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Abstract
Transductions are binary relations of finite words. For rational transductions, i.e., transductions
defined by finite transducers, the inclusion, equivalence and sequential uniformisation problems
are known to be undecidable. In this paper, we investigate stronger variants of inclusion, equi-
valence and sequential uniformisation, based on a general notion of transducer resynchronisation,
and show their decidability. We also investigate the classes of finite-valued rational transduc-
tions and deterministic rational transductions, which are known to have a decidable equivalence
problem. We show that sequential uniformisation is also decidable for them.
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1 Introduction

Transductions generalise finite word languages to binary relations of finite words. The notion
of rationality for languages, and its correspondence with finite automata, has been extended
to transductions and finite automata over pairs of words, called finite transducers [2]. In this
paper, we study decision problems for finite transducers and prove new decidability results.

Finite transducers. (Finite) transducers are nondeterministic finite automata whose trans-
itions are labelled by pairs of words. The (rational) transduction RT defined by a transducer
T consists of all the pairs of words (u, v) obtained by concatenating the pairs occurring
on transitions of its successful computations. In this paper, we follow a dynamic vision
of transducers, as a machine that processes input words u and produces output words v.
Therefore, we may speak of the domain of a transduction, as the language of input words
that admit at least one output word.

Equivalence problem. Unlike finite automata, finite transducers have undecidable inclusion
and equivalence problems [17, 14], even when restricted to unary alphabets [19]. The largest
known classes with decidable equivalence problem are those of finite-valued transducers and
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deterministic transducers. A transducer is finite-valued if it produces at most k outputs
per input, for a bound k that only depends on the transducer. It is decidable whether a
transducer is k-valued for a given k [18], and whether there exists k such that it is k-valued
[33]. Any finite-valued transducer is known to be (effectively) equivalent to a finite union
of unambiguous transducers [32], and thus to a finitely ambiguous transducer. Equivalence
of k-ambiguous transducers was shown to be decidable in [18], and equivalence of k-valued
transducers was first shown to be decidable in [20, 32]. Other algorithms with better
complexities appeared later, and the best known algorithm runs in exponential time, for a
fixed k [8].

A transducer is deterministic if the transitions are deterministic in the classical sense,
and furthermore each state processes either only input symbols or only output symbols.
The class of deterministic rational transductions is also referred to as DRat, and it strictly
extends the class of synchronous rational transductions (also called automatic relations), see
e.g. [7] for an overview of these sub-classes of rational transductions. As opposed to the
class of finite-valued transducers, it is undecidable whether a transduction is equivalent to a
deterministic transduction [14]. However, the equivalence problem for DRat is known to be
decidable [3], even in polynomial time [15]. This makes this class an interesting candidate
for further investigations of decision problems.

Uniformisation problem. Two classes of interest are the rational and sequential functions,
which are respectively defined by 1-valued transducers and sequential transducers. The latter
read input words in a deterministic manner, and therefore produce a unique output word for
each input. There are rational functions that are not sequential, but it is decidable in PTime
whether a transducer defines a sequential function [34]. Since rational transductions do not
define, in general, functions, an interesting question is whether a unique output word can be
picked for each input word of a rational transduction R, in a regular way, thus defining a
function f ⊆ R with the same domain as R. Such a function f is called a uniformiser of
R. It is known that any rational transduction admits a rational uniformiser [23, 10] and,
in the case of DRat, even a lexicographic uniformiser that picks the smallest output words
according to a lexicographic order, making the uniformiser only depend on the transduction
[21, 27]. In this paper, we are interested in sequential uniformisers. Even rational functions
do not admit sequential uniformisers in general, and therefore this gives rise to a decision
problem: Given a finite transducer, does it admit a sequential uniformiser? It is worth noting
that even if any rational transduction R can be uniformised by a rational uniformiser U , the
sequential uniformisability of R does not imply, in general, that any of the uniformisers U is
equivalent to a sequential transducer. As a matter of fact, it is known that the sequential
uniformisation problem is undecidable for rational transductions [6].

The sequential uniformisation problem echoes a similar problem introduced by Church,
the synthesis problem, which currently receives a lot of attention from the computer-aided
verification community in the context of open reactive systems (see [24, 13, 4] for some work
on this subject from the last decade). This problem asks whether given a logical specification
of a system, there exists an implementation that satisfies it. In this context, reactive systems
are non-terminating systems that react to some unpredictable environment stimuli in a
synchronised fashion: for each environment input, they produce an output in a deterministic
manner, such that the specification is met in the limit. Their executions are modelled by
infinite words over a product alphabet, and the interaction with the environment makes game
theory a powerful tool in this context. A seminal result due to Büchi and Landweber shows
that the synthesis problem is decidable for MSO specifications [22] (see [31] for a modern
presentation and an overview).
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Restricted to finite words, the sequential uniformisation problem extends Church’s problem
to more general (asynchronous) classes of specifications and implementations, where the
transduction R is the specification and the sequential uniformiser f the implementation.

