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Abstract
The Constrained Bipartite Vertex Cover problem asks, for a bipartite graph G with
partite sets A and B, and integers kA and kB , whether there is a vertex cover for G containing at
most kA vertices from A and kB vertices from B. The problem has an easy kernel with 2kA · kB
edges and 4kA · kB vertices, based on the fact that every vertex in A of degree more than kB
has to be included in the solution, together with every vertex in B of degree more than kA.
We show that the number of vertices and edges in this kernel are asymptotically essentially
optimal in terms of the product kA · kB . We prove that if there is a polynomial-time algorithm
that reduces any instance (G,A,B, kA, kB) of Constrained Bipartite Vertex Cover to an
equivalent instance (G′, A′, B′, k′A, k′B) such that k′A ∈ (kA)O(1), k′B ∈ (kB)O(1), and |V (G′)| ∈
O((kA · kB)1−ε), for some ε > 0, then NP ⊆ coNP/poly and the polynomial-time hierarchy
collapses. Using a different construction, we prove that if there is a polynomial-time algorithm
that reduces any n-vertex instance into an equivalent instance (of a possibly different problem)
that can be encoded in O(n2−ε) bits, then NP ⊆ coNP/poly.
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1 Introduction

Motivation. Vertex Cover is a classic problem in combinatorial optimization. It has
served as a testbed for a myriad of different techniques in the field of parameterized algorith-
mics. In this paper we study a variant of this problem on bipartite graphs:

Constrained Bipartite Vertex Cover
Input: A bipartite graph G with partite sets A and B, and integers kA and kB .
Question: Is there a vertex cover S for G such that |S ∩A| ≤ kA and |S ∩B| ≤ kB?

While Vertex Cover is in P for bipartite graphs, this constrained variant is NP-complete [17].
It is motivated by work in reconfigurable VLSI, since it can be used to model the Sparse
Allocation Problem. We refer to the recent paper by Bai and Fernau [1] for a detailed
overview of the history of the problem and its applications. This paper deals with the limits
of efficient preprocessing procedures for Constrained Bipartite Vertex Cover.

Let us call a vertex cover S of a bipartite graph (kA, kB)-constrained if it satisfies |S∩A| ≤
kA and |S ∩ B| ≤ kB. Observe that if an instance contains a vertex v ∈ A of degree more
than kB, then any (kA, kB)-constrained vertex cover includes a. If a is not used, then all
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neighbors of a are in the cover. However, all such neighbors belong to B and there are
more than kB of them. This suggests a simple reduction rule for the problem: if there
is a vertex a ∈ A of degree more than kB, then remove vertex a and decrease kA by one.
Symmetrically, if there is a vertex b ∈ B of degree more than kA, remove it and decrease kB .
If S is a (kA, kB)-constrained vertex cover of an exhaustively reduced graph, the kA vertices
in A cover at most maxa∈A deg(a) ≤ kB edges each, and the kB vertices in B each cover at
most kA edges each. To be able to cover all the edges, the number of edges must therefore
be bounded by 2(kA · kB) and the instance can be rejected if this is not the case. After
removing isolated vertices (which do not affect the answer) from the graph, the number of
vertices can be bounded by 4(kA · kB), since each edge contributes at most two vertices.

This simple kernelization strategy for Constrained Bipartite Vertex Cover has
been known for over thirty years [10]. It is notably less effective than the well-known
kernelization schemes for the classic Vertex Cover problem, which can efficiently reduce
any instance (G, k) to an equivalent one with at most 2k vertices [5] (cf. [11, Section 4]). It
is therefore natural to ask whether a similar size bound can be attained for Constrained
Bipartite Vertex Cover. This was posed as an open problem by Marcin Pilipczuk [18].

Our Results. We show that, under the assumption that NP * coNP/poly, neither the
number of vertices nor the number of edges in the simple kernel for Constrained Bipartite
Vertex Cover can be significantly improved below Θ(kA · kB). The simple preprocessing
procedure outlined above is therefore close to optimal in terms of the product kA · kB .

Concretely, our first result shows that if there is an ε > 0 and a polynomial-time
algorithm that reduces any instance (G,A,B, kA, kB) of Constrained Bipartite Vertex
Cover to an equivalent instance (G′, A′, B′, k′A, k′B) such that k′A ∈ (kA)O(1), k′B ∈ (kB)O(1),
and |V (G′)| ∈ O((kA · kB)1−ε), then NP ⊆ coNP/poly and the polynomial-time hierarchy
collapses to its third level [19]. This result is obtained using the complementary witness
lemma of Dell and van Melkebeek [8]. The lemma shows that NP ⊆ coNP/poly follows if the
following type of polynomial-time compression algorithm exists for some c ∈ N: The input
is a sequence x1, . . . , xnc of size-n inputs to an NP-hard problem. The output is a single
instance x∗ of Constrained Bipartite Vertex Cover whose truth status is the logical or
of the answers to the inputs, with |x∗| ∈ O(nc lognc). We present a construction (Lemma 2)
that allows us to obtain precisely such a compression algorithm from a kernelization procedure
for Constrained Bipartite Vertex Cover that satisfies the constraints set out above.
The key in this construction is to embed the nc inputs xi into a Constrained Bipartite
Vertex Cover instance on a graph that is lopsided: one partite set has size O(n2c logn),
while the other set has size O(nc+1). The produced graph is fairly sparse as the number of
edges is at most the number of vertices times the size of the smaller partite set, O(n2c logn),
whose dependence on the number nc of embedded instances is minimal. For sufficiently
large c, the number of edges in the graph is therefore roughly equal to the number of vertices.
If a hypothetical kernel can reduce the order of the composed instance of Constrained
Bipartite Vertex Cover substantially, then the relation between the vertex and edge
count yields the following: after an application of the simple kernelization, the number of
edges reduces substantially as well (since the parameter values kA and kB do not increase too
much). A kernel with O((kA · kB)1−ε) vertices would therefore give a compression algorithm
satisfying the requirements of the complementary witness lemma and imply NP ⊆ coNP/poly.

