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Abstract
A counterexample to the satisfaction of a linear property ψ in a system S is an infinite computation
of S that violates ψ. When ψ is a safety property, a counterexample to its satisfaction need not
be infinite. Rather, it is a bad-prefix for ψ: a finite word all whose extensions violate ψ. The
existence of finite counterexamples is very helpful in practice. Liveness properties do not have
bad-prefixes and thus do not have finite counterexamples.

We extend the notion of finite counterexamples to non-safety properties. We study counterable
languages – ones that have at least one bad-prefix. Thus, a language is counterable iff it is not
liveness. Three natural problems arise: (1) Given a language, decide whether it is counterable, (2)
study the length of minimal bad-prefixes for counterable languages, and (3) develop algorithms
for detecting bad-prefixes for counterable languages. We solve the problems for languages given
by means of LTL formulas or nondeterministic Büchi automata. In particular, our EXPSPACE-
completeness proof for the problem of deciding whether a given LTL formula is counterable, and
hence also for deciding liveness, settles a long-standing open problem.

In addition, we make finite counterexamples more relevant and helpful by introducing two
variants of the traditional definition of bad-prefixes. The first adds a probabilistic component to
the definition. There, a prefix is bad if almost all its extensions violate the property. The second
makes it relative to the system. There, a prefix is bad if all its extensions in the system violate
the property. We also study the combination of the probabilistic and relative variants. Our
framework suggests new variants also for safety and liveness languages. We solve the above three
problems for the different variants. Interestingly, the probabilistic variant not only increases
the chances to return finite counterexamples, but also makes the solution of the three problems
exponentially easier.
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1 Introduction

In model checking, we verify that a system meets a desired property by checking that a
mathematical model of the system meets a formal specification that describes the property.
Safety and liveness [2] are two classes of system properties. Essentially, a safety property
states that something “bad” never happens and a liveness property states that something
“good” eventually happens. Formally, consider a language L of infinite words over an alphabet
Σ. A finite word x ∈ Σ∗ is a bad-prefix for L if for all infinite words y ∈ Σω, the concatenation
x · y is not in L. Thus, a bad-prefix for L is a finite word that cannot be extended to a word
in L. A language L is safety if every word not in L has a bad-prefix, and is liveness if it has
no bad-prefixes. Thus, every word in Σ∗ can be extended to a word in L.

The classes of safety and liveness properties have been extensively studied. From a
theoretical point of view, their importance stems from their topological characteristics.
Consider the natural topology on Σω, where similarity between words corresponds to the
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length of the prefix they share. Formally, the distance between w and w′ is 2−i, where
i ≥ 0 is the position of the first letter in which w and w′ differ. In this topology, safety and
liveness properties are exactly the closed and dense sets, respectively [2]. This, for example,
implies that every linear property can be expressed as a conjunction of a safety and a liveness
property [2, 3].

From a practical point of view, reasoning about safety and liveness properties require
different methodologies, and the distinction between them pinpoints different challenges of
formal methods. In liveness, one has to demonstrate progress towards fulfilling eventualities.
Thus, liveness is the concept behind fairness [15], and behind the need for rich ω-regular
acceptance conditions [37], progress measures [30, 27], and many more. On the other hand, in
safety one can reason about finite computations of the system [35]. The latter has significant
advantages in symbolic methods [23], bounded model checking [7], run-time verification [17],
synthesis [25], and many more.

An important advantage of model-checking tools is their ability to accompany a negative
answer to the correctness query by a counterexample to the satisfaction of the specification in
the system. Thus, together with a negative answer, the model checker returns some erroneous
execution of the system. These counterexamples are not only essential in detecting subtle
errors in complex systems [9], but also in improving the modeling of systems. For example, in
CEGAR, counterexamples are used in order to guide the refinement of abstract models [8]. In
the general case, the erroneous execution of the system is infinite. It is known, however, that
for linear temporal logic (LTL) properties, there is always a lasso-shaped counterexample –
one of the form uvω, for finite computations u and v. Clearly, the simpler the counterexample
is, the more helpful it is for the user, and indeed there have been efforts for designing
algorithms that return short counterexamples [33, 22]. The analysis of counterexamples
makes safety properties even more appealing: rather than a lasso-shaped counterexample,
it is possible to return to the user a bad-prefix. This enables the user to find errors as
soon as they appear. In addition, the analysis of bad-prefixes is often more helpful, as they
point the user not just to one erroneous execution, but rather to a finite execution all whose
continuations are erroneous.

We extend the notion of finite counterexamples to non-safety specifications. We also make
finite counterexamples more relevant and helpful by introducing two variants of the traditional
definition of bad-prefixes. The first adds a probabilistic component to the definition. The
second makes it relative to the system. We also consider the combination of the probabilistic
and relative variants. Before we describe our contribution in detail, let us demonstrate the
idea with the following example. Consider a system S and a specification ψ stating that
every request is eventually followed by a response. There might be some input sequence
that leads S to an error state in which it stops sending responses. While ψ is not safety, the
system S has a computation with a prefix that is bad with respect to S: all its extensions
in S do not satisfy ψ. Returning this prefix to the user, with its identification as bad with
respect to S, is more helpful than returning a lasso-shaped counterexample. Consider now a
specification ϕ stating that the system eventually stops allocating memory. There might be
some input sequence that leads S to a state in which every request is followed by a memory
allocation. A computation that reaches this state almost surely violates the specification.
Indeed, it is possible that requests eventually stop arriving and the specification would be
satisfied, but the probability of this behavior of the input is 0. Thus, the system S has a
computation with a prefix that is bad with respect to S in a probabilistic sense: almost all
of its extensions in S do not satisfy ϕ. Again, we want to return this prefix to the user,
identified as bad with high probability.
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Recall that a language L is liveness if every finite word can be extended to an infinite
word in L. Equivalently, L has no bad-prefixes. We say that L is counterable if it has a
bad-prefix. That is, L is counterable iff it is not liveness. Note that a language, for example
a∗ · b · (a + b + c)ω, may be counterable and not safety. When a system does not satisfy
a counterable specification ψ, it may contain a bad-prefix for ψ, which we would like to
return to the user. Three natural problems arise: (1) Given a language, decide whether it is
counterable, (2) study the length of minimal bad-prefixes for counterable languages, and (3)
develop algorithms for detecting bad-prefixes for counterable languages.

