅. A
clause is a finite consistent set of literals; we consider a clause as a disjunction of its literals.
A finite set of clauses is a CNF formula (or formula, for short); we consider a formula to
be the conjunction of its clauses. A formula is Horn if each of its clauses contains at most
one positive literal, a formula is Krom (or 2CNF, or quadratic) if each clause contains at
most two literals. A variable x occurs in a clause C if x ∈ C ∪ C̄; var(C) denotes the set of
variables which occur in C. For a set X of variables, lit(X) denotes the set of literals of the
variables in X, that is, lit(X) = X ∪ X̄ and for a set L of literals, var(L) denotes the set
of variables whose literals are in L, that is, var(L) = {x : x ∈ L or x̄ ∈ L }. A variable x
occurs in a formula F if it occurs in one of its clauses, and we let var(F) =

⋃
C∈F var(C) and

lit(F) = var(F) ∪ var(F). The length of a CNF formula F , denoted by ‖F‖, is defined as∑
C∈F |C|. If F is a formula and X a set of variables, then we denote by F −X the formula

obtained from F after removing all literals in lit(X) from the clauses in F . If X = {x} we
simply write F − x instead of F − {x}.

Let F be a formula and X ⊆ var(F). A truth assignment is a mapping τ : X → { 0, 1 }
defined on some set X of variables; we write var(τ) = X. For x ∈ var(τ) we define τ(x̄) =
1 − τ(x). For a truth assignment τ and a formula F , we define F [τ] = {C \ τ−1(0) : C ∈
F, C ∩ τ−1(1) = ∅ }, i.e., F [τ] denotes the result of instantiating variables according to τ

STACS’13

70 Backdoors to q-Horn

and applying the usual simplifications, i.e., removing clauses that are satisfied by τ and
removing unsatisfied literals from clauses. A truth assignment τ satisfies a clause C if C
contains some literal x with τ(x) = 1; τ satisfies a formula F if it satisfies all clauses of F . A
formula is satisfiable if it is satisfied by some truth assignment; otherwise it is unsatisfiable.

The Satisfiability (SAT) problem asks whether a given CNF formula is satisfiable.

2.2 Parameterized Complexity

An instance of a parameterized problem is a pair (I, k) where I is the main part and k

is the parameter ; the latter is usually a non-negative integer. A parameterized problem is
fixed-parameter tractable if there exist a computable function f and a constant c such that
instances (I, k) can be solved in time O(f(k)‖I‖c) where ‖I‖ denotes the size of I. FPT is
the class of all fixed-parameter tractable decision problems and algorithms which run in the
time specified above are called FPT algorithms.

An FPT-reduction is a many-one reduction where the parameter for one problem maps
into the parameter for the other. More specifically, given two parameterized decision prob-
lems L and L′, problem L reduces to problem L′ if there is a mapping R from instances of L
to instances of L′ such that (i) (I, k) is a yes-instance of L if and only if (I ′, k′) = R(I, k) is
a yes-instance of L′, (ii) k′ ≤ g(k) for a computable function g, and (iii) R can be computed
in time O(f(k)‖I‖c) where f is a computable function and c is a constant.

The Weft Hierarchy consists of parameterized complexity classes W[1] ⊆ W[2] ⊆ · · ·
which are defined as the closure of certain parameterized problems under FPT-reductions
(see [9, 11] for definitions). There is strong theoretical evidence that parameterized problems
that are hard for classes W[i] are not fixed-parameter tractable. For example FPT = W[1]
implies that the Exponential Time Hypothesis (ETH) fails; that is, FPT = W[1] implies the
existence of a 2o(n) algorithm for n-variable 3SAT [11].

An FPT-approximation algorithm with ratio ρ for a minimization problem P is an FPT
algorithm that, given an instance x of P and a positive integer k, either determines that there
is no solution of size at most k or computes a solution of size at most kρ(k) (see, e.g., [10]).
The definition can be adapted to maximization problems. Note that the approximation
ratio ρ is a function of k and not the input size: intuitively, if k is small, then kρ(k) can
be still considered small. We say that a problem is FPT-approximable if it has an FPT-
approximation algorithm for some function ρ.

