
Optimal Sparsification for Some Binary CSPs
Using Low-Degree Polynomials∗

Bart M. P. Jansen1 and Astrid Pieterse2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
b.m.p.jansen@tue.nl

2 Eindhoven University of Technology, Eindhoven, The Netherlands
a.pieterse@tue.nl

Abstract
This paper analyzes to what extent it is possible to efficiently reduce the number of clauses in
NP-hard satisfiability problems, without changing the answer. Upper and lower bounds are es-
tablished using the concept of kernelization. Existing results show that if NP 6⊆ coNP/poly, no
efficient preprocessing algorithm can reduce n-variable instances of cnf-sat with d literals per
clause, to equivalent instances with O(nd−ε) bits for any ε > 0. For the Not-All-Equal sat
problem, a compression to size Õ(nd−1) exists. We put these results in a common framework by
analyzing the compressibility of binary CSPs. We characterize constraint types based on the min-
imum degree of multivariate polynomials whose roots correspond to the satisfying assignments,
obtaining (nearly) matching upper and lower bounds in several settings. Our lower bounds show
that not just the number of constraints, but also the encoding size of individual constraints plays
an important role. For example, for Exact Satisfiability with unbounded clause length it is
possible to efficiently reduce the number of constraints to n+1, yet no polynomial-time algorithm
can reduce to an equivalent instance with O(n2−ε) bits for any ε > 0, unless NP ⊆ coNP/poly.
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1 Introduction

The goal of sparsification is to make an object such as a graph or logical structure less
dense, without changing the outcome of a computational task of interest. Sparsification can
be used to speed up the solution of NP-hard problems, by sparsifying a problem instance
before solving it. The notion of kernelization, originating in the field of parameterized
complexity [8, 12, 13], facilitates a rigorous study of polynomial-time preprocessing for
NP-hard problems and can be used to reason about (the impossibility of) sparsification. Over
the last few years, our understanding of the power of polynomial-time data reduction has
increased tremendously, as documented in recent surveys [4, 16, 23, 26]. By studying the
kernelization complexity of a graph problem parameterized by the number of vertices, or of
a logic problem parameterized by the number of variables, we can analyze its potential for
sparsification.
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The vast majority of the currently known results in this direction are negative [10, 18, 19,
20], stating that no nontrivial sparsification is possible under plausible complexity-theoretic
assumptions. For example, Dell and van Melkebeek [10] obtained such a result for CNF-
Satisfiability with clauses of size at most d (d-cnf-sat), for each fixed d ≥ 3. Assuming
NP 6⊆ coNP/poly, there is no polynomial-time algorithm that compresses any n-variable
instance of d-cnf-sat to an equivalent instance with O(nd−ε) bits for ε > 0. Since there
are O(nd) possible clauses of size at most d over n variables, the trivial compression scheme
that outputs a bitstring of length O(nd), denoting for each possible clause whether it occurs
in the instance or not, is optimal up to no(1) factors.

A problem for which nontrivial polynomial-time sparsification is possible was recently
discovered by the current authors [20]. Any n-variable instance of the Not-All-Equal
CNF-Satisfiability problem with clauses of size at most d (d-nae-sat) can efficiently
be compressed to an equivalent instance with O(nd−1) clauses, which can be encoded
in O(nd−1 logn) bits. The preprocessing algorithm is based on a linear-algebraic lemma by
Lovász [27] to identify clauses that are implied by others, allowing a reduction from Θ(nd)
clauses to O(nd−1). This sparsification for d-nae-sat forms the starting point for this work.
Since d-cnf-sat and d-nae-sat can both be seen as constraint satisfaction problems (CSPs)
with a binary domain, it is natural to ask whether the positive results for d-nae-sat extend
to other binary CSPs. The difference between d-cnf-sat and d-nae-sat shows that the
type of constraints that one allows, affects the compressibility of the resulting CSP. The goal
of this paper is to understand how the optimal compression size for a binary CSP depends
on the type of legal constraints, with the aim of obtaining matching upper and lower bounds.

Before presenting our results, we give an example to illustrate our methods. Consider the
NP-complete Exact d-CNF-Satisfiability (Exact d-sat) problem, which asks whether
there is a truth assignment that satisfies exactly one literal in each clause; the clauses have
size at most d. While there are Θ(nd) different clauses that can occur in an instance with n
variables, the exact nature of the problem makes it possible to reduce any instance to an
equivalent one with n+ 1 clauses. A clause such as x1 ∨ x3 ∨ ¬x5 naturally corresponds to
an equality constraint of the form x1 + x3 + (1 − x5) = 1, since a 0/1-assignment to the
variables satisfies exactly one literal of the clause if and only if it satisfies the equality. To
find redundant clauses, transform each of the m clauses into an equality to obtain a system of
equalities Ax = b where A is an m× n matrix, x is the column vector (x1, . . . , xn), and b is
an integer column vector. Using Gaussian elimination, one can efficiently compute a basis B
for the row space of the extended matrix (A|b): a set of equalities such that every equality
can be written as a linear combination of equalities in B. Since (A|b) has n+ 1 columns, its
rank is at most n+ 1 and the basis B contains at most n+ 1 equalities. To perform data
reduction, remove all clauses from the Exact d-sat instance whose corresponding equalities
do not occur in B. If an assignment satisfies f1(x) = b1 and f2(x) = b2, then it also satisfies
their sum f1(x) + f2(x) = b1 + b2, and any linear combination of the satisfied equalities.
Since any equality not in B can be written as a linear combination of equalities in B, a truth
assignment satisfying all clauses from B must necessarily also satisfy the remaining clauses,
which shows the correctness of the data reduction procedure. The resulting instance can be
encoded in O(n logn) bits, as each of the remaining n+ 1 clauses has d ∈ O(1) literals.

