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Abstract
In [2], we introduced sensing as a new complexity measure for the complexity of regular languages.
Intuitively, the sensing cost quantifies the detail in which a random input word has to be read by
a deterministic automaton in order to decide its membership in the language. In this paper, we
consider sensing in two principal applications of deterministic automata. The first is monitoring:
we are given a computation in an on-line manner, and we have to decide whether it satisfies the
specification. The second is synthesis: we are given a sequence of inputs in an on-line manner
and we have to generate a sequence of outputs so that the resulting computation satisfies the
specification. In the first, our goal is to design a monitor that handles all computations and
minimizes the expected average number of sensors used in the monitoring process. In the second,
our goal is to design a transducer that realizes the specification for all input sequences and
minimizes the expected average number of sensors used for reading the inputs.

We argue that the two applications require new and different frameworks for reasoning about
sensing, and develop such frameworks. We focus on safety languages. We show that for monitor-
ing, minimal sensing is attained by a monitor based on the minimal deterministic automaton for
the language. For synthesis, however, the setting is more challenging: minimizing the sensing may
require exponentially bigger transducers, and the problem of synthesizing a minimally-sensing
transducer is EXPTIME-complete even for safety specifications given by deterministic automata.
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1 Introduction

Studying the complexity of a formal language, there are several complexity measures to
consider. When the language is given by means of a Turing Machine, the traditional measures
are time and space requirements. Theoretical interest as well as practical considerations have
motivated additional measures, such as randomness (the number of random bits required for
the execution) [11] or communication complexity (number and length of messages required)
[10]. For ω-regular languages, given by means of finite-state automata, the classical complexity
measure is the size of a minimal deterministic automaton that recognizes the language.

In [2], we introduced and studied a new complexity measure, namely the sensing cost of
the language. Intuitively, the sensing cost of a language measures the detail with which a
random input word needs to be read in order to decide membership in the language. Sensing
has been studied in several other CS contexts. In theoretical CS, in methodologies such as
PCP and property testing, we are allowed to sample or query only part of the input [8]. In
more practical applications, mathematical tools in signal processing are used to reconstruct
information based on compressed sensing [3], and in the context of data streaming, one
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cannot store in memory the entire input, and therefore has to approximate its properties
according to partial “sketches” [12].

Our study in [2] considered regular and ω-regular languages, where sensing is defined as
follows. Consider a deterministic automaton A over an alphabet 2P , for a finite set P of
signals. For a state q of A, we say that a signal p ∈ P is sensed in q if at least one transition
taken from q depends on the truth value of p. The sensing cost of q is the number of signals
it senses, and the sensing cost of a run is the average sensing cost of states visited along the
run. We extend the definition to automata by assuming a given distribution of the inputs.
The sensing cost of a language with respect to this distribution is then the infimum sensing
cost of an automaton for the language. For simplicity, we focus on the uniform distribution,
and we refer to the sensing cost of an automaton without parameterizing it by a distribution.
As detailed in Remark 1, all our results can be extended to a setting with a parameterized
distribution.

In [2], we showed that computing the sensing cost of a language can be done in polynomial
time. We further showed that while in finite words the minimal sensing cost is always attained,
this is not the case for infinite words. For example, recognizing the language L over 2{p}
of all words with infinitely many p’s, one can give up sensing of p for unboundedly-long
intervals, thus the sensing cost of L is 0, yet every deterministic automaton A that recognizes
L must sense p infinitely often, causing the sensing cost of A to be strictly greater than 0.

In the context of formal methods, sensing has two appealing applications. The first
is monitoring: we are given a computation and we have to decide whether it satisfies
a specification. When the computations are over 2P , we want to design a monitor that
minimizes the expected average number of sensors used in the monitoring process. Monitoring
is especially useful when reasoning about safety specifications [7]. There, every computation
that violates the specification has a bad prefix – one all whose extensions are not in L. Hence,
as long as the computation is a prefix of some word in L, the monitor continues to sense and
examine the computation. Once a bad prefix is detected, the monitor declares an error and
no further sensing is required. The second application is synthesis. Here, the set P of signals
is partitioned into sets I and O of input and output signals, respectively. We are given a
specification L over the alphabet 2I∪O, and our goal is to construct an I/O transducer that
realizes L. That is, for every sequence of assignments to the input signals, the transducer
generates a sequence of assignments to the output signals so that the obtained computation
is in L [13]. Our goal is to construct a transducer that minimizes the expected average
number of sensors (of input signals) that are used along the interaction.

The definition of sensing cost in [2] falls short in the above two applications. For the first,
the definition in [2] does not distinguish between words in the language and words not in
the language, whereas in monitoring we care only for words in the language. In particular,
according to the definition in [2], the sensing cost of a safety language is always 0. For
the second, the definition in [2] considers automata and does not partition P into I and O,
whereas synthesis refers to I/O-transducers. Moreover, unlike automata, correct transducers
generate only computations in the language, and they need not generate all words in the
language – only these that ensure receptiveness with respect to all sequences of inputs.

In this work we study sensing in the context of monitoring and synthesis. We suggest
definitions that capture the intuition of “required number of sensors” in these settings and
solve the problems of generating monitors and transducers that minimize sensing. For both
settings, we focus on safety languages.

