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Abstract
We consider the following multiplication-based tests to check if a given function f : Fnq → Fq is
the evaluation of a degree-d polynomial over Fq for q prime.

Teste,k: Pick P1, . . . , Pk independent random degree-e polynomials and accept iff the function
fP1 · · ·Pk is the evaluation of a degree-(d+ ek) polynomial.

We prove the robust soundness of the above tests for large values of e, answering a question of
Dinur and Guruswami (FOCS 2013). Previous soundness analyses of these tests were known only
for the case when either e = 1 or k = 1. Even for the case k = 1 and e > 1, earlier soundness
analyses were not robust.

We also analyze a derandomized version of this test, where (for example) the polynomials
P1, . . . , Pk can be the same random polynomial P . This generalizes a result of Guruswami et al.
(STOC 2014).

One of the key ingredients that go into the proof of this robust soundness is an extension of
the standard Schwartz-Zippel lemma over general finite fields Fq, which may be of independent
interest.
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1 Introduction

We consider the problem of testing if a function f : Fnq → Fq is close to a degree-d multivariate
polynomial (over Fq, the finite field of q elements). This problem, in its local testing version,
was first studied by Alon, Kaufman, Krivilevich, Litsyn and Ron [1], who proposed and
analyzed a natural 2d+1-query test for this problem for the case when q = 2. Subsequent to
this work, improved analyses and generalizations to larger fields were discovered [3, 6]. These
tests and their analyses led to several applications, especially in hardness of approximation,
which in turn spurred other Reed-Muller testing results (which were not necessarily local
tests) [4, 5]. In this work, we give a robust version of one of these latter multiplication
based tests due to Dinur and Guruswami [4]. Below we describe this variation of the testing
problem, its context, and our results.

1.1 Local Reed-Muller tests
Given a field Fq of size q, let Fq(n) := {f | f : Fnq → Fq}. The Reed-Muller code Pq(n, d),
parametrized by two parameters n and d, is the subset of Fq(n) that corresponds to those
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17:2 Robust Multiplication-Based Tests for Reed-Muller Codes

functions which are evaluations of polynomials of degree at most d. If n, d and q are clear
from context, r := (q − 1)n− d.

The proximity of two functions f, g ∈ Fq(n) is measured by the Hamming distance.
Specifically, we let ∆(f, g) denote the absolute Hamming distance between f and g, i.e.,
∆(f, g) := #{x ∈ Fnq | f(x) 6= g(x)}. For a family of functions G ⊆ Fq(n), we let ∆(f,G) :=
min{∆(f, g) | g ∈ G}. We say that f is ∆-close to G if ∆(f,G) ≤ ∆ and ∆-far otherwise.

The following natural local test to check membership of a function f in P2(n, d) was
proposed by Alon et al. [1] for the case when q = 2.

AKKLR Test: Input f : Fn2 → F2
Pick a random d+ 1-dimensional affine space A.
Accept iff f |A ∈ P2(d+ 1, d).

Here, f |A refers to the restriction of the function f to the affine space A. Bhat-
tacharyya et al. [3] showed the following optimal analysis of this test.

I Theorem 1.1 ([1, 3]). There exists an absolute constant α > 0 such that the following
holds. If f ∈ F2(n) is ∆-far from P2(n, d) for ∆ ∈ N, then

Pr
A

[f |A 6∈ P2(d+ 1, d)] ≥ min{∆/2r, α}.

Subsequent to this result, Haramaty, Shpilka and Sudan [6] extended this result to all
constant sized fields Fq. These optimal analyses then led to the discovery of the so-called
“short code” (aka the low degree long code) due to Barak et al. [2] which has played an
important role in several improved hardness of approximation results [4, 5, 9, 10, 7].

1.2 Multiplication based tests
We now consider the following type of multiplication-based tests to check membership in
Pq(n, d), parametrized by two numbers e, k ∈ N.

Teste,k: Input f : Fnq → Fq
Pick P1, . . . , Pk ∈R Pq(n, e).
Accept iff fP1 · · ·Pk ∈ Pq(n, d+ ek).