Resynchronisers. One of the main difficulty of transducers is that two equivalent transducers
may produce their outputs very differently: One transducer may go fast and be ahead of
the other. By tagging symbols with two colours (for input and output), transductions can
be seen as languages, called synchronisation languages. It is known by Nivat’s theorem
that rational transductions are synchronised by regular languages [26], and any transducer
defines a regular synchronisation language. Other correspondences between classes of
synchronisation languages and classes of rational transductions have been established in [11].
However in general, there is an infinite number of synchronisation languages for a single
transduction, making problems such as equivalence and sequential uniformisation undecidable.
To overcome this difficulty, Bojanczyk has introduced transductions with origin information,
which amounts to adding the synchronisation information into the semantics of transducers,
via an origin function mapping output positions to their originating input positions [5]. The
main result of [5] is a machine-independent characterisation of transductions (with origin
information) defined by two-way transducers. With respect to the equivalence problem,
considering the origin information makes the problem easy: two transducers define the same
transduction with same origin mappings if they have the same synchronisation language. In
this paper, we generalise this idea and propose decision problems modulo resynchronisation.
A resynchroniser S is a transduction, mapping a synchronisation language to another one.
Then, we consider related equivalence and sequential uniformiser problems: for instance,
given two transducers, are their synchronisation languages equal modulo S? For the identity
resynchroniser, it is the same as origin-equivalence.

Contributions. As a first contribution, we show that inclusion, equivalence and sequential
uniformisation are decidable modulo rational resynchronisers. For equivalence, it easily
reduces to an automata equivalence problem. For sequential uniformisation, it boils down to
solving a two-player safety game. We then consider a particular class of resynchronisers, the
k-delay resynchronisers, that can apply a fixed delay k to a synchronisation language, where
the delay is a measure of how ahead an output word is from another one [1]. The k-delay
resynchroniser is rational for each k, which implies the decidability of the corresponding
decision problem. Interestingly, we show that for the class of real-time transducers (reading
at least one input symbol in each transition), k-delay resynchronisers encompass all the
power of rational synchronisers with respect to the decision problems we consider.

Our second main contribution is to show that equivalence and sequential uniformisation
modulo k-delay resynchronisers are complete for finite-valued transducers. Given two finite-
valued transducers, if they are equivalent, then some k can be computed such that they are
k-delay equivalent. This yields another, delay-based, proof of the decidability of finite-valued
transducer equivalence. We show a similar result for sequential uniformisation, by a pumping
argument based on an analysis of the idempotent elements in the transition monoid of
finitely-ambiguous transducers. This implies the following new result:

I Theorem 16. The sequential uniformisation problem for finite-valued transducers is
decidable.

Finally, we consider deterministic rational transductions, i.e. transductions defined by
deterministic transducers. A deterministic transducer is a deterministic automaton whose
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states are partitioned into input and output states. They process pairs of words (u, v) as
follows: two reading heads placed on u and v respectively process sequentially symbols from
u and v. Whenever the current state is an input state, a symbol from u is read and the
(input) head moves one step forward, and symmetrically on v when the current state is
an output state. The equivalence problem for deterministic transducers is decidable [3],
unlike the inclusion problem [14]. Our third main contribution is a decidability proof for
the sequential uniformisation problem for deterministic rational transductions, extending a
corresponding result for automatic relations from [6].

I Theorem 18. The sequential uniformisation problem for deterministic transducers is
decidable.

Structure of the paper. In Section 2, we introduce automata, transducers and decision
problems for them. In Section 3, we define the notion of resynchronisers for transductions
and study their associated decision problems. We also introduce the particular class of
bounded delay resynchronisers. In Section 4, we study the class of finite-valued rational
transductions and prove decidability of their sequential uniformisation. Finally in Section 5,
we prove decidability of sequential uniformisation for deterministic rational transductions.

2 Automata and Transducers

Let N denote the set of non-negative integers {0, 1, . . . }, and for every n ∈ N, let [n] denote
the set {1, . . . , n}. Given a finite set A, let |A| denote its cardinality.

Languages and Transductions of Words. An alphabet Σ is a finite set of symbols. The
elements of the free monoid Σ∗ are called words over Σ. The length of a word w is the
number of its symbols. It is written |w|. The empty word (of length 0) is denoted by ε, and
Σ+ = Σ∗ \ {ε}. The set Σ∗ can be partially ordered by the word prefix relation �.

We denote by Σ−1 the set of symbols σ−1 for all σ ∈ Σ. Any word u ∈ (Σ ∪ Σ−1)∗
can be reduced into a unique irreducible word u by the equations σσ−1 = σ−1σ = ε for all
σ ∈ Σ. Let GΣ be the set of irreducible words over Σ ∪ Σ−1. The set GΣ equipped with
concatenation u.v = uv is a group, called the free group over Σ. We denote by u−1 the
inverse of u. E.g. (a−1bc)−1 = c−1b−1a. For u ∈ GΣ, we denote by |u| its number of symbols.
E.g., |a−1b−1| = 2, |a−1bc−1| = 3.