Consider, for example, a traffic monitor that has access to various sensors on roads and
whose goal is to detect accidents. Once a road accident is detected, an alarm is raised to
the proper authorities and the monitoring is stopped until the accident has been taken care
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of. The monitor can read the speed of cars along the roads, as well as the state of traffic
lights. An accident is detected when some cars do not move even-though no traffic light is
stopping them. Sensing the speed of every car and checking every traffic light requires huge
sensing. Our goal is to find a monitor that minimizes the required sensing and still detects
all accidents. In the synthesis setting, our goal is extended to designing a transducer that
controls the traffic lights according to the speed of the traffic in each direction, and satisfies
some specification (say, give priority to slow traffic), while minimizing the sensing of cars.

We can now describe our model and results. Let us start with monitoring. Recall that
the definition of sensing in [2] assumes a uniform probability on the assignments to the
signals, whereas in monitoring we want to consider instead more intricate probability spaces
– ones that restrict attention to words in the language. As we show, there is more than one
way to define such probability spaces, each leading to a different measure. We study two
such measures. In the first, we sample a word randomly, letter by letter, according to a
given distribution, allowing only letters that do not generate bad prefixes. In the second,
we construct a sample space directly on the words in the language. We show that in both
definitions, we can compute the sensing cost of the language in polynomial time, and that
the minimal sensing cost is attained by a minimal-size automaton. Thus, luckily enough,
even though different ways in which a computation may be given in an online manner calls
for two definitions of sensing cost, the design of a minimally-sensing monitor is the same in
the two definitions.

Next, we proceed to study sensing for synthesis. The main challenge there is that we no
longer need to consider all words in the language. Also, giving up sensing has a flavor of
synthesis with incomplete information [9]: the transducer has to realize the specification
no matter what the incomplete information is. This introduces a new degree of freedom,
which requires different techniques than those used in [2]. In particular, while a minimal-size
transducer for a safety language can be defined on top of the state space of a minimal-size
deterministic automaton for the language, this is not the case when we seek minimally-sensing
transducers. This is different also from the results in [2] and even these in the monitoring
setting, where a minimally-sensing automaton or monitor for a safety language coincides
with the minimal-size automaton for it. In fact, we show that a minimally-sensing transducer
for a safety language might be exponentially bigger than a minimal-size automaton for the
language. Consequently, the problems of computing the minimal sensing cost and finding a
minimally-sensing transducer are EXPTIME-complete even for specifications given by means
of deterministic safety automata. On the positive side, a transducer that attains the minimal
sensing cost always exists for safety specifications. For general ω-regular specifications, even
decidability of computing the optimal sensing cost remains open.

Due to lack of space, some of the proofs are omitted and can be found in the full version,
in the authors’ home pages.

2 Preliminaries

Automata and Transducers
A deterministic automaton on infinite words is A = 〈Σ, Q, q0, δ, α〉, where Q is a finite set
of states, q0 ∈ Q is an initial state, δ : Q × Σ 9 Q is a partial transition function, and α
is an acceptance condition. We sometimes refer to δ as a relation ∆ ⊆ Q × Σ × Q, with
〈q, σ, q′〉 ∈ ∆ iff δ(q, σ) = q′. A run of A on a word w = σ1 · σ2 · · · ∈ Σω is a sequence of
states q0, q1, . . . such that qi+1 = δ(qi, σi+1) for all i ≥ 0. Note that since δ is deterministic
and partial, A has at most one run on a word. A run is accepting if it satisfies the acceptance
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condition. A word w ∈ Σω is accepted by A if A has an accepting run on w. The language
of A, denoted L(A), is the set of words that A accepts. We denote by Aq the automaton A
with the initial state set to q.

In a deterministic looping automaton (DLW), every run is accepting. Thus, a word is
accepted if there is a run of the automaton on it.1 Since every run is accepting, we omit the
acceptance condition and write A = 〈Σ, Q, q0, δ〉.

For finite sets I and O of input and output signals, respectively, an I/O transducer is
T = 〈I,O,Q, q0, δ, ρ〉, where Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q×2I → Q

is a total transition function, and ρ : Q → 2O is a labeling function on the states. The
run of T on a word w = i0 · i1 · · · ∈ (2I)ω is the sequence of states q0, q1, . . . such that
qk+1 = δ(qk, ik) for all k ≥ 0. The output of T on w is then o1, o2, . . . ∈ (2O)ω where
ok = ρ(qk) for all k ≥ 1. Note that the first output assignment is that of q1, and we do not
consider ρ(q0). This reflects the fact that the environment initiates the interaction. The
computation of T on w is then T (w) = i0 ∪ o1, i1 ∪ o2, . . . ∈ (2I∪O)ω.

Note that the structure of each I/O-transducer T induces a DLW AT over the alphabet
2I with a total transition relation. Thus, the language of the DLW is (2I)ω, reflecting the
receptiveness of T .

Safety Languages
Consider a language L ⊆ Σω. A finite word x ∈ Σ∗ is a bad prefix for L if for every y ∈ Σω,
we have that x · y 6∈ L. That is, x is a bad prefix if all its extensions are words not in L. The
language L is then a safety language if every word not in L has a bad prefix. For a language
L, let pref (L) = {x ∈ Σ∗ : there exists y ∈ Σω such that x · y ∈ L} be the set of prefixes of
words in L. Note that each word in Σ∗ is either in pref (L) or is a bad prefix for L. Since the
set pref (L) for a safety language L is fusion closed (that is, a word is in L iff all its prefixes
are in pref (L)), an ω-regular language is safety iff it can be recognized by a DLW [15].