This tests computes the point-wise product of f with k random degree-e polynomials
P1, . . . , Pk respectively and checks that the resulting product function fP1 · · ·Pk is the
evaluation of a degree-(d + ek) polynomial. Unlike the previous test, this test is not
necessarily a local test.

The key lemma due to Bhattacharyya et al. [3] that led to the optimal analysis in
Theorem 1.1 is the following robust analysis of Test1,1.

I Lemma 1.2 ([3]). Let f ∈ F2(n) be ∆-far from P2(n, d) for ∆ = 2r/100. For randomly
picked ` ∈ P2(n, 1), we have

Pr
`

[∆(f · `,P2(n, d+ 1)) < β∆] = O

(
1
2r

)
,

for some absolute constant β > 0.

Observe that the AKKLR test is equivalent to Test1,r−1 for r = n− d. This observation
coupled with a simple inductive argument using the above lemma implies Theorem 1.1.

Motivated by questions related to hardness of coloring hypergraphs, Dinur and Guruswami
studied the Teste,1 for e = r/4 and proved the following result.
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I Lemma 1.3 ([4]). Let f ∈ F2(n) be ∆-far from P2(n, d) for ∆ = 2r/100 and let e =
(n− d)/4. For randomly picked P ∈ P2(n, e), we have

Pr
P

[f · P ∈ P2(n, d+ e)] ≤ 1
22Ω(e) .

Note that the Teste,1 is not a local test (as is the case with multiplication based tests
of the form Teste,k). Furthermore, the above lemma does not give a robust analysis unlike
Lemma 1.2. More precisely, the lemma only bounds the probability that the product function
f ·P is in P2(n, d+ e), but does not say anything about the probability of f ·P being close to
P2(n, d+e) as in Lemma 1.2. Despite this, this lemma has had several applications, especially
towards proving improved inapproximability results for hypergraph colouring [4, 5, 9, 10, 7].

1.3 Our results
Our work is motivated by the question raised at the end of the previous section: can
the analysis of the Dinur-Guruswami Lemma be strengthened to yield a robust version of
Lemma 1.3? Such a robust version, besides being interesting of its own right, would yield
a soundness analysis of the Teste,k for k > 1 (wherein the input function f is multiplied
by k degree-e polynomials). This is similar to how Lemma 1.2 was instrumental in proving
Theorem 1.1.

We begin by first showing this latter result (ie., the soundness analysis of the Teste,k).

I Theorem 1.4. Let q, k ∈ N be constants with q prime and ε, δ ∈ (0, 1) be arbitrary
constants. Let n, d, r,∆, e ∈ N be such that r = q(n − 1) − d, qεr ≤ ∆ ≤ qr/4(q−1)−2, and
δr ≤ e ≤ r/4k. Then, given any f ∈ Fq(n) that is ∆-far from Pq(n, d) and for P1, . . . , Pk
chosen independently and uniformly at random from Pq(n, e), we have

Pr
P1,...,Pk

[fP1P2 · · ·Pk ∈ Pq(n, d+ ek)] ≤ 1
qqΩ(r)

where the Ω(·) above hides a constant depending on k, q, δ, ε.

Surprisingly, we show that the above theorem (which we had observed is a simple
consequence of a robust version of Lemma 1.3), can in fact, be used to prove the following
robust version of Lemma 1.3, answering an open question of Dinur and Guruswami [4].

I Lemma 1.5. Let q ∈ N be a constant with q prime and ε, δ ∈ (0, 1) be arbitrary constants.
Let n, d, r,∆,∆′, e ∈ N be such that r = q(n − 1) − d, qεr ≤ ∆ ≤ qr/4(q−1)−2, and δr ≤
e ≤ r/4k where k := 1 + dlogq/(q−1)(2∆′)e. Then, given any f ∈ Fq(n) that is ∆-far from
Pq(n, d) and for P chosen uniformly at random from Pq(n, e), we have

Pr
P

[∆(f · P,Pq(n, d+ e)) < ∆′] ≤ 2
qqΩ(r)

where the Ω(·) above hides a constant depending on q, δ, ε.