A language L over Σ is a subset of Σ∗. A transduction R over Σ is a subset of Σ∗ × Σ∗.
The domain of R is the set dom(R) = {u | ∃v ∈ Σ∗ · (u, v) ∈ R}. For a word u ∈ Σ∗,
we denote by R(u) the set {v | (u, v) ∈ R}, and extend this notation to languages L by
R(L) =

⋃
u∈LR(u). When R is a function, we simply write R(u) = v instead of R(u) = {v}.

Finally, we denote by idΣ∗ the identity relation on Σ∗.

Automata. A (finite state) automaton over an alphabet Σ is a tuple A = (Q, I, F,∆), where
Q is the finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states,
and ∆ ⊆ Q× Σ∗ ×Q is the finite transition relation. Given a transition (q, w, q′) ∈ ∆, q is
called its source, q′ its target, and w its label. An automaton is called deterministic if each
of its transition is labelled by a single letter, and it admits no pair of transitions that have
same source, same label, and different targets.

A run of A on a word u ∈ Σ∗ from state q to state p is either a single state q ∈ Q if
u = ε and q = p, or a word r = (q1, u1, p1)(q2, u2, p2) . . . (qn, un, pn) ∈ ∆+ if u ∈ Σ+, where
u = u1 . . . un, q1 = q and pn = p, and for all i ∈ {1, . . . , n−1}, pi = qi+1. We write q1

u−→A pn
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Figure 1 Transducers such that T1 ≡ T2 and T is seq-uniformisable by U .

(or simply q1
u−→ pn) if such a run exists. A run r from a state q to a state p is accepting

if q is initial and p is final. The language recognised by A, written LA, is the set of words
w ∈ Σ∗ such that there exists an accepting run of A on w. If B is an automaton, we write
A ⊆ B (resp. A ≡ B) whenever LA ⊆ LB (resp. LA = LB).

Transducers. A (finite state) transducer over an alphabet Σ is a tuple T = (Q, I, F,∆, f),
where Q is the finite set of states, I ⊆ Q the set of initial states, F ⊆ Q the set of final states,
∆ ⊆ Q× Σ∗ × Σ∗ ×Q the transition relation, and f : F→Σ∗ the final output function1

As for automata, a run of a transducer is either a single state or a sequence of transitions.
The input (resp. output) of a run r = (q1, u1, v1, p1) . . . (qn, un, vn, pn) ∈ ∆∗ is in(r) =
u1 . . . un (resp. out(r) = v1 . . . vn). If r is reduced to a single state, its input and output are
both ε. We say that r is a run of T on u1 . . . un. We write q u|v−−→ p to mean that there exists a
run on input u ∈ Σ∗ whose output is v ∈ Σ∗. In particular, q ε|ε−→ q for all q ∈ Q. The notion
of accepting run of automata carries over to transducers. The transduction recognised by T ,
written RT is the set of pairs (u, vf(p)) ∈ Σ∗ ×Σ∗ such that there exists an accepting run of
T on u from a state q to a state p whose output is v. We define dom(T ) as dom(RT ). The
class of rational transductions is the class of relations definable by finite state transducers.

The input automaton of T is the automaton A = (Q, I, F,∆′) over the alphabet Σ, where
∆′ = {(q, u, q′)|(q, u, v, q′) ∈ ∆}. A transducer is called real time if each of its transition is
labelled by a pair (a, v), where a ∈ Σ and v ∈ Σ∗. A transducer is called sequential if its
input automaton is deterministic2. Sequential transducers define sequential transductions.
A transducer is trim if all its accessible states are co-accessible, i.e. for all q ∈ Q, q0 ∈ I,
u, v ∈ Σ∗, if q0

u|v−−→ q, then there exist u′, v′ ∈ Σ∗ and qf ∈ F such that q u′|v′−−−→ qf .

Decision Problems for Transducers. Let T1, T2 be two transducers over an alphabet Σ.
We write T1 ⊆ T2 whenever RT1 ⊆ RT2 . The inclusion problem asks, given T1, T2, whether
T1 ⊆ T2. Similarly, we define the equivalence problem by asking whether RT1 = RT2 , denoted
T1 ≡ T2. Let T be a transducer over an alphabet Σ. A uniformiser of T is a transducer U
such that U ⊆ T and dom(U) = dom(T ). We sometimes write seq-uniformiser for sequential
uniformiser. The sequential uniformisation problem (seq-uniformisation problem) asks, given
a transducer T over Σ, whether T admits a seq-uniformiser.

1 Allowing final output functions does not increase the expressiveness of the general model, but is required
to define the notion of sequentiality

2 The term subsequential was originally used in the literature. We follow the terminology of [25].
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I Example 1. The transducers T1 and T2 of Fig. 1 both define the transduction {(an, a2i) |
n ≥ 1, 0 ≤ i ≤ n−1}, thus are equivalent. The transducer T is over the alphabet {a,A,B}
and defines the transduction {(anA, an) | n ≥ 0} ∪ {(anB, ai) | n ≥ 1, 0 ≤ i ≤ 2n−1}. It is
uniformisable by the sequential transducer U with RU = {(anα, an) | n ≥ 0, α ∈ {A,B}}.

I Theorem 2 ([17, 6]). The inclusion, equivalence and sequential uniformisation problems
for rational transductions are undecidable.