Our results
Our positive results are generalizations of the linear-algebraic data reduction tool for binary
CSPs presented above. They reveal that the Õ(n)-bit compression for Exact d-sat,
the Õ(nd−1)-bit compression for d-nae-sat, and the O(nd)-bit compression for d-cnf-sat
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are samples of a gliding scale of problem complexity: more tightly constrained problems
can be compressed better. We formalize this idea by considering a generic CSP whose
constraints are of the form f(x) = 0, where f is a bounded-degree polynomial and the
constraint demands that x is a root of f . The example given earlier shows that Exact d-sat
can be expressed using degree-1 polynomials. We show that d-nae-sat and d-cnf-sat can
be expressed using equalities of polynomial expressions of degree d− 1 and d. We study the
following problem:

d-Polynomial root CSP Parameter: The number of variables n.
Input: A list L of polynomial equalities over variables V = {x1, . . . , xn}. An equality is
of the form f(x1, . . . , xn) = 0, where f is a multivariate polynomial of degree at most d.
Question: Does there exist an assignment of the variables τ : V → {0, 1} satisfying all
equalities in L?

Using a generalization of the argument presented above, the number of constraints in an
instance of d-Polynomial root CSP can efficiently be reduced to O(nd), even when the
number of variables that occur in a constraint is not restricted. The latter implies, for
example, that using degree-1 polynomials one can express the Exact sat problem with
clauses of arbitrary size. When the number of variable occurrences in a constraint can be as
large as n, it may take Ω(n) bits to encode a single constraint. After reducing the number
of clauses in an Exact sat instance to n + 1, one may therefore still require Θ(n2) bits
to encode the instance. This turns out to be unavoidable: we prove that Exact sat has
no sparsification of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. In general, we
compress instances of d-Polynomial root CSP to bitsize Õ(nd+1) when each constraint
can be encoded in Õ(n) bits. We prove that no compression to size O(nd+1−ε) is possible
unless NP ⊆ coNP/poly. When each constraint can be encoded in Õ(1) bits, the constraint
reduction scheme reduces the size of an instance to Õ(nd). As we will show that d-nae-sat
can be modeled using polynomials of degree d− 1, this method strictly generalizes our earlier
results [20] for d-nae-sat.

The linear-algebraic data reduction tool described above works over arbitrary fields F ,
allowing us to capture constraints such as “the number of satisfied literals in the clause is
exactly two, when evaluated modulo 3”. We therefore extend our study to the d-Polynomial
root CSP problem over arbitrary fields F , and obtain similar positive and negative results.

Finally, we consider binary CSPs whose constraints are formed by inequalities, rather
than equalities, of degree-d polynomials. This leads to the following generic problem:

d-Polynomial non-root CSP over F Parameter: The number of variables n.
Input: A list L of polynomial inequalities over variables V = {x1, . . . , xn}. An inequality
is of the form f(x1, . . . , xn) 6= 0, where f is a multivariate polynomial of degree ≤ d.
Question: Does there exist an assignment of the variables τ : V → {0, 1} satisfying all
inequalities in L?

We present upper and lower bounds for problems of this type. When the polynomials are
evaluated over a structure that is not a field, the situation changes significantly. For example,
CSPs with constraints of the type “the number of satisfied literals in the clause is 1 or 2, when
evaluated modulo 6” behave differently than the corresponding problem modulo 5, or modulo
7, because the integers modulo 6 do not form a field. Both our upper- and lower bound
techniques fail when defining constraints with respect to composite moduli. We present
connections to different areas of theoretical computer science where the distinction between
prime and composite moduli plays a big role. More concretely, we show that obtaining
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polynomial sparsification upper bounds for d-Polynomial non-root CSP over the integers
modulo a composite, would resolve a long-standing problem concerning the representation of
the or-function using low-degree polynomials (cf. [2, 3, 29]).

Related work
Schaefer’s Theorem [28] is a classic result relating the complexity of a binary CSP to the
type of allowed constraints, separating the NP-complete from the polynomial-time solvable
cases. A characterization of the kernelization complexity of min-ones CSPs parameterized by
the number of variables was presented by Kratsch and Wahlström [25]. There are several
parameterized complexity results for CSPs [7, 9, 24].

2 Preliminaries

A parameterized problem Q is a subset of Σ∗ × N, where Σ is a finite alphabet. Let
Q,Q′ ⊆ Σ∗ × N be parameterized problems and let h : N→ N be a computable function. A
generalized kernel for Q into Q′ of size h(k) is an algorithm that, on input (x, k) ∈ Σ∗ × N,
takes time polynomial in |x|+ k and outputs an instance (x′, k′) such that:
1. |x′| and k′ are bounded by h(k), and
2. (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.
The algorithm is a kernel for Q if Q = Q′. It is a polynomial (generalized) kernel if h(k)
is a polynomial. Since a polynomial-time reduction to an equivalent sparse instance yields
a generalized kernel, we use lower bounds for the sizes of generalized kernels to prove the
non-existence of sparsification algorithms.