In fact, the last two problems are open also for safety languages. Deciding whether a given
language is safety is known to be PSPACE-complete for languages given by LTL formulas
or nondeterministic Büchi word automata (NBWs, for short). For the problem of deciding
whether a language is counterable, an EXPSPACE upper-bound for languages given by LTL
formulas is not difficult [35], yet the tight complexity is open. This is surprising, as recall that
a language is counterable iff it is not liveness, and one could expect the complexity of deciding
liveness to be settled by now. As it turns out, the problem was studied in [29], where it is
stated to be PSPACE-complete. The proof in [29], however, is not convincing, and indeed
efforts to solve the problem have continued, and the problem was declared open in [4] (see also
[26]). Our first contribution is an EXPSPACE lower bound, implying that the long-standing
open problem of deciding liveness (and hence, also counterability) of a given LTL formula is
EXPSPACE-complete. In a recent communication with Diekert, Muscholl, and Walukiewicz,
we have learned that they recently came-up with an independent EXPSPACE lower bound,
in the context of monitoring or infinite computations [14]. For languages given by means of
an NBW, the problem is PSPACE-complete [35, 29]. Thus, interestingly, while in deciding
safety the exponential succinctness of LTL with respect to NBWs does not make the problem
more complex, in deciding liveness it makes the problem exponentially more complex. This
phenomenon is reflected also in the solutions to the problems about the length and the
detection of bad-prefixes. We also show that when a language given by an LTL formula is
safety, the solutions for the three problems become exponentially easier.

Let us return to our primary interest, of finding finite counterexamples.

Consider a system modelled by a Kripke structure K over a set AP of atomic propositions.
Let Σ = 2AP , and consider an ω-regular language L ⊆ Σω. We say that a finite computation
x ∈ Σ∗ of K is a K-bad-prefix, if x cannot be extended to an infinite computation of K
that is in L. Formally, for all y ∈ Σω, if x · y is a computation of K, then it is not in L.
Once we define K-bad-prefixes, the definitions of safety and counterability are naturally
extended to the relative setting: A language L is K-counterable if it has a K-bad-prefix
and is K-safety if every computation of K that is not in L has a K-bad-prefix. Using a
product of K with an NBW for L, we are able to show that the solutions we suggest for the
three problems in the non-relative setting apply also to the relative one, with an additional
NLOGSPACE or linear-time dependency in the size of K. We also study K-safety, and
the case L is K-safety. We note that relative bad prefixes have already been considered in
the literature, with different motivation and results. In [18], where the notion is explicitly
defined, as well as in [5, 34], where it is implicit, the goal is to lift the practical advantages of
safety to liveness properties, typically by taking the finiteness of the system into an account.
In [29], the idea is to relay on fairness conditions known about the system in order to simplify
the reasoning about liveness properties, especially in a setting where an abstract model of
the system is used.
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We continue to the probabilistic view.1 A random word over Σ is a word in which all
letters are drawn from Σ uniformly at random.2 In particular, when Σ = 2AP , then the
probability of each atomic proposition to hold in each position is 1

2 . Consider a language
L ⊆ Σω. We say that a finite word x ∈ Σ∗ is a prob-bad-prefix for L if the probability of an
infinite word with prefix x to be in L is 0. Formally, Pr({y ∈ Σω : x · y ∈ L}) = 0. Then, L
is prob-counterable if it has a prob-bad-prefix. Now, given a Kripke structure K, we combine
the relative and probabilistic views in the expected way: a finite computation x ∈ (2AP )∗ of
K is a K-prob-bad-prefix for L if a computation of K obtained by continuing x with some
random walk on K, is almost surely not in L. Thus, a computation of K that starts with x
and continues according to some random walk on K is in L with probability 0. We show
that this definition is independent of the probabilities of the transitions in the random walk
on K. Again, L is K-prob-counterable if it has a K-prob-bad-prefix.

We note that a different approach to probabilistic counterexamples is taken in [1]. There,
the focus is on reachability properties, namely properties of the form “the probability of
reaching a set T of states starting from state s is at most p”. Accordingly, a counterexample
is a set of paths from s to T , such that the probability of the event of taking some path
in the set is greater than p. We, on the other hand, cover all ω-regular languages, and a
counterexample is a single finite path – one whose extension result in a counterexample in
high probability.

We study the theoretical properties of the probabilistic setting and show that an ω-regular
language L is prob-counterable iff the probability of a random word to be in L is less than 1.
We also show that ω-regular languages have a “safety-like” behavior in the sense that the
probability of a word not to be in L and not to have a prob-bad-prefix is 0. Similar properties
hold in the relative setting and suggest that attempts to return to the user prob-bad-prefixes
and K-prob-bad-prefixes are likely to succeed.

From a practical point of view, we show that the probabilistic setting not only increases
our chances to return finite counterexamples, but also makes the solution of our three basic
problems easier: deciding prob-counterability and K-prob-counterability for LTL formulas is
exponentially easier than deciding counterability and K-counterability! Moreover, the length
of bad-prefixes is exponentially smaller, and finding them is exponentially easier. Our results
involve a careful analysis of the product of K with an automaton for L. Now, the product
is defined as a Markov chain, and we also need the automaton to be deterministic. Our
construction also suggest a simpler proof to the known probabilistic NBW model-checking
result of [11]. While the blow-up determinization involves is legitimate in the case L is
given by an NBW, it leads to a doubly-exponential blow-up in the case L is given by an
LTL formula ψ. We show that in this case, we can avoid the construction of a product
Markov chain and, adopting an idea from [11], generate instead a sequence of Markov chains,
each obtained from its predecessor by refining the states according to the probability of the
innermost temporal subformula of ψ.

It is easy to see that there is a trade-off between the length of a counterexample and its
“precision”, in the sense that the longer a finite prefix of an erroneous computation is, the
larger is the probability in which it is a K-prob-bad-prefix. We allow the user to play with
this trade-off and study both the problem in which the user provides, in addition to K and

1 In [19], the authors study safety and liveness in probabilistic systems. The setting, definitions, and
goals are different from ours here, and focus on the safety and liveness fragments of the probabilistic
branching-time logic PCTL.

2 Our definitions and results apply for all distributions in which all letters are drawn with a positive
probability.
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ψ, also a probability 0 < γ < 1, and gets back a shortest finite computation x of K such
that the probability of a computation of K that starts with x to satisfy ψ is less than γ, and
the problem in which the user provides a length m ≥ 1 and gets back a finite computation x
of K of length at most m such that the probability of a computation of K that starts with x
to satisfy ψ is minimal.

Due to lack of space, detailed proofs can be found in the full version, in the authors’
home pages.

2 Preliminaries

2.1 Automata and LTL
A nondeterministic automaton on infinite words is a tuple A = 〈Σ, Q,Q0, δ, α〉, where Q is a
set of states, Q0 ⊆ Q is a set of initial states, δ : Q× Σ→ 2Q is a transition function, and
α is an acceptance condition whose type depends on the class of A. A run of A on a word
w = σ0 ·σ1 · · · ∈ Σω is a sequence of states r = q0, q1, . . . such that q0 ∈ Q0 and qi+1 ∈ δ(qi, σi)
for all i ≥ 0. The run is accepting if it satisfies the condition α. We consider here Büchi
and parity automata. In a Büchi automaton, α ⊆ Q and the run r satisfies α if it visits
some state in α infinitely often. Formally, let inf (r) = {q : q = qi for infinitely many i’s} be
the set of states that r visits infinitely often. Then, r satisfies α iff inf (r) ∩ α 6= ∅ [6]. In
a parity automaton, α : Q → {0, . . . , k} maps each state to a color in {0, . . . , k}. A run r
satisfies α if the minimal color that is visited infinitely often is even. Formally, the minimal
color c such that inf (r) ∩ α−1(c) 6= ∅ is even. A word w ∈ Σω is accepted by A if there is
an accepting run of A on w. The language of A, denoted L(A), is the set of words that A
accepts. When |Q0| = 1 and |δ(q, σ)| = 1 for all q ∈ Q and σ ∈ Σ, then A is deterministic.
When a state q ∈ Q is such that no word is accepted from q (equivalently, the language
of A with initial state q is empty), we say that q is empty. We use the acronyms NBW,
DBW, NPW, and DPW to denote nondeterministic and deterministic Büchi and parity word
automata, respectively. We also refer to the standard nondeterministic and deterministic
automaton on finite words, abbreviated NFW and DFW, respectively. We define the size of
A, denoted |A|, as the size of δ.