Our second result deals with sparsification, i.e., reducing the number of edges in the graph
to make it less dense. We prove that unless NP ⊆ coNP/poly, there is no polynomial-time
algorithm that reduces any n-vertex instance of Constrained Bipartite Vertex Cover
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to an equivalent instance, of a possibly different problem, that can be encoded in O(n2−ε)
bits for ε > 0. For this result we can use the framework of cross-composition to avoid
invoking the complementary witness lemma directly. The key is to find a construction that
embeds a series of t inputs of an NP-hard problem, each of size at most n, into an instance
of Constrained Bipartite Vertex Cover where both partite sets have roughly n ·

√
t

vertices. In sharp contrast to Lemma 2, this second construction produces a very dense
graph whose partite sets are balanced in size.

After discarding isolated vertices (which play no role in this problem), the number of
vertices in an instance is at most twice the number of edges. The lower bound on the number
of vertices in the kernel given by the first result therefore implies a similar lower bound on
the number of edges. This lower bound holds against kernelizations that incur a bounded
increase in the budget values kA and kB . The sparsification lower bound yields a more general
edge lower bound (Corollary 14): even the existence of a kernelization for Constrained
Bipartite Vertex Cover with O((kA · kB)1−ε) edges that increases the budget values kA
and kB arbitrarily, implies NP ⊆ coNP/poly.

Related Work. There is another problem in the literature, called Constrained Minimum
Bipartite Vertex Cover, which is similar to ours but behaves differently. Its inputs also
consist of a graph G with partite sets A and B, along with integers kA and kB . However, the
question is now whether there is a (kA, kB)-constrained vertex cover that is also a minimum
vertex cover in G, i.e., for which there is no (unconstrained) vertex cover of G that is strictly
smaller. This minimality requirement can make it possible to infer that a vertex must belong
to any valid solution, while this conclusion is not valid if a vertex cover is allowed whose size
is not globally minimum. Chen and Kanj [4, Section 2] showed that the Dulmage-Mendelsohn
decomposition of bipartite graphs can be exploited to reduce an instance of Constrained
Minimum Bipartite Vertex Cover to an equivalent instance with at most 2(kA + kB)
vertices. Their result does not carry over to the more general problem considered here.

Let us return to Constrained Bipartite Vertex Cover. It has received considerable
attention and was studied using a number of different algorithmic paradigms. Fernau and
Niedermeier [12] first used the framework of parameterized complexity to attack the Con-
strained Bipartite Vertex Cover problem. They developed a moderately exponential
FPT branching algorithm, aided by the simple problem kernel. Bai and Fernau [1] simplified
their algorithm a decade later and report on experimental results.

There are a handful of results concerning tight lower bounds for kernelizations. There is
work by Dell and van Melkebeek [8] on Vertex Cover, by Dell and Marx [7] and Hermelin
and Wu [14] on packing problems, by Kratsch et al. [16] on Point-Line Cover, and by
Jansen [15] on Treewidth.

Organization. Section 2 contains preliminaries on parameterized complexity. In Section 3
we develop the lower bound on the number of vertices in kernels for Constrained Bipartite
Vertex Cover. Section 4 uses a different construction to give a lower bound on the number
of edges. We conclude in Section 5.

2 Preliminaries

A parameterized problem Q is a subset of Σ∗ × N, where Σ is a finite alphabet. The second
component of a tuple (x, k) ∈ Σ∗ × N is called the parameter [6, 9]. A parameterized
problem Q is (strongly uniformly) fixed-parameter tractable if there is an algorithm that

STACS 2016



45:4 Constrained Bipartite Vertex Cover: The Easy Kernel is Essentially Tight

decides whether (x, k) ∈ Q that runs in time f(k)|x|O(1) for some computable function f .
The set {1, 2, . . . , n} is abbreviated as [n]. All logarithms are base 2. For a set S and integer k
we denote by

(
S
k

)
the collection of all size-k subsets of S.

We say that a set S avoids a set T if S ∩ T = ∅. Two vertices x, y in a graph are false
twins if they are not adjacent to each other, but have exactly the same (open) neighborhood.
Two disjoint vertex sets A,B in a graph are adjacent if there is an edge of the form {a, b}
with a ∈ A and b ∈ B. The sets are fully adjacent if all members of A are adjacent to all
members of B.

I Definition 1 (Generalized kernelization). Let Q,Q′ ⊆ Σ∗ × N be parameterized problems
and let h : N→ N be a computable function. A generalized kernelization for Q into Q′ of
size h(k) is an algorithm that, on input (x, k) ∈ Σ∗ × N, takes time polynomial in |x|+ k

and outputs an instance (x′, k′) such that:
|x′| and k′ are bounded by h(k).
(x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernelization, or in short a kernel, for Q if Q′ = Q. It is a polynomial
(generalized) kernelization if h(k) is a polynomial.

The notion of generalized kernelization, a term first used by Bodlaender et al. [2], is closely
related to the notion of compression (cf. [3]). In both cases an instance is reduced to a small
but equivalent instance of a different problem. In generalized kernelization the output is a
parameterized instance, whereas in compression the output is a classical instance.

3 Vertex Lower Bound

The goal of this section is to prove a lower bound on the number of vertices in kernels for
Constrained Bipartite Vertex Cover. Lemma 2 is the key ingredient.