A linear-parameter transformation from a parameterized problem Q to a parameterized
problem Q′ is a polynomial-time algorithm that transforms any instance (x, k) of Q into
an equivalent instance (x′, k′) of Q′ such that k′ ∈ O(k). It is easy to see (cf. [6]) that the
existence of a linear-parameter transformation from Q to Q′, together with a (generalized)
kernel of size O(kd) for Q′, yields a generalized kernel of size O(kd) for Q. By contraposition,
the existence of such a transformation implies that when Q does not have generalized kernels
of size O(kd−ε), then Q′ does not have generalized kernels of size O(kd−ε) either.

We use the framework of cross-composition [5] to establish kernelization lower bounds,
requiring the definitions of polynomial equivalence relations [5, Def. 3.1] and or-cross-
compositions [5, Def. 3.3].

I Theorem 1 ([5, Theorem 6]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗×N be a parameterized
problem, and let d, ε be positive reals. If L is NP-hard under Karp reductions, has an
or-cross-composition into Q with cost f(t) = t1/d+o(1), where t denotes the number of
instances, and Q has a polynomial (generalized) kernelization with size bound O(kd−ε), then
NP ⊆ coNP/poly.

For d ∈ N we will refer to an or-cross-composition of cost f(t) = t1/d log(t) as a degree-d
cross-composition. By Theorem 1, a degree-d cross-composition can be used to rule out
generalized kernels of size O(kd−ε). Note that when studying sparsification, we use the
number of vertices or variables in the instance (which is usually denoted by n) as the
parameter value (which is usually denoted by k).

When interpreting truth assignments as elements of a field, we equate the value true with
the 1 element in the field (multiplicative identity), and the value false with the 0 element
(additive identity). Consequently, for a boolean variable x its negation ¬x corresponds
to (1− x). We let Z/mZ denote the integers modulo m, which form a field if m is a prime
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number. The degree of a multivariate polynomial is the maximum degree of its monomials.
Let f(x1, . . . , xd) be a d-variate polynomial over a field F . The root set of f is the algebraic
variety {(e1, . . . , ed) ∈ F d | f(e1, . . . , ed) = 0}. For a field F and a finite set S ⊆ F of
elements, the univariate polynomial f(x) :=

∏
s∈S(x− s) over F of degree |S| has root set

exactly S. We say that a field F is efficient if the field operations and Gaussian elimination
can be done in polynomial time in the size of a reasonable input encoding. The field of
rational numbers Q, and all finite fields, are efficient. We use [n] to denote {1, . . . , n}.
The Õ-notation suppresses polylogarithmic factors: Õ(n) = O(n logc n) for a constant c. For
statements marked with a (F), the proof can be found in the full version [21].

3 Kernel upper bounds

3.1 Polynomial root CSP
We start by showing how to reduce the number of constraints in instances of d-Polynomial
root CSP, by extending the argument presented in the introduction.

I Theorem 2. There is a polynomial-time algorithm that, given an instance (L, V ) of d-
Polynomial root CSP over an efficient field F , outputs an equivalent instance (L′, V )
with at most nd + 1 constraints such that L′ ⊆ L.

Proof. Given a list L of polynomial equalities over variables V for d-Polynomial root
CSP, we use linear algebra to find redundant constraints. Observe that (xi)c = xi for
all 0/1-assignments and c ∈ N+. As constraints are evaluated over 0/1-assignments, we
may assume without loss of generality that the monomials in each of the polynomials are
multilinear: each monomial consists of a coefficient from F multiplied by distinct variables.

Create a matrix A with |L| rows and a column for every multilinear monomial of degree
at most d over variables from V . Let position ai,j in A be the coefficient of the monomial
corresponding to column j in the polynomial equality corresponding to row i.

Compute a basis B of the row space of matrix A, for example using Gaussian elimina-
tion [17], and let L′ consist of the equalities in L whose corresponding row appears in the
basis. Since L′ ⊆ L, it follows that if the original instance has a satisfying assignment, the
reduced instance has a satisfying assignment as well. The crucial part of the correctness
proof is to establish the converse.

I Claim 3. If an assignment τ : V → {0, 1} of the variables in V satisfies the equalities in
L′, then it satisfies all equalities in L.

Proof. Consider any equality (f(x) = 0) ∈ L \L′, since equalities in L′ are trivially satisfied,
and assume it corresponds to the i’th matrix row. Let fj(x) be the polynomial represented in
the j’th row of matrix A for j ∈ [|L|]. Without loss of generality, let the basis of A correspond
to its first m rows a1, . . . ,am. We then have i > m, and by the definition of basis there
exist β1, . . . , βm ∈ F such that ai =

∑m
j=1 βjaj . Let t be the column vector containing, for

each multilinear monomial of degree ≤ d in variables x1, . . . , xn, the evaluation under τ . For
example, for monomial x1x3 it contains τ(x1) · τ(x3). By using the same order of monomials
as in the construction of A, we obtain for all j ∈ [|L|] that fj(τ(x1), . . . , τ(xn)) = ajt, the
inner product of aj and t. It follows that ajt = 0 for all j ∈ [m], since satisfying L′ implies
fj(τ(x1), . . . , τ(xn)) = 0. To conclude the proof, note that

fi(x) = ait =
m∑

j=1
(βjaj)t =

m∑
j=1

βj(ajt) =
m∑

j=1
βj · 0 = 0. J
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I Claim 4. The number of constraints in the resulting kernel is bounded by nd + 1.