Consider a safety language L over sets I and O of input and output signals. We say
that L is I/O-realizable if there exists an I/O transducer T all whose computations are in
L. Thus, for every w ∈ (2I)ω, we have that T (w) ∈ L. We then say that T I/O-realizes L.
When I and O are clear from the context, we omit them. The synthesis problem gets as
input a safety language L over I ∪O, say by means of a DLW, and returns an I/O-transducer
that realizes L or declares that L is not I/O-realizable.

Sensing
In [2], we defined regular sensing as a measure for the number of sensors that need to be
operated in order to recognize a regular language. We study languages over an alphabet
Σ = 2P , for a finite set P of signals. A letter σ ∈ Σ corresponds to a truth assignment to the
signals, and sensing a signal amounts to knowing its assignment. Describing sets of letters
in Σ, it is convenient to use Boolean assertions over P . For example, when P = {a, b}, the
assertion ¬b stands for the set {∅, {a}} of two letters.

For completeness, we bring here the definitions from [2]. Consider a language L and a
deterministic automaton A = 〈2P , Q, q0, δ, α〉 such that L(A) = L. We assume that δ is total.
For a state q ∈ Q and a signal p ∈ P , we say that p is sensed in q if there exists a set S ⊆ P
such that δ(q, S \ {p}) 6= δ(q, S ∪ {p}). Intuitively, a signal is sensed in q if knowing its value

1 For readers familiar with the Büchi acceptance condition, a looping automaton is a special case of Büchi
with α = Q.
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may affect the destination of at least one transition from q. We use sensed(q) to denote the
set of signals sensed in q. The sensing cost of a state q ∈ Q is scost(q) = |sensed(q)|. 2

For a finite run r = q1, . . . , qm of A, we define the sensing cost of r, denoted scost(r), as
1
m

∑m−1
i=0 scost(qi). That is, scost(r) is the average number of sensors that A uses during r.

Now, for a finite word w, we define the sensing cost of w in A, denoted scostA(w), as the
sensing cost of the run of A on w. Finally, the sensing cost of A is the expected sensing cost
of words of length that tends to infinity, where we assume that the letters in Σ are uniformly
distributed (see Remark 1 below). Thus, scost(A) = limm→∞ |Σ|−m

∑
w∈Σm scostA(w).

Note that the definition applies to automata on both finite and infinite words, and
it corresponds to the closed setting: the automaton gets as input words over 2P and
uses sensors in order to monitor the input words and decide their membership in L. We
define the sensing cost of a language L to be the minimal cost of an automaton for L.
A-priori, the minimal cost might not be attained by a single automaton, thus we define
scost(L) = inf {scost(A) : A is an automaton for L}.

I Remark 1 (On the choice of uniform distribution). The choice of a uniform distribution
on the letters in Σ may be unrealistic in practice. Indeed, in real scenarios, the distribution
on the truth assignments to the underlying signals may be complicated. Generally, such a
distribution can be given by a Markov chain (in monitoring) or by an MDP (in synthesis).
As it turns out, adjusting our setting and algorithms to handle such distributions involves
only a small technical elaboration, orthogonal to the technical challenges that exists already
in a uniform distribution.

Accordingly, throughout the paper we assume a uniform distribution on the truth assign-
ments to the signals. In the full version we describe how our setting and algorithms are
extended to the general case.

The definition of sensing in [2] essentially considers the sensing required in the Ergodic
SCC of a deterministic automaton for the language. Since in safety languages, the Ergodic
SCCs are accepting or rejecting sinks, which require no sensing, we have the following, which
implies that the definition in [2] is not too informative for safety languages.

I Lemma 2. For every safety language L ⊆ Σω, we have scost(L) = 0.

Markov Chains and Decision Processes
A Markov chain M = 〈S, P 〉 consists of a finite state space S and a stochastic transition
matrix P : S × S → [0, 1]. That is, for all s ∈ S, we have

∑
s′∈S P (s, s′) = 1. Given an

initial state s0, consider the vector v0 in which v0(s0) = 1 and v0(s) = 0 for every s 6= s0.
The limiting distribution ofM is limn→∞

1
n

∑n
m=0 v

0Pm. The limiting distribution satisfies
πP = π, and can be computed in polynomial time [5].

A Markov decision process (MDP) isM = 〈S, s0, (As)s∈S ,P, cost〉 where S is a finite set
of states, s0 ∈ S is an initial state, As is a finite set of actions that are available in state s ∈ S.
Let A =

⋃
s∈S As. Then, P : S ×A× S 9 [0, 1] is a partial transition probability function,

defining for every two states s, s′ ∈ S and action a ∈ As, the probability of moving from s to
s′ when action a is taken. Accordingly,

∑
s′∈S P(s, a, s′) = 1. Finally, cost : S ×A9 N is a

2 We note that, alternatively, one could define the sensing level of states, with slevel(q) = scost(q)
|P | . Then,

for all states q, we have that slevel(q) ∈ [0, 1]. All our results hold also for this definition, simply by
dividing the sensing cost by |P |.
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q0q1 q2
¬a a

True a

Figure 1 A DLW for aω + (¬a) · (True)ω.

partial cost function, assigning each state s and action a ∈ As, the cost of taking action a in
state s.

An MDP can be thought of as a game between a player who chooses the actions and
nature, which acts stochastically according to the transition probabilities.

A policy for an MDPM is a function f : S∗ × S → A that outputs an action given the
history of the states, such that for s0, . . . , sn we have f(s0, . . . , sn) ∈ Asn

. Policies correspond
to the strategies of the player. The cost of a policy f is the expected average cost of a
random walk inM in which the player proceeds according to f . Formally, for m ∈ N and
for a sequence of states τ = s0, . . . , sm−1, we define Pf (τ) =

∏m−1
i=1 P(si−1, f(s0 · · · si−1), si).

