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Abstract
Given n line segments in the plane, do they form the edge set of a weakly simple polygon; that is,
can the segment endpoints be perturbed by at most ε, for any ε > 0, to obtain a simple polygon?
While the analogous question for simple polygons can easily be answered in O(n logn) time, we
show that it is NP-complete for weakly simple polygons. We give O(n)-time algorithms in two
special cases: when all segments are collinear, or the segment endpoints are in general position.
These results extend to the variant in which the segments are directed, and the counterclockwise
traversal of a polygon should follow the orientation.

We study related problems for the case that the union of the n input segments is connected.
(i) If each segment can be subdivided into several segments, find the minimum number of subdi-
vision points to form a weakly simple polygon. (ii) If new line segments can be added, find the
minimum total length of new segments that creates a weakly simple polygon. We give worst-case
upper and lower bounds for both problems.
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1 Introduction

In the design and analysis of geometric algorithms, the input is often assumed to be in general
position. This is justified from the theoretical point of view: degenerate cases can typically be
handled without increasing the computational complexity, or symbolic perturbation schemes
can reduce any input to one in general position [4]. In this paper, we present a geometric
problem about simple polygons in the plane, which has a straightforward solution if the
input is in general position, but is NP-complete otherwise.

Suppose we are given n line segments in the plane. It is easy to decide in O(n logn)
time whether they form a simple polygon by detecting intersections in a line sweep: if the
segments are disjoint apart from common endpoints, then they form a plane graph, and a
simple traversal can determine whether the graph is a cycle. If the input segments overlap,
more than two segments have a common endpoint, or some segment endpoints lie in the
interior of another segment, then they definitely do not form a simple polygon, but they
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10:2 Reconstruction of Weakly Simple Polygons from their Edges

might still be perturbed into a simple polygon (i.e., they form a weakly simple polygon). We
study the decision problem for weakly simple polygons in this paper.

Organization and Results. We start with necessary definitions, and formulate the problem
of reconstructing a weakly simple polygons from a set of edges (Section 2). We present
polynomial-time algorithms when the given segments form a geometric graph or are collinear
(Sections 3). The problem in general, however, is strongly NP-hard by a reduction from
Planar-Monotone-3SAT (Section 4). Nevertheless, every set of noncrossing line segments
in the plane can be turned into the edge set of a weakly simple polygon by (i) subdividing the
edges into several edges, or (ii) inserting new edges. In Sections 5 we show that if G = (V,E)
is Eulerian, the edges can be subdivided O(n) times to obtain a weakly simple Euler tour.
We also show that inserting new edges of total length at most 3‖E‖ is always sufficient
and sometimes necessary to create a weakly simple Euler tour. We conclude with future
directions (Section 6). Omitted proofs are available in the full paper [2].

Related Work. Reconstruction of simple polygons from partial information (such as vertices,
visibility graphs, visibility angles, cross sections) has been studied for decades [3, 6, 11, 12,
16]. For example, an orthogonal simple polygon can be uniquely reconstruction from its
vertices [16], but if the edges have 3 or more directions, the problem becomes NP-hard [12].
For a simple polygon, the set of all edges (studied in this paper) gives complete information:
the cyclic order of the edges is easy to recover. In contrast, a set of edges may correspond
to exponentially many weakly simple polygons, and the reconstruction problem becomes
nontrivial. The problems considered in Section 5 are closely related to geometric graph
augmentation and subgraph problems: (i) Can a given plane straight-line graph be augmented
with new edges into a simple polygon, a Hamiltonian plane graph, or a 2-connected plane
graph [14, 17, 18, 19]? (ii) Does a given a geometric graph contain certain noncrossing
subgraphs (e.g., spanning trees or perfect matchings) [15]?

2 Preliminaries

A polygon P = (p0, . . . , pn−1) is a cyclic sequence of points in the plane (vertices), where
every two consecutive vertices are connected by a line segment (edge). The cycle of edges
can be parameterized by a piecewise linear curve γ : S1 → R2. Polygon P is simple if γ is
a Jordan curve (i.e., γ is injective); equivalently, if (p0, . . . , pn−1) is the plane embedding
of a Hamiltonian cycle. Polygon P is weakly simple if, for every ε > 0, the vertices pi can
be perturbed to points p′i, ‖pip

′
i‖ < ε, such that P ′ = (p′0, . . . , p′n−1) is a simple polygon.