Proof. The size of a basis of any matrix over a field equals its rank, which is bounded by the
number of columns. As there is a column for each multilinear monomial of degree at most d,
there are at most

∑d
i=0
(

n
i

)
constraints in the basis. Now observe that

∑d
i=1
(

n
i

)
≤ nd. The

left side counts nonempty subsets of [n] of size at most d, each of which can be mapped to a
distinct d-tuple by repeating an element. Since there are nd d-tuples, the claim follows. J

This concludes the proof of Theorem 2. J

When each constraint can be encoded in Õ(n) bits, for example when each polynomial
can be represented as an arithmetic circuit of size O(n), Theorem 2 gives a kernelization
of size Õ(nd+1). When constraints can be encoded in Õ(1) bits, which may occur when
constraints have constant arity, we obtain kernels of bitsize Õ(nd). For explicit examples
consider the following problem, where optionally a prime p may be chosen.

Generalized d-Sat (mod p) Parameter: The number of variables n

Input: A set of clauses C over variables V := {x1, . . . , xn}, and for each clause a set
Si ⊂ N ∪ {0} with |Si| ≤ d. Each clause is a set of distinct literals of the form xi or ¬xi.
Question: Does there exist a truth assignment for the variables V such that the number
of satisfied literals in clause i lies in Si (mod p) for all i?

I Corollary 5. Generalized d-Sat and Generalized d-Sat mod p both have a kernel
with nd + 1 clauses that can be encoded in O(nd+1 logn) bits.

Proof. To reduce the number of clauses using Theorem 2, we only have to provide a
polynomial of degree at most d to represent each constraint. Consider a clause involving k
variables xi1 , . . . , xik

. Let tj = xij
if variable xij

occurs positively in the clause, and
let tj = (1 − xij

) if the variable occurs negatively. Then the number of satisfied literals
in the clause is given by the degree-1 polynomial f(xi1 , . . . , xik

) :=
∑k

i=1 ti. Let F (x) be a
polynomial with root set Sj (mod p) of degree at most |Sj |. We obtain F (f(x)) ≡ 0 (mod p)
if and only if x satisfies the clause. Note that the degree of F (f(x)) is at most |Sj | ≤ d.

Applying Theorem 2 to the resulting instance of d-Polynomial root CSP identifies a
subset of at most nd + 1 constraints which preserve the answer to the Sat problem. Each
clause contains at most 2n literals, which can be encoded in O(logn) bits each. Additionally,
for each clause we need to store the set Si of at most d integers, which have value at most 2n
in relevant inputs. As d is a constant, the instance can be encoded in O(nd+1 logn) bits. J

Corollary 5 yields a new way to get a nontrivial compression for d-nae-sat, which is
conceptually simpler than the existing approach which requires an unintuitive lemma by
Lovász [27]. The new approach gives the same size bound as given earlier [20].

I Corollary 6. d-nae-sat has a kernel with nd−1 + 1 clauses and bitsize O(nd−1 logn).

Proof. A clause of size k ≤ d is not-all-equal satisfied if and only if the number of satisfied
literals lies in S := {1, . . . , k − 1}. Using Corollary 5 we can reduce the number of clauses to
nd−1 + 1. Each clause has d ∈ O(1) variables and can thus be encoded in O(logn) bits. J
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3.2 Polynomial non-root CSP
In this section we consider d-Polynomial non-root CSP. In Section 4.2 we will show that,
over the field of rational numbers, the problem cannot be compressed to size polynomial in n,
unless NP ⊆ coNP/poly. We therefore consider the field Z/pZ of integers modulo a prime p.

I Theorem 7. There is a polynomial-time algorithm that, given an instance (L, V ) of
d-Polynomial non-root CSP over Z/pZ, outputs an equivalent instance (L′, V ) with
O(nd(p−1)) constraints such that L′ ⊆ L.

Proof. Suppose we are given a list of polynomial inequalities L over variables V . Observe
that an inequality f(x) 6≡ 0 (mod p) is equivalent to f(x) ∈ {1, . . . , p− 1} (mod p).

Let F : Z/pZ→ Z/pZ be a polynomial of degree p−1 with root set {1, . . . , p−1} modulo
p, which exists since Z/pZ is a field. Then f(x) 6≡ 0 (mod p) can equivalently be stated
as F (f(x)) ≡ 0 (mod p). It is easy to see that F (f(x)) is a polynomial of degree at most
d(p− 1). Therefore, L can be written as an instance of d(p− 1)-Polynomial root CSP
by replacing every polynomial f by F ◦ f . By Theorem 2, the proof follows. J

In Section 4.2 we will establish a nearly-matching lower bound counterpart to Theorem 7.