Equipped with such multiplication-based tests, we can ask if one can prove the soundness
analysis of other related multiplication-based tests. For instance, consider the following test
which tests correlation of the function f with the square of a random degree-e polynomial.

Corr-Squaree: Input f : Fn3 → F3
Pick P ∈R P3(n, e).
Accept iff f · P 2 ∈ P3(n, d+ 2e).

FSTTCS 2016
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This test was used by Guruswami et al. [5] to prove the hardness of approximately coloring
3-colorable 3-uniform hypergraphs. However, their analysis was restricted to the squares of
random polynomials. Our next result shows that this can be extended to any low-degree
polynomial of random polynomials. More precisely, let h ∈ Pq(n, k) be a polynomial of
degree exactly k for some k < q. Consider the following test.

Corr-he: Input f : Fnq → Fq
Pick P ∈R Pq(n, e).
Accept iff f · h(P ) ∈ Pq(n, d+ ek).

We show that an easy corollary of Theorem 1.4 proves the following soundness claim
about the test Corr-h.

I Corollary 1.6. Let q, k ∈ N be constants with q prime, k < q†, and let ε, δ ∈ (0, 1) be
arbitrary constants. Let n, d, r,∆, e ∈ N be such that r = q(n− 1)− d, qεr ≤ ∆ ≤ qr/4(q−1)−2,
and δr ≤ e ≤ r/4k. Let h ∈ Pq(1, k) be a univariate polynomial of degree exactly k. Then,
given any f ∈ Fq(n) that is ∆-far from Pq(n, d) and for P chosen uniformly at random from
Pq(n, e), we have

Pr
P

[f · h(P ) ∈ Pq(n, d+ ek)] ≤ 1
qqΩ(r)/2k

where the Ω(·) above hides a constant depending on k, q, δ, ε.

A generalization of the Schwartz-Zippel lemma over Fq.

A special case of Theorem 1.4 is already quite interesting. This case corresponds to when
the function f is a polynomial of degree d′ slightly larger than d. (It is quite easy to see
by the Schwartz-Zippel lemma over Fq – which guarantees that a non-zero polynomial of
low degree is non-zero at many points – that this f is far from Pq(n, d).) In this case, we
would expect, when we multiply f with k random polynomials P1, . . . , Pk ∈ Pq(n, e), that
the product fP1 · · ·Pk is a polynomial of degree d′ + ek with high probability.

We are able to prove a tight version of this statement (Lemma 3.3). For every degree d′,
we find a polynomial f of degree d′ that maximizes the probability that fP1 · · ·Pk has degree
< d′ + s for any parameter s ≤ e. This polynomial turns out to be the same polynomial for
which the Schwartz-Zippel lemma over Fq is tight. This is not a coincidence: it turns out
that our lemma, viewed suitably, is a generalization of the Schwartz-Zippel lemma over Fq
(see Section 3.1 and the full version for more details).

Given the utility of the Schwartz-Zippel lemma in Theoretical Computer Science, we feel
that this statement will be of independent interest.

1.4 Proof ideas

The basic outline of the proof of Theorem 1.4 is similar to the proof of Lemma 1.3 from the
work of Dinur and Guruswami [4] which corresponds to Theorem 1.4 in the case that q = 2
and k = 1. The argument is essentially an induction on the parameters e, r = n− d, and ∆.
We describe this argument in some detail so that we can highlight the variations in our work.

† The assumption k < q is necessary here is since otherwise h(P ) could be P q − P , which is always 0.
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As long as r is a sufficiently large constant, Lemma 1.2 can be used to show that for any
f ∈ F2(n) that is ∆-far from P2(n, d), there is a variable X such that for each α ∈ {0, 1} = F2,
the restricted function f |X=α is ∆′ = Ω(∆)-far from P2(n− 1, d).∗

Now, to argue by induction, we write

f = Xg + h and P1 = XQ1 +R1 (1)

where g, h,Q1, R1 depend on n− 1 variables, Q1 is a random polynomial of degree ≤ e− 1
and R1 is a random polynomial of degree ≤ e. Using the fact that X2 = X over F2, we get
fP1 = X((g + h)Q1 + gR1) + hR1.