3 Decision Problems Modulo Resynchronisers

A pair (u, v) ∈ Σ∗ × Σ∗ can be represented by a coloured word over Σ× {i, o}, where the
colours indicate whether a symbol in Σ is an input or an output symbol. Such a coloured word
is called a synchronisation of (u, v). More generally, any language over the alphabet Σ×{i, o}
represents a transduction R ⊆ Σ∗ ×Σ∗, and is called a synchronisation language for R. This
way of representing transductions is analysed in [11]. What we call a resynchroniser below,
is a transduction of synchronisations, that is, over words in (Σ× {i, o})∗, that preserves the
represented pairs. In this section, we study stronger notion of inclusion, equivalence and
sequential uniformisation, parametrised by such a resynchroniser. We show their decidability
for rational resynchronisers and introduce the class of bounded delay resynchronisers, and
show that it has appealing properties.

Synchronisations and resynchronisers. Given an alphabet Σ, we let Σio = Σ × {i, o},
Σi = Σ × {i} and Σo = Σ × {o}. For c ∈ {i, o}, we write σc instead of (σ, c). The
colouring c can be seen as a morphism .c : Σ∗ → Σ∗c and we write uc its application
on a word u ∈ Σ∗. Conversely, for c ∈ {i, o}, we define two morphisms πc : Σ∗

io
→ Σ

that extract the input and output words, by πc(σc) = σ and πc(σd) = ε, for all σ ∈ Σ,
and d 6= c. Two words u, v ∈ (Σio)∗ are said to be equivalent, denoted by u ∼io v, if
πc(u) = πc(v) for all c ∈ {i, o}. For example, aibiao and aiaobi are equivalent, and both
are synchronisations of (ab, a). Any language L ⊆ Σ∗

io
defines a transduction over Σ defined

by RL = {(πi(w), πo(w)) ∈ Σ∗ × Σ∗ | w ∈ L}, and L is called a synchronisation of a
transduction R ⊆ Σ∗ × Σ∗ if RL = R. We also say that L synchronises R. Note that two
different languages may synchronise the same transduction.

Mapping a synchronisation to another one is done through the notion of resynchroniser.
A resynchroniser is a transduction S ⊆ Σ∗

io
× Σ∗

io
, such that (i) idΣ∗

io
⊆ S and (ii) for all

(w,w′) ∈ S, it holds w ∼io w
′. For instance, the identity relation id(Σio)∗ is a resynchroniser

that we shall denote by I, as well as the relation UΣio
= {(w,w′) ∈ Σ∗

io
× Σ∗

io
| w ∼io w

′},
called the universal resynchroniser over Σio. We write U instead of UΣio

when it is clear from
the context. Note that for any resynchroniser S, we have idΣ∗

io
⊆ S ⊆ U. The properties (i)

and (ii) of resynchronisers are chosen such that they preserve the represented transductions,
as stated in the proposition below.

I Proposition 3. For all L ⊆ Σ∗
io

and all resynchronisers S ⊆ Σ∗
io
× Σ∗

io
, RL = RS(L).

Classes of synchronisation languages and their correspondence with the classes of rational
relations they synchronise have been studied in [11]. We can formulate in this framework a
result known as Nivat’s theorem [26] as follows.

I Theorem 4. [26] A transduction R is rational iff it is synchronised by a regular language.

A regular language synchronising a rational transduction can be obtained as follows. Any
transducer T = (Q, I, F,∆, f) naturally defines a regular synchronisation for RT by its
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underlying automaton, which is the automaton obtained by concatenating the pairs of
input and output words on the transitions and marking them with the respective symbol
from {i, o}. Formally, it is the automaton A = (Q ∪ {qa}, I, {qa},∆′) over Σio, where
∆′ = {(q, viwo, q′)|(q, v, w, q′) ∈ ∆} ∪ {(q, f(q)o, qa)|q ∈ F}. The language recognised by
T is the language recognised by its underlying automaton, denoted by LT , i.e. LT = LA.
Obviously, LT is a synchronisation for the relation RT (proving one direction of Thm 4).

Decision problems for transducers modulo resynchronisers. Let Σ be an alphabet, S be a
resynchroniser over (Σio)∗, and T1, T2 be two transducers over Σ. We say that T1 is included
in T2 modulo S (or S-included), denoted by T1 ⊆S T2, if LT1 ⊆ S(LT2). We say that T1 is
equivalent to T2 modulo S (or S-equivalent), denoted by T1 ≡S T2, if T1 ⊆S T2 and T2 ⊆S T1.
For a fixed synchroniser S, the S-inclusion (resp. S-equivalence) problem asks, given two
transducers T1, T2 over Σ, whether T1 ⊆S T2 (resp. T1 ≡S T2). We say that T1 is sequentially
S-uniformisable if it admits a sequential uniformiser U such that U ⊆S T1, and in that case
U is called a sequential S-uniformiser of T1 (seq-S-uniformiser for short). The sequential
S-uniformisation problem asks whether a given transducer is seq-S-uniformisable.