Then, costm(f, τ) = 1
m

∑m
i=1 cost(si, f(s1 · · · si)) and we define the cost of f as cost(f) =

lim infm→∞ 1
m

∑
τ :|τ |=m costm(f, τ) · Pf (τ).

A policy is memoryless if it depends only on the current state. We can describe a memory-
less policy by f : S → A. A memoryless policy f induces a Markov chainMf = 〈S, Pf 〉 with
Pf (s, s′) = P(s, f(s), s′). Let π be the limiting distribution ofMf . It is not hard to prove
that cost(f) =

∑
s∈S πscost(s, f(s)). Let cost(M) = inf{cost(f) : f is a policy forM}.

That is, cost(M) is the expected cost of a game played onM in which the player uses an
optimal policy.

I Theorem 3. Consider an MDP M. Then, cost(M) can be attained by a memoryless
policy, which can be computed in polynomial time.

3 Monitoring

As described in Section 2, the definition of sensing in [2] takes into an account all words in
(2P )ω, regardless their membership in the language. In monitoring, we restrict attention
to words in the language, as once a violation is detected, no further sensing is required. In
particular, in safety languages, violation amounts to a detection of a bad prefix, and indeed
safety languages are the prominent class of languages for which monitoring is used [7].

As it turns out, however, there are many approaches to define the corresponding probability
space. We suggest here two. Let A be a DLW and let L = L(A).
1. [Letter-based] At each step, we uniformly draw a “safe” letter – one with which we are

still generating a word in pref (L), thereby iteratively generating a random word in L.
2. [Word-based] At the beginning, we uniformly draw a word in L.

We denote the sensing cost of A in the letter- and word-based approaches lcost(A) and
wcost(A), respectively. The two definitions yield two different probability measures on L, as
demonstrated in Example 4 below.

I Example 4. Let P = {a} and consider the safety language L = aω + (¬a) · (True)ω. That
is, if the first letter is {a}, then the suffix should be {a}ω, and if the first letter is ∅, then all
suffixes result in a word in L. Consider the DLW A for L in Figure 1.

In the letter-based definition, we initially draw a letter from 2{a} uniformly, i.e., either a
or ¬a w.p. 1

2 . If we draw ¬a, then we move to q1 and stay there forever. If we draw a, then
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we move to q2 and stay there forever. Since scost(q1) = 0 and scost(q2) = 1, and we reach q1
and q2 w.p 1

2 , we get lcost(A) = 1
2 .

In the word-based definition, we assign a uniform probability to the words in L. In this
case, almost all words are not aω, and thus the probability of aω is 0. This means that we
will get to q1 w.p. 1, and thus wcost(A) = 0.

As a more realistic example, recall our traffic monitor in Section 1. There, the behavior
of the cars is the random input, and the two approaches can be understood as follows. In the
letter-based approach, we assume that the drivers do their best to avoid accidents regardless
of the history of the traffic and the traffic lights so far. Thus, after every safe prefix, we
assume that the next input is also safe. In the word-based approach, we assume that the
city is planned well enough to avoid accidents. Thus, we a-priori set the distribution to safe
traffic behaviors according to their likelihood.

We now define the two approaches formally.

The Letter-Based Approach

Consider a DLW A = 〈Σ, Q, δ, q0〉. For a state q ∈ Q, let avail(q) be the set of letters
available in q, namely letters that do not cause A to get stuck. Formally, avail(q) =
{σ ∈ Σ : δ(q, σ) is defined }. We model the drawing of available letters by the Markov
chain MA = 〈Q,P 〉, where the probability of a transition from state q to state q′ in
MA is P (q, q′) = |{σ∈Σ:δ(q,σ)=q′}|

|avail(q)| . Let π be the limiting distribution of MA. We define
lcost(A) =

∑
q∈Q π(q) · scost(q).

Since computing the limiting distribution can be done in polynomial time, we have the
following.

I Theorem 5. Given a DLW A, the sensing cost lcost(A) can be calculated in polynomial
time.

The Word-Based Approach

Consider a DLW A = 〈2P , Q, q0, δ〉 recognizing a non-empty safety language L. From [2],
we have scost(A) = limn→∞

1
|Σ|n

∑
u∈Σn scostA(u), which coincides with E[scostA(u)] where

E is the expectation with respect to the standard measure on Σω. Our goal here is to
replace this standard measure with one that restricts attention to words in L. Thus, we
define wcost(A) = E[scost(u) | u ∈ L]. For n ≥ 0, let pref (L, n) be the set of prefixes
of L of length n. Formally, pref (L, n) = pref (L) ∩ Σn. As in the case of the standard
measure, the expectation-based definition coincides with one that that is based on a limiting
process: wcost(A) = limn→∞

1
|pref (L,n)|

∑
u∈pref (L,n) scostA(u). Thus, the expressions for

scost and wcost are similar, except that in the expectation-based definition we add conditional
probability, restricting attention to words in L, and in the limiting process we replace Σn by
pref (L, n).

Note that the term 1
|pref (L,n)| is always defined, as L is a non-empty safety language. In

particular, the expectation is well defined even if L has measure 0 in Σω.

I Theorem 6. Given a DLW A, we can compute wcost(A) in polynomial time.

Proof. We will use here formal power series on one variable z, a classical tool for graph and
automata combinatorics. They can be thought of as polynomials of infinite degree.