Since f |X=α is ∆′-far from P2(n− 1, d), we see that both h and g + h are ∆′-far from
P2(n− 1, d). To apply induction, we note that fP1 ∈ P2(n, d+ e) iff hR1 ∈ P2(n− 1, d+ e) –
call this event E1 – and (g + h)Q1 + hR1 ∈ P2(n− 1, d+ e− 1), which we call E2. We bound
the overall probability by Pr[E1] · Pr[E2 | R1] (note that E1 depends only on R1).

We first observe that Pr[E1] can be immediately bounded using the induction hypothesis
since h is ∆′-far from Pq(n− 1, d+ e) and R1 is uniform over Pq(n− 1, e). The second term
Pr[E2 | R1] can also be bounded by the induction hypothesis with an additional argument.
We argue that (for any fixed R1) the probability that (g + h)Q1 + gR1 ∈ P2(n− 1, d+ e− 1)
is bounded by the probability that (g + h)Q1 ∈ P2(n − 1, d + e − 1): this follows from
the fact that the number of solutions to any system of linear equations is bounded by the
number of solutions of the corresponding homogeneous system (obtained by setting the
constant term in each equation to 0). Hence, it suffices to bound the probability that
(g + h)Q1 ∈ P2(n− 1, d+ e− 1), which can be bounded by the induction hypothesis since
(g + h) is ∆′-far from P2(n− 1, d) and Q1 is uniform over P2(n− 1, e− 1) and we are done.

Though our proofs follow the above template, we need to deviate from the proof above in
some important ways which we elaborate below.

The first is the decomposition of f and P1 from (1) obtained above, which yields two
events E1 and E2, the first of which depends only on R1 and the second on both Q1 and R1.
For q > 2, the standard monomial decomposition of polynomials does not yield such a nice
“upper triangular” sequence of events. So we work with a different polynomial basis to achieve
this. This choice of basis is closely related to the polynomials for which the Schwartz-Zippel
lemma over Fq is tight. While such a basis was used in the special case of q = 3 in the work
of Guruswami et al. [5] (co-authored by the authors of this work), it was done in a somewhat
ad-hoc way. Here, we give, what is in our opinion, a more transparent construction that
additionally works for all q. For lack of space, this part of the proof has been omitted from
this extended abstract.

Further modifications to the Dinur-Guruswami argument are required to handle k > 1.
We illustrate this with the example of q = 2 and k = 2. Decomposing as in the Dinur-
Guruswami argument above, we obtain f = Xg + h, P1 = XQ1 +R1, and P2 = XQ2 +R2.
Multiplying out, we get

fP1P2 = X(Q1Q2(g + h) + (g + h)(Q1R2 +Q2R1) + gR1R2︸ ︷︷ ︸
:=Q

) + hR1R2 .

Bounding the probability that fP1P2 ∈ P2(n, d + 2e) thus reduces to bounding the
probability of event that hR1R2 ∈ P2(n− 1, d+ 2e) – E1 depending only on R1 and R2 – and

∗ Actually, Lemma 1.2 implies the existence of a linear function with this property and not a variable.
But after a linear transformation of the underlying space, we may assume that it is a variable.

FSTTCS 2016
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then the probability that Q ∈ P2(n− 1, d+ 2e− 1) – denoted E2 – given any fixed R1 and R2.
The former probability can be bounded using the induction hypothesis straightforwardly.

By a reasoning similar to the k = 1 case, we can reduce bounding Pr[E2 | R1, R2] to the
probability that Q1Q2(g+h) ∈ P2(n− 1, d+ 2e− 1). However, now we face a problem. Note
that we have g + h = f |X=1 is ∆′-far from P2(n− 1, d) and Q1, Q2 ∈ P2(n− 1, e− 1). Thus,
the induction hypothesis only allows us to upper bound the probability that Q1Q2(g + h) ∈
P2(n− 1, d+ 2e− 2) which is not quite the event that we want to analyze. Indeed, if f is a
polynomial of degree exactly d + 1, then the polynomial Q1Q2(g + h) ∈ P2(n, d + 2e − 1)
with probability 1. A similar problem occurs even if f is a polynomial of degree d′ slightly
larger than d or more generally, when f is close to some polynomial of degree d′.