4 Kernel lower bounds

4.1 Polynomial root CSP
We now turn our attention to lower bounds, starting with d-Polynomial root CSP over Q.
We start by proving that Exact Red-Blue Dominating Set does not have generalized
kernels of bitsize O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. The same lower bound for
1-Polynomial root CSP will follow by a linear-parameter transformation. We then show
how to generalize this result to d-Polynomial root CSP. As a starting problem for the
cross-composition we will use the NP-hard Red-Blue Dominating Set (rbds) [11, 22].

Red-Blue Dominating Set (rbds) Parameter: The number of vertices n

Input: A bipartite graph G = (R ∪B,E) containing red (R) and blue (B) vertices, and
an integer k.
Question: Does there exist a set D ⊆ R with |D| ≤ k such that every vertex in B has at
least one neighbor in D?

Exact Red Blue Dominating Set (erbds) is defined similarly, except that every vertex
in B must have exactly one neighbor in D. Furthermore we will not bound the size of such a
set, but merely ask for the existence of any erbds.

I Theorem 8. Exact Red-Blue Dominating Set parameterized by the number of vertices
n does not have a generalized kernel of size O(n2−ε), unless NP ⊆ coNP/poly.

Proof. We will prove this result by giving a degree-2 cross-composition from rbds to erbds.
We start by giving a polynomial equivalence relation R on inputs of rbds. Let two instances
of rbds be equivalent under R if they have the same number of red vertices, the same
number of blue vertices, and the same maximum size of a rbds. It is easy to check that R is
a polynomial equivalence relation.

Assume we are given t instances of rbds, labeled Xi,j for i, j ∈ [
√
t], from the same

equivalence class of R. If the number of instances given is not a square, we duplicate one
of the input instances until a square number is reached. Since this changes the number of

MFCS 2016
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S

Figure 1 The graph G′ created in the proof of Theorem 8, for k = 3, mR = 5, mB = 4, and
t = 4. Edges between U and V are left out for simplicity. Of the 24 gadgets in C only c1

1,1,, c1
2,1,

and c1
3,1 are shown. Vertex y2 is left out.

inputs by at most a factor four, this does not influence the cross-composition. Instance Xi,j

consists of graph Gi,j with a set of red vertices Ri,j and blue vertices Bi,j . Call the number
of red vertices in every instance mR, the number of blue vertices mB , and the required size
of the dominating set k. For each instance enumerate the red vertices as r1, . . . , rmR

and the
blue vertices as b1, . . . , bmB

, arbitrarily. Create instance G′ for erbds by the following steps.
Figure 1 shows a sketch of G′.
1. Create

√
t sets U1, . . . , U√t each consisting of k ·mR red vertices, such that for all ` ∈ [

√
t]

U` := {u`
i,j | i ∈ [k], j ∈ [mR]}.

2. Similarly create
√
t sets V1, . . . , V√t, each consisting of k ·mB blue vertices, and define

V` := {v`
i,j | i ∈ [k], j ∈ [mB ]} for all ` ∈ [

√
t].

3. For each i ∈ [k] add the edge from u`
i,j to v`′

i,j′ if {rj , bj′} is an edge in instance X`,`′ with
`, `′ ∈ [

√
t], j ∈ [mR], j′ ∈ [mB ].

By steps 1 to 3, the graph induced by the vertices in U` ∪ V`′ consists of k vertex-disjoint
copies of G`,`′ . The next steps are used to ensure that there are exactly k vertices from U in
any erbds, which must all belong to the same set U`.
4. Create k blue vertices W := {wi | i ∈ [k]} and connect all vertices {u`

i,j | j ∈ [mR], ` ∈
[
√
t]} to wi for i ∈ [k].

5. Create blue vertices d`
i for ` ∈ [

√
t] and i ∈ [k]. Connect vertex d`

i to the vertices u`
i,j

with j ∈ [mR]. Add blue vertex S and red vertices Z := {zj | j ∈ [
√
t]} and connect zj to

d`
i for i ∈ [k] and ` 6= j ∈ [

√
t]. Connect all vertices in Z to vertex S.

The next steps ensure that some of the blue vertices in one set V` need to be dominated by
vertices from U , while all other vertices in V can be dominated “for free”.
6. Add sets of gadgets C` for ` ∈ [

√
t]. Each set consists of mB · k selector gadgets c`

i,j . A
selector gadget consists of k + 1 red vertices labeled a1, . . . , ak+1 that are all connected
to a blue vertex b that is private to the gadget. Furthermore, in gadget c`

i,j , the vertex
ax for x ∈ [k] is connected to v`

x,j for j ∈ [mB ], ` ∈ [
√
t] and i ∈ [k]. By this construction

an erbds uses at most one red vertex from each gadget, to dominate one vertex from V .
7. Add red vertices Y := y1, . . . , y√t and connect y` to the blue vertices of gadgets c`

1,j for
all j ∈ [mB ], ` ∈ [

√
t]. Connect y1, . . . , y√t to the new blue vertex S′.

This concludes the construction of graph G′, with red vertices (U ∪ Y ∪ Z ∪ vertices labeled
a1, . . . , ak+1 in C), and blue vertices (V ∪D ∪ {S, S′} ∪ vertices labeled b in C).
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I Claim 9. For any erbds E of G′, there exists an index ` ∈ [
√
t] such that Ux ∩E = ∅ for

all x 6= ` ∈ [
√
t] and |E ∩ {u`

i,j | j ∈ [mR]}| = 1 for all i ∈ k.