For states p, q ∈ Q and for n ∈ N, let #paths(p, q, n) denote the number of paths (each one
labeled by a distinct word) of length n from p to q in A. We define the generating functions:
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Cp,q(z) =
∑
n∈N #paths(p, q,n)zn and Fq(z) = Cq0,q(z)

∑
p∈Q Cq,p(z). Let [zn]Fq(z) be the

coefficient of zn in Fq(z). By the definition of Cq0,q, we get

[zn]Fq(z) =
n∑
k=0

#paths(q0 , q, k)
∑
p∈Q

#paths(q, p,n − k).

Therefore, [zn]Fq(z) is the total number of times the state q is used when listing all paths of
length n from q0.

Thus, we have
∑
u∈pref (L,n) scost(u) = 1

n

∑
q∈Q scost(q)[zn]Fq(z). Finally, let S(z) =∑

p∈p Cq0,p(z). Then, wcost(A) = limn→∞
1

n·[zn]S(z)
∑
q∈Q scost(q)[zn]Fq(z). In the full

version we use techniques from [4] and [14] to compute the latter limit in polynomial time,
by asymptotic estimations of the coefficients, thus concluding the proof. J

Sensing cost of languages

For a safety language L, we define lcost(L) = inf{lcost(A) : A is a DLW for L}, and similarly
for wcost(L). Different DLWs for a language L may have different sensing costs. We show
that the minimal sensing cost in both approaches is attained at the minimal-size DLW. We
first need some definitions and notations.

Consider a safety language L ⊆ Σω. For two finite words u1 and u2, we say that u1
and u2 are right L-indistinguishable, denoted u1 ∼L u2, if for every z ∈ Σω, we have that
u1 · z ∈ L iff u2 · z ∈ L. Thus, ∼L is the Myhill-Nerode right congruence used for minimizing
DFAs. For u ∈ Σ∗, let [u] denote the equivalence class of u in ∼L and let 〈L〉 denote the
set of all equivalence classes. Each class [u] ∈ 〈L〉 is associated with the residual language
u−1L = {w : uw ∈ L}. Note that for safety languages, there is at most one class [u], namely
the class of bad prefixes, such that u−1L = ∅. We denote this class [⊥]. When L 6= ∅ is a
regular safety language, the set 〈L〉 is finite, and induces the residual automaton of L, defined
by RL = 〈Σ, 〈L〉 \ {[⊥]}, δL, [ε]〉, with δL([u], a) = [u · a] for all [u] ∈ 〈L〉 \ {[⊥]} and a ∈ Σ
such that [u · a] 6= [⊥]. The automaton RL is well defined and is the unique minimal-size
DLW for L.

Consider a DLW A = 〈Σ, Q, q0, δ〉 such that L(A) = L. For a state s = [u] ∈ 〈L〉 \ {[⊥]},
we associate with s a set states(A, s) = {q ∈ Q : L(Aq) = u−1L}. That is, states(A, s) ⊆ Q
contains exactly all state that A can be in after reading a word that leads RL to [u].

The following claims are simple exercises.

I Proposition 7. Consider a safety language L and a DLW A for it.
1. The set {states(A, s) : s ∈ 〈L〉 \ {[⊥]}} forms a partition of the states of A.
2. For every state s ∈ 〈L〉 \ {[⊥]} of RL, letter σ ∈ Σ, and state q ∈ states(A, s), we have

δ(q, σ) ∈ states(A, δL(s, σ)).

I Lemma 8. Consider a safety language L ⊆ Σω. For every DLW A with L(A) = L, we
have that lcost(A) ≥ lcost(RL) and wcost(A) ≥ wcost(RL)

Proof. We outline the key points in the proof for lcost. The arguments for wcost are similar.
For a detailed proof see the full version.

Recall that the states of RL are 〈L〉 \ {[⊥]}. We start by showing that for every
s ∈ 〈L〉 \ {[⊥]} and for every q ∈ states(A, s) we have that scost(q) ≥ scost(s). Next, we
consider the Markov chainsMA andMRL

. Using Proposition 7 we show that if π and τ
are the limiting distributions ofMA andMRL

respectively, then for every s ∈ 〈L〉 \ {[⊥]}
we have that τ(s) =

∑
q∈states(A,s) π(q). Finally, since Q is partitioned by {states(A, s)}s we

conclude that lcost(A) ≥ lcost(RL). J
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q0 q1

¬a ∨ ¬b

a ∧ b

a

Figure 2 A DLW for (¬a ∨ ¬b)ω + (¬a ∨ ¬b)∗ · (a ∧ b) · aω.

Lemma 8 and Theorems 5 and 6 allow us to conclude with the following.

I Theorem 9. Given a DLW A, we can compute lcost(L(A)) and wcost(L(A)) in polynomial
time.

I Example 10. Consider the DLW A over the alphabet 2{a,b} appearing in Figure 2.
Clearly, A is a minimal automaton for L = (¬a ∨ ¬b)ω + (¬a ∨ ¬b)∗ · (a ∧ b) · aω. By

Lemma 8, we can calculate the sensing cost of A in order to find the sensing cost of L.
Clearly, scost(q0) = 2 and scost(q1) = 1. We start by computing lcost(A). The

corresponding Markov chain MA has only one ergodic component {q1}, so we obtain
lcost(A) = scost(q1) = 1. The computation of wcost(A) is more intricate. In the full
version we show that wcost(A) = 2. We remark that unlike in the other versions of sensing
cost, transient components can play a role in wcost. In particular, If the self-loop on q0 has
been labeled by two rather than three letters, then we would have gotten wcost(A) = 3

2 .