The function ‖.‖ denotes the Euclidean length of a line segment. Equivalently, a polygon
given by γ is weakly simple if it can be perturbed to a Jordan curve γ′ : S1 → R2 such that
the Fréchet distance of the two curves is bounded by ε (i.e., distF (γ, γ′) < ε) [7]. We can
test whether a polygon P = (p0, . . . , pn−1), is simple or weakly simple, respectively, in O(n)
time [8] and O(n logn) time [1].

We define the WeaklySimplePolygonReconstruction (WSPR) problem as the
following decision problem: Given a multiset E of line segments in R2, does there exist a
weakly simple polygon P whose edge multiset is E? For a multiset E of directed segments,
we also define Directed-WSPR that asks whether there exists a weakly simple polygon
P = (p0, . . . , pn−1) such that {pipi+1 mod n : 0 ≤ i ≤ n− 1} = E. In both undirected and
directed variants, we represent the input segments as a straight-line multigraph G = (V,E),
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Figure 1 (a) A multi-set of line segments. Circles indicate common segment endpoints. (b) A
weakly simple Euler tour. (c) An Eulerian graph that has no weakly simple Euler tour. An edge
subdivision (d) or the insertion of two edges (e), yields a weakly simple Euler tour.

where V is the set of all segment endpoints. Note that G may have overlapping edges, and
an edge may pass through vertices, so it need not be a geometric graph.

Two Necessary Conditions. Two line segments cross if they share exactly one interior
point. If the multiset of segments E forms a weakly simple polygon, then no two segment
cross. This condition can be easily tested in O(|E| log |E|) time by a line sweep.

If there is a weakly simple polygon P = (p0, . . . , pn−1) with edge set E, then P is an
Euler tour of the graph G = (V,E). (However, an Euler tour need not be weakly simple; see
Fig. 1(b)). A graph is Eulerian if and only if it is connected and every vertex has even degree.
A simple (undirected) plane graph G is Eulerian if and only if its dual graph is bipartite.
This result extends to plane multigraphs when an edge of multiplicity k is embedded as k
interior-disjoint Jordan arcs, that enclose k − 1 faces. A directed graph is Eulerian if and
only if all vertices are part of the same strongly connected component and if, for each vertex,
the in-degree equals the out-degree.

3 Special Cases

We show that both WSPR and Directed-WSPR admit polynomial-time algorithms in the
special cases that (i) G = (V,E) is a simple geometric graph, that is, no two edges overlap,
and no vertex lies in the interior of an edge, and (ii) all edges in G = (V,E) are collinear.
We assume that G satisfies both necessary conditions.

3.1 Geometric Graphs
Note that in an Eulerian geometric graph the boundary of each face is a weakly simple
circuit, where repeated vertices are possible, but there are no repeated edges. The following
is a modified version of Hierholzer’s algorithm [13]. It computes a weakly simple Euler tour
P in the Eulerian graph G, or reports that no such tour exists.

Algorithm A (G)

1. 2-color the faces of G white and gray so that the outer face is white; and create a list L
of circuits on the boundaries of the gray faces.

2. If G is directed and the edges around a gray face do not form a directed circuit or if there
exist both clockwise (cw) and counterclockwise (ccw) circuits in L, report that G has no
weakly simple Euler tour.

3. Choose an arbitrary circuit in L, remove it from L and call it P .
4. While there is a circuit in L, do:

4.1 Find two consecutive edges, (u, v) and (v, w), along a white face such that (u, v) ∈ P
and (v, w) ∈ C for some C ∈ L.

ISAAC 2016
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Figure 2 (a) Merging two cycles. The vertices circled by the dotted ellipse correspond to the
same vertex v. (b) If v has two consecutive incoming edges (a, v) and (c, v), G does not admit a
weakly simple Euler tour.

4.2 Remove C from the list L, and merge C and P by traversing C starting with the edge
(v, w) followed by the traversal of P that ends with the edge (u, v); see Figure 2(a).

5. Return P .

I Theorem 1. A simple geometric graph G = (V,E) admits a weakly simple Euler tour
if and only if G is Eulerian and, if G is directed, the circular order of edges around each
vertex alternates between incoming and outgoing. A weakly simple Euler tour, if exists, can
be computed in O(|E|) time.

Proof. If G = (V,E) is undirected, the algorithm construct an Euler tour P [13]; and the
tour is weakly simple by construction. In the remainder of the proof, we consider a directed
Eulerian geometric graph G. First, we show that if G satisfies the conditions of Theorem 1,
then Algorithm A returns a weakly simple Euler tour. If the circular order of edges around
each vertex alternates between incoming and outgoing, then all edges on the boundary
of a face of G have the same orientation (ccw or cw), and adjacent faces have opposite
orientations. Without loss of generality, the edges on the boundaries of white (resp., gray)
faces are oriented ccw (resp., cw). Hnece, the condition in step 2 of the algorithm is satisfied.