I Lemma 2. Let n ∈ N be even and t ∈ N be a power of two. There is an algorithm that,
given t graphs G1, . . . , Gt with exactly n vertices each, outputs a bipartite graph G′ with
partite sets A′ and B′, along with integers k′A and k′B, such that:
1. There is an index i ∈ [t] such that Gi contains a clique of size n/2 if and only if G′ has

a (k′A, k′B)-constrained vertex cover.
2. k′A ∈ O(n2 log t) and k′B ∈ O(n · t).
The running time is polynomial in t and n.

Proof. We describe the construction carried out by the algorithm. It will be easy to see that
it can be done in polynomial time. Let the input consist of graphs G1, . . . , Gt where t is a
power of two, and let each graph have n vertices. For each graph Gi, we identify its vertex
set with the integers in the range [n]. Construct the bipartite graph G′, whose partite sets
we will denote by A′ and B′, as follows.

1. Add a canonical set B′c consisting of n vertices b1, . . . , bn to B′. Add a canonical set A′c
consisting of

(
n
2
)
vertices ai,j for 1 ≤ i < j ≤ n to A′. Add an edge between b` and ai,j

if i = ` or j = `. This ensures that the graph G′[A′c ∪ B′c] is the vertex-edge incidence
graph of an n-vertex clique, which contains the vertex-edge incidence graphs of all n-vertex
graphs as induced subgraphs. This is why the vertex sets are called canonical.

2. For i ∈ [t] add a vertex set B′i to B′ consisting of n vertices. These vertices will be false
twins in the graph, with identical open neighborhoods. The adjacency between B′i and the
canonical set A′c encodes the structure of the input graph Gi. For each pair 1 ≤ i < j ≤ n
such that {i, j} is not an edge in Gi, make all vertices of B′i adjacent to ai,j .
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3. For i ∈ [log t], add two vertex sets A′0,i and A′1,i to A′, of
(
n
2
)
vertices each. The vertices

in A′0,i will be false twins, as will the vertices in A′1,i. The adjacencies between the
sets A′0/1,j and the sets B′i are based on the binary encoding of the number i. As t is a
power of two, the integers in the range [t] can be uniquely identified by (log t)-bit strings,
treating the number t as the all-zero string. For each j ∈ [log t], for each i ∈ [t], do the
following. If the j-th bit of the number i is a zero, then make all vertices in B′i adjacent
to all vertices in A′0,j . If the bit is a one, make B′i fully adjacent to A′1,j instead.

To conclude the construction, set k′A := (
(
n
2
)
−
(
n/2

2
)
) +
(
n
2
)

log t and k′B := n
2 + (t− 1) · n.

It is easy to see that the construction can be carried out in time polynomial in n and t, and
that k′A and k′B satisfy the claimed bounds. It remains to prove the connection between
cliques in the input graphs and constrained bipartite vertex covers of G′.

I Claim 3. If there is an index i∗ ∈ [t] such that Gi∗ has a clique of size n/2, then G′ has a
(k′A, k′B)-constrained vertex cover.

Proof. Suppose Gi∗ contains a clique D ⊆ [n] of size n/2. We construct a constrained vertex
cover S of G′ as follows.

Add all vertices bj to S for which j ∈ D. This contributes n/2 vertices to S.
Add all vertices ai,j to S for which i 6∈ D or j 6∈ D, contributing

(
n
2
)
−
(
n/2

2
)
vertices to S.

For each i ∈ [t] \ {i∗}, add all vertices in B′i to S. This contributes (t− 1) ·n vertices to S.
For each j ∈ [log t], if the j-th bit of i∗ is a zero then add all vertices of A′0,j to S.
Otherwise add all vertices of A′1,j to S. This contributes

(
n
2
)

log t vertices to S.
It is easy to verify that S contains k′A vertices from A′ and k′B vertices from B′. It remains
to check that S is a vertex cover of G′.
1. To see that all edges of G′[A′c∪B′c] are covered by S, consider an edge between b` and ai,j ,

which exists only if i = ` or j = `. If ` ∈ D then b` ∈ S covers the edge. Otherwise, ai,j
is contained in S by the second step, and covers the edge.

2. To see that the edges between sets B′i and A′c are covered, observe that this trivially holds
for all i 6= i∗ since B′i is contained entirely in S. For i∗ note that B′i∗ is only adjacent
to vertices ai,j with 1 ≤ i < j ≤ n if {i, j} is not an edge of Gi∗ . In this case, we know
that i and j are not both contained in the clique D in graph Gi∗ , and therefore ai,j was
added to S to cover such edges during the construction of S above.

3. To see that the edges between sets B′i and A′0/1,j are covered, observe that this trivially
holds for all i 6= i∗ as B′i is contained in S. For i∗ note that the adjacency between B′i∗
and A′0/1’s follows the binary encoding of the number i∗. As we added the sets A′0/1,j
to S that match the bit values of i∗, all such edges are covered.

Since all edges of G′ are covered by S, this proves Claim 3. J

The next claim establishes several properties of constrained vertex covers in G′, leading to
a proof that a (k′A, k′B)-constrained vertex cover implies the existence of a clique of size n/2
in one of the input graphs.

I Claim 4. For any (k′A, k′B)-constrained vertex cover S of G′, the following holds.
1. For every j ∈ [log t] the set S contains all vertices of A′0,j or all vertices of A′1,j.
2. There is an index i∗ ∈ [t] such that S contains all vertices of B′i for all i ∈ [t] \ {i∗}.
3. There are at least

(
n/2

2
)
distinct vertices ai,j ∈ A′c for which ai,j 6∈ S.