This naturally forces us to break the analysis into two cases. In the first case, we assume
not just that f is far from P2(n, d) but from P2(n, d′) but for some d′ a suitable parameter
larger than d. In this case, we can modify the proof of Dinur and Guruswami to bound the
probability that fP1P2 ∈ P2(n, d+ 2e) as claimed in Theorem 1.4. In the complementary
case when f is close to some polynomial F ∈ P2(n, d′), we can essentially assume that f is a
polynomial of degree d′. In this case, we can use the extension of Schwartz-Zippel lemma
referred to above to show that with high probability fP1P2 is in fact a polynomial of degree
exactly d′ + 2e and is hence not of degree d+ 2e < d′ + 2e.

1.5 Organization
We begin with some notation and definitions in Section 2. We prove the extension of the
Schwartz-Zippel lemma (Lemma 3.3) in Section 3 and then Theorem 1.4 in Section 4. Finally,
we give two applications of Theorem 1.4 in Section 5: one to proving a robust version of the
above test (thus resolving a question of Dinur and Guruswami [4]) and the other to proving
Corollary 1.6. For lack of space, many proofs have been omitted. The reader is referred to
the full version of this paper for details.

2 Preliminaries

For a prime power q, let Fq denote the finite field of size q. We use Fq[X1, . . . , Xn] to
denote the standard polynomial ring over variables X1, . . . , Xn and Pq(n) to denote the ring
Fq[X1, . . . , Xn]/〈Xq

1 −X1, . . . , X
q
n −Xn〉.

We can think of the elements of Pq(n) as elements of Fq[X1, . . . , Xn] of individual degree
at most q − 1 in a natural way. Given P,Q ∈ Pq(n), we use P · Q or PQ to denote their
product in Pq(n). We use P ∗Q to denote their product in Fq[X1, . . . , Xn].

Given a set S ⊆ Fnq and an f ∈ Pq(n), we use f |S to denote the restricted function on
the set S. Typically, S will be specified by a polynomial equation. One special case is the
case when S is a hyperplane: i.e., there is a non-zero homogeneous degree-1 polynomial
`(X) ∈ Pq(n) and an α ∈ Fq such that S = {x | `(x) = α}. In this case, it is natural to
think of f |`(X)=α = f |S as an element of Pq(n− 1) by applying a linear transformation that
transforms `(X) into one of the variables – say Xn – and then setting Xn = α.

For d ≥ 0, we use Pq(n, d) to denote the polynomials in Pq(n) of degree at most d.
The following are standard facts about the ring Pq(n) and the space of functions mapping

Fnq to Fq.

I Fact 2.1.
1. Consider the ring of functions mapping Fnq to Fq with addition and multiplication defined

pointwise. This ring is isomorphic to Pq(n) under the natural isomorphism that maps each
polynomial P ∈ Pq(n) to the function (mapping Fnq to Fq) represented by this polynomial.
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2. In particular, each function f : Fnq → Fq can be represented uniquely as a polynomial
from Pq(n). As a further special case, any non-zero polynomial from Pq(n) represents a
non-zero function f : Fnq → Fq.

3. (Schwartz-Zippel lemma over Fq [8]) Any non-zero polynomial from Pq(n, d) is non-zero
on at least qn−a−1(q − b) points from Fnq where d = a(q − 1) + b and 0 ≤ b < q − 1.

4. In particular, if f, g ∈ Pq(n, d) differ from each other in at most ∆ < qn−a−1(q − b)
places, then f = g.

5. (A probabilistic version of the Schwartz-Zippel lemma [6]) It follows from the above that
given a non-zero polynomial g ∈ Pq(n, d), then g(x) 6= 0 at a uniformly random point of
Fnq with probability at least q−d/(q−1). Similarly, if f, g ∈ Pq(n, d) are distinct, then for
uniformly random x ∈ Fnq , the probability that f(x) 6= g(x) is at least q−d/(q−1).