We show that the Euler tour P constructed by Algorithm A is weakly simple, that is,
it can be perturbed into a simple polygon. Initially, each circuit C = (p0, . . . , pk−1) in L is
the boundary of a gray face, and hence it is a simple polygon. Let C ′ = (p′0, . . . , p′k−1) be
perturbation obtained by moving each point pi to the interior of the face along an angle
bisector of ∠pi−1pipi+1. Initially P is a weakly simple polygon (one of the circuits). It is
enough to show that Step 4.2 maintains a weakly simple polygon, that is, when we merge P
and a circuit C, their Jordan curve perturbations P ′ and C ′ can also be combined. Edges
(u, v) and (v, w) are adjacent to a common white face f0; they correspond to an edge (pu, pv)
in P ′ and (qv, qw) in C ′, where both pv and qv lie in the ε-neighborhood of v in two different
gray faces adjacent to f0. We can modify P ′ and C ′ in the ε-neighborhood of v, by removing
a short Jordan arc from each and reconnecting them across the white face f0 into a single
Jordan curve. By induction, we can obtain a Jordan curve within ε Frèchet distance from
the output polygon P . Hence, the algorithm returns a weakly simple Euler tour P .

Now, we show that if G has a vertex v with two consecutive incoming (resp., outgoing)
edges (a, v) and (c, v), then G does not admit a weakly simple Euler tour. Suppose, for
contradiction, that there exists a weakly simple Euler tour P . Since both (a, v) and (c, v) are
directed into v, the tour P contains edge-disjoint paths (a, v, b) and (c, v, d). Since P is weakly
simple, the circular order of these four edges incident to v must be as shown in Figure 2(b).
The polygon must contain edge-disjoint paths π1 = (v, b, . . . , c, v) and π2 = (d, . . . , a). The
perturbation of π1 is π′1 = (v′, b′, . . . , c′, v′′) where v′ 6= v′′. Note that a and d are on opposite
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Figure 3 Every collinear Eulerian tour can be transformed in a y-monotonic simple polygon.

sides of the cycle π′ ∪ v′v′′. The perturbation of π2, path π′2, can intersect neither π′1 nor
v′v′′, because (a, v) and (c, v) are adjacent to the same face. Hence P is not weakly simple.

Finally, Algorithm A runs in O(|E|) time. Step 1 and 2 can be done by traversing the
dual graph of G. Step 4 executes O(|E|) merges, each of which takes constant time. J

I Corollary 2. A geometric multigraph G = (V,E) admits a weakly simple Euler tour if and
only if G is Eulerian. A weakly simple Euler tour, if exists, can be computed in O(|E|) time.

Proof. Replace every edge e of multiplicity k by k edge-disjoint paths of length two whose
interior points are close to the midpoint of e. We obtain a simple Eulerian geometric graph
with |V |+ 2|E| vertices. Theorem 1 completes the proof. J

I Remark. In the case that G = (V,E) is a directed multigraph, replace every directed edge
(u, v) of multiplicity k by edge-disjoint paths (u,wi, v), with new (subdivision) vertices wi,
i = 1, . . . k, and denote by G′ the resulting simple directed graph. The alternating direction
condition of Theorem 1 requires that the multiplicity of (u, v) and (v, u) differ by at most
one. If their multiplicities differ by exactly one, then there is a unique way to interleave
the replacement paths between u and v. In fact, if any edge of G has odd multiplicity, the
alternating direction condition determines the cyclic order of all paths (u,wi, v), and we
can apply Theorem 1 for G′. If, however, all edges of G have even multiplicity, then there
are two possibilities for the cyclic orders, both of which yield weakly simple Euler tours by
Theorem 1.

3.2 Collinear Line Segments
I Theorem 3. If all edges of a graph G = (V,E) are collinear, then every Euler tour of G
is a weakly simple polygon.

Proof. Without loss of generality, assume that all vertices are on the x-axis. Let ε > 0 be
given. Let P = (p0, . . . , pn−1) be an Euler tour of G, and let p0 be a leftmost vertex. For each
vertex pi, i ∈ {0, . . . , n− 1}, create a point p′i with x(p′i) = x(pi) and y(p′i) = iε/(2n). The
polygonal path (p′0, . . . , p′n−1) is strictly y-monotonic and therefore does not cross itself. The
edge (p′n−1, p

′
0) can be realized as a one-bend polyline (p′n−1, q, p

′
0) with q = (−ε/2, ε/2), which

is outside of the axis-aligned bounding box of all other edges. Therefore P ′ = (p′0, . . . , p′n−1),
illustrated in Figure 3, is a simple polygon where distF (P, P ′) < ε. J

4 NP-Completeness

In this section we analyze the general case of WSPR. First we discuss the undirected case
and then the direct version.