4. Let D contain the integers ` ∈ [n] for which there is a vertex ai,j 6∈ S with i = ` or j = `.
Then |D| = n/2.

5. For every {i, j} ∈
(
D
2
)
we have ai,j 6∈ S.

6. The set D forms a clique of size n/2 in the graph Gi∗ , with i∗ as in (2).
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Proof. Let S be a vertex cover of G′ with |S ∩A′| ≤ k′A and |S ∩B′| ≤ k′B .
(1) Suppose there is a bit position j∗ ∈ [log t] such that S avoids both a vertex in A′0,j∗

and in A′1,j∗ . Since every set B′i for i ∈ [t] is fully adjacent to one of the sets A′0,j∗ or A′1,j∗
it follows that to cover such edges the set S contains all vertices of B′i for all i ∈ [t].
Hence |S ∩B′| ≥ t · n > k′B , which is a contradiction.

(2) Suppose there are two indices i1, i2 ∈ [t] such that S avoids both a vertex of B′i1
and of B′i2 . Since the numbers i1 and i2 differ, there is an index j∗ where their binary
representations differ. Since B′i1 is fully adjacent to one of the sets (A′0,j∗ , A′1,j∗), and B′i2 is
fully adjacent to the other set, the fact that S avoids a vertex from both B′i1 and B′i2 implies
that the vertex cover S contains all vertices of both A′0,j∗ and of A′1,j∗ , contributing 2

(
n
2
)

vertices to S∩A′. By (1), we know that for all j ∈ [log t]\{j∗} the set S contains at least
(
n
2
)

vertices from A′0,j ∪A′1,j . But then S contains at least 2
(
n
2
)

+ ((log t)− 1)
(
n
2
)
> k′A vertices

from A′, a contradiction.
(3) Since |S ∩A′| ≤ k′A = (

(
n
2
)
−
(
n/2

2
)
) +

(
n
2
)

log t and (1) shows that S fully contains at
least one of the sets A′0,j , A′1,j for every j ∈ [log t], it follows that |S ∩ (A′ \A′c)| ≥

(
n
2
)

log t
and therefore that S contains at most

(
n
2
)
−
(
n/2

2
)
vertices from A′c. As |A′c| =

(
n
2
)
, set S

avoids at least
(
n/2

2
)
vertices from A′c.

(4) Every pair {i, j} ∈
([n]

2
)
corresponds to an edge in the complete n-vertex graph.

For every vertex ai,j 6∈ S, corresponding to an edge {i, j}, the vertex cover S contains
both vertices bi and bj , since those vertices are adjacent to ai,j . Any

(
n/2

2
)
edges span at

least n/2 endpoints, and there are at least
(
n/2

2
)
pairs represented by members of A′c \ S

by (3). It follows that the set D defined in the claim statement has size at least n/2, and
consequently that S contains at least n/2 vertices from B′c. Assume for a contradiction
that |D| > n/2, implying that S contains more than n/2 vertices from B′c. Since S also
contains at least (t − 1) · n vertices from

⋃t
i=1 B

′
i, by (2), it follows that |S ∩ B′| > k′B, a

contradiction. Hence |D| = n/2.
(5) The definition of D implies that for every i ∈ [n]\D, we have ai,j ∈ S for all i < j ≤ n.

Put differently, for each i 6∈ D we know that for each pair {i, j} involving i the corresponding
vertex ai,j is contained in S. Since |D| = n/2, there are

(
n
2
)
−
(
n/2

2
)
unordered pairs over [n]

involving a vertex not in D, and the corresponding ai,j vertices are in S for all these
pairs. Since at least

(
n/2

2
)
vertices from A′c are not in S by (3), it follows that for each

pair {i, j} ∈
(
D
2
)
we must have ai,j 6∈ S.

(6) Assume for a contradiction that {i, j} ∈
(
D
2
)
with i < j is a pair that is not connected

by an edge in Gi∗ . By (5) we have ai,j 6∈ S. Since {i, j} is not an edge of Gi∗ , the construction
of G′ has made all vertices in B′i∗ adjacent to vertex ai,j . Since ai,j is not in S, all vertices
of B′i∗ must be. But by the choice of i∗, all vertices B′i for i ∈ [t] \ {i∗} are also in S.
Hence |S ∩ B′| ≥ t · n > k′B, a contradiction. It follows that every pair of vertices in D is
connected by an edge in Gi∗ . Since |D| = n/2, graph Gi∗ contains a clique of size n/2. J

The two claims give the equivalence between the existence of an n/2-clique in an input
graph and constrained bipartite vertex covers of G′. This completes the proof of Lemma 2. J

Using Lemma 2 we can prove a lower bound for the number of vertices in kernels for
Constrained Bipartite Vertex Cover. We also need the following simplified version
of the complementary witness lemma due to Dell and van Melkebeek [8, Lemma 4].

I Lemma 5. Let L,L′ ⊆ Σ∗ be two languages. If there is a constant c and a polynomial-time
algorithm that, given a list of t := sc strings x1, . . . , xt, each of length at most s, outputs a
string x∗ such that:
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x∗ ∈ L′ ⇔ ∃i ∈ [t] : xi ∈ L, and
|x∗| ∈ O(t log t),

then L ∈ coNP/poly.

As our terminology differs from that of Dell and van Melkebeek, let us point out how the
statement above follows from their complementary witness lemma. Dell and van Melkebeek
formulate their lemma in terms of (possibly co-nondeterministic) oracle communication
protocols. These are two-player protocols in which the player holding the inputs is restricted
to polynomial-time computation and the other player is computationally unbounded but
does not know the input. The goal is for the first player to correctly decide whether there
is at least one input that belongs to L, using as little communication as possible to the
second player. The connection comes from the fact that a polynomial-time algorithm as
described in Lemma 5 easily gives such a protocol: the first player runs the algorithm on its
inputs to obtain the instance x∗ that expresses the logical OR of his inputs, sends this small
instance to the oracle, which sends back one bit that tells whether or not x∗ is contained
in L′. Using Lemmata 2 and 5 we now prove the vertex lower bound for Constrained
Bipartite Vertex Cover kernelization.