4 Synthesis

In the setting of synthesis, the signals in P are partitioned into sets I and O of input and
output signals. An I/O-transducer T senses only input signals and we define its sensing cost
as the sensing cost of the DLW AT it induces.

We define the I/O-sensing cost of a realizable specification L ∈ (2I∪O)ω as the minimal
cost of an I/O-transducer that realizes L. Thus, scostI/O(A) = inf{scost(T ) : T is an
I/O-transducer that realizes L}. In this section we consider the problem of finding a
minimally-sensing I/O-transducer that realizes L.

The realizability problem for DLW specifications can be solved in polynomial time. Indeed,
given a DLW A, we can view A as a game between a system, which controls the outputs,
and an environment, which controls the inputs. We look for a strategy for the system that
never reaches an undefined transition. This amounts to solving a turn-based safety game,
which can be done in polynomial time.

When sensing is introduced, it is not enough for the system to win this game, as it now
has to win while minimizing the sensing cost. Intuitively, not sensing some inputs introduces
incomplete information to the game: once the system gives up sensing, it may not know the
state in which the game is and knows instead only a set of states in which the game may be.
In particular, unlike usual realizability, a strategy that minimizes the sensing need not use
the state space of the DLW. We start with an example illustrating this.

I Example 11. Consider the DLW A appearing in Figure 3. The DLW is over I = {p, q} and
O = {a}. A realizing transducer over the structure of A (see T1 in Figure 4) senses p and q,
responds with a if p∧ q was sensed and responds with ¬a if ¬p∧¬q was sensed. In case other
inputs are sensed, the response is arbitrary (denoted ∗ in the figure). As T1 demonstrates,
every transducer that is based on the structure of A senses two input signals (both p and
q) every second step, thus its sensing cost is 1. As demonstrated by the transducer T2 in
Figure 5, it is possible to realize A with sensing cost of 1

2 by only sensing p every second
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q0

q3

q1q2

¬p ∧ q
¬q ∧ p

p ∧ q¬p ∧ ¬q

True

a¬a

Figure 3 The DLW A in Example 11.

∗

∗

a¬a

¬p ∧ q
¬q ∧ p

p ∧ q¬p ∧ ¬q

Figure 4 The transducer T1 for A.

∗ a¬a
p¬p

Figure 5 The transducer T2 for A.

step. Indeed, knowing the value of p is enough in order to determine the output. Note that
T2 may output sometimes a and sometimes ¬a after reading assignments that causes A to
reach q3. Such a behavior cannot be exhibited by a transducer with the state-structure of A.

Solving games with incomplete information is typically done by some kind of a subset-
construction, which involves an exponential blow up. Unlike usual games with incomplete
information, here the strategy of the system should not only take care of the realizability but
also decides which input signals should be sensed, where the goal is to obtain a minimally
sensing transducer. In order to address these multiple objectives, we first construct an
MDP in which the possible policies are all winning for the system, and corresponds to
different choices of sensing. An optimal policy in this MDP then induces a minimally-sensing
transducer.

I Theorem 12. Consider a DLW A over 2I∪O. If A is realizable, then there exists an MDP
M in which an optimal strategy corresponds to a minimally-sensing I/O-transducer that
realizes A. The MDPM has size exponential in |A| and can be computed in time exponential
in |A|.

Proof. Consider a DLW A = 〈2I∪O, Q, q0, δ〉. We obtain from A an MDPM = 〈S, start,
A,P, cost〉, where S = (2Q × {0, 1,⊥}I) ∪ {start}, and A = 2I × 2O. Intuitively, whenM
is in state 〈S, `〉, for S ⊆ Q and ` : I → {0, 1,⊥}, then A can be in every state in S, and for
each input signal b ∈ I, we have that either b is true (`(b) = 1), b is false (`(b) = 0), or b is
not sensed (`(b) = ⊥). The action (o, i) means that we now output o and in the next state
we will sense only inputs in i. For ? ∈ {⊥, 0, 1}, we define `? = {b ∈ I : `(b) = ?}.

We define the actions so that an action 〈o, i〉 is available in state 〈S, `〉 if for every q ∈ S
and i′ ⊆ `⊥, we have that δ(q, `1 ∪ i′ ∪ o) is defined. That is, an action is available if its o
component does not cause A to get stuck no matter what the assignment to the signals that
are not sensed is.

The transition probabilities are defined as follows. Consider a state 〈S, `〉, and an available
action 〈o, i〉. Let S′ =

⋃
q∈S

⋃
i′⊆`⊥

{δ(q, `1 ∪ i′ ∪ o)}. Recall that by taking action 〈o, i〉,
we decide that in the next state we will only sense signals in i. For i ⊆ I, we say that an
assignment `′ : I → {0, 1,⊥} senses i if `′1 ∪ `′0 = i. Note that there are 2|i| assignments that
sense i. Accordingly, we have P(〈S, `〉, 〈o, i〉, 〈S′, `′〉) = 2−|i| for every `′ : I → {0, 1,⊥} that
senses i. That is, a transition from 〈S, `〉 with 〈o, i〉 goes to the set of all possible successors of
S under inputs that are consistent with ` and the output assignment o, and the `′ component
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is selected with uniform distribution among all assignments that sense i. The cost function
depends on the number of signals we sense, thus cost(〈S, `〉) = |`1 ∪ `0|.