2.3 Backdoors

Here, we introduce the basic terminology for backdoors and the class of q-Horn formulas.
For further information on backdoors and other tractable base classes of Satisfiability we
refer the reader to [13].

Backdoors are defined with respect to a fixed class C of CNF formulas, the base class
(or target class, or more figuratively, island of tractability). We say a class C of formulas is
clause-induced if it is closed under subsets, i.e., if F ∈ C implies F ′ ∈ C for each F ′ ⊆ F .

A strong C-backdoor set of a CNF formula F is a set B of variables such that F [τ] ∈ C
for each assignment τ : B → {0, 1}. A weak C-backdoor set of F is a set B of variables
such that F [τ] is satisfiable and F [τ] ∈ C holds for some assignment τ : B → {0, 1}. A
deletion C-backdoor set of F is a set B of variables such that F − B ∈ C. Backdoor sets
where independently introduced by Crama et al. [8] and by Williams et al. [24], the latter
authors coined the term “backdoor”.

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 71

If we know a strong C-backdoor set of F of size k, we can reduce the satisfiability of F to
the satisfiability of 2k formulas in C. Thus SAT becomes fixed-parameter tractable with k
as the parameter. If we know a weak C-backdoor set of F , then F is clearly satisfiable,
and we can verify it by trying for each τ ∈ 2k whether F [τ] is in C and satisfiable. If C
is clause-induced, every deletion C-backdoor set of F is a strong C-backdoor set of F . For
several base classes, deletion backdoor sets are of interest because they are easier to detect
than strong backdoor sets. The challenging problem is to find a strong, weak, or deletion
C-backdoor set of size at most k if it exists. For each class C of CNF formulas, the various
backdoor detection problems are defined as follows.

Deletion C-Backdoor Set Detection Parameter: k

Input: A CNF formula F and a positive integer k
Question: Does F have a deletion C-backdoor set of size at most k?

2.4 q-Horn Formulas
In this paper we are mainly interested in the class of q-Horn formulas [5, 6]. A CNF formula
F is in this class if there is a certifying function β : var(F) ∪ var(F) → {0, 1

2 , 1} with
β(x) = 1− β(x̄) for every x ∈ var(F) such that

∑
l∈C β(l) ≤ 1 for every clause C of F .

In the following sense, strong q-Horn-backdoor sets are more general than deletion
q-Horn-backdoor sets: For every positive integer n there is a formula Fn such that Fn

has a strong q-Horn-backdoor set of size 1 but every deletion q-Horn-backdoor set of F has
size at least n. To see this, take for instance F =

⋃
1≤i≤n{{xi, yi, zi, a}, {x̄i, ȳi, z̄i, ā}}. Evi-

dently, {a} is a strong q-Horn-backdoor set of F . However, every deletion q-Horn-backdoor
set of F must contain at least one variable xi, yi, or zi for every 1 ≤ i ≤ n.

3 FPT-approximation for Deletion q-Horn Backdoor Set
Detection

In this section we prove our main result:

I Theorem 1. There is an algorithm that, given an instance (F, k) of Deletion q-Horn
Backdoor Set Detection, runs in time O(6kk`n) and either correctly concludes that F
has no deletion q-Horn-backdoor set of size at most k or returns a deletion q-Horn-backdoor
set of F of size at most k2 + k, where ` is the length of F and n is the number of variables
in F .

3.1 Quadratic covers, implication graphs and separators
In this subsection we give some definitions regarding quadratic covers, implication graphs
and separators in implication graphs, which will be required for the description of our
algorithm. The following definition of the quadratic cover of a CNF formula was used Boros
et al. [6] to give a linear time algorithm to recognize q-Horn formulas.

I Definition 2. Given a CNF formula F , the quadratic cover of F , is a Krom formula
denoted by F2 and is defined as follows. Let x1, . . . , xn be the variables of F . For every
clause C, we have |C| − 1 new variables yC

1 , . . . , y
C
|C|−1. We order the literals in each clause

according to their variables, that is, a literal of xi will occur before a literal of xj if i < j.
Let lC1 , . . . , lC|C| be the literals of the clause C in this order. The quadratic cover is defined
as

STACS’13

72 Backdoors to q-Horn

F2 =
⋃

C∈F

⋃
1≤i≤|C|−1{{lCi , yC

i }, {ȳC
i , l

C
i+1}} ∪

⋃
C∈F

⋃
1≤i≤|C|−2{{ȳC

i , y
C
i+1}}.