I Theorem 6. Let ε > 0 be a real number. If there is a polynomial-time algorithm that reduces
any instance (G,A,B, kA, kB) of Constrained Bipartite Vertex Cover to an equivalent
instance (G′, A′, B′, k′A, k′B) of the same problem, such that k′A ∈ (kA)O(1), k′B ∈ (kB)O(1),
and |V (G′)| ∈ O((kA · kB)1−ε), then NP ⊆ coNP/poly.

Proof. Assume such a kernelization algorithm exists and call it K. Let n
2 -Clique be the

problem of deciding whether a graph of even order has a clique containing exactly half of its
vertices. An easy padding argument proves that n

2 -Clique is NP-complete. We will show
that, using K and the construction of Lemma 2, we can make an algorithm that compresses
the logical OR of a series of n2 -Clique instances into an equivalent instance of Constrained
Bipartite Vertex Cover whose size satisfies the requirements of Lemma 5. This will
show that n

2 -Clique is contained in coNP/poly and yield NP ⊆ coNP/poly.
Let L be the language over alphabet {0, 1} such that a string x is contained in L if

and only if it encodes the adjacency matrix of a graph with an even number n of vertices
that has a clique of size n/2. We construct an algorithm R that satisfies the conditions of
Lemma 5 with this L, while L′ is the (classical) language encoding Constrained Bipartite
Vertex Cover. The value of c depends on ε and will be specified later. On input a list of
strings x1, . . . , xt, where each string has length at most s and t = sc, algorithm R proceeds
as follows. It first checks which strings encode adjacency matrices of undirected graphs
and throws away the others. If the resulting number of instances is not a power of two,
it duplicates one instance until the nearest power of two is reached. After this step the
input consists of t′ ≤ 2t = 2sc strings x1, . . . , xt′ that encode graphs G1, . . . , Gt′ of at
most n := b

√
sc vertices each. As the next step, we pad the instances to ensure they all have

the same size. For each input, while it has less than n vertices, add both an isolated vertex
and a universal vertex to the graph. This increases the maximum clique size by exactly one,
and the graph size by two, so that the new graph has a clique of half its vertices if and only
if the original graph has one. We obtain a series of t′ graphs G1, . . . , Gt′ , each on exactly n
vertices, in which the goal is to detect a clique of size n/2.

We invoke the construction of Lemma 2 to the graphs G1, . . . , Gt′ and obtain an in-
stance (G,A,B, kA, kB) of Constrained Bipartite Vertex Cover of size polynomial
in t′ and n, such that kA ∈ O(n2 log t′) and kB ∈ O(n · t′), which is a yes-instance if and
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only if one of the inputs contains a clique of size n/2. Now we apply the hypothetical ker-
nel K on the instance (G,A,B, kA, kB) to obtain an equivalent instance (G′, A′, B′, k′A, k′B)
of Constrained Bipartite Vertex Cover in which the two parameters have grown
only polynomially, i.e., k′A ∈ O((n2 log t′)α1) and k′B ∈ O((n · t′)α2), such that |V (G′)| is
bounded by O((kA · kB)1−ε) for some fixed ε > 0. The crucial following step is to apply
the reduction rule from the simple kernel on this reduced instance: while there is a vertex
in B′ of degree more than k′A, we delete it from the graph and decrease the budget by one.
Similarly, remove all isolated vertices. Let (G∗, A∗, B∗, k∗A, k∗B) be the resulting exhaustively
reduced instance. Since the number of vertices does not increase by this step, we know
that |V (G∗)| ∈ O((kA · kB)1−ε). More importantly, we also get a bound on the number
of edges. The edges of a bipartite graph can be counted by summing the degrees of all
vertices in one partite set. The reduction rule ensures that all vertices of B∗ have degree at
most k∗A ≤ k′A. We therefore find that the number of edges in G∗ is bounded by:

O(|V (G∗)| · k′A) ∈ O((kA · kB)1−ε · (n2 log t′)α1)
∈ O((n2 log t′ · n · t′)1−ε · (n2 log t′)α1)
∈ O((s log(2sc) ·

√
s · (2sc))1−ε · (s log(2sc))α1) t′ ≤ 2sc, n ≤

√
s.

∈ O((s1.5+c · c · log s)1−ε · (sα1 · cα1 · logα1 s))

∈ O((s(1−ε)(1.5+c)+α1) · c1+α1 · log(1−ε)+α1 s).

The derivation shows that if we choose c := d(2.5 + α1)/εe (implying that s(1−ε)(1.5+c)+α1 <

sc−1), the number of edges in the final graph is O(sc−1 · logO(1) s). As G∗ has no isolated
vertices, the same bound applies to the number of vertices. The instance of Constrained
Bipartite Vertex Cover that results from the procedure can be encoded as a string x∗
using an adjacency list, which requires O(|E(G∗)| · log |V (G∗)|) bits. The string x∗ is given
as the output. Tracing back the chain of equivalences, we know that x∗ is a yes-instance
of Constrained Bipartite Vertex Cover if and only if there is string xi that is a yes-
instance of n2 -Clique. It is easy to verify that the suggested algorithm R takes polynomial
time. Using the bounds obtained above we find that |x∗| ∈ O(sc−1(log s)O(1)), which is O(sc).
Hence our choice of c makes algorithm R satisfy all requirements of Lemma 5, proving that
n
2 -Clique is in coNP/poly and therefore that NP ⊆ coNP/poly. Theorem 6 follows. J

4 Sparsification Lower Bound

We establish a sparsification lower bound for the parameterization of Constrained Bipar-
tite Vertex Cover by the total number of vertices in the graph. From this, a general
lower bound on the number of edges (which also holds against kernels that increase the
budget values arbitrarily) will follow as an easy corollary. We employ the cross-composition
framework by Bodlaender et al. [3], which builds on earlier work by several authors [2, 8, 13].
The following two definitions form the core of the framework.