From now on, we will use without additional comment the fact that functions from Fnq to
Fq have unique representations as multivariate polynomials where the individual degrees are
bounded by q − 1.

Recall that m1 ∗m2 denotes the product of these monomials in the ring Fq[X1, . . . , Xn]
while m1 ·m2 denotes their product in Pq(n) = Fq[X1, . . . , Xn]/〈Xq

1 − X1, . . . , X
q
n − Xn〉.

We say that monomials m1,m2 ∈ Pq(n) are disjoint if m1 ∗m2 = m1 ·m2 (where the latter
monomial is interpreted naturally as an element of Fq[X1, . . . , Xn]).

Given distinct monomials m1,m2 ∈ Fq[X1, . . . , Xn], we say that m1 > m2 if either one of
the following holds: deg(m1) > deg(m2), or deg(m1) = deg(m2) and we have m1 =

∏
iX

ei
i

and m2 =
∏
iX

e′i
i where for the least j such that ej 6= e′j , we have ej > e′j .

The above is called the graded lexicographic order on monomials. The ordering obviously
restricts to an ordering on the monomials in Pq(n), which are naturally identified as a subset
of the monomials of Fq[X1, . . . , Xn]. The well-known fact about this monomial ordering we
will use is the following.

I Fact 2.2. For any monomials m1,m2,m3, we have m1 ≤ m2 ⇒ m1 ∗m3 ≤ m2 ∗m3.

Given an f ∈ Pq(n), we use Supp(f) to denote the set of points x ∈ Fnq such that f(x) 6= 0.
If f 6= 0, we use LM(f) to denote the largest monomial (in the ordering defined above) with
non-zero coefficient in f .

Let m =
∏
i∈[n]X

ei
i with ei < q for each i. For an integer s ≥ 0, we let

Us(m) :=

 ∏
j∈[n]

X
e′j
j

∣∣∣∣∣∣ ∀j q > e′j ≥ ej ,
∑
j

e′j = d+ s


Ds(m) :=

 ∏
j∈[n]

X
e′j
j

∣∣∣∣∣∣ ∀j e′j + ej < q,
∑
j

e′j = s

 .

Note that the monomials in Ds(m) are precisely the monomials of degree s that are
disjoint from m. Further, the map ρ : Ds(m)→ Us(m) defined by ρ(m1) = m1 ·m defines a
bijection between Ds(m) and Us(m), and hence we have

I Fact 2.3. For any monomial m and any s ≥ 0, |Us(m)| = |Ds(m)|.

For non-negative integers s ≤ e, we define Us,e(m) :=
⋃
s≤t≤e Ut(m) and Ds,e(m) :=⋃

s≤t≤eDt(m) where Ut(m) and Dt(m) are as defined in Section 2. Since |Ut(m)| = |Dt(m)|
for each t (Fact 2.3), we have |Us,e(m)| = |Ds,e(m)|.

FSTTCS 2016
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3 An extension of the Schwartz-Zippel Lemma over Fq

The results of this section hold over Fq where q is any prime power.

I Lemma 3.1. Let d, s ≥ 0 be arbitrary integers with d+s ≤ n(q−1). Assume d = (q−1)u+v
for u, v ≥ 0 with v < (q − 1). Then the monomial m0 := Xq−1

1 · · ·Xq−1
u Xv

u+1 of degree d
satisfies |Us(m0)| ≤ |Us(m)| for all monomials m of degree exactly d.

Proof. Fix any monomial m of degree d such that |Us(m)| is as small as possible; say
m =

∏
j∈[n]X

ej

j . By renaming the variables if necessary, we assume that e1 ≥ e2 ≥ · · · ≥ en.
If m 6= m0, then we can find an i < n such that 0 < ei+1 ≤ ei < q − 1. Consider the

monomial m′ = Xei+1
i X

ei+1−1
i+1

∏
j 6∈{i,i+1}X

ej

j . We claim that |Us(m′)| ≤ |Us(m)|. This will
complete the proof of the lemma, since it is easy to check that by repeatedly modifying the
monomial in this way at most d times, we end up with the monomial m0. By construction,
we will have shown that |Us(m0)| ≤ |Us(m)|.