Finally, in the state start we only choose an initial set of input signals to sense. Thus,
for every ` such that `1 ∪ `0, we have P(start, 〈o, i〉, 〈{q0}, `〉) = 2−|i|. Note that start
is not reachable from any state in M, and thus its cost is irrelevant. We arbitrarily set
cost(start) = 0.

In the full version we prove that cost(M) = scostI,O(A) and that a minimal-cost policy
f inM induces a minimally-sensing I/O-transducer that realizes A. Intuitively, we prove
this by showing a correspondence between transducers and policies, such that the sensing
cost of a transducer T equals the value of the policy it corresponds to inM.

Finally, we observe that the size ofM is single exponential in the size of A, and that we
can constructM in time exponential in the size of A. J

I Theorem 13. A minimally-sensing transducer for a realizable DLW A has size tightly
exponential in |A|.

Proof. The upper bound follows from Theorem 3 applied to the MDP constructed in
Theorem 12.

For the lower bound, we describe a family of realizable DLWs A1,A2, . . . such that for all
k ≥ 1, the DLW Ak has 1 +

∑k
i=1 pi states, yet a minimally-sensing transducer for it requires

at least
∏k
i=1 pi states, where p1, p2, ... are prime numbers. Intuitively, Ak is constructed as

follows. In the initial state qreset, the inputs signals determine a number 1 ≤ i ≤ k, and Ak
moves to component i, which consists of a cycle of length pi. In every state j in component
i, the output signals must acknowledge that Ak is in state 0 ≤ j < pi of component i.
Furthermore, we force a sensing of 1 in every state except for qreset by requiring a signal to
be acknowledged in every step. Finally, we can go back to qreset only with a special output
signal, which can be outputted only in state 0 of an i component.

Thus, a realizing transducer essentially only chooses which signals to read in qreset. We
show that 0 bits can be read, but in that case we need

∏k
i=1 pi states. Indeed, the transducer

needs to keep track of the location in all the i components simultaneously, which means
keeping track of the modulo from each pi. Since every combination of such modulos is possible,
the transducer needs

∏k
i=1 pi states. In the full version we formalize this intuition. J

We now turn to study the complexity of the problem of finding a minimally-sensing
transducer. By the construction in Theorem 12 and the polynomial time algorithm from
Theorem 3, we have the following.

I Theorem 14. Consider a realizable DLW A over 2I∪O. We can calculate costI,O(A) and
return a minimally-sensing I/O-transducer that realizes A in time exponential in |A|.

In order to complete the picture, we consider the corresponding decision problem. Given
a DLW A over 2I∪O and a threshold γ, the sensing problem in the open setting is to decide
whether costI,O(A) < γ.

I Theorem 15. The sensing problem in the open setting is EXPTIME-complete.

Proof. The upper bound follows from Theorem 14. For the lower bound, we show that the
problem is EXPTIME hard even for a fixed γ. Given a DLW specification A over 2I∪O, we
show that it is EXPTIME-hard to decide whether there exists a transducer T that realizes
A with scost(T ) < 1. We show a reduction from the problem of deciding the nonemptiness
of an intersection of finite deterministic tree automata proved to be EXPTIME-hard in [6].
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The idea is similar to that of Theorem 13, where a reset state is used to select an object, and
a transducer can ignore the inputs in this state by using a response which is acceptable in
every possible selected object.

A deterministic automaton on finite trees (DFT) is U = 〈Σ, Q, δ, q0, F 〉, where Σ is a
finite alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q× Σ→ Q×Q is a
transition function, and F ⊆ Q is a set of accepting states. We refer to the left and right
components of δ as δ/ and δ.. For example, when δ(q, σ) = 〈ql, qr〉, we write δ/(q, σ) = ql.
An DFT runs on Σ-trees. A (binary) Σ-tree is T = 〈τ, `〉 where τ ⊆ {/, .}∗ is prefix-closed:
for every x · σ ∈ τ it holds that x ∈ τ , and ` : τ → Σ is a labeling function. For simplicity,
we require that for every x ∈ τ , either {x/, x.} ⊆ τ , or {x/, x.} ∩ τ =, in which case x is
a leaf. Given a tree T = 〈τ, `〉, the run of U on T is a Q-tree 〈τ, `′〉 where `′(ε) = q0, and
for every x ∈ τ such that x is not a leaf, we have δ(`′(x), `(x)) = 〈`′(x/), `′(x.)〉. A run is
accepting if every leaf is labeled by an accepting state. A Σ-tree T is accepted by U if the
run of U on T is accepting.

The nonempty-intersection problem gets as input DFTs U1, . . . ,Un, and decides whether
their intersection is nonempty, that is

⋂n
t=1 L(Ut) 6= ∅. Given U1, . . . ,Un, we construct a

specification DLW A such that
⋂n
t=1 L(Ut) 6= ∅ iff scost(A) < 1. We assume w.l.o.g. that

L(Ut) 6= ∅ for all 1 ≤ t ≤ n.
We construct A as follows. Initially, the inputs specify an index 1 ≤ t ≤ n. Then, the

transducer should respond with a tree in L(Ut). This is done by challenging the transducer
with a branch in the tree, until some reset input signal is true, and the process repeats. Now,
if

⋂n
t=1 L(Ut) 6= ∅, the transducer can ignore the input signals that specify the index t and

just repeatedly output a tree in the intersection. On the other hand, if
⋂n
t=1 L(Ut) = ∅, the

transducer must sense some information about the specified index.3
We now formalize this intuition. For 1 ≤ t ≤ n, let Ut = 〈2J , Qt, δt, qt0, F t〉. Note that we

assume w.l.o.g that the alphabet of all the DFTs is 2J . We construct a specification DLW
A = 〈2I∪O, Q, q0, δ〉 as follows. The set of states of A is Q =

⋃n
t=1Q

t ∪ {reset}. Assume
w.l.o.g that n = 2k for some k ∈ N. We define I = {b1, . . . , bk} ∪ {dI} and O = J ∪ {dO, e}.
The input signal dI and the output signal dO denote the direction of branching in the tree.
For clarity, in an input letter i ∈ I we write i(dI) = / (and i(dI) = .) to indicate that dI /∈ i
(and dI ∈ i). We use a similar notation for dO.