I Definition 7 (Polynomial equivalence relation). An equivalence relation R on Σ∗ is called a
polynomial equivalence relation if the following conditions hold:
1. There is an algorithm that, given two strings x, y ∈ Σ∗, decides whether x and y belong

to the same equivalence class in time polynomial in |x|+ |y|.
2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into a

number of classes that is polynomially bounded in the size of the largest element of S.
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I Definition 8 (Cross-composition). Let L ⊆ Σ∗ be a language, let R be a polynomial
equivalence relation on Σ∗, let Q ⊆ Σ∗ × N be a parameterized problem, and let f : N→ N
be a function. An or-cross-composition of L into Q (with respect to R) of cost f(t) is an
algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L belonging to the same equivalence
class of R, takes time polynomial in

∑t
i=1 |xi| and outputs an instance (y, k) ∈ Σ∗ × N such

that:
The parameter k is bounded by O(f(t)·(maxi |xi|)c), where c is some constant independent
of t.
(y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

The following theorem shows how these concepts give kernelization lower bounds.

I Theorem 9 ([3, Theorem 6]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗×N be a parameterized
problem, and let d, ε be positive reals. If L is NP-hard under Karp reductions, has an or-cross-
composition into Q with cost f(t) = t1/d+o(1), where t denotes the number of instances, and Q
has a polynomial (generalized) kernelization with size bound O(kd−ε), then NP ⊆ coNP/poly.

We use a restricted version of Constrained Bipartite Vertex Cover as the source
problem in a cross-composition:

Equally Constrained Bipartite Vertex Cover
Input: A bipartite graph G with partite sets A and B such that |A| = |B| is even.
Question: Is there a vertex cover S for G such that |S ∩A| ≤ |A|/2 and |S ∩B| ≤ |B|/2?

I Proposition 10. Equally Constrained Bipartite Vertex Cover is NP-complete.

Proposition 10 follows from a simple padding argument.

I Theorem 11. Constrained Bipartite Vertex Cover parameterized by the number
of vertices n does not have a generalized kernel of bitsize O(n2−ε), for any ε > 0, unless
NP ⊆ coNP/poly.

Proof. With the aim of giving a cross-composition, we start by defining a polynomial
equivalence relation R on inputs of Equally Constrained Bipartite Vertex Cover.
We define any two strings that do not encode valid instances of Equally Constrained
Bipartite Vertex Cover to be equivalent. Two well-formed instances (G1, A1, B1)
and (G2, A2, B2) are equivalent if and only if |A1| = |B1| = |A2| = |B2|. It is easy to
verify that this is a polynomial equivalence relation. We proceed to give a cross-composition
of cost O(

√
t · log t) ∈ O(t 1

2 +o(1)) from Equally Constrained Bipartite Vertex Cover
into Constrained Bipartite Vertex Cover parameterized by the number of vertices n.
Strings that do not encode valid inputs can be recognized in polynomial time, and can be
reduced to a trivial no-instance. In the remainder, we focus on the case that the input
encodes a list of instances (G1, A1, B1), . . . , (Gt, At, Bt) such that all partite sets of all input
graphs have the same number of n vertices. If t is not equal to 22r for some integer r, then
we can repeatedly duplicate an instance until this holds. This only blows up the size of the
input by a constant factor and does not change whether there is at least one yes-instance in
the inputs. In the remainder we can assume that t = 22r for some r, implying that both

√
t

and log
√
t are integers. We can therefore index the inputs as (Gi,j , Ai,j , Bi,j) for i, j ∈ [

√
t].

For ease of presentation, the vertices in each partite set are identified with the integers in
the range [n]. We can assume n ≥ 3, as the instances are trivially solvable otherwise. We
construct an instance (G′, A′, B′, k′A, k′B) of Constrained Bipartite Vertex Cover that
expresses the logical or of the input instances, as follows.
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1. For each i ∈ [
√
t], add a vertex set A′i consisting of n vertices ai,1, . . . , ai,n to A′.

2. For each i ∈ [
√
t], add a vertex set B′i consisting of n vertices bi,1, . . . , bi,n to B′.

3. The adjacency information of the input graphs is embedded into G′. For i, j ∈ [
√
t],

for p, q ∈ [n], do the following. If {p, q} ∈ E(Gi,j), then make vertex ai,p adjacent to bj,q.
Afterward we have for every i, j ∈ [

√
t] that the graph G′[A′i ∪B′j ] is isomorphic to Gi,j .

4. For each i ∈ [
√
t], add a vertex set C ′i consisting of n/2−1 checking vertices to the partite

set A′. Make all vertices of C ′i adjacent to all vertices of B′i.
5. Define w :=

√
t ·n2. For each j ∈ [log

√
t], for each x ∈ {0, 1}, add a vertex set B′x,j to the

partite set B′ consisting of w vertices. For all i ∈ [
√
t], make all vertices of B′x,j adjacent

to all vertices of A′i if the j-th bit of the binary representation of number i is an x.
This concludes the description of the graph G′. It is easy to verify that n′ := |V (G′)| =
2n
√
t + (n/2 − 1)

√
t + 2w log

√
t ∈ O(n2√t log t). The construction can be performed in

polynomial time. Define k′A := n
√
t − 1 and k′B := n/2 + (

√
t − 1) · n + w · log

√
t. We

will prove that (G′, A′, B′, k′A, k′B) is a yes-instance of Constrained Bipartite Vertex
Cover if and only if one of the inputs is a yes-instance.

I Claim 12. If there are indices i∗, j∗ ∈ [
√
t] such that Gi∗,j∗ has an (n/2, n/2)-constrained

vertex cover, then G′ has a (k′A, k′B)-constrained vertex cover.