An automaton A induces a graph GA = 〈Q,E〉 where (q, q′) ∈ E iff there is σ ∈ Σ such
that q′ ∈ δ(q, σ). When we refer to the strongly connected sets (SCSs) of A, we refer to the
SCSs of this graph. Formally, a set C ⊆ Q of states is an SCS of A if for all q, q′ ∈ C, there
is a path from q to q′ in GA. An SCS C is maximal if for all sets C ′ such that C ′ 6⊆ C, the
set C ∪ C ′ is no longer an SCS. A maximal SCS is termed a strongly connected component
(SCC). An SCC C is accepting if a run that visits exactly all the states in C infinitely often
satisfies α. For example, when α is a parity condition, then C is accepting if the minimal
color c such that C ∩ α−1(c) 6= ∅ is even. An SCC C is ergodic iff for all (q, q′) ∈ E, if q ∈ C
then q′ ∈ C. That is, an SCC is ergodic if no edge leaves it.

The logic LTL is a linear temporal logic [32]. Formulas of LTL are constructed from a
set AP of atomic proposition using the usual Boolean operators and the temporal operators
G (“always”), F (“eventually”), X (“next time”), and U (“until”). The semantics of LTL
is defined with respect to infinite computations over AP . We use w |= ψ to indicate that
the computation w ∈ (2AP )ω satisfies the LTL formula ψ. The language of an LTL formula
ψ, denoted L(ψ), is the set of infinite computations that satisfy ψ. For the full syntax and
semantics of LTL see [32]. We define the size of an LTL formula ψ, denoted |ψ|, to be the
number of its Boolean and temporal operators. Given an LTL formula ψ, one can construct
an NBW Aψ that accepts exactly all the computations that satisfy ψ. The size of Aψ is, in
the worst case, exponential in |ψ| [37].
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We model systems by Kripke structures. A Kripke structure is a tupleK = 〈AP,W,W0, R,

l〉, where W is the set of states, R ⊆W ×W is a total transition relation (that is, for every
w ∈W , there is at least one state w′ such that R(w,w′)), W0 ⊆W is a set of initial states,
and l : W → 2AP maps each state to the set of atomic propositions that hold in it. A
path in K is a (finite or infinite) sequence w0, w1, . . . of states in W such that w0 ∈ W0
and for all i ≥ 0 we have R(wi, wi+1). A computation of K is a (finite or infinite) sequence
l(w0), l(w1), . . . of assignments in 2AP for a path w0, w1, . . . in K. We assume that different
states of K are labeled differently. That is, for all states w,w′ ∈ W such that w 6= w′, we
have l(w) 6= l(w′). The assumption makes our setting cleaner, as it amount to working with
deterministic systems, so all the nondeterminism and probabilistic choices are linked to the
specification and the distribution of the inputs, which is our focus. The simplest way to
adjust nondeterministic systems to our setting is to add atomic propositions that resolve
nondeterminism. The language of K, denoted L(K), is the set of its infinite computations.
We say that K satisfies an LTL formula ψ, denoted K |= ψ, if all the computations of K
satisfy ψ, thus L(K) ⊆ L(ψ). We define the size of a Kripke structure K, denoted |K|, as
|W |+ |R|.

For a set AP of atomic propositions, we define the Kripke structureKAP = 〈AP, 2AP , 2AP ,
2AP × 2AP , l〉, where l(w) = w for all w ∈ 2AP . Thus, KAP is a 2AP -clique satisfying
L(KAP ) = (2AP )ω.

2.2 Safety, Liveness, and Counterable Languages

Consider an alphabet Σ, a language L ⊆ Σω, and a finite word u ∈ Σ∗. We say that u is a
prefix for L if it can be extended to an infinite word in L, thus there is v ∈ Σω such that
uv ∈ L. Then, u is a bad-prefix for L if it cannot be extended to an infinite word in L, thus
for every v ∈ Σω, we have that uv 6∈ L. Note that if u is a bad-prefix, so are all its finite
extensions. We denote by pref(L) the set of all prefixes for L.

The following classes of languages have been extensively studied (c.f., [2, 3]). A language
L ⊆ Σω is a safety language if every word not in L has a bad-prefix. For example, {aω} over
Σ = {a, b, c} is safety, as every word not in L has a bad-prefix – one that contains the letter
b or c. A language L is a liveness language if every finite word can be extended to a word in
L. Thus, pref(L) = Σ∗. For example, the language (a+ b+ c)∗ · aω is a liveness language: by
concatenating aω to every word in Σ∗, we end up with a word in the language. When L is
not liveness, namely pref(L) 6= Σ∗, we say that L is counterable. Note that while a liveness
language has no bad-prefix, a counterable language has at least one bad-prefix. For example,
L = a∗ · b · (a+ b+ c)ω is a counterable language. Indeed, c is a bad-prefix for L. It is not
hard to see that if L is safety and L 6= Σω, then L is counterable. The other direction does
not hold. For example, L above is not safety, as the word aω has no bad-prefix.

We extend the definitions and classes above to specifications given by LTL formulas or
by NBWs. For example, an LTL formula ψ is counterable iff L(ψ) is counterable.

3 Probabilistic and Relative Counterability

In this section we introduce and make some observations on two variants to counterability.
The first variant adds a probabilistic component to the definitions. The second makes them
relative to a Kripke structure. We also consider the combination of the probabilistic and
relative variants.
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3.1 Probabilistic Counterability
For a finite or countable set X, a probability distribution on X is a function Pr : X → [0, 1]
assigning a probability to each element in X. Accordingly,

∑
x∈X Pr(x) = 1. A finite

Markov chain is a tupleM = 〈V, pin, p〉, where V is a finite set of states, pin : V → [0, 1] is a
probabilistic distribution on V that describes the probability of a path to start in the state,
and p : V × V → [0, 1] is a function describing a distribution over the transitions. Formally,
for v ∈ V , let pv : V → [0, 1] be such that pv(u) = p(v, u) for all u ∈ V . For all v ∈ V , the
function pv is a probabilistic distribution on V . The Markov chainM induces the directed
graph G = 〈V,E〉 in which for all u, v ∈ V , we have that (u, v) ∈ E iff p(u, v) > 0. Thus, G
includes transitions that have a positive probability inM. When we talk about the SCCs of
M, we refer to these of G.