It should be clear from the definition that I-inclusion implies S-inclusion for any resyn-
chroniser S, which in turn implies U-inclusion. As a matter of fact, it is easy to see that
U-inclusion is equivalent to classical inclusion. The same remarks can be made for equivalence
and sequential uniformisation, and as a consequence of Theorem 2, we get:

I Theorem 5. The U-inclusion, U-equivalence, sequential U-uniformisation problems for
rational transductions are undecidable.

Decision problems for transducers modulo rational resynchronisers. The U-decision prob-
lems are undecidable, this raises the question whether there is an interesting class of re-
synchronisers for which we can recover decidability. It turns out that U is not rational. In
contrast, we show that, as long as S is rational, the S-decision problems are reducible to
the I-decision problems, which in turn can be solved by reduction to decidable problems of
automata and two-player games.

I Proposition 6. The I-inclusion and I-equivalence problems are PSpace-complete. The
sequential I-uniformisation problem is ExpTime-complete.

Proof. First, note that T1 ⊆I T2 iff LT1 ⊆ LT2 iff A1 ⊆ A2, where A1, A2 are the underlying
automata of T1, T2 respectively. Automata inclusion and equivalence problems are PSpace-
complete, and they easily reduce (by putting ε outputs) to I-inclusion and I-equivalence.

To get ExpTime membership of seq-I-uniformisation, for a transducer T , we construct a
two-player safety game GT = (V = VIn ] VOut, v0, E) between an adversary (Player In) who
picks input symbols and controls positions in VIn, and a protagonist (Player Out) who picks
sequences of output symbols and controls positions in VOut. Wlog we assume that T has no
final output function, by adding an endmarker a to words of its domain. Let A = (Q, q0, F, δ)
be a complete DFA equivalent to the the underlying automaton of T (whose size is at most
exponential in the size of T ). Player positions have three components: a residual language3
of dom(T ) controlling the possible continuations of the input word chosen so far by Player
In, a state of A and a round r ∈ {In,Out}. Let D = {u−1dom(T ) | u ∈ Σ∗} be the set of
residuals of dom(T ) (represented by the states of the minimal DFA for dom(T ), computed in

3 A residual of a language L over some alphabet Σ is a language u−1L = {v | uv ∈ L} for u ∈ Σ∗.
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exponential time in the size of T ). Then, VIn = D×Q×{In} and VOut = D×Q×{Out}. The
initial position is v0 = (dom(T ), q0, In) and the edge relation E as follows: from a position
(D, q, In), there are outgoing edges to all states (σ−1D, δ(q, σi),Out) for all σ ∈ Σ. From a
position (D, q,Out), Player Out can pick any state q′ ∈ Q such that there exists a sequence
v ∈ Σ∗

o
such that q v−→A q′, and in that case an outgoing edge to (D, q′, In) is added to E.

The unsafe positions for Player Out are all positions (D, q, In) such that ε ∈ D and q 6∈ F :
at such positions, Player In could choose to terminate the sequence of input symbols (while
staying in dom(T ) since ε ∈ D) and the sequence of output symbols chosen by Player Out,
mixed with the input symbols chosen by Player In, does not belong to L(A) (since q 6∈ F ).

It can be shown that Player Out has a strategy to avoid the unsafe positions in GT
iff there exists a seq-I-uniformiser of T . We briefly explain how to extract a uniformiser
from a memoryless winning strategy. A memoryless winning strategy of Player Out can be
represented by a function λ : VOut → VIn. The uniformiser Uλ has VIn as state set. Let v
be a state of Uλ where v = (D, q, In) ∈ VIn and σ ∈ Σ. Let v′ = (σ−1D, δ(q, σi),Out) and
v′′ = λ(v′). By definition of GT , v′′ = (σ−1D, q′, In) such that δ(q, σi) w−→A q

′ for some word
w ∈ Σ∗. We then add the transition (v, σ, w, v′′) to Uλ. The word w can be uniquely chosen
by taking the minimal word for some lexicographic order, making Uλ sequential. Accepting
states are states v = (D, q, In) with ε ∈ D, thus ensuring dom(Uλ) = dom(T ). Since λ is
winning, we then necessarily have q ∈ F , ensuring that the sequence of input and output
symbols read and produced by Uλ belongs to LA, making Uλ an I-uniformiser.

Since safety games can be solved in polynomial time and GT has exponential size, we get
the result. The results on safety games that we use here can be found, e.g., in [16].

For the ExpTime lower bound, we note that in our formalism we can model the syn-
chronous uniformisation (or synthesis) problem, as considered in [28] for infinite words, by
taking synchronisations that strictly alternate between input and output. It seems to be
common knowledge in the synthesis community that the synchronous uniformisation problem
is ExpTime-complete if the relation is given by a nondeterministic automaton. However,
we were not able to find a reference for this result. We thus give a reduction from the
acceptance problem for alternating Pspace Turing machines in a long version. J

For all transducers T and resynchronisers S, S(LT ) is a regular synchronisation language
and by Nivat’s theorem (Theorem 4), there exists a transducer T S such that LT S = S(LT ). It
implies that the seq-S-uniformisation of T reduces to the seq-I-uniformisation of T S. Similar
arguments apply for inclusion and equivalence and from Proposition 6 we obtain:

I Theorem 7. Let S be a rational resynchroniser, given as a transducer. The S-inclusion and
S-equivalence problems are PSpace-complete. The sequential S-uniformisation problem is
ExpTime-complete.