Proof. Suppose there are sets A∗ ⊆ Ai∗,j∗ and B∗ ⊆ Bi∗,j∗ , each of size at most n/2, which
together form a vertex cover of Gi∗,j∗ . We build a (k′A, k′B)-constrained vertex cover S for G′.

Add all vertices ai∗,` to S for which ` ∈ A∗. This contributes n/2 vertices to S ∩A′.
Add all vertices bj∗,` to S for which ` ∈ B∗. This contributes n/2 vertices to S ∩B′.
Add all vertices of all sets A′i with i ∈ [

√
t]\{i∗} to S. This contributes (

√
t−1)n vertices

to S ∩A′.
Add all vertices of all sets B′j with j ∈ [

√
t] \ {j∗} to S. This contributes (

√
t − 1)n

vertices to S ∩B′.
Add all vertices C ′j∗ to S. This contributes n/2− 1 vertices to S ∩A′.
For each j ∈ [log

√
t], if the j-th bit of i∗ is a zero then add all vertices of B′0,j to S.

Otherwise add all vertices of B′1,j to S. This contributes w log
√
t vertices to S ∩B′.

It is easy to verify that S contains k′A vertices from A′ and k′B vertices from B′. It remains
to check that S is a vertex cover of G′. We discuss the edges of G′ in the order in which
they were added to the graph by the construction.

The edges of the induced subgraph G′[A′i∗ ∪B′j∗ ] are covered since S includes the vertices
corresponding to A∗ and B∗, which form a vertex cover for Gi∗,j∗ . Recall that Gi∗,j∗ is
isomorphic to G′[A′i∗ ∪B′j∗ ]. Edges between A′i and B′j for i 6= i∗ or j 6= j∗ are covered
because S includes all vertices of A′i for i 6= i∗, and all vertices of B′j for j 6= j∗.
The edges between the checking vertices C ′j∗ and B′j∗ are covered because S includes C ′j∗ .
The edges between C ′j and B′j for j 6= j∗ are covered because S contains B′j .
The edges between A′i∗ and sets B′x,j for x ∈ {0, 1}, j ∈ [log

√
t] are covered because S

contains all sets B′x,j whose bit value matches that of the binary representation of i∗.
For i 6= i∗, the edges between A′i and sets B′x,j are covered because S contains A′i.

As S covers all edges of G′, the claim follows. J

I Claim 13. For any inclusionwise-minimal (k′A, k′B)-constrained vertex cover S of G′, the
following holds.
1. For every j ∈ [log

√
t] the set S contains all vertices of B′0,j or all vertices of B′1,j.

2. For every j ∈ [log
√
t] we have S ∩B′0,j = ∅ or S ∩B′1,j = ∅.

3. There is an index ` ∈ [
√
t] such that B′` \ S 6= ∅.

4. The set S avoids at least n/2 vertices from the set
⋃
i∈[
√
t] A
′
i.
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5. There is an index i∗ ∈ [
√
t] such that S contains A′i for all i ∈ [

√
t] \ {i∗}.

6. There is an index j∗ ∈ [
√
t] such that S contains B′j for all j ∈ [

√
t] \ {j∗}.

7. Let i∗ and j∗ be as defined in (5) and (6). Then the graph Gi∗,j∗ has a vertex cover
containing at most n/2 vertices from each partite set.

Proof. Let S be an inclusionwise-minimal (k′A, k′B)-constrained vertex cover of G′.
(1) Assume for a contradiction that there is an index j ∈ [log

√
t] such that S avoids both

a vertex of B′0,j and of B′1,j . To cover all the edges between B′0,j and sets A′i for i ∈ [
√
t],

the set S must contain all sets A′i for which the j-th bit of i is a zero. Similarly, S contains
all sets A′i for which the j-th bit is a one, to cover the edges between B′0,j and the A′i’s.
So S ⊇

⋃
i∈[
√
t] A
′
i, showing that |S ∩A′| ≥ n ·

√
t > k′A, a contradiction.

(2) Assume for a contradiction that there is an index j ∈ [log
√
t] such that S ∩B′0,j 6= ∅

and S ∩ B′1,j 6= ∅. Observe that all vertices in B′x,j are false twins for x ∈ {0, 1}. Hence if
one vertex v of B′x,j is contained in the inclusionwise-minimal vertex cover S, then there is a
neighbor u of v that is not in S, implying that all other vertices of B′x,j are also adjacent
to u. Therefore all vertices of B′0,j and B′1,j are contained in S. Together with the fact
that S contains at least one of the sets B′0,j′ , B′1,j′ fully for all j′ ∈ [

√
t] \ {j}, by (1), we find

that |S∩B′| ≥ (log
√
t−1)w+ 2w = w+w · log

√
t = n2√t+w · log

√
t > k′B ; a contradiction.

(3) Suppose that B′` ⊆ S for all ` ∈ [
√
t], contributing n ·

√
t vertices to S ∩B′. By (1)

we know that S contains at least w · log
√
t vertices from the sets B′x,i. Hence |S ∩ B′| ≥

n ·
√
t+ w · log

√
t > k′B , a contradiction.

(4) Suppose that |
⋃
i∈[
√
t] A
′
i \S| < n/2. Then |

⋃
i∈[
√
t] A
′
i ∩S| > n ·

√
t−n/2. By (3) we

know that there is an index i∗ ∈ [
√
t] such that S avoids at least one vertex from B′i∗ . Since

all vertices of C ′i∗ are adjacent to all vertices of B′i∗ , this implies that S contains all n/2− 1
vertices of C ′i∗ . Since C ′i∗ also belongs to the A′ partite set, this shows that |S ∩ A′| >
(n
√
t− n/2) + (n/2− 1) = n

√
t− 1 = k′A, a contradiction.