I Definition 3. Given a CNF formula F , the implication graph of F2 is denoted by
D(F2) and defined as follows. The vertex set of the graph is the set of literals of F2 and
for every clause {l1, l2} in F2, we have arcs (l̄1, l2) and (l̄2, l1). We refer to the vertices of
the implication graph as literals since there is a one to one correspondence between the two.
Given a set X ⊆ var(F) of variables, we define the graph D(F2)−X as the graph obtained
from D(F2) by deleting lit(X).

The following observations are direct consequences of the definition of an implication graph.
I Observation 1. Let F be a CNF formula of length `.
(a) If there is a path from l1 to l2 in D(F2), then there is also a path from l̄2 to l̄1 in D(F2).
(b) The number of arcs in D(F2) is O(`).
(c) Let C = {l1, . . . , lr} be a clause of F . Then, for any 1 ≤ i < j ≤ r, D(F2) contains a
path from l̄i to lj and from l̄j to li whose internal vertices are all disjoint from lit(F).
(d) Let X ⊆ var(F) and F ′ = F −X. Then, for any literal l ∈ lit(F) \ lit(X), there is a
path from l to l̄ in D(F ′2) if and only if there is a path from l to l̄ in D(F2)−X.

I Definition 4. Given a CNF formula F and a set L of literals of F , we denote by N+
F (L)

the set of literals in lit(F) \ L which can be reached from L in D(F2) via a path whose
internal vertices are disjoint from lit(F).

I Definition 5. ([6]) Given a CNF formula F , define a canonical function β̂ : lit(F) →
{0, 1

2 , 1} as follows. Consider a topological ordering π of the strongly connected components
of D(F2). For every literal l ∈ lit(F) such that the strongly connected component containing
l appears before the one containing l̄ in π, set β̂(l) = 1 and for every literal l such that the
strongly connected component containing l also contains l̄, set β̂(l) = 1

2 .

I Lemma 6. ([6]) A CNF formula F is q-Horn if and only if the function β̂ defined above
is a certifying function for F .

I Definition 7. A clause C of a given CNF formula is called a violating clause if∑
l∈C β̂(l) > 1. Any three literals l1, l2, l3 of a violating clause such that

∑3
i=1 β̂(li) > 1

form a violating triple.

I Lemma 8. Let F be a CNF formula of length ` and suppose that F is not a q-Horn
formula. Any violating clause of F has a violating triple lying entirely inside a strongly
connected component of D(F2) and we can compute such a violating triple in time O(`).

Because of space constraints we omit the easy proof of this lemma.
We now move on to some definitions on separators in implication graphs which will be
required in the description of our algorithm.

I Definition 9. Let F be a CNF formula and L ⊆ lit(F) be a consistent set of literals. We
say that a set J ⊆ lit(F) is an L-L̄ separator if J is disjoint from L and L̄ and there is no
path from L to L̄ in the graph D(F2)−J . We say that J is a minimal L-L̄ separator if no
proper subset of J is an L-L̄ separator.

I Definition 10. Let F be a CNF formula, L ⊆ lit(F) be a consistent set of literals and
let X be a set of variables of F . We call X an L-L̄ variable separator if lit(X) is an L-L̄
separator. We call X a minimal L-L̄ variable separator if no proper subset of X is an L-L̄
variable separator. We drop the word variable if it is clear from the context that the set we
are dealing with is a set of variables.

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 73

I Definition 11. Let F be a CNF formula, L ⊆ lit(F) be a consistent set of literals and
X be an L-L̄ variable separator. We denote by R(L,X) the set of literals of F that can be
reached from L via directed paths in D(F2)−X, and we denote by R̄(L,X) the set of literals
of F which have a directed path to L in D(F2)−X.

We also require the following observation.
I Observation 2. Let F be a CNF formula, L ⊆ lit(F) be a consistent set of literals and X
be an L-L̄ variable separator. Then, the sets R(L,X) and R̄(L̄,X) are also consistent and
in fact complements of each other.