Bounded delay resynchronisers. The notion of delay between outputs of transducers is a
powerful way of comparing transducers, which has been used, for instance, to characterise
sequential functions [2]. Intuitively, the delay between two runs on the same input is a
parameter that measures how a run is ahead of the other, and the lag is the maximal delay
over prefixes of the two runs. We adapt the notion of delay and lag to coloured words and
define delay resynchronisers as resynchronisers that apply a fixed delay to words in Σ∗

io
(our

notion of lag is not related to the one from [11]). Our results show that delay resynchronisers
form a fundamental class of resynchronisers.

The delay between two words u and v over an alphabet Σ is the element from the free group
GΣ defined by delay(u, v) = u−1v. E.g., delay(ab, acd) = b−1cd. Note that delay(u, v) ∈ Σ∗ iff
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u � v, and delay(u, v) ∈ (Σ−1)∗ iff v � u. The lag mapping lag : (Σio)∗×(Σio)∗ → N∪{+∞}
gives the maximal length of the delay between the output part of two words in (Σio)∗ that
have the same input. It is the metric defined by lag(u, v) = +∞ if πi(u) 6= πi(v). If
πi(u) = πi(v), then u and v can be decomposed into u = u0a1u1 . . . un−1anun and v =
v0a1v1 . . . an−1bnvn, such that a1, . . . , an ∈ Σi, u0, v0, . . . , un, vn ∈ (Σo)∗. Then lag(u, v) =
max0≤i≤n |delay(u0 . . . ui, v0 . . . vi)|. As an example, for n ≥ 1, take un = aiao(ai)n and
vn = (ai)naiao. Then for all n ≥ 1, lag(un, vn)=1. Note that the occurrence of ao in un is
arbitrary far from that of ao in vn.

We now define the k-delay resynchroniser Dk. Intuitively, it can shift output symbols
of a word u to the left or to the right, as long as the lag between u and the new word
obtained this way is bounded by k. Formally, the k-delay resynchroniser is defined by
Dk = {(u, v) ∈ (Σio)2 | u ∼io v ∧ lag(u, v) ≤ k}. We define the k-inclusion, k-equivalence
and sequential k-uniformisation problems as the corresponding Dk-decision problems, and
write ⊆k and ≡k instead of ⊆Dk

and ≡Dk
respectively. We also say that a transduction is

seq-k-uniformisable if it is seq-Dk-uniformisable. An important property of Dk is:

I Proposition 8. For all k ≥ 0, Dk is rational.

As a direct consequence of the latter proposition and Theorem 7, the k-delay decision
problems are all decidable. We can be more precise:

I Theorem 9. For all k ≥ 0, the k-inclusion, k-equivalence and sequential k-uniformisation
problems are decidable and ExpSpace-hard if k is part of the input. If k is fixed, then
the k-inclusion and k-equivalence problems are PSpace-complete, and the sequential
k-uniformisation problem is ExpTime-complete.

Even if inclusion is undecidable while k-inclusion is decidable, it could be the case that
inclusion reduces to k-inclusion, for some k that cannot be computed. We show that that it
is not the case, by using the transducers of Fig. 1.

I Proposition 10. There exist transducers T1, T2, T such that T1 ≡ T2, T1 ⊆ T2 and T is
seq-uniformisable, but for all k ≥ 0, T1 6≡k T2, T1 6⊆k T2, and T is not seq-k-uniformisable.

Proof. Consider T1, T2 of Fig.1 and pairs of the form (an+1, a2n) ∈ RT1 = RT2 . They both
accept these pairs but T2 will be arbitrarily late compared to T1. Consider now the transducer
T and its sequential uniformiser U . On inputs anB, U will be arbitrarily ahead of T , and
one can show that is the case for any seq-uniformiser of T . J

Finally, we show that for real-time transductions, k-delay resynchronisers subsume any
rational resynchroniser S, in the sense that S-inclusion implies k-inclusion, for some k that
depends on S. Similar results hold for equivalence and sequential uniformisation. The idea is
that a rational synchroniser cannot advance or delay the production of outputs arbitrarily
far away with a finite set of states.

I Theorem 11. Let S be a rational synchroniser (given by a transducer). Let T1, T2, T be
real-time transducers. There exists a computable integer k ∈ N such that: (i) if T1 ⊆S T2,
then T1 ⊆k T2, (ii) if T1 ≡S T2, then T1 ≡k T2, and (iii) if T is seq-S-uniformisable, then T
is seq-k-uniformisable.