A random walk onM is an infinite path v0, v1, . . . in G such that v0 is drawn at random
according to pin and the i-th state vi is drawn at random according to pvi−1 . More formally,
there is a probability space 〈V ω,F , P rM〉 defined on the set V ω of infinite sequences of
states. The family of measurable sets F is the σ-algebra (also called Borel field) generated
by C = {C(x) : x ∈ V ∗} where C(x) is the set of infinite sequences with prefix x. The
measure PrM is defined on C (and can be extended uniquely to the rest of F) as follows:
PrM[C(x0, . . . , xn)] = pin(x0) · p(x0, x1) · . . . · p(xn−1, xn). For more background on the
construction of this probability space, see, for example, [20]. A random walk onM from a
state v ∈ V is a random walk on the Markov chainMv = 〈V, pvin, p〉, where pvin(v) = 1.

I Lemma 1 ([20]). Consider a Markov chain M = 〈V, pin, p〉 and a state v ∈ V .
1. An infinite random walk onMv reaches some ergodic SCC with probability 1.
2. Once a random walk onMv reaches an ergodic SCC, it visits all its states infinitely often

with probability 1.

A labeled finite Markov chain is a tuple S = 〈Σ, V, pin, p, τ〉, where Σ is an alphabet,
M = 〈V, pin, p〉 is a finite Markov chain, and τ : V → Σ maps each state in V to a
letter in Σ. We extend τ to paths in the expected way, thus for π = v0, v1, . . . ∈ V ω, we
define τ(π) = τ(v0), τ(v1), . . .. A random walk on S is a random walk on M. The chain
S induces a probability space on Σω, induced from M. That is, for L ⊆ Σω, we have
PrS [L] = PrM[{π ∈ V ω : τ(π) ∈ L}]. It is known that ω-regular languages are measurable
in S (c.f., [36]).

Consider an alphabet Σ. A random word over Σ is a word in which for all indices i, the
i-th letter is drawn from Σ uniformly at random. We denote by Pr[L] the probability of
a language L ⊆ Σω in this uniform distribution. For a finite word u ∈ Σ∗, we denote by
Pru[L] the probability that a word obtained by concatenating an infinite random word to
u is in L. Formally, Pru[L] = Pr[{v ∈ Σω : uv ∈ L}]. For example, let Σ = {a, b, c} and
L = a∗ · b · (a+ b+ c)ω. Then, Pr[L] =

∑∞
i=1

1
3i = 1

2 , Pr
a[L] = Pr[L] = 1

2 , Pr
ab[L] = 1, and

Prc[L] = 0.
Consider a language L ⊆ Σω. We say that a finite word u ∈ Σ∗ is a prob-bad-prefix for

L if Pru[L] = 0. That is, u is a prob-bad-prefix if an infinite word obtained by continuing u
randomly is almost surely not in L. We say that L is prob-counterable if it has a prob-bad-
prefix. Consider for example the language L = a · (a+ b)ω + bω over Σ = {a, b}. All the words
u ∈ b+ are not bad-prefixes for L, but are prob-bad-prefixes, as Pru[L] = Pr[bω] = 0. As
another example, consider the LTL formula ψ = (req ∧GF grant) ∨ (¬req ∧ FG¬grant). The
formula ψ is a liveness formula and does not have a bad-prefix. Thus, ψ is not counterable.
All finite computations in which a request is not sent in the beginning of the computation
are, however, prob-bad-prefixes for ψ, as the probability of satisfying FG¬grant is 0. Hence,
ψ is prob-counterable.

CSL 2015
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Prob-counterability talks about prefixes after which the probability of being in L is 0. We
can relate such prefixes to words that lead to rejecting ergodic SCCs in DPWs that recognize
L, giving rise to the following alternative definitions:

I Theorem 2. Consider an ω-regular language L. The following are equivalent:
1. The language L is prob-counterable.
2. Pr[L] < 1. That is, the probability of an infinite random word to be in L is strictly

smaller than 1.
3. Every DPW that recognizes L has a rejecting ergodic SCC.

Analyzing the SCCs of DPWs for L also implies that ω-regular languages have a “safety-
like” behavior in the following probabilistic sense:

I Theorem 3. For every ω-regular language L, we have Pr[{v ∈ Σω : v 6∈ L and v does not
have a prob-bad-prefix}] = 0.

Note that if L is prob-counterable, thus Pr[v 6∈ L] > 0, then Pr[v has a prob-bad-prefix |
v 6∈ L] = 1.

3.2 Relative Counterability
Recall that the standard definitions of bad-prefixes consider extensions in Σω. When Σ = 2AP
and the language L is examined with respect to a Kripke structure K over AP , it is interesting
to restrict attention to extensions that are feasible in K. Consider a finite word u ∈ Σ∗. We
say that u is a bad-prefix for L with respect to K (K-bad-prefix, for short) if u is a finite
computation of K that cannot be extended to a computation of K that is in L. Thus,
u ∈ pref(L(K)) \ pref(L(K) ∩ L). We say that L is safety with respect to K (K-safety, for
short) if every computation of K that is not in L has a K-bad-prefix. We say that L is
counterable with respect to K (K-counterable, for short) if the language L has a K-bad-prefix.
Thus, pref(L(K)) 6⊆ pref(L(K) ∩ L).

I Theorem 4. Consider an ω-regular language L ⊆ (2AP )ω.
1. L is safety iff L is K-safety for every Kripke structure K over AP .
2. For every Kripke structure K over AP , we have that L is K-safety iff L(K)∩L is safety.

Recall that if L ⊆ Σω is safety and L 6= Σω, then L is counterable. Also, if L is K-
safety and L(K) 6⊆ L then L is K-counterable. Note that it is possible that L(K) ∩ L is
counterable but L is not K-counterable. For example, we can choose K and L such that
L(K) ⊆ L 6= (2AP )ω. Then, L is not K-counterable, but a word u that is not a computation
of K is a bad-prefix for L(K), making it also a bad-prefix for L(K) ∩ L. Hence, L(K) ∩ L is
counterable.

3.3 Probabilistic Relative Counterability
We combine the probabilistic and relative definitions. Consider a Kripke structure K =
〈AP,W,W0, R, l〉. A K-walk-distribution is a tuple P = 〈pin, p〉 such that MK,P = 〈2AP ,W,
pin, p, l〉 is a labeled Markov chain that induces a graph that agrees with K. Thus, pin(w) > 0
iff w ∈ W0, and p(w,w′) > 0 iff R(w,w′). A random walk on K with respect to P is a
random walk on the Markov chain 〈W,pin, p〉. We define the probability of an ω-regular
language L ⊆ (2AP )ω with respect to K and P as PrK,P [L] = PrMK,P

[L]. Namely, PrK,P [L]
is the probability that a computation obtained by a random walk on K with respect to
P is in L. Let u be a finite computation of K and let w0, . . . , wk ∈ W ∗ be such that
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u = l(w0), . . . , l(wk). We say that an infinite computation u′ is a continuation of u with
a random walk on K with respect to P if u′ = l(w0), . . . , l(wk−1), l(w′0), l(w′1), . . ., where
w′0, w