I Lemma 4. Both WSPR and Directed-WSCR are in NP.

ISAAC 2016
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(a)
(b)

(c)

vi−1
li,a li,b vi

li,a lj,a lk,a

Figure 4 (a) Variable gadget, (b) clause gadget and (c) the reduction from Planar-Monotone-
3SAT to undirected WSPR.

Proof. Given a polygon P = (p0, . . . , pn−1) and a (directed) straight-line multigraph G =
(V,E), we can check whether P is a (directed) Euler tour in G in O(|E|) time, and whether
P is weakly simple in O(n logn) time [1]. J

We prove that both directed and undirected WSPC are strongly NP-hard in the general
case by a reduction from Planar-Monotone-3SAT, which is strongly NP-hard [5]. An
instance of Planar-Monotone-3SAT consists of a plane bipartite graph GB whose partite
sets are variables nodes and clauses nodes. The variable nodes are on the x-axis, the clause
nodes are above or below the x-axis; each clause is adjacent to three variables. A clause is
positive if it lies above the x-axis, and negative otherwise. Planar-Monotone-3SAT asks
if there is a binary assignment from {true,false} to the set of variables such that every
positive clause is adjacent to at least one true variable and every negative clause is adjacent
to at least one false variable.

I Lemma 5. Undirected WSPR is NP-hard.

Proof. Given an instance of Planar-Monotone-3SAT, we build an instance of undirected
WSPR as shown in Figure 4(c). We split the construction into two basic gadgets. A variable
and a clause gadget are shown in Figure 4(a) and (b), respectively. The figure shows collinear
edges distorted and colored for clarity. All vertices shown as small black disks are on the
x-axis and vertices circled with a dotted ellipse represent the same graph vertex.

First, place vertices v0, . . . , vn equally spaced on the variable line from left to right. The
variable gadget corresponding to the ith variable consists of two collinear paths between vi−1
and vi, which are called red and black paths; see Figure 4. The red path is a single edge vi−1vi;
and the black path is made of p+ 1 edges where p is the degree of the i-th variable in the
bipartite graph GB . We assign a vertex in the interior of this path to each edge connected to
the variable, naming the vertex li,a for the edge connecting the i-th variable to the a-th clause.
We call such vertices literal vertices. The clause gadget is composed of 9 edges arranged in a
cycle as shown in Figure 4(b). The three labeled vertices correspond to the literal vertices
in the clause gadgets. The planar embedding of the Planar-Monotone-3SAT instance
grantees that we can embed the graph of the directed WSPR instance.

Assume that the Planar-Monotone-3SAT instance have a satisfying assignment. We
build a weakly simple Euler tour P as follows. Each individual gadget defines a cycle. As
in Algorithm A, we will merge the cycles into the polygon P . Every cycle will be traversed
clockwise, however, cycles defined by variable gadgets are collinear and there is no clear
definition of winding direction for them. We perturb the red edges based on the truth values
of the variables. For each variable assigned true (resp., false), we perturb the red edge to
pass below (resp., above) the x-axis. All variable cycles can be safely merged into a single
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Figure 5 Simple polygon that certifies that an Euler tour of P is weakly simple.

circuit. We merge each clause to the variable cycle through a literal vertex of a true variable
if the clause is positive or through a literal vertex of a false variable otherwise.

To show that P is weakly simple, we build a simple polygon P ′ within ε Fréchet distance
from P as follows (see Figure 5). For each vi create two vertices v+

i and v−i located ε/2 above
and below vi respectively. If the solution assigns the i-th variable true, move vertices li,a up
by ε/2, replace vertices vi−1 and vi by v+

i−1 and v+
i in the black edges (of the corresponding

gadget) and by v−i−1 and v−i in the red edges. Connect vertices v+
0 and v−0 with an edge.