Proof. By Step 5, blue vertex S has neighborhood {z` | ` ∈ [
√
t]}. Exactly one of these

vertices is contained in E; let this be z`. The neighborhood of z` contains {dj
i | i ∈ [k], j ∈

[
√
t] \ {`}}. Thereby, no other neighbors from vertices in this set can be in E, implying no

vertices from Ui for i 6= ` ∈ [
√
t] can be in E. In other words, Ui ∩E = ∅ for all i 6= ` ∈ [

√
t].

By Step 4, the neighborhood of blue vertex wi for i ∈ [k] is exactly {ux
i,j | x ∈ [

√
t],

j ∈ [mR]}. It follows that exactly one vertex in this set is in E for all i. By the previous
argument the vertex cannot be from Ux for x 6= `, hence it is from U`. J

I Claim 10. For any erbds E of G′, there exists ` such that E ∩ c`
1,j = ∅ for all j ∈ [mB ].

Proof. By Step 7, blue vertex S′ has neighborhood {y` | ` ∈ [
√
t]}. Exactly one of these

vertices is contained in E; let this be y`. It is connected to the blue vertex of all gadgets c`
1,j

for j ∈ [mB ]. Since all red vertices in a gadget c`
1,j for j ∈ [mB ] have a blue neighbor b that

is also adjacent to y` ∈ E, the red vertices in these gadgets are not present in E. J

I Claim 11. For any erbds E of G′, there exists an index ` such that for every j ∈ [mB]
at least one of the vertices in {v`

i,j | i ∈ [k]} has a neighbor in E ∩ U .

Proof. By Claim 10 there exists ` ∈ [
√
t] such that E ∩ c`

1,j = ∅ for all j ∈ [mB]. Consider
an arbitrary j ∈ [mB]. The k vertices in {v`

i,j | i ∈ [k]} are connected to k gadgets
c`

1,j , c
`
2,j , . . . , c

`
k,j , and to some vertices in U . From each gadget, at most one red vertex is in

E, since the red vertices have a common blue neighbor. Any red gadget vertex is connected
to only one vertex in V . Since no vertex of gadget c`

1,j is in E, at most k − 1 of the vertices
in {v`

i,j | i ∈ [k]} have a neighbor in E ∩ C`. Consequently, at least one of these vertices has
a neighbor in E ∩ U for each j ∈ [mB ]. J

I Claim 12. If G′ has an erbds, then some input Xi,j has a rbds of size at most k.

Proof. Assume G′ has an erbds, say E. By Claim 11, there exists `2 ∈ [
√
t], such that for

every j ∈ [mB] at least one of the vertices in {v`
i,j | i ∈ [k]} has a neighbor in E ∩ U . By

Claim 9, there exists `1 ∈ [
√
t] with Ui ∩ E = ∅ for all i 6= `1, so these neighbors lie in U`1 .

We now construct a rbds E′ for instance X`1,`2 . For each j ∈ [mR], add rj to E′ if
E ∩ {u`1

i,j | i ∈ [k]} 6= ∅. By Claim 9, it follows that E′ has size at most k, as required. It
remains to show that every vertex in B`1,`2 has a neighbor in E′. If some vertex bj from
B`1,`2 does not have a neighbor in E′, then none of the vertices {v`2

i,j | i ∈ [k]} have a neighbor
in E ∩ U`1 . This contradicts Claim 11. Hence E′ is an rbds of size at most k for B`1,`2 . J

I Claim 13. If some input instance has a rbds of size at most k, then G′ has an erbds.

Proof. Suppose instance X`1,`2 has a rbds E′ of size k consisting of vertices ri1 , . . . , rik
⊆

R`1,`2 . We construct an erbds E for G′. Start by choosing vertices u`1
x,ix

for x ∈ [k], so
for every vertex in E′ we pick one vertex in the erbds for G′. Furthermore we choose the
red vertices z`1 and y`2 to be in E. To exactly dominate the blue vertices in V , we use the
gadgets in C as follows. For ` 6= `2 ∈ [

√
t], add red vertex ax of gadget c`

x,j if vertex v`
x,j

does not yet have a neighbor in E, for j ∈ [mR]. Else, add vertex ak+1 of gadget c`
x,j to E,

in order to exactly dominate the blue vertex of this gadget.
To exactly dominate the vertices in V`2 we apply a similar procedure, except that gadget

c`
1,j cannot be used since its blue vertex b is already dominated by y`2 . Since E′ is a rbds of
instance X`1,`2 , for each j ∈ [mB ] at least one vertex from set {v`2

i,j | i ∈ [k]} has a neighbor
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in E ∩ U . As such, the k − 1 remaining gadgets can be used to each dominate one of the
k − 1 remaining vertices in this set, if they do not already have a neighbor in E ∩ U . If no
red vertex of a gadget is needed to dominate, we choose vertex ak+1 of the gadget in E to
dominate the blue vertex in the gadget.

It is straight-forward to verify that this results in an erbds for G′. J

From Claims 12 and 13 it follows that graph G′ has an erbds if and only if at least one of
the input instances has a rbds of size at most k. The graph G′ has O(

√
t · (mR + mB)3)

vertices, which is suitably bounded for a cross-composition. By Theorem 1, it follows that
erbds parameterized by the number of vertices n does not have a generalized kernel of size
O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. J

Using Theorem 8 we provide lower bounds for constraint satisfaction problems.