′
1, . . . is obtained by a random walk on K from wk with respect to P (recall that

we assume that different states in K are labeled differently). We define PruK,P [L] as the
probability that a computation obtained by continuing u with a random walk on K with
respect to P is in L. Formally, we define PruK,P using a conditional probability: PruK,P [L] =
PrK,P [L| the word starts with u]. We extend the definition to every labeled Markov chain
M; that is PruM[L] = PrM[L| the word starts with u]. Thus, PruK,P [L] = PruMK,P

[L].
Consider a Kripke structure K over AP and an ω-regular language L ⊆ (2AP )ω. We say

that u ∈ (2AP )∗ is a prob-bad-prefix for L with respect to K (K-prob-bad-prefix, for short)
if u is a finite computation of K such that PruK,P [L] = 0, for some K-walk-distribution
P . Thus, a computation obtained by continuing u with some random walk on K is almost
surely not in L. As we show in Lemma 5 below, the existential quantification on the K-walk-
distribution P can be replaced by a universal one, or by the specific K-walk-distribution
that traverses K uniformly at random. We say that L is prob-counterable with respect to K
(K-prob-counterable, for short) if it has a K-prob-bad-prefix.

Note that if L is counterable, then L is prob-counterable. Also, if L is K-counterable then
L is K-prob-counterable. As we have seen above, a language may be prob-counterable but
not counterable. Taking K = KAP , this implies that a language may be K-prob-counterable
but not K-counterable. As an example with an explicit dependency in K, consider the
counterable LTL formula ψ = G(req → Xack) ∧ FG(idle). Let K over AP = {req, ack, idle}
be such that the atomic propositions in AP are mutually exclusive and L(K) contains exactly
the computations that start in req and in which every req is immediately followed by ack, or
computations in which idle is always valid. Note that while ψ is not K-counterable, it is K-
prob-counterable, as every finite computation of K that starts with req is a K-prob-bad-prefix
for ψ.

Consider an NBW A. By [36, 11], deciding whether PrK,P [L(A)] = 0 or whether
PrK,P [L(A)] = 1 is independent of the K-walk-distribution P . Consequently, we have the
following.

I Lemma 5. [36, 11] Let u be a finite computation of a Kripke structure K over AP , and
let L ⊆ (2AP )ω be an ω-regular language. For all pairs P and P ′ of K-walk-distributions, we
have that PruK,P [L] = 0 iff PruK,P ′ [L] = 0 and PruK,P [L] = 1 iff PruK,P ′ [L] = 1.

We can now point to equivalent definitions of K-prob-counterability.

I Theorem 6. Consider an ω-regular language L ⊆ (2AP )ω and a Kripke structure K over
AP . The following are equivalent:
1. The language L is K-prob-counterable.
2. There is a finite computation u of K and a K-walk-distribution P such that PruK,P [L] < 1.
3. There is a finite computation u of K such that for all K-walk-distribution P , we have

PruK,P [L] < 1.
4. There is a K-walk-distribution P s.t. PrK,P [L] < 1.
5. For all K-walk-distributions P , we have PrK,P [L] < 1.

We can also generalize Theorem 3, and show that ω-regular languages have “safety-like”
behaviors also with respect to Kripke structures, in the following probabilistic sense:

I Theorem 7. Consider an ω-regular language L ⊆ (2AP )ω, a Kripke structure K over AP ,
and a K-walk-distribution P . Then, PrK,P [{u ∈ (2AP )ω : u 6∈ L and u does not have a
K-prob-bad-prefix for L}] = 0.
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If L is also K-prob-counterable then we also have PrK,P [u has a K-prob-bad-prefix for
L | u 6∈ L] = 1 for every K-walk-distribution P .

Conceptually, Theorem 6 implies that if an error has a positive probability to occur in
a random execution of the system, then the specification is prob-counterable with respect
to the system. Theorem 7 then suggests that in this case, a computation of the system
that does not satisfy the specification, almost surely has a prob-bad-prefix with respect to
the system. Thus, almost all the computations that violate the specification start with a
prob-bad-prefix with respect to the system. Hence, attempts to find and return to the user
such bad-prefixes are very likely to succeed.

4 Deciding Liveness

Recall that a language L is counterable iff L is not liveness. As discussed in Section 1, the
complexity of the problem of deciding whether a given LTL formula is liveness is open [4].
In this section we solve this problem and prove that it is EXPSPACE-complete. The result
would be handy also for our study of the probabilistic and relative variants.

I Theorem 8. The problem of deciding whether a given LTL formula is liveness is EXPSPACE-
complete.

Proof. The upper-bound is known [35], and follows from the fact that every LTL formula ψ
can be translated to an NBW Aψ with an exponential blow-up [37]. By removing empty
states from Aψ and making all other states accepting, we get an NFW for pref(L(ψ)), which
is universal iff ψ is liveness. The latter can be checked on-the-fly and in PSPACE, implying
the EXPSPACE upper bound.

For the lower bound, we show a reduction from an exponent version of the tiling problem,
defined as follows. We are given a finite set T , two relations V ⊆ T×T and H ⊆ T×T of tiles,
an initial tile t0, a final tile tf , and a bound n > 0. We have to decide whether there is some
m > 0 and a tiling of a 2n×m-grid such that (1) The tile t0 is in the bottom left corner and the
tile tf is in the top left corner, (2) A horizontal condition: every pair of horizontal neighbors
is in H, and (3) A vertical condition: every pair of vertical neighbors is in V . Formally, we
have to decide whether there is a function f : {0, . . . , 2n− 1}×{0, . . . ,m− 1} → T such that
(1) f(0, 0) = t0 and f(0,m− 1) = tf , (2) For every 0 ≤ i ≤ 2n − 2 and 0 ≤ j ≤ m− 1, we
have that (f(i, j), f(i+ 1, j)) ∈ H, and (3) For every 0 ≤ i ≤ 2n − 1 and 0 ≤ j ≤ m− 2, we
have that (f(i, j), f(i, j + 1)) ∈ V . When n is given in unary, the problem is known to be
EXPSPACE-complete.

We reduce this problem to the problem of deciding whether an LTL formula is not liveness.
Given a tiling problem τ = 〈T,H, V, t0, tf , n〉, we construct a formula ϕ such that τ admits
tiling iff ϕ has a good-prefix – one all whose extensions satisfy ϕ. Formally, x ∈ Σ∗ is a good
prefix for ϕ iff for all y ∈ Σω, we have that x · y satisfies ϕ. Therefore, for ψ = ¬ϕ, we have τ
admits tiling iff ψ is not liveness. The idea is to encode a tiling as a word over T , consisting
of a sequence of rows (each row is of length 2n). Such a word represents a proper tiling if it
starts with t0, has a last row that starts with tf , every pair of adjacent tiles in a row are in
H, and every pair of tiles that are 2n tiles apart are in V . The difficulty is in relating tiles
that are far apart. To do that we represent every tile by a block of length n, which encodes
the tile’s position in the row. Even with such an encoding, we have to specify a property
of the form “for every i, if we meet a block with position counter i, then the next time we
meet a block with position counter i, the tiles in the two blocks are in V ”. Such a property
can be expressed in an LTL formula of polynomial length, but there are exponentially many
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i’s to check. The way to use liveness in order to mimic the universal quantification on all
i’s is essentially the following: the good prefix for ϕ encodes the tiling. The set of atomic
propositions in ϕ includes a proposition $ that is not restricted beyond this prefix. The
property that checks V then has to hold in blocks whose counter equals the counter of the
block that starts at the last $ in the computation. Thus, universal quantification in i is
replaced by the explicit universal quantification on suffixes in the definition of good prefixes.
A detailed description of the reduction is included in the full version of the paper. J

When a language is given by an NBW, the complexity of deciding its liveness is much
simpler:

I Theorem 9. The problem of deciding whether a given NBW is liveness is PSPACE-
complete.