3.2 The algorithm
We begin with the following simple lemma.

I Lemma 12. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detection.
Let (l1, l2, l3) be a violating triple in a strongly connected component of D(F2) and X be
a solution for the given instance disjoint from {var(l1), var(l2), var(l3)}. Then, for some
1 ≤ i ≤ 3, X is an li-l̄i separator in D(F2).

Proof. Let β̂′ be the canonical certifying function for F ′ = F −X obtained from the graph
D(F ′2). We claim that there is an 1 ≤ i ≤ 3 such that β̂′(li) = 0. This is true since F ′
contains a clause with all three literals l1, l2 and l3 and it cannot be the case that any
certifying function sets non zero values to all three. By definition of β̂′, β̂′(li) = 0 implies
that there is no path from li to l̄i in the graph D(F ′2). If X were not an li-l̄i separator in
D(F2), then D(F ′2) would also contain an li-l̄i path (by Observation 1(d)), a contradiction.
This completes the proof of the lemma. J

Lemma 8 combined with Lemma 12 allows us to compute in linear time, a set of three literals
such that for every solution X one of the three corresponding variables is part of X or for
at least one of these literals, say l, there is a path from l to l̄ in D(F2) and X an l-l̄ variable
separator in D(F2).

I Lemma 13. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detection
and X be a solution such that it is disjoint from var(l) and is an l-l̄ separator for some literal
l ∈ lit(F). Consider an l-l̄ variable separator X ′. Let X ′′ be the set of variables of X with
a literal in R(l,X ′). Then, the set X̃ = (X \X ′′) ∪X ′ is also a deletion q-Horn-backdoor
set for the given instance.

Proof. Let F ′ = F − X and F̃ = F − X̃. If X̃ were not a deletion q-Horn-backdoor set,
then there is a violating clause in F̃ and by Lemma 8, there is a violating triple (l1, l2, l3)
in a strongly connected component of D(F̃2). This implies the presence of a closed walk in
D(F̃2) containing all the literals of the violating triple and their complements (by Lemma 8).
Since X was a solution, this closed walk could not have survived in D(F ′2) and hence must
contain a literal of a variable in X \X̃. Recall that the only variables of X that are not in X̃
are those in X ′′. Let p be a literal on this closed walk which corresponds to such a variable,
that is, var(p) ∈ X ′′. On the other hand, by definition, the literals of the variables in X ′′
can either reach l̄ or be reached from l in D(F̃2), that is, they must lie in R(l, X̃) or R̄(l̄, X̃).
Combining this path along with the closed walk and the fact that D(F̃2) is an implication
graph implies the presence of a path from l to l̄ in D(F̃2). However, by construction, X̃ is
also an l-l̄ separator in D(F2). Observation 1(d) implies that this is a contradiction. This
completes the proof of the lemma. J

STACS’13

74 Backdoors to q-Horn

I Lemma 14. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detection
where F is a CNF formula of length `, with n variables. Let X be a solution to the given
instance and let l be a literal of F such that there is an l-l̄ path in D(F2). Furthermore,
suppose that X is an l-l̄ variable separator. Then, there is an algorithm that, given F , k
and l, runs in time O(k`n) and either concludes correctly that there is no k-sized l-l̄ variable
separator in D(F2) or returns an l-l̄ variable separator X ′ of size at most 2k such that
(X ′ ∪ var(R(l,X ′))) ∩X is non-empty

Proof. We show that Algorithm 3.1 has the stated properties. The algorithm computes an
l-l̄ variable separator X ′ which essentially maximizes the set of literals of D(F2) reachable
from l after removing X ′. We will then show that such a separator indeed has the required
properties.

If it the algorithm returns No in Line 4, then D(F2) has no l-l̄ variable separator of
size at most k. Let S be the minimal separator in D(F2) which was computed in the
penultimate iteration of the while loop. We claim that X ′ = var(S) satisfies the conditions
in the statement of the lemma. Clearly, it must be the case that for some choice of a literal
l′ in lit(var(S)) ∩N+

F (L), the next iteration of the loop could not find an L ∪ {l′}-L̄ ∪ {l̄′}
separator of size at most 2k.