Do the same for v+
n and v−n . If the variable is assigned false, do analogous replacements

symmetrically about the x-axis. For each clause gadget, choose a literal li,a with a true
value, split li,a into two vertices, l′i,a and l′′i,a, with the same y-coordinate and ε distance
apart, such that they each are incident to one edge of the variable gadget and one edge of
the clause gadget. For the other two literals, split li,a into two vertices, l+i,a and l−i,a, with the
same x-coordinate and ε

2 distance apart, such that the one closer to the x-axis is incident to
two edges of the variable gadget, and the other to two edges of the clause gadget. The result
is a simple polygon and therefore undirected WSPR have a positive solution.

Now assume that the graph produced by the reduction admits a weakly simple Euler tour
P . Then, there exist a simple polygon P ′ within an arbitrarily small Fréchet distance from
P . Such a polygon determines a vertical order between the paths of each variable gadget.
Since every literal vertex has degree 4, there are only two possible ways to match its incident
edges in a noncrossing manner: matching two horizontal edges and two clause edges, or a
horizontal with a clause edge. In both cases, the two horizontal black edges incident to a
literal vertex are placed above or below the red path. Therefore, all edges of the black path
of a variable gadget are on the same side of its red path. For each variable, assign true if the
black path of its gadget is above the red path and false otherwise. Since each clause gadget
needs to be connected to some edge in a variable gadget, if the clause is positive/negative,
one of its corresponding variables were assigned true/false. Hence, the assignment satisfies
all clauses and the Planar-Monotone-3SAT instance have a positive solution. J

I Lemma 6. Directed-WSPR is NP-hard.

As a consequence of Lemmas 4, 5, and 6, we have the following result.

I Theorem 7. Both WSPR and Directed-WSPR are NP-complete.

I Remark. Our reduction can be modified by perturbing the points in our variable gadgets
so that: (i) points belonging to the same gadget are collinear; (ii) no three points, each
belonging to a different gadget are collinear; and (iii) no edge crossing is introduced. By
reducing from Planar-Monotone-(2,3)-SAT-3 [10], in which clauses may have two or
three literals and each variable can appear only in up to three clauses, we can show that
WSPR remain NP-hard even if the number of mutually collinear points is constant.

ISAAC 2016
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5 Related problems

Since WSPR is NP-complete in the general case, we study related problems in which a weakly
simple polygon is always achievable by allowing edge subdivision and insertion of new edges.

5.1 Edge subdivision
Given a noncrossing graph G = (V,E) where every vertex has even degree and the point set⋃
E is connected, we define the problem WSPR∗ as finding a sequence of edge subdivision

operations that produces a graph G∗ = (V,E∗) that admits a weakly simple Euler tour. The
subdivision of an edge uv at a vertex w ∈ relint(uv) replaces uv by two edges uw and wv.

It is easy to see that WSPR∗ is always feasible with O(n2) subdivisions where n = |V |.
Indeed, subdivide every edge uv recursively at each vertex that lies in the interior of uv. We
obtain a connected geometric multigraph with even degrees, which admits a weakly simple
Euler tour by Corollary 2. The main result of this section is the following.

I Theorem 8. Every noncrossing graph G = (V,E) such that every v ∈ V has even degree
and

⋃
E is connected, can be transformed into a graph G∗ = (V,E∗) using O(|E|) edge

subdivisions, and this bound cannot be improved.

Before the proof, we introduce some notation (from [1, 7, 9]). Let G = (V,E) be a
noncrossing graph. The transitive closure of the overlap relation is an equivalence relation on
E. The union of all edges in an equivalence class is called a bar, it is a line segment. A vertex
v ∈ b is called b-odd if v is incident to an odd number of edges contained in b, or b-even
otherwise. A vertex can be b-odd and b′-even for different bars b and b′ (see Figure 6(b)).

Our algorithm will compute simple paths formed by subdivided edges. Let b be a
horizontal bar with vertices p1, p2 ∈ b, x(p1) ≤ x(p2). Let q1q2 ∈ E be an edge that contains
p1 and its right endpoint has minimum x-coordinate. A subdivided paths, denoted by p̂1p2, is
a path between p1 and p2, defined recursively (see Fig. 6(d)): (i) if x(p1) = x(p2), p̂1p2 = ∅;
(ii) if p2 ∈ q1q2, then subdivide q1q2 into three edges e1 = q1p1, e2 = p1p2, and e3 = p2q2
and put p̂1p2 = (e2); (iii) if p2 6∈ q1q2, then subdivide q1q2 into two edges e1 = q1p1 and
e2 = p1q2, and put p̂1p2 = (e2) ⊕ q̂2p2, where ⊕ denotes concatenation. Consequently, if
the segment p1p2 contains k vertices, a path p̂1p2 can be constructed using at most k edge
subdivisions. An example is shown in Figure 6(c).