I Corollary 14. The problems Exact Satisfiability and 1-Polynomial root CSP
over Q, parameterized by the number of variables n, do not have a generalized kernel of size
O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. By Theorem 8 and the discussion in Section 2, it suffices to give linear-parameter
transformations from erbds parameterized by the number of vertices to the two mentioned
problems. Consider an instance G = (R ∪B,E) of erbds. Create a binary variable xr for
each r ∈ R. For each blue vertex b ∈ B create a clause of the form

∨
r∈N(b) xr (to build an

instance of Exact sat), or create a constraint
∑

r∈N(b) xr = 1 (to build an instance of csp).
The resulting instance has a satisfying 0/1-assignment if and only if G has an erbds. Since
the number of variables is |R| ≤ n, these are valid linear-parameter transformations. J

I Theorem 15. d-Polynomial root CSP over Q parameterized by the number of variables
n does not have a generalized kernel of size O(nd+1−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. The case d = 1 is covered by Corollary 14; we consider d ≥ 2 and give a degree-(d+ 1)
cross-composition from rbds, re-using some parts of the proof of Theorem 8. Suppose we are
given t = rd+1 instances of rbds from the same equivalence class of R, all having mR red
vertices andmB blue vertices. By a similar padding argument as before, we may assume r is an
integer. Split the inputs into groups of size r2 and apply the cross-composition of Theorem 8
to each group, followed by the linear-parameter transformation in Corollary 14. We obtain
rd−1 instances of 1-Polynomial root CSP with O(r · poly(mR + mB)) variables each,
such that the answer to each composed instance is the logical or of the answers to the rbds
instances in its group. Label the instances resulting from the group compositions Xi1,...,id−1

with i1, . . . , id−1 ∈ [r]. They all use the same number of variables; label the variables in each
instance as x1, . . . , xq. Create an instance L′ of d-Polynomial root CSP as follows:
1. Create variables x1, . . . , xq. Create sets Y1, . . . , Yd−1 of r variables each, where Yi := {yi

j |
j ∈ [r]}. Add the requirement

∑
j∈[r] y

i
j = 1 to L′ for each i ∈ [d− 1].

2. Let the list of equations of instance Xi1,...,id−1 be Li1,...,id−1 . For every equality f(x) = 1
in Li1,...,id−1 with i1, . . . , id ∈ [r], add the following equality to L′:

f(x) ·
∏

z∈[d−1]

yz
iz

=
∏

z∈[d−1]

yz
iz
.

The polynomial equalities have degree ≤ d since f(x) has degree 1. The number of variables
is q+ (d− 1) · r ∈ O(r · d ·poly(mR +mB)) ∈ O(t1/(d+1)poly(mR +mB)). It remains to show
that L′ is satisfiable if and only if one of the input instances has an erbds. Since Theorem 8



B.M.P. Jansen and A. Pieterse 71:11

gives a correct cross-composition, it is sufficient to show that L′ is satisfiable if and only if
one of the rd−1 instances of 1-Polynomial root CSP has a solution.

(⇒) Suppose L′ is satisfied by some assignment. Then from each Yi for i ∈ [d−1], exactly
one variable is set to 1. So suppose variables yz

iz
are set to 1 for z ∈ [d− 1], iz ∈ [r]. Then

from instance Xi1,...,id−1 , all polynomial equations are copied to L′ and multiplied by 1 on
both sides. Hence they are satisfied by the assignment to x.

(⇐) Suppose instanceXi1,...,id−1 of 1-Polynomial root CSP has a satisfying assignment.
Set the x-variables according to this assignment. Furthermore, set variables yz

iz
for z ∈ [d−1]

to 1, set all other variables to 0. Thereby the sum of variables in each set Yi is 1, as required.
Furthermore, any equation added in Step 2 of the construction is satisfied in the following
way. If it belongs to instance Xi1,...,id−1 , it is satisfied by definition. Equations belonging to
any other instance are trivially satisfied since both sides are multiplied by zero. J

Observe that the polynomials constructed in Theorem 15 have a simple form: each
polynomial is a product of (d − 1) Y -variables multiplied by a sum of distinct variables
from x. Each polynomial can therefore be encoded in Õ(n) bits, where n is the number of
variables in the constructed CSP. The sparsification of Theorem 2 therefore encodes such
instances in Õ(nd+1) bits. The lower bound shows that this is optimal up to no(1) factors.

We expect the lower bound of Theorem 15 to extend to arbitrary finite fields of prime
order, except for the case d = 1 over Z/2Z, which is polynomial-time solvable [28].

4.2 Polynomial non-root CSP
We start our lower bound discussion for d-Polynomial non-root CSP by considering
polynomials over Q. 1-Polynomial non-root CSP over Q does not have a generalized
kernel of size bounded by any polynomial in n, unless NP ⊆ coNP/poly. This follows from
the fact that CNF-Satisfiability parameterized by the number of variables does not have
a kernel of size polynomial in n unless NP ⊆ coNP/poly [10, 14], together with the fact that a
clause such as (x1∨¬x3∨x4) is satisfied by a 0/1-assignment if and only if x1+(1−x3)+x4 6= 0
over Q. In the remainder of the section we investigate the behavior over finite fields.