Suppose that (X ′ ∪ var(R(l,X ′))) ∩X is empty. Recall that when the procedure stops,
L = R(l,X ′). Furthermore, if there is at least one path from l to l̄ in D(F2) then it
must be the case that lit(var(S)) ∩ N+

F (L) is non-empty. Since X is an l-l̄ separator and
disjoint from L, X is also an L-L̄ separator. Since X is also disjoint from X ′, for any
l′ ∈ lit(var(S)) ∩N+

F (L), X intersects all paths from L ∪ {l′} to L̄ ∪ {l̄′}. Hence, lit(X) is a
set of size at most 2k which intersects all L ∪ {l′}-L̄ ∪ {l̄′} paths, which is a contradiction.
Therefore, the set (X ′ ∪ var(R(l,X ′)))∩X is non-empty for any l-l̄ variable separator X of
size at most k.

To bound the running time, observe that in each iteration, we only need to test if there
is an L-L̄ separator of size at most 2k. Hence, it suffices for us to run the Ford-Fulkerson
algorithm [12] for at most 2k steps on the graph D(F2) and the number of iterations is
bounded by the number of variables in the formula since in each iteration, we add a literal
to L. Since the number of arcs in D(F2) is O(`) (Observation 1(b)), the claimed time bound
follows. This completes the proof of the lemma. J

I Lemma 15. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detec-
tion and let l be a literal of F disjoint from a solution X and suppose that X is an l-l̄
variable separator in D(F2). Consider an l-l̄ variable separator in D(F2), X ′, such that
(X ′∪var(R(l,X ′)))∩X is non-empty. Then, the instance F−X ′ has a deletion q-Horn-back-
door set of size at most |X| − 1.

Proof. By Lemma 13, we know that the set X̂ = (X\X ′′)∪X ′ is a deletion q-Horn-backdoor
set. Hence, X \ (X ′′ ∪X ′) is indeed a deletion q-Horn-backdoor set for the instance F −X ′.
Since (X ′ ∪ X ′′) ∩ X is non-empty, the size of X \ (X ′′ ∪ X ′) is at most |X| − 1. This
completes the proof of the lemma. J

Lemmas 14 and 15 allow us to compute a bounded set of variables whose deletion from the
formula results in an instance that has a solution which is strictly smaller than any solution
of the input instance. This completes the formalization of our ideas and we are now ready
to prove Theorem 1 by describing our algorithm for Deletion q-Horn Backdoor Set
Detection.

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 75

Input : A tuple (F, k, l) where F is a CNF formula, k a positive integer and l a literal of F

Output: No provided that D(F2) has no l-l̄ variable separator of size at most k, or an l-l̄
variable separator S of size at most 2k such that (S ∪ var(R(l, S))) has non-empty
intersection with some minimum deletion q-Horn-backdoor set

1 if there is an l-l̄ separator of size at most 2k in D(F2) then
2 S ← such a separator
3 end
4 else return No
5 L← R(l, var(S)) // L is consistent by Observation 2
6 while there is an L ∪ {l′}-L̄ ∪ {l̄′} separator of size at most 2k where

l′ ∈ (lit(var(S)) ∩N+
F (L)) is an arbitrarily chosen such literal do

7 S ← such a separator
8 L← R(L, var(S))
9 end

10 return var(S)

Algorithm 3.1: Algorithm COMPUTE-SEPARATOR

3.2.1 Description of the Algorithm

Algorithm 3.2 checks whether there is a violating triple and if so, computes one and in the
first 3 branches, it adds the variable corresponding to each of the literals of the violating
triple to the solution, deletes it from the formula and recurses on the resulting instance with
a budget of k − 1. In each of the next 3 branches, it picks a literal of the violating triple
and continues by assuming that this literal is assigned 0 by a certifying function of F −X
where X is a solution. We know that there must be at least one such literal (see the proof of
Lemma 12) in the violating triple. This implies that X is an l-l̄ separator for the literal l in
the violating triple which is assigned 0 by a certifying function of F −X. Finally, Lemma 14
is used to either conclude that there is no l-l̄ variable separator of size at most k in which
case the algorithm returns No, or to compute an l-l̄ variable separator of size at most 2k
with the required properties. The variables in X ′ are added to our proposed approximate
solution and deleted from the formula, and the algorithm recurses on the resulting instance
with a budget of k − 1.