Proof of Theorem 8. The proof of the upper bound is constructive. The algorithm sub-
divides edges within each bar independently. Let b be a bar containing m vertices. We apply
O(m) edge subdivisions and partition the edges in b into subsets: Subsets M+ and M−
will consists of subdivision paths between the intersection points of b with other bars lying
above and below b, respectively; all remaining edges will be partitioned into tours (each of
which is a weakly simple polygon by Theorem 3). The algorithm is divided into three phases:
Phase 1 creates M+ and M−; phase 2 forms circuits; and phase 3 establishes common
vertices between the subdivision paths and circuits. Refer to Figure 6.

Phase 1. Compute a list B+ (resp., B−) of points p in the interior of b such that p is b′-odd
for some bar b′ that is above or collinear to b (resp., below b). A point can appear more
than once in each list if it is odd in multiple bars b′. Sort the lists by x(p), ties are broken
by clockwise (resp., counterclockwise) order of the corresponding bars b′. If the left (resp.,
right) endpoint of b is b-odd, add it to the beginning (resp., end) of the list B+. If any of
the lists have odd cardinality, append the right endpoint of b at the end of the list. Create a
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(e)
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Dui (f)

Figure 6 (a) A bar b and its adjacent bars. (b) Each bar b′ is shown with its b′-odd and
b′-even vertices shown in red and green respectively. (c) The subdivided path p̂ip2 is shown in blue.
Examples of (d) M+ and M−; (e) O+ and O−. (f) Connecting a component of B′ to a path in O+

with two polygonal paths shown in magenta.

perfect matching of consecutive endpoints in each list. Construct edge disjoint subdivided
paths between each pair of matched points, and letM+ andM− denote the set of edges in
such paths for B+ and B−, respectively (see Figure 6(d)).

Phase 2. Let B be the set of (subdivided) edges that lie on b and are not inM+ ∪M−.
The union of edges in B may be a disconnected point set (e.g., as shown in Figure 6(d)).
Let the line segment r1r2 be one of the connected components of

⋃
B. Construct two edge

disjoint subdivided paths r̂1r2
+ and r̂1r2

− from the edges in B. For every path p̂1p2 inM+

(resp.,M−) that overlaps with r1r2, identify an edge of r̂1r2
+ (resp., r̂1r2

−) that contains a
vertex of p̂1p2 and subdivide it at such vertex (see Figure 6(e)). Let O+ (resp., O−) be the
set of edges in r̂1r2

+ (resp., r̂1r2
−) for all components r1r2 of the union of edges in B.

Phase 3. Let B′ be the set of edges in B \ (O+ ∪ O−). For every component C of the
subgraph induced by B′, let p0 be the leftmost vertex of C, identify the edge in O+ that
contains p0 and subdivide it at p0. This concludes the construction of G∗.

Correctness. Now we prove that G∗ admits a weakly simple Euler tour. Notice that G∗
is connected since the subdivisions in phase 2 connects every component ofM+ orM− to
every overlapping component of O+ or O−, and phase 3 connects every component of B′ to
some component in O+. Since edge subdivisions do not change the parity of degrees, every
vertex in G∗ has even degree, hence G∗ is Eulerian. We construct an Eulerian geometric
graph G′ such that every Euler tour in G′ is within ε/2 Fréchet distance from an Euler
tour in G∗. Theorem 1 will then imply that there exists a simple polygon within ε Fréchet
distance from an Euler tour in G∗.

We recall some notation introduced in [7]. For every vertex v ∈ V , let Dv be a disk
centered at v of radius ε

4 . For a bar b between u0 and uk, let Db be the ε2 neighborhood
of b setminus Du0 ∪Duk

. Assume that ε ∈ (0, 1
4 ) is so small that the disks Dv are pairwise

disjoint; a disk Dv intersects Db only if v ∈ b, and the neighborhoods Db are pairwise disjoint.
For each bar b with vertices u0, . . . , uk, we perturb the edges of E∗ contained in b into

noncrossing simple polygons and polygonal chains. Embed each subdivided path in M+

(resp.,M−) ûiuj in the upper (resp., lower) boundary of the region Db such that ui is on
the boundary of Dui

and uj is on the boundary of Duj
. Subdivide Db with `+ 1 horizontal
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(a) (b) (c) (d)

(e)

(f) (g)

Figure 7 Lower bound constructions.

lines where ` is the number of components of the subgraph induced by B′. Embed all edges
in O+ (resp., O−) in the first (resp., `+ 1-th) such line.