5 On Counterability

In this section we study the problem of deciding whether a given language is counterable as
well as the length of short bad-prefixes and their detection. In order to complete the picture,
we also compare the results to those of safety languages.

We start with the complexity of deciding safety and counterability. The results for safety
are from [35]. These for counterability follow from Theorems 8 and 9 and the fact that L is
counterable iff it is not liveness.

I Theorem 10. Consider a language L.
1. [35] The problem of deciding whether L is safety is PSPACE-complete for L given by an

LTL formula or by an NBW.
2. The problem of deciding whether L is counterable is EXPSPACE-complete for L given by

an LTL formula and is PSPACE-complete for L given by an NBW.

We find Theorem 10 surprising: both safety and counterability ask about the existence of
bad-prefixes. In safety, a bad-prefix should exist to all bad words. In counterability, not all
bad words have a bad-prefix, but at least some should have. Theorem 10 implies that there
is something in LTL, yet not in NBWs, that makes the second type of existence condition
much more complex.

We now turn to study the length of shortest bad-prefixes. Both (non-valid) safety
and counterable languages have bad-prefixes. As we show, however, the complexity of
counterability continues, and a tight bound on shortest bad-prefixes for counterable languages
is exponentially bigger than that of safety languages. The gap follows from our ability to
construct a fine automaton Afine

ψ for all safety LTL formulas ψ [21]. The NFW Afine
ψ is

exponential in |ψ|, it accepts only bad-prefixes for ψ, and each computation that does not
satisfy ψ has at least one bad-prefix accepted by Afine

ψ . A shortest witness to the nonemptiness
of Afine

ψ can serve as a bad-prefix. On the other hand, nothing is guaranteed about the
behavior of Afine

ψ when constructed for a non-safety formula ψ, thus it is of no help in the
case of counterable languages that are not safety. In particular, the LTL formula used in the
proof of Theorem 8 is neither safety nor its complement is safety, thus its doubly-exponential
shortest bad-prefix does not contradict upper bounds known for these classes of languages.

I Theorem 11. The length of shortest bad-prefixes for a language given by an LTL formula
ψ is tightly exponential in |ψ| in case ψ is safety, and is tightly doubly-exponential in |ψ| in
case ψ is counterable.
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When the specification formalism is automata, the difference between safety and counter-
able languages disappears:

I Theorem 12. The length of shortest bad-prefixes for a safety or a counterable language
given by an NBW A is tightly exponential in |A|.

6 On Relative Counterability

In this section we add a Kripke structure K to the setting and study K-counterablity and
shortest K-bad-prefixes. Our results use variants of the product of automata for K and L,
and we first define this product below. Consider a Kripke structure K = 〈AP,W,W0, R, l〉
and an NBW A = 〈2AP , Q,Q0, δ, α〉. Essentially, the states of the product AK×A are pairs
in W × Q. Recall that the states in K are differently labeled. Thus, we can define the
product so that whenever it reads a letter in 2AP , its next W -component is determined.
Formally, we define the NBW AK×A = 〈2AP , (W ∪ {s0})×Q, {s0} ×Q0, ρ,W × α〉, where
for all σ ∈ 2AP , we have 〈w′, q′〉 ∈ ρ(〈s0, q〉, σ) iff w′ ∈ W0 and l(w′) = σ and q′ ∈ δ(q, σ),
and for w ∈ W we have 〈w′, q′〉 ∈ ρ(〈w, q〉, σ) iff R(w,w′) and l(w′) = σ and q′ ∈ δ(q, σ).
Thus, when the product AK×A proceeds from state 〈w, q〉 with σ, its new W -component
is the single successor of w that is labeled σ, paired with the σ-successors of q. It is easy
to see that L(AK×A) = L(K) ∩ L(A). When A corresponds to an LTL formula ψ (that is,
L(A) = L(ψ)), we denote the product by AK×ψ.

We start with the problem of deciding relative safety. By Theorem 4, a language L is
K-safety iff L(K) ∩ L is safety. Thus, the check can be reduced to checking the safety of
AK×A (respectively AK×ψ). This check, however, if done naively, is PSPACE in |AK×A|
(respectively |AK×ψ|), which is PSPACE in |K|. The technical challenge is to find a more
efficient way to do the check, and the one we describe in the proof is based on decomposing
AK×A so that the complementation that its safety check involves is circumvented. As for the
lower bound, note that using the Kripke structure KAP , one can reduce traditional safety
to relative safety.3 Our reduction, however, shows that the complexity of deciding K-safety
coincides with that of model checking in both its parameters.

I Theorem 13. Consider a Kripke structure K over AP and a language L ⊆ (2AP )ω. The
problem of deciding whether L is K-safety is PSPACE-complete for L given by an NBW or
by an LTL formula. In both cases it can be done in time linear and space polylogarithmic in
|K|.

We continue to relative counterability. We first show that the complexity of deciding
counterability is carried over to the relative setting. For the upper bound, note that a
language L is K-counterable iff pref(L(K)) ∩ comp(pref(L(K) ∩ L)) 6= ∅. Again, this check,
if done naively, is PSPACE in |K|, and the challenge in the proof is to use the deterministic
behavior of AK×A with respect to the W -component of its states in order to avoid a blow-up
in K in its complementation.

I Theorem 14. Consider a Kripke structure K over AP and a language L ⊆ (2AP )ω.
The problem of deciding whether L is K-counterable and finding a shortest K-bad-prefix is
PSPACE-complete for L given by an NBW and is EXPSPACE-complete for L given by an
LTL formula. In both cases it can be done in time linear and space polylogarithmic in |K|.

3 Indeed KAP is exponential in |AP |, but safety is known to be PSPACE-hard also when the number of
atomic propositions is fixed.
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We now study the length of K-bad-prefixes. The upper bounds follow from the proof of
Theorem 14, and for the lower ones, we rely on KAP and the constructions described in the
proofs of Theorems 11 and 12 in order to prove the dependency on |ψ| and |A|, and describe
a family of Kripke structures requiring linear dependency in |K|:

I Theorem 15. The length of a shortest K-bad-prefix for a K-counterable language L is
tightly doubly-exponential in |ψ|, in case L is given by means of an LTL formula ψ, and is
tightly exponential in |A|, in case L is given by an NBW A. In both cases, it is also tightly
linear in |K|.