In Theorem 7 we provided a kernel for d-Polynomial non-root CSP over Z/pZ for
primes p. It is natural to ask whether similar results can be obtained when working with
polynomials modulo an arbitrary integer m. When m is composite, our kernelization fails.
We can show that this is not a shortcoming of our proof strategy, but a necessity due to
the fact that constraints expressed by equalities of degree-d polynomials modulo composite
numbers can model more complex constraints than degree-d polynomials modulo a prime.
For example, it is known (cf. [1, §2]) that there is a degree-3 polynomial f over the integers
modulo 6 which represents a logical or of size 27 in the following way:

f(x1, . . . , x27) 6≡ 0 (mod 6)⇔ (x1 ∨ . . . ∨ x27). (1)

By this expressibility of a size-27 or by a polynomial of degree 3 over Z/6Z using the same vari-
ables, it is easy to give a linear-parameter transformation from 27-cnf-sat to 3-Polynomial
non-root CSP (mod 6). Using known lower bounds for d-cnf-sat [10, Theorem 1], this
implies the latter problem has no kernel of O(n27−ε) bits, unless NP ⊆ coNP/poly. Plugging
in the degree of 3 and modulus 6 into the bound of Theorem 7 would give a reduction
to O(n3·(6−1)) = O(n15) constraints and would contradict the lower bound. The example
therefore shows that the problem is more complex for composite moduli.

For more general non-primes, we can prove a lower bound using a general construction
by Bhowmick et al. [3] of low-degree polynomials representing or in the sense of Equation 1.
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I Theorem 16 (F). Let m be a non-prime with a prime factorization consisting of r
distinct primes, such that m =

∏
i∈[r] pi. Then d-Polynomial non-root CSP (mod m)

parameterized by the number of variables n does not have a generalized kernel of size
O(n(dr)/2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

In case m does not have a prime factorization in which all primes are distinct, it is
possible to obtain weaker a lower bound using a result by Barrington et al. [2], which proves
that there exists a polynomial of degree O(`N1/r) that represents a logical or when taken
modulo m. Here ` is the largest prime factor of m. For prime moduli, we provide a lower
bound almost matching the upper bound in Section 3.2.

I Theorem 17 (F). Let p be a prime. d-Polynomial non-root CSP (mod p) parame-
terized by the number of variables n does not have a generalized kernel of size O(nd(p−1)−ε)
for any ε > 0, unless NP ⊆ coNP/poly.

5 Conclusion

We have given upper and lower bounds on the kernelization complexity of binary CSPs that
can be represented by polynomial (in)equalities, obtaining tight sparsification bounds in
several cases. Our main conceptual contribution is to analyze constraints on binary variables
based on the minimum degree of multivariate polynomials whose roots, or non-roots, capture
the satisfying assignments. The ultimate goal of this line of research is to characterize
the optimal sparsification size of a binary CSP based on easily accessible properties of the
constraint language. To reach this goal, several significant hurdles have to be overcome.

For d-Polynomial non-root CSP (mod 6), we do not know of any way to reduce
the number of constraints to polynomial in n. This difficulty is connected to longstanding
questions regarding the minimum degree of a multivariate polynomial modulo 6 that represents
the or-function of n variables in the sense of Equation 1. As exploited in the construction
of Theorem 16, if the or-function with g(d) inputs can be represented by polynomials of
degree d, then d-Polynomial non-root CSP cannot be compressed to size O(ng(d)−ε)
unless NP ⊆ coNP/poly. By contraposition, a kernelization with size bound Õ(nh(d)) implies
a lower bound of h−1(d) on the degree of a polynomial representing an or of arity h(d),
assuming NP 6⊆ coNP/poly. Kernel bounds where h(d) is polynomially bounded in d, would
therefore establish inverse polynomial lower bounds on the degree of polynomials representing
an n-variable or modulo 6. However, the current-best degree lower bound [29] is only Ω(logn),
which has not been improved in nearly two decades (cf. [3, §1.4]).

When it comes to CSPs whose constraints are of the form “the number of satisfied literals
in the clause belongs to set S”, many cases remain unsolved. We can prove (F) using the
Green-Tao theorem [15] that for constraints of the form “the number of satisfied literals is a
prime number”, no generalized kernel of size polynomial in n exists unless NP ⊆ coNP/poly.
On the other hand, Corollary 5 gives good compressions for problems of the type “the number
of satisfied literals in the clause is a multiple of three”. Is sparsification possible when a
constraint requires the number of satisfied literals to be a square, for example?

A simple example of a CSP whose kernelization complexity is currently unclear has
constraints of the form “the number of satisfied literals is one or two, modulo six”. The
approach of Theorem 2 fails, since there is no polynomial modulo six with root set {1, 2}.

Finally, we mention that all our results extend to the setting of min-ones and max-ones
CSPs, in which one has to find a satisfying assignment that sets at least, or at most, a given
number of variables to true. For example, our results easily imply that Exact Hitting Set
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parameterized by the number of variables n has a sparsification of size O(n2), which cannot
be improved to O(n2−ε) unless NP ⊆ coNP/poly.
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