Recall that every vertex of G has even degree. If b contains a b-odd vertex p, there
must exist a bar b′ such that p is b′-odd. BecauseM+ andM− matches such points, the
subgraph induced by B contain only even degree vertices. By construction the edges in
O+ ∪O− form nonoverlapping disjoint circuits. Hence, the subgraph induced by B′ contains
only even degree vertices. Consequently, each of its components is Eulerian and forms a
weakly simple polygons that we denote by γ1(b), . . . , γ`(b), sorted by the x-coordinates of
their left endpoints. Perturb γ1(b), . . . , γ`(b) into simple polygons that lie in the interior
of Db, separated by one of the `+ 1 lines, in this linear order (ties are broken arbitrarily).
For i = 0, . . . , k, consider all polygons γj(b) whose leftmost vertex is ui. Connect the left
endpoints of each such γj(b) to the copy of ui in O+ by two polygonal paths within Dui

(these paths connect different copies of vertex ui ∈ V ∗, see Figure 6(f)). Similarly, for each
subdivision performed in phase 2 at ui of an edge in O+ (resp., O−) in a path r̂1r2, connect
the copy of ui in this path to a copy inM+ (resp., O−) by two polygonal paths within the
disk Dui

. Connect the endpoints of the overlapping paths in O+ and O− (forming a cycle
of each), and if the right endpoint of b is not b-odd and was added to B+, B−, connect the
copies of uk inM+ andM−. For each matching in B+ and B− involving a point ui that is
a b′-odd endpoint of a bar b′, connect the paths inM+ orM− that correspond to a match
in b to the path inM+ of b′ that contains p. Finally, for each point ui that is the endpoint
of a bar b′ and is b′-even, connect the corresponding copies of ui, making the graph induced
by all edges containing a point on b connected. This concludes the construction of G′.

Theorem 1 completes the proof: An Euler tour P̂ of G′ can be perturbed into a simple
polygon P such that distF (P, P̂ ) < ε

2 . The tour P̂ maps to an Euler tour P ∗ of G∗ by
identifying the vertices that lie in the same disk Dv, v ∈ V ∗; and distF (P̂ , P ∗) < ε

2 .
Our lower bound construction is shown in Figure 7(a). It consists of a graph G = (V,E)

containing a long edge eR (shown in red) and a path of (|E|+ 5)/7 non-overlapping collinear
edges that connects the endpoints of eR. Each vertex in the interior of eR is also incident to
two small cycles above and below eR respectively. Although the graph is Eulerian, it does
not admit a weakly simple Euler tour. Each vertex p in the interior of the red edge eR is
incident to two small triangles. Suppose that eR is not subdivided at p. Then p has degree 6.
In any perturbation of a weakly simple Euler tour, vertex p is split into 3 copies, each of
degree 2, and each lying above or below eR. Suppose only one copy of p lies below eR. Then
it is incident to two edges of a small triangle below eR, which is then disconnected from
the rest of the graph, a contradiction. Consequently, eR must be subdivided at all interior
vertices. Figure 7(b) shows that O(|E|) subdivisions of eR suffice in this case. J
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5.2 Edge insertion
We define the problem WSPR+ as finding a set of edges E+ such that G+ = (V,E ∪ E+)
admits a weakly simple Euler tour. Denote by ‖E‖ and ‖E+‖, respectively, the sum of the
lengths of all edges in E and E+. If the point set

⋃
E is disconnected, then there is no upper

bound on ‖E+‖. Otherwise, we can establish worst-case upper and lower bounds for ‖E+‖
in terms of ‖E‖.

I Theorem 9. Let G = (V,E) be a noncrossing multigraph such that
⋃
E is a connected point

set. Then there exists a set of line segments E+ such that ‖E+‖ ≤ 3‖E‖ and G+ = (V,E∪E+)
admits a weakly simple Euler tour.

Proof. We construct E+ as follows. Partition E into bars (equivalence classes of the transitive
closure of the overlap relation on E). Denote by b the union of edges in a bar. W.l.o.g., we
may assume that b is horizontal. Denote by u0, . . . , uk ∈ V the vertices of V along b sorted
by x-coordinates (where b = u0uk). For i = 1, . . . , k, add an edge ui−1ui to E+ if the edges
of E in the bar cover the line segment ui−1ui an odd number of times. The old and new
edges in the bar b jointly form a graph of even degree that we denote by G(b). By Theorem 3,
every component of G(b) admits a weakly simple Euler tour. Finally, add two more copies of
edge ui−1ui to E+ for all i = 1, . . . k. After repeating the above steps for every bar, we have
‖E+‖ ≤ 3‖E‖ and G+ = (V,E ∪ E+) is Eulerian.