Interestingly, when the LTL formula is K-safety, deciding its K-counterability and finding
a K-bad-prefix can be done more efficiently, and its K-bad-prefixes are shorter. For the
decidability problem, note that if an LTL formula ψ is K-safety, then ψ is K-counterable iff
K 6|= ψ. Also, by Theorem 4, the fact ψ is K-safety implies that the NBW AK×ψ is safety,
which is useful in the construction of fine automata. Formally, we have the following.

I Theorem 16. Let K be a Kripke structure and let ψ be a K-safety LTL formula. Deciding
whether ψ is K-counterable and finding a K-bad-prefix is PSPACE-complete in |ψ|. The
length of shortest K-bad-prefixes is tightly exponential in |ψ|.

Note that the space complexity of the algorithm described in the proof of Theorem 16
in also polylogarithmic in |K|. Finally, when the specification formalism is automata, the
difference between K-safety and K-counterable languages disappears, and a short K-bad-
prefix for a K-safety or K-counterable language given by an NBW A is tightly exponential
in |A| and linear in |K|.

7 On Probabilistic Relative Counterability

In this section we study K-prob-counterability. By Theorem 6, an ω-regular language L is
K-prob-counterable iff PrK,P [L] < 1 for some K-walk-distribution P . This, together with
[11], imply the upper bound for the corresponding decision problem:

I Theorem 17. Consider a language L ⊆ (2AP )ω and a Kripke structure K over AP .
Deciding whether L is K-prob-counterable can be done in time O(|K| · 2O(|L|)) or in space
polynomial in |L| and polylogarithmic in |K|, for L given by an LTL formula ψ, in which
case |L| = |ψ|, or by an NBW A, in which case |L| = |A|. In both cases, the problem is
PSPACE-complete.

Thus, deciding whether an LTL formula is K-prob-counterable is exponentially easier
than in the non-probabilistic case.

Recall that the study of K-counterability involved reasoning about the product of K
and a nondeterministic automaton for the language. In the probabilistic setting, we need
the automaton for the language to be deterministic. Let D = 〈2AP , S, s0, δD, α〉 be a
DPW for a language L and let K = 〈AP,W,W0, R, l〉 be a Kripke structure. We define
DK×D = 〈2AP ,W × S,W0 × {s0}, ρ, α′〉 as the product DPW of K and D. Formally, we
have α′(〈w, s〉) = α(s), and 〈w′, s′〉 ∈ ρ(〈w, s〉, σ) iff [l(w) = σ, R(w,w′) and s′ = δD(s, σ)].
Note that L(DK×D) = L(K)∩L(D). Also, note that all of the successors of a state in DK×D
share the same second component.

In the probabilistic setting, we also need to define the product as a Markov chain. Let D
and K be as above and let P = 〈pin, p〉 be a K-walk-distribution. We define a labeled Markov
chain M ′ = 〈2AP ,W × S, p′in, p′, l′〉, where p′ : (W × S) × (W × S) → [0, 1] is such that
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p′(〈w, s〉, 〈w′, s′〉) = p(〈w,w′〉) if δD(s, l(w)) = s′, and otherwise p′(〈w, s〉, 〈w′, s′〉) = 0. Also,
p′in : W ×S → [0, 1] is such that p′in(〈w, s〉) = pin(w) if s = s0, and otherwise p′in(〈w, s〉) = 0.
Finally, l′ : W × S → 2AP is such that l′(〈w, s〉) = l(w). Thus, p′in and p′ attribute the
states of M = MK,P by the deterministic behavior of D. In particular, note that for every
〈w, s〉 ∈W × S, we have

∑
〈w′,s′〉∈W×S p

′(〈w, s〉, 〈w′, s′〉) =
∑
w′∈W p〈w,w′〉 = 1.

Let g : W × S →W be a function that projects pairs in W × S on their W -component,
namely g(〈w, s〉) = w. Consider random walks X = X1, X2 . . . and X ′ = X ′1, X

′
2 . . . on M

and M ′, respectively. Let Y = Y1, Y2, . . . be the projection of X ′ on W , thus Yi = g(X ′i) for
i = 1, 2, . . .. Note that the processes X and Y both take values in Wω and that they have
the same distribution. Therefore, we have PrM [L] = PrM ′ [L]. Also, for a finite computation
u = l(w0), . . . , l(wn) of K, we have PruM [L] = PruM ′ [L]. Note that w0, . . . , wn induces a single
finite path 〈w0, s0〉, . . . , 〈wn, sn〉 in DK×D, and that every infinite path in K induces a single
infinite path in DK×D. For a finite computation u, let reach(u) be the state reached in DK×D
after traversing u. Thus, reach(u) = 〈wn, sn〉. By the above, PruM ′ [L] is the probability that
a random walk in M ′ from reach(u) is an accepting run in DK×D. For a state x of M ′, we
denote by γx the probability that a random walk from x in M ′ is an accepting run in DK×D.
Note that a finite computation u is a K-prob-bad-prefix iff γreach(u) = 0.

I Lemma 18. Deciding whether γx is 0, 1 or in (0, 1), for all states x in M ′, can be done
in time linear in |D| and in |K| or in space polylogarithmic in |D| and in |K|. Furthermore,
the probability γx can be calculated in time polynomial in |D| and in |K|.

We turn to study the complexity of probabilistic relative counterability of ω-regular
languages. Handling a language given by an NBW can proceed by an exponential translation
to a DPW [31]. For languages given by LTL formulas, going to DPWs involves a doubly-
exponential blow-up. We show that in order to find a K-prob-bad-prefix for an LTL formula,
we can carefully proceed according to the syntax of the formula and do exponentially better
than an algorithm that translates the formulas to automata. We note that the PSPACE-
hardness in Theorem 17 is by a reduction from the universality problem. Thus, we cannot
hope to obtain a PSPACE algorithm by translating LTL formulas to NBWs, unless the
structure of the latter is analyzed to a level in which it essentially follows the structure of
the LTL formula (see, for example, [12] for such an approach applied in probabilistic LTL
model checking).

7.1 On probabilistic relative counterability of NBWs
We start with an algorithm for finding a shortest K-prob-bad-prefix for a language given by
an NBW A. For that, we need to find a shortest word whose path in M ′ reaches a state x
for which γx = 0. By Lemma 18, we thus have the following:

I Theorem 19. Consider an NBW A over the alphabet 2AP and a Kripke structure K over
AP . Finding a shortest K-prob-bad-prefix for L(A) can be done in space polynomial in |A|
and polylogarithmic in |K| or in time exponential in |A| and linear in |K|. Furthermore,
the length of the shortest K-prob-bad-prefix for L(A) is tightly exponential in |A| and tightly
linear in |K|.