3.2.2 Analysis

Since Steps 2, 4, and 10 at any node of the search tree take time O(k`n) and we have a
6-way branching at each node of the search tree with the budget k dropping by 1 in each
branch, the algorithm clearly runs in the claimed time bound. Therefore, it only remains
for us to prove the correctness of the algorithm. Let X be a solution for the given instance
and let β be a certifying function for F −X. We prove the correctness of the algorithm by
induction on k.

In the base case, when k = 0, the algorithm is correct by Lemma 6. We assume as
induction hypothesis that the algorithm is correct for all values of k up to some k′−1 where
k′ − 1 > 0. We now consider the case when k = k′.

In Lines 5–8, we consider the case when X intersects the set {var(l1), var(l2), var(l3)} and
branch accordingly. Applying the induction hypothesis, the size of any returned solution
in a subsequent recursive call is at most (k − 1)2 + (k − 1). Hence, the size of a solution
returned here is bounded by 1 + (k − 1)2 + (k − 1) ≤ k2 + k.

STACS’13

76 Backdoors to q-Horn

Input : A CNF formula F of length ` with n variables, integer k

Output: Either no solution of size at most k or a solution of size at most k2 + k for the
instance (F, k) of Deletion q-Horn Backdoor Set Detection

1 if k < 0 then return No
2 check for a violating clause by computing D(F2) and a topological ordering of D(F2)
3 if there is no violating clause then return ∅
4 Compute a violating triple (l1, l2, l3)
5 for l = l1, l2, l3 do
6 S1 ← DELETION-QHORN-BSD(F − {var(l)}, k − 1)
7 if S1 is not No then return S1 ∪ {var(l)}
8 end
9 for l = l1, l2, l3 do

10 S ← COMPUTE-SEPARATOR(F, k, l)
11 if S is No then return No else
12 S1 ← DELETION-QHORN-BSD(F − {S}, k − 1)
13 end
14 if S1 is not No then return S1 ∪ {S}
15 end
16 return No

Algorithm 3.2: Algorithm DELETION-QHORN-BSD

In Lines 9–15, we consider the case when X is disjoint from the set of variables corre-
sponding to l1, l2 and l3. Since l1, l2, l3 lie in the same clause and none of their corresponding
variables are in X, by Lemma 12, X is an li-l̄i separator for at least one of the literals li.
Let us assume that this literal is l1. In Line 10, we apply Lemma 14 to compute an l1-l̄1
separator S of size at most 2k and add it to the solution we are constructing. By Lemma 15,
we know that there is a solution for the instance F − S of size at most |X| − 1. Hence, by
the induction hypothesis, we obtain a solution of size at most (k − 1)2 + (k − 1) from the
subsequent recursive call and adding to it the set S of size at most 2k results in a solution
of size at most k2 + k, which proves the correctness of the algorithm, completing the proof
of Theorem 1.

In order to test the satisfiability of a given CNF formula F , it suffices to first compute a
smallest deletion q-Horn-backdoor set of F and for each assignment to this set, test the
satisfiability of the reduced formula which is q-Horn. Since testing satisfiability of a q-Horn
formula is linear time [5], Theorem 1 has the following corollary.

I Corollary 16. There is an algorithm that, given a formula F of length ` with n variables,
runs in time 2O(k2)`n and decides the satisfiability of F , where k is the size of the smallest
deletion q-Horn-backdoor set of F .

4 Hardness

In this section we show that there is no FPT algorithm for Strong q-Horn-backdoor Set
Detection or Weak q-Horn-backdoor Set Detection unless FPT=W[2]. In order to
show this, we begin from the following problem, which is well-known to be W[2]-complete [9].

Hitting Set Parameter: k

Input: A set E of elements, a family S of finite subsets of E, and an integer k > 0.
Question: Does S have a hitting set, i.e., a subset H of E such that H ∩ S 6= ∅ for
every S ∈ S, of size at most k?

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 77

I Theorem 17. Strong q-Horn-backdoor Set Detection is W[2]-hard.