We omit the proof of correctness (which is provided in the full paper [2]), that shows that
G+ admits a weakly simple Euler tour, since it is similar to the proof of Theorem 8. J

Lower bound constructions. All our lower bound constructions are graphs G = (V,E) in
which an edge connects two points on the boundary of the convex hull of V , denoted ch(V ).

I Theorem 10. Let G be a family of noncrossing multigraphs. For G = (V,E) ∈ G, let E+

be an edge set of minimum length ‖E+‖ such that G+ = (V,E ∪E+) admits a weakly simple
Euler tour; and let λ(G) = supG∈G ‖E+‖/‖E‖. Then:
1. λ(G1) ≥ 1, where G1 = {Eulerian noncrossing multigraphs}.
2. λ(G2) ≥ 6

5 , where G2 = {connected noncrossing multigraphs}.
3. λ(G3) ≥ 3, where G3 = {noncrossing multigraphs G = (V,E) such that

⋃
E is connected}.

Proof.
(1) Refer to Figs. 7(a)–(c). Let n ∈ N and δ ∈ (0, 1

3 ). Place vertices vi = (i, 0), for
i = 0, . . . , n, on the x-axis. A red edge of length n connects v0 and vn. A black edge of
length 1/n connects vi−1 and vi for 1 ≤ i ≤ n. A small cycle of length δ < 1

3 is placed on
each vi, 1 ≤ i ∈ n − 1, on each side of the x-axis. The total length of the construction is
‖E‖ = 2n+ 2(n− 1)δ.

Let G+ = (V,E ∪ E+) be a multigraph in which P is a weakly simple Euler tour; and
let P ′ be an ε-perturbation into a simple polygon, for some 0 < ε < δ. We define a pair of
vertical lines `−i : x = i+ δ and `+

i : x = (i+ 1) − δ, for 0 ≤ i ≤ n− 1. The portion of P ′
between any two of these lines consists of disjoint paths whose endpoints are on the lines.
By Morse theory, P ′ contains an even number of paths between any two of these lines; and
the length of such a path is at least the distance between the parallel lines. The input edges
already contain two line segments between any two of these lines: a red and a black segment.

We claim that G+ contains at least 4 paths between `−i and `+
i for all but at most one

index 0 ≤ i ≤ n− 1. Indeed, suppose that there are two such paths between `−i and `+
i and

between `−j and `+
j (0 ≤ i < j ≤ n − 1). We may assume w.l.o.g. that the black edge is

above the red edge between `−i and `+
i . Then the black edge must be above the red edge
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between `−j and `+
j , as well. Consequently, P ′ cannot reach the small cycles at vi+1, . . . , vj .

This confirms the claim. It follows that ‖E ∪ E+‖ ≥ (4n − 2)(1 − 2δ). This lower bound
tends to 2‖E‖ as n→∞ and δn→ 0.

Due to space restrictions, we omit the proofs for cases 2 and 3. J

6 Conclusions

We have shown that WSPR is NP-complete. It follows that the decision version of the
problems in Section 5 are also NP-complete: It is NP-complete to find up to k subdivision
points to form a weakly simple polygon, or to find an edge set with length up to k that
produce a weakly simple polygon. We have shown that Θ(|E|) subdivision points are always
sufficient and sometimes necessary when the input is Eulerian; and new edges of length
Θ(‖E‖) are always sufficient and sometimes necessary when

⋃
E is connected. However, the

best constant coefficients are not known in most cases. We conjecture that every noncrossing
Eulerian graph G = (V,E) can be augmented into a graph G+ = (V,E ∪ E+) that admits a
weakly simple Euler tour such that ‖E+‖ ≤ ‖E‖.

If the segments in E do not form a weakly simple polygon, we can subdivide segments or
insert new segments to create a weakly simple polygon. On the other end of the spectrum, a
set of n line segment may form an exponential number of weakly simple polygons, even if
all segments are collinear. It is an open problem to count exactly how many weakly simple
polygons can be obtained from the same set of line segments. Finally, we mention an open
problem about reconstructing simple polygons from a subset of its edges. It is NP-complete
to decide whether a geometric graph G = (V,E) can be augmented into a simple polygon
P = (V,E ∪E+) [17]. However, it is not known whether the problem remains NP-hard when
G is a perfect matching.

Acknowledgements. We thank Adrian Dumitrescu for bringing this problem to our atten-
tion.
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