Consider a Kripke structure K over AP and a language L ⊆ (2AP )ω that is K-prob-
counterable. In practice, the user of the model-checking tool often has some estimation of the
likelihood of every transition in the system. That is, we assume that the user knows what
the typical K-walk-distribution P in a typical behavior of the system is. Clearly, there is a
trade-off between the length of a counterexample and its “precision”, in the sense that the
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longer a finite prefix of an erroneous computation is, the larger is the probability in which it
is a K-prob-bad-prefix. We want to allow the user to play with this trade-off and thus define
the following two problems:

The shortest bounded-prob-K-bad-prefix problem is to return, given K, L, and 0 < γ < 1,
a shortest finite computation u of K such that PruK,P [L] < γ.
The bounded-length prob-K-bad-prefix problem is to return, given K, L, and m ≥ 1, a
finite computation u of K such that |u| ≤ m and PruK,P [L] is minimal.

Using Lemma 18, we can carefully reduce both problems to classical problems in graph
algorithms, applied to DK×D:

I Theorem 20. The shortest bounded-prob-K-bad-prefix and the bounded-length prob-K-bad-
prefix problems, for a language given by an NBW A, can be solved in time exponential in |A|
and polynomial in |K|.

We note that using our construction of M ′, together with Lemma 18, we can reduce the
calculation of PrK,P [L(A)] or the problem of its classification to 1, 0, or (0, 1) to a sequence
of calculations in M ′, simplifying the known result of [11] (Theorem 4.1.7 there).

7.2 On Probabilistic Relative Counterability of LTL formulas
We describe an algorithm for finding a K-prob-bad-prefix for an LTL formula θ. Like
the model-checking algorithm in [11], our algorithm proceeds by iteratively replacing the
innermost temporal subformula of θ by a fresh atomic proposition and adjusting K so that
the probability of a computation obtained by a random walk to satisfy the specification
is maintained. In more detail, we construct a sequence K0,K1, . . . of Kripke structures
and a sequence θ0, θ1, . . . of LTL formulas such that K0 = K and θ0 = θ, and Ki+1 is
obtained from Ki by applying a transformation that depends on the innermost temporal
operator in θi, which is replaced by a fresh atomic proposition in θi+1. We show that a
Ki-prob-bad-prefix for θi can be constructed by extending a Ki+1-prob-bad-prefix for θi+1,
resulting in a recursive construction of a K-prob-bad-prefix for θ.

I Theorem 21. Finding a K-prob-bad-prefix for a K-prob-counterable LTL formula θ can be
done in time O(|K|·2|θ|) or in space polynomial in |θ| and polylogarithmic in |K|. Furthermore,
the K-prob-bad-prefix that is found is of length O(|K| · 2|θ|).

We now study the length of shortest K-prob-bad-prefixes.

I Theorem 22. The length of a shortest K-prob-bad-prefix for a K-prob-counterable language
given by an LTL formula ψ is tightly exponential in |ψ| and tightly linear in |K|.

Note that the K-prob-bad-prefix that our algorithm finds is not necessarily the shortest,
however it matches the lower bound from Theorem 22.

Thus, we showed that the probabilistic approach for relative bad prefixes for LTL formulas
is exponentially better than the non-probabilistic approach both in its complexity and in the
length of the prefixes.

8 On Probabilistic Counterability

In this section we study prob-counterability. The solutions to the three basic problems are
specified in Theorems 23, 24, and 25 below. The upper bound for the first follows from the
fact that, by Theorem 2, an ω-regular language L is prob-counterable iff Pr[L] < 1, which,
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by [11], can be checked in PSPACE. The latter two follow from the results in Section 7,
taking the Kripke structure to be KAP .

I Theorem 23. The problem of deciding whether a language L is prob-counterable is PSPACE-
complete for L given by an LTL formula or by an NBW.

I Theorem 24. Let A be an NBW. Finding a shortest prob-bad-prefix for L(A) can be done
in time exponential in |A|, or in space polynomial in |A|. Furthermore, the length of the
shortest prob-bad-prefix is tightly exponential in |A|.

I Theorem 25. Finding a prob-bad-prefix for a prob-counterable LTL formula ψ can be done
in time 2O(|ψ|) or in space polynomial in |ψ|. Furthermore, the prob-bad-prefix that is found
is of length 2O(|ψ|). The shortest prob-bad-prefix for ψ is tightly exponential in |ψ|.

Thus, the exponential advantage of the probabilistic approach in the case the language is
given by an LTL formula is carried over to the non-relative setting. When the specification
is given by means of an NBW, the complexities of the probabilistic and non-probabilistic
approaches coincide. The probabilistic approach, however, may return more bad prefixes.

9 Discussion

We extended the applicability of finite counterexamples by introducing relative and probabilis-
tic bad-prefixes. This lifts the advantage of safety properties, which always have bad-prefixes,
to ω-regular languages that are not safety. We believe that K-bad-prefixes and K-prob-bad-
prefixes may be very helpful in practice, as they describe a finite execution that leads the
system to an error state. From a computational point of view, finding a K-bad-prefix for an
LTL formula ψ is unfortunately EXPSPACE-complete in |ψ|. Experience shows that even
highly complex algorithms often run surprisingly well in practice. Also here, the complexity
originates from the blow-up in the translation of LTL to automata, which rarely happens in
practice. In cases the complexity is too high, we suggest the following two alternatives, which
do not go beyond the PSPACE complexity of LTL model checking (and, like model checking,
are NLOGSPACE in K): (1) Recall that when ψ is K-safety and K 6|= ψ, then finding a
K-bad-prefix can be done in PSPACE. Thus, we suggest to check ψ for K-safety with the
algorithm from Theorem 13, and then apply the algorithm from Theorem 16. (2) Recall
that finding a K-prob-bad-prefix is only PSPACE-complete. Thus, we suggest to apply the
algorithm from Theorem 21. Note that the probabilistic approach is not only exponentially
less complex, but may be essential when ψ is K-prob-counterable and not K-counterable.

When a user gets a lasso-shaped counterexample, he can verify that indeed it does not
satisfy the specification. For finite bad-prefixes, the user knows that they lead the system
to an error state, and it is desirable to accompany the prefix with information explaining
why these states are erroneous. We suggest the following three types of explanations. (1)
A K-bad-prefix leads the product K ×Aψ to states 〈w, S〉 that are empty. Recall that the
states of Aψ consist of subsets of subformulas of ψ, and that 〈w, S〉 being empty means that
w does not satisfy the conjunction of the formulas in S [37]. Returning S to the user explains
what makes w an error state. (2) Researchers have studied certified model checking [24],
where a positive answer of model checking (that is, K |= ψ) is accompanied by a certificate –
a compact explanation as to why K ×A¬ψ is empty. In our setting, certificates can provide
a compact explanation as to why K × Aψ with initial state 〈w, S〉 is empty. (3) When a
K-prob-bad-prefix u that is not a K-bad-prefix is returned, it may be helpful to accompany u
with an infinite lasso-shaped computation τ of the system that starts with u and does satisfy
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the specification. Thus, the user would get an exception: he would know that almost all
computations that start in u except for τ (and possibly more computations, whose probability
is 0) violate ψ. The exceptional correct behavior would help the user understand why almost
all other behaviors are incorrect.

Acknowledgment. We thank Moshe Y. Vardi for helpful discussions.
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