One cannot drop the real-time assumption in the latter theorem. Indeed consider the following
transducers T1, T2,S, for which T1≡ST2 but T1, T2 are not k-equivalent for any k:

T1 :
a | ε

ε | b

T2 :
a | ε

ε | b

S :
ai | ε

bo | bo

ε | ai

ICALP 2016
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4 Finite-valued transducers

Let m ∈ N. We remind the reader that a transducer T is called m-valued if each input
has at most m outputs, i.e. for all w ∈ dom(T ), |RT (w)| ≤ m. It is finite-valued if it is
m-valued for some m. Finite-valuedness is decidable [33]. We prove that for the class of
finite-valued transducers, k-inclusion and sequential k-uniformisation are complete. This
yields, for finite-valued transducers, an alternative proof of the decidability of the inclusion
problem, and a new result: The decidability of sequential uniformisation.

Let m be a natural number. An automaton A (resp. transducer T ) is called m-ambiguous
if it is real-time4, and for any word w ∈ LA (resp. w ∈ dom(T )), there exist at most m
accepting runs of A (resp. T ) on w. An automaton (transducer) is called finitely ambiguous
if there exists m ∈ N such that it is m-ambiguous, and unambiguous if it is 1-ambiguous.
Our proofs uses the following known decomposition initially due to Weber:

I Theorem 12. [32, 30] Any finite-valued transducer T is (effectively) equivalent to a union
of unambiguous transducers.

We first prove that, for the class of finitely ambiguous transducers, inclusion and equival-
ence reduces to k-inclusion and k-equivalence for some computable k. We state this result
for inclusion, which immediately implies it for equivalence. The proof is based on similar
pumping techniques than Lemma 2 in [9].

I Theorem 13. Let T1 and T2 be two real-time transducers such that T2 is m-ambiguous.
Then there exists a computable integer k such that T1 ⊆ T2 =⇒ T1 ⊆k T2. Moreover, k can
be chosen to be exponential in the size of T2 and linear in the size of T1.

Since k-inclusion is decidable by Theorem 7, Theorem 13 implies that the inclusion
and equivalence problems are decidable for finitely ambiguous transducers. From the
decomposition of Theorem 12, we obtain an alternative proof of the decidability of equivalence
of finite-valued transducers, which was proved in [20, 32].

I Corollary 14 ([20, 32] Alternative proof). The inclusion and equivalence problems for
finite-valued transducers are decidable.

We now prove the two corresponding results for the sequential uniformisation problem.

I Theorem 15. Let T be a real-time trim transducer given as a finite union of unambiguous
transducers. Then there exists a computable integer NT such that if T is sequentially
uniformisable, then it is sequentially NT -uniformisable.

Sketch of proof. If T is seq-uniformisable, then there exists a sequential uniformiser U of T
such that dom(U) = dom(T ) and U ⊆ T . The latter inclusion implies, by Theorem 13, that
there exists an integer k such that U ⊆k T , and so U is a seq-k-uniformiser of T . However,
k depends on the number of states of the hypothetical uniformiser U . We show how to
construct, by simulating the behaviour of U , another seq-NT -uniformiser U ′, where NT only
depends on T and can be computed.

More precisely, we define a function ρ : Σ∗ → Σ∗ and define U ′ such that on any input
w, it simulates U on input ρ(w). The function ρ iterates some well-chosen subwords of w
to blow up the delay between the outputs of the runs of T on ρ(w). On input ρ(w), any

4 For simplicity reasons, we put real-timeness in the definition, but it is known to be wlog.
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a | ε
b | ε

# | ε # | ε

a | ε

b | ε

a | ε
b | ε

a | ε

ε | a
ε | b

ε | a

ε | a

ε | b

Figure 2 A deterministic transducer with endmarker for R1 from Ex. 17.

seq-k-uniformiser of T , and U in particular, is forced to make choices between possible
outputs of T on ρ(w), in order to decrease the delay. The main idea is that if, by making
some good choice of output, U is able to react to a threat of exceeding delay k on ρ(w), then
by doing the same choice on w, U ′ can also react to a threat of exceeding delay NT .

We identify several key properties that ρ must satisfy, in order to be able to construct U ′.
For instance, we require that ρ(w) is a prefix of ρ(wa) for all w ∈ Σ∗, a ∈ Σ, but also some
property relating the delays between U and T on input w and on input ρ(w).

The challenging part of the proof is to prove the existence of NT and ρ. It is based on a
study of the structural properties of the transition monoid of finitely ambiguous transducers
(a monoid that captures the state behaviour of automata and transducers), and the effect
of its elements on the delays. In particular, subwords of w that are iterated to define ρ(w)
correspond to idempotent elements in the transition monoid of T , and the bound NT is
obtained by an application of Ramsey’s theorem. J

Since by Theorem 7 every finite-valued transducer is effectively equivalent to a finitely
ambiguous transducer, the sequential uniformisation problem for finite-valued transducers
reduces to sequential N -uniformisation, for computable integers N . Hence by Theorem 7
and the fact that any transducer can be trimmed in polynomial time, we get decidability of
sequential uniformisation of finite-valued transducers, one of the main results of this paper.

I Theorem 16. The sequential uniformisation problem for finite-valued transducers is
decidable.

5 Deterministic Rational Transductions

In this section we consider another subclass of rational transductions, namely the deterministic
rational transductions, denoted by DRat. This class is defined in terms of specific deterministic
transducers and some problems that are undecidable for general rational transductions are
decidable in the case of DRat. For example, the equivalence problem is decidable [3] (while
inclusion is easily seen to be undecidable [14]), and whether a given relation in DRat is
recognisable [7] is also decidable. We obtain here another decidability result, namely that
the sequential uniformisation problem is decidable for deterministic transducers.