(5) Consider the number i∗ whose j-th bit is a one if S avoids B′0,j and is a zero otherwise.
By (2), in the second case S avoids B′1,j . For each i 6= i∗, the binary representation of i differs
from that of i∗ in at least one bit. Suppose that the j-th bit of i is a zero, and the j-th bit
of i∗ is a one. Then S avoids B′0,j and A′i is adjacent to B′0,j by construction. Consequently,
all vertices of A′i are contained in S. Similarly, if the j-th bit of i is a one and the j-th bit
of i∗ is a zero, then S avoids B′1,j while B′1,j is adjacent to A′i; hence A′i is fully contained
in S. It follows that for every index i 6= i∗ the set A′i is contained in S.

(6) Suppose that there are two indices j′, j′′ such that S avoids a vertex of bothB′j′ andB′j′′ .
Then S contains all vertices of C ′j′ and C ′j′′ . By (5) we know that there is an index i∗ ∈ [

√
t]

such that S contains
⋃
i∈[
√
t]\{i∗}A

′
i. Hence |S ∩ A′| ≥ 2(n − 1) + (

√
t − 1) · n > k′A, a

contradiction. The last step uses the fact that n ≥ 3.
(7) Let i∗ and j∗ be as defined in (5) and (6), implying that S contains all sets A′i

for i ∈ [
√
t] \ {i∗} and all sets B′j for j ∈ [

√
t] \ {j∗}. By (4) the set S avoids at least n/2

vertices from
⋃
i∈[
√
t] A
′
i, which implies that |S ∩ A′i∗ | ≤ n/2, since S fully contains the

other sets A′i. We proceed to show that |S ∩B′j∗ | ≤ n/2. To see that, observe that S fully
contains (

√
t− 1) · n vertices from

⋃
j∈[
√
t]\{j∗}B

′
j . In addition, S contains at least w · log

√
t

vertices from
⋃
j∈[log

√
t],x∈{0,1}B

′
x,j , by (1). Since the total size of S ∩B′ is at most k′B =

n/2 + (
√
t− 1) ·n+w · log

√
t we find that |S ∩B′j∗ | ≤ n/2. Now define S∗ := S ∩ (A′i∗ ∪B′j∗).

It follows that S∗ is a vertex cover of the graph G′[A′i∗ ∪ B′j∗ ] containing at most n/2
vertices from each partite set. Since G′[A′i∗ ∪B′j∗ ] is isomorphic to the input graph Gi∗,j∗ by
construction of G′, the claim follows. J
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The last item of Claim 13 shows that if there is a (k′A, k′B)-constrained vertex cover
of G′, then one of the input instances has answer yes: if a vertex cover with such size
constraints exists, then there is also an inclusionwise-minimal vertex cover satisfying the
same size bounds, causing one of the input graphs to have a vertex cover containing at
most n/2 vertices from each partite set. By the definition of Equally Constrained
Bipartite Vertex Cover, this certifies the yes-answer for that input. Together with the
first claim, we have therefore established that the composed instance acts as the logical
or of the inputs. The construction thus satisfies all requirements of a cross-composition
of Equally Constrained Bipartite Vertex Cover into Constrained Bipartite
Vertex Cover parameterized by the number of vertices. The parameter of the composed
instance is n′ ∈ O(n2√t log t) ∈ O(nO(1) · t 1

2 +o(1)), showing that the cross-composition has
cost f(t) ∈ O(t 1

2 +o(1)). As the starting problem is NP-complete (Proposition 10), Theorem 11
now follows from Theorem 9. J

I Corollary 14. Let ε > 0 be a real number. If there is a polynomial-time algorithm that
reduces any instance (G,A,B, kA, kB) of Constrained Bipartite Vertex Cover to an
equivalent instance of the same problem with O((kA · kB)1−ε) edges, then NP ⊆ coNP/poly.

Proof. Suppose such a kernelization algorithm exists and call it K. Using K we create a gen-
eralized kernelization A of subquadratic size for Constrained Bipartite Vertex Cover
parameterized by the number of vertices n. Presented with an instance (G,A,B, kA, kB),
the algorithm does the following. Let n be the number of vertices in G. If kA ≥ n

or kB ≥ n, then the answer is trivially yes as we may take all of A or all of B to form
the desired constrained vertex cover. We can therefore output a constant-size yes-instance
as the output of the compression. In the remaining cases we know kA, kB < n. The al-
gorithm then invokes K on the input, obtaining an equivalent instance (G′, A′, B′, k′A, k′B)
where |E(G′)| ∈ O((kA ·kB)1−ε) ∈ O((n ·n)1−ε) ∈ O(n2−2ε). After removing isolated vertices
from the graph, which do not affect the answer, the number of vertices in G′ is at most twice
the number of edges, which is O(n2−2ε). This instance is encoded using an adjacency list
representation. In general, an adjacency list encoding of a graph uses O(|V |+ |E| log |V |) bits.
In this case, we find that G′ can be encoded in O(n2−2ε log(n2−2ε)) ∈ O(n2−ε) bits. After
encoding the values of k′A and k′B in binary, which does not exceed this space bound, the
algorithm outputs the resulting instance. Since it is equivalent to the input instance, this is
a generalized kernel for Constrained Bipartite Vertex Cover. As the size is O(n2−ε)
for some positive ε, by Theorem 11 we now obtain NP ⊆ coNP/poly. J

5 Conclusion

In this paper we presented two kernelization lower bounds for Constrained Bipartite
Vertex Cover. We proved that it is unlikely that the Θ(kA · kB) bound on the number of
vertices and edges from the easy kernel can be significantly improved. The easy kernel is
therefore close to optimal when bounding the kernel size in terms of the product kA · kB.
Our results do not rule out the existence of kernels for Constrained Bipartite Vertex
Cover with O(kA + kB) vertices, which we leave as an open problem.

Acknowledgments. The author is grateful to Marcin and Michał Pilipczuk for bringing the
problem to his attention.
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