Proof. We prove the theorem via an FPT-reduction from Hitting Set. Let (E,S, k) be
an instance of Hitting Set. We construct a formula F that has a strong q-Horn-backdoor
set of size at most k if and only if S has a hitting set of size at most k. The formula F has
two clauses P i

S = S∪{xi, yi, zi} and N i
S = Ē∪{x̄i, ȳi, z̄i} for every S ∈ S and 1 ≤ i ≤ k+1.

Note that var(F) = E ∪ {xi, yi, zi : 1 ≤ i ≤ k + 1 }. Furthermore, for any S and for any
1 ≤ i ≤ k + 1, the formula comprising the two clauses P i

S and N i
S is clearly not q-Horn. It

is not hard to verify that S has a hitting set of size at most k if and only if F has a strong
q-Horn-backdoor set of size at most k. J

I Theorem 18. Weak q-Horn-backdoor Set Detection is W[2]-hard, even for 3-CNF
formulas.

Proof. We prove the theorem via an FPT-reduction from Hitting Set. Let (E,S, k) be an
instance of Hitting Set. We construct a 3-CNF formula F that has a weak q-Horn-back-
door set of size at most k if and only if S has a hitting set of size at most k. For ev-
ery S ∈ S with S = {s1, . . . , s|S|}, every 1 ≤ i ≤ |S|, and every 1 ≤ j ≤ k + 1 the
formula F contains the clauses {zj

i (S), s̄i, z̄
j
i+1(S)}, {z̄j

1(S), zj
|S|+1(S)}, {z̄j

1(S), z̄j
|S|+1(S)},

{zj
1(S), zj

|S|+1(S)}, {zj
|S|+1(S), aj(S), bj(S)}, and {āj(S), b̄j(S)}. Note that var(F) = E ∪

{ zj
i (S) : S ∈ S and 1 ≤ i ≤ |S| + 1 and 1 ≤ j ≤ k + 1 } ∪ { aj(S), bj(S) : S ∈ S and 1 ≤

j ≤ k + 1 }. Note furthermore that F is satisfiable by the assignment τSAT that sets the
variables in { zj

|S|+1(S), aj(S) : S ∈ S and 1 ≤ j ≤ k + 1 } to 1 and all other variables to 0.
It is not hard to verify that S has a hitting set of size at most k if and only if F has a weak
q-Horn-backdoor set of size at most k. J

It remains an open problem whether Strong q-Horn-backdoor Set Detection
or Weak q-Horn-backdoor Set Detection are FPT-approximable. However we note
that since the reductions used in the above theorems are parameter preserving, an FPT-
approximation algorithm for either of these problems would imply the existence of an FPT-
approximation algorithm for Hitting Set, which is an open problem [18].

5 Conclusions

In this paper we have developed an FPT-approximation algorithm for the detection of dele-
tion q-Horn-backdoor sets (Theorem 1). This renders SAT, parameterized by the deletion
distance from the class of q-Horn-formulas (i.e., the size of a smallest deletion q-Horn-back-
door set) fixed-parameter tractable (Corollary 16). Our result simultaneously generalizes
the known fixed-parameter tractability results for SAT parameterized by the deletion dis-
tance from the class of renamable Horn formulas [20] and from the class of Krom formulas
[19]. We would like to point out that our FPT-approximation algorithm is quite efficient,
and its asymptotic running time does not include large hidden factors.

The deletion distance from q-Horn is incomparable with parameters for SAT based on
width measures such as the treewidth of the formula’s primal, dual, or incidence graph [21].
This can be easily verified, since one can define q-Horn formulas where all of these width
parameters are arbitrarily large. Conversely, by adding to a formula variable-disjoint copies
of itself, we can make the deletion distance from q-Horn arbitrarily large, the width however
does not increase.

There are several interesting research questions that arise from our paper. First, it would
be interesting whether our algorithm can be strengthened to an exact FPT-algorithm for

STACS’13

78 Backdoors to q-Horn

the detection of deletion q-Horn-backdoor sets. It would also be interesting, whether the
W[2]-hardness of the detection of strong q-Horn-backdoor sets (Theorem 17) also holds if
the input formula is in 3CNF. Finally, our hardness results contribute additional attention
and significance to the problem of whether the parameterized Hitting Set problem has an
FPT-approximation algorithm [18].