For the definition of deterministic rational transducers, we work with endmarkers (this is
the common way of doing it, see also [29]). The determinism includes the standard definition
of unique successor states for each symbol and additionally a deterministic choice between
input and output. This is enforced by a partition of the state space into states processing
input symbols and states processing output symbols.

ICALP 2016
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I Example 17. The transduction R1 = {(u#v#w, vx) | u, v, w, x ∈ {a, b}∗} is in DRat
since it is recognised by the deterministic transducer depicted in Fig. 2 over the alphabet
{a, b,#} with endmarker a. Note that for each state the outgoing transitions either all have
ε as output component, or all have ε as input component. In the formal definition, this is
captured by partitioning the states into input and output states.

Let Σ be an alphabet and a a fresh symbol used as endmarker. We let Σa := Σ ∪ {a}.
A deterministic transducer over the alphabet Σ with endmarker a is of the form T =
(Qi, Qo, F, q0, δ) with a set Qi of input states, a set Qo of output states (we write Q for the
union of these two sets), a unique initial state q0, a transition function δ : Q× Σa → Q, and
a set F ⊆ Q of accepting states. In the presence of endmarkers, the final output function is
not required anymore.

For defining the semantics of such a deterministic transducer, one can transform it into a
standard transducer. However, this transformation needs to take care of the endmarker only
being allowed at the end of the word, which is not enforced in the definition of deterministic
transducers. To avoid this, we rather define the semantics by extending the transition
function to pairs of words (input and output word). For (u, v) ∈ Σ∗a × Σ∗a and q ∈ Q, we
define δ∗ : Q× Σ∗a × Σ∗a → Q× Σ∗a × Σ∗a inductively as follows:

If q ∈ Qi, then δ∗(q, ε, v) = (q, ε, v) and δ∗(q, au, v) = δ∗(δ(q, a), u, v).
If q ∈ Qo, then δ∗(q, u, ε) = (q, u, ε) and δ∗(q, u, av) = δ∗(δ(q, a), u, v).

So δ∗ applies δ to the next input letter from states in Qi and to the next output letter from
states in Qo as long as possible. The transduction RT defined by T is

RT = {(u, v) ∈ Σ∗ × Σ∗ | δ∗(q0, u a, v a) = (q, ε, ε) with q ∈ F}.

Recall from Section 4 that k-delay inclusion and equivalence are complete for finite-valued
transducers, as stated in Theorem 13. We note that this is not the case for DRat.

I Remark. There are deterministic transducers T1 and T2 such that T1 ≡ T2 but there is no
k such that T1 ≡k T2.

Proof. Consider the complete relation Σ∗ × Σ∗, and let T1 be the deterministic transducer
that first reads all input symbols (up to the endmarker a), and then reads all output symbols.
Let T2 be the deterministic transducer that first reads all output symbols and then the input
symbols. Obviously, RT1 = RT2 = Σ∗ ×Σ∗. However, the lag for the two runs of T1, T2 on a
pair (u, v) is |v| and thus not bounded. J

Our main result for DRat is the following, which extends the corresponding result for
automatic relations from [6].

I Theorem 18. The sequential uniformisation problem for deterministic transducers is
decidable.

The proof uses the game-theoretic approach, building a game between players Input and
Output. A winning strategy for player Output then corresponds to a sequential uniformiser.
The moves of the game simulate the deterministic transducer T on the pairs of input and
output word played by the two players in order to check whether the output indeed matches
the input. However, Output might need to delay the moves to gain some lookahead on the
input for making the next decisions. The main challenge in the proof is to find a way to keep
the lookahead information bounded without losing too much information. It is not sufficient
to simply store words of bounded length as lookahead. The information in the lookahead
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rather provides information on the behaviour that the lookahead word induces in T . Player
Output can delete parts of this information to reduce the size of the lookahead.

The sequential uniformiser that is constructed from the game in the decidability proof can
be shown to have bounded delay. So we obtain the following result, showing that sequential
k-uniformisation is complete for deterministic transducers.

I Theorem 19. Any sequentially uniformisable deterministic transducer is sequentially
k-uniformisable for some k ∈ N that can be computed from the given transducer.

6 Conclusion

We have introduced the notion of resynchronisers, which are transformations for synchron-
isations of transductions. The decision problems of inclusion, equivalence, and sequential
uniformisation, which are undecidable for general rational transductions, become decidable
modulo rational resynchronisers. Furthermore, we have shown that it is sufficient to consider
k-delay resynchronisers in the context of these decision problems. We have analysed two
subclasses of transducers, finite-valued transducers and deterministic transducers. For both
classes, sequential uniformisation is decidable, and the existence of a sequential uniformiser
implies the existence of a sequential k-uniformiser. Additionally, for finite-valued transducers
k-inclusion is shown to be complete. One interesting open question is the problem of deciding
for a transducer whether it admits a sequential k-uniformiser for some k.
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