We define the transition function as follows. In state reset, we view the inputs b1, . . . , bk
as a binary encoding of a number t ∈ {1, . . . , n}. Then, δ(reset, t) = qt0. Next, consider a
state q ∈ Qt, and consider letters i ⊆ I and o ⊆ O. We define δ as follows:

δ(q, i ∪ o) =


reset q ∈ F ∧ e ∈ o ∧ o(dO) = i(dI)
δt/(q, o ∩ J) e /∈ o ∧ o(dO) = i(dI) = /

δt.(q, o ∩ J) e /∈ o ∧ o(dO) = i(dI) = .

Note that δ(q, i ∪ o) is undefined when o(dO) 6= i(dI) or when q /∈ F and e ∈ o. Intuitively,
in state reset, an index 1 ≤ t ≤ n is chosen. From then on, in a state q ∈ Qt, we simulate
the run of Ut on the left or right branch of the tree, depending on the signal dI. The next
letter is outputted in o, and additionally, we require that dO matches dI.

We claim that scost(A) < 1 iff
⋂n
t=1 L(Ut) 6= ∅. In the first direction, assume that⋂n

t=1 L(Ut) 6= ∅, and let T be a tree such that T ∈
⋂n
t=1 L(Ut) 6= ∅. Consider the following

3 Note that since a tree in the intersection of DFTs may be exponentially bigger than the DFTs, the
lower bound here also suggests an alternative lower bound to the exponential size of a minimally-sensed
transducer, now with a polynomial set of signals (as opposed to the proof of Theorem 13).

FSTTCS 2015



392 The Sensing Cost of Monitoring and Synthesis

transducer T : in the state reset it does not sense any inputs, and then it outputs a branch
of T according to the signal dI, while always acknowledging the dI bit with the correct dO.
When the end of the branch is reached, it outputs e. Since T is accepted by every DFT U t,
it follows that T realizes A. Moreover, let l be the longest branch in T , then every l steps at
most, T visits a state corresponding to reset, in which it senses nothing. Thus, T senses 1
for at most l steps, and then 0. It follows that scost(T ) ≤ l

l+1 = 1− 1
l+1 < 1.

Conversely, observe that in every state q ∈ Q \ {reset}, a realizing transducer must
sense at least 1 signal, namely dI. Thus, the only way to get sensing cost of less than 1
is to visit reset infinitely often (in fact, with bounded sparsity), and to sense 0 in reset.
However, sensing 0 in reset means that the next state could be the initial state of any of
the n DFTs. Moreover, visiting reset again means that at some point e was outputted in
an accepting state of one of the DFTs. Thus, the transducer outputs a tree that is accepted
in every DFT, so

⋂n
t=1 L(Ut) 6= ∅.

Finally, observe that the reduction is clearly polynomial, and thus we conclude that
deciding whether scost(A) < 1 is EXPTIME-hard. J

5 Discussion and Future Research

Sensing is a basic measure of the complexity of monitoring and synthesis. In monitoring
safety properties, the definition of sensing presented in [2] is not informative, as it gives
sensing cost 0 to properties that are satisfied with probability 0. We argue that in the context
of monitoring, the definition of sensing cost should consider only computations that satisfy
the property, and we study the complexity of computing the sensing cost of a property in the
new definition. We distinguish between two approaches to define a probabilistic measure with
respect to the set of computations that satisfy a property. We show that while computing
the sensing cost according to the new definitions is technically more complicated than in
[2], the minimal sensing is still attained by a minimal-size automaton, and it can still be
computed in polynomial time.

In synthesis, we introduce a new degree of freedom, namely choosing the outputs when
realizing a specification. We study the complexity of finding a minimal-sensing transducer for
safety specifications. We show that the minimal-sensing transducer is not necessarily minimal
in size. Moreover, interestingly, unlike the case of traditional synthesis, a minimal-sensing
transducer need not even correspond to a strategy embodied in the specification deterministic
automaton. On the positive side, we show that a minimal-sensing transducer always exists
(for a realizable safety specification) and that its size is at most exponential in the size of the
minimal-size transducer. We also provide matching lower bounds.

We now turn to discuss some future directions for research.

Non-safety properties. We focus on safety properties. The study in [2] completes the
monitoring picture for all other ω-regular properties. We plan to continue the study of
synthesis of ω-regular properties. An immediate complication in this setting is that a finite
minimal-sensing transducer does not always exists. Indeed, even in the monitoring setting
studied in [2], a minimal-sensing automaton does not always exist. Even the decidability of
computing the optimal cost remains open.

A trade-off between sensing and quality. Reducing the sensing cost of a transducer can
often be achieved by delaying the sensing of some letter, thus sensing it less often. This,
however, means that eventualities may take longer to be fulfilled, resulting in transducers
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of lower quality [1]. We plan to formalize and study the trade-off between the sensing and
quality and relate it to the trade-offs between size and sensing, as well as between size and
quality.
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