Acknowledgments

The authors acknowledge support from the OeAD (Austrian Indian collaboration grant,
IN13/2011). Serge Gaspers, Sebastian Ordyniak, and Stefan Szeider acknowledge support
from the European Research Council (COMPLEX REASON, 239962) and Serge Gaspers
acknowledges support from the Australian Research Council (DE120101761).

References
1 B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of

certain quantified Boolean formulas. Information Processing Letters, 8(3):121–123, 1979.
2 A. Biere. Bounded model checking. In A. Biere, M. Heule, H. van Maaren, and T. Walsh,

editors, Handbook of Satisfiability, pages 457–481. IOS Press, 2009.
3 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability. IOS

Press, 2009.
4 P. Bjesse, T. Leonard, and A. Mokkedem. Finding bugs in an alpha microprocessor using

satisfiability solvers. In Proceedings CAV 2001, pages 454–464, 2001.
5 E. Boros, Y. Crama, and P. L. Hammer. Polynomial-time inference of all valid implications

for horn and related formulae. Ann. Math. Artif. Intell., 1:21–32, 1990.
6 E. Boros, P. L. Hammer, and X. Sun. Recognition of q-Horn formulae in linear time. Discr.

Appl. Math., 55(1):1–13, 1994.
7 S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd Annual Symp.

on Theory of Computing, pages 151–158, Shaker Heights, Ohio, 1971.
8 Y. Crama, O. Ekin, and P. L. Hammer. Variable and term removal from Boolean formulae.

Discr. Appl. Math., 75(3):217–230, 1997.
9 R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer

Science. Springer Verlag, New York, 1999.
10 R. G. Downey, M. R. Fellows, and C. McCartin. Parameterized approximation problems.

In Proceedings IWPEC 2006, volume 4169 of LNCS, pages 121–129. Springer Verlag, 2006.
11 J. Flum and M. Grohe. Parameterized Complexity Theory, Springer Verlag, Berlin, 2006.
12 L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow through a network. Canadian J. Math.,

8:399–404, 1956.
13 S. Gaspers and S. Szeider. Backdoors to satisfaction. In H. L. Bodlaender, R. Downey,

F. V. Fomin, and D. Marx, editors, The Multivariate Algorithmic Revolution and Beyond,
volume 7370 of LNCS, pages 287–317. Springer Verlag, 2012.

14 C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers. In Handbook of
Knowledge Representation, volume 3 of Foundations of Artificial Intelligence, pages 89–134.
Elsevier, 2008.

15 H. A. Kautz and B. Selman. Planning as satisfiability. In Proceedings ECAI 1992, pages
359–363, 1992.

16 H. R. Lewis. Renaming a set of clauses as a Horn set. J. of the ACM, 25(1):134–135, Jan.
1978.

17 A. G. M. Prasad, A. Biere. A survey of recent advances in SAT-based formal verification.
Software Tools for Technology Transfer, 7(2):156–173, 2005.

18 D. Marx. Can you beat treewidth? Theory of Computing, 6:85–112, 2010.

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 79

19 N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with respect to Horn and
binary clauses. In Proceedings of SAT 2004, pages 96–103, 2004.

20 I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed parameter tractable. J. of Computer
and System Sciences, 75(8):435–450, 2009.

21 M. Samer and S. Szeider. Algorithms for propositional model counting. J. Discrete Algo-
rithms, 8(1):50–64, 2010.

22 T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of STOC 1978),
pages 216–226. ACM, 1978.

23 M. N. Velev and R. E. Bryant. Effective use of Boolean satisfiability procedures in the formal
verification of superscalar and VLIW microprocessors. J. Symbolic Comput., 35(2):73–106,
2003.

24 R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In Proceed-
ings of IJCAI 2003, pages 1173–1178. Morgan Kaufmann, 2003.

STACS’13

	Introduction
	Contribution
	Related Work

	Preliminaries
	Formulas
	Parameterized Complexity
	Backdoors
	q-Horn Formulas

	FPT-approximation for Deletion q-Horn Backdoor Set Detection
	Quadratic covers, implication graphs and separators
	The algorithm
	Description of the Algorithm
	Analysis

	Hardness
	Conclusions