We are left to show that |Us(m′)| ≤ |Us(m)| or equivalently (Fact 2.3) that |Ds(m′)| ≤
|Ds(m)|. To this end, we show that for any (n − 2)-tuple e′ = (e′1, . . . , e′i−1, e

′
i+2, . . . , e

′
n),

that |Ds(m′, e′)| ≤ |Ds(m, e′)| where Ds(m, e′) denotes the set of monomials m̃ ∈ Ds(m)
such that for each j ∈ [n] \ {i, i + 1}, the degree of Xj in m̃ is e′j . To see this, note that
Ds(m, e′) and Ds(m′, e′) are in bijective correspondence with the sets S and T respectively,
defined as follows:

S = {(d1, d2) | 0 ≤ d1 ≤ a, 0 ≤ d2 ≤ b, d1 + d2 = r}
T = {(d1, d2) | 0 ≤ d1 ≤ a− 1, 0 ≤ d2 ≤ b+ 1, d1 + d2 = r}

where a := (q−1)−ei, b := (q−1)−ei+1, and r = s−
∑
j 6∈{i,i+1} e

′
j ; note that by assumption,

(q− 1) > ei ≥ ei+1 and hence 1 ≤ a ≤ b. Our claim thus reduces to showing |T | ≤ |S|, which
is done as follows.

If r < 0 or r > a+b, then both S and T are empty sets and the claim is trivial. So assume
that 0 ≤ r ≤ a+ b. In this case, we see that |T \ S| ≤ 1: in fact, T \ S can only contain the
element (r− b− 1, b+ 1) and this happens only when the inequalities 0 ≤ r− b− 1 ≤ a− 1 is
satisfied. But this allows us to infer that S \ T contains (a, r− a) since 0 ≤ r− b− 1 ≤ r− a
and r − a ≤ b. Thus, |T \ S| ≤ |S \ T | and hence |T | ≤ |S|. J

We have the following immediate corollary of Lemma 3.1.

I Corollary 3.2. Let d, e, s ≥ 0 be arbitrary parameters with s ≤ e and d ≤ n(q− 1). Assume
d = (q−1)u+v for u, v ≥ 0 with v < (q−1). Then the monomial m0 := Xq−1

1 · · ·Xq−1
u Xv

u+1
satisfies |Us,e(m0)| ≤ |Us,e(m)| for all monomials m of degree exactly d.

The main technical lemma of this section is the following.

I Lemma 3.3 (Extension of the Schwartz-Zippel lemma over Fq). Let e, d, s ≥ 0 be integer
parameters with s ≤ e. Let f ∈ Pq(n) be non-zero and of degree exactly d with LM(f) = m1.
Then,

Pr
P∈RPq(n,e)

[deg(fP ) < d+ s] ≤ 1
q|Us,e(m1)| .

In particular, using Corollary 3.2, the probability above is upper bounded by 1
q|Us,e(m0)| where

the monomial m0 is as defined in the statement of Corollary 3.2.
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Proof. Let P =
∑
m:deg(m)≤e αmm where the αm are chosen independently and uniformly

at random from Fq. Also, let f =
∑N
i=1 βimi where βi 6= 0 for each i and we have

m1 > m2 > · · · > mN in the graded lexicographic order defined earlier.
Thus, we have

fP =

 ∑
m:deg(m)≤e

αmm

 ·( N∑
i=1

βimi

)
=
∑
m̃

 ∑
(m,j):mmj=m̃

αmβj

 m̃.

The polynomial fP has degree < d+s iff for each m̃ of degree at least d+s, its coefficient
in the above expression is 0. Since the βi’s are fixed, we can view this event as the probability
that some set of homogeneous linear equations in the αm variables are satisfied. By standard
linear algebra, this is exactly q−t where t is the rank of the linear system. So it suffices to
show that there are at least |Us,e(m1)| many independent linear equations in the system.

Recall that |Ds,e(m1)| = |Us,e(m1)|. Now, for each m ∈ Ds,e(m1), consider the monomial
m̃ = m ·m1 = m ∗m1 (the second equality is true since m is disjoint from m1). Let M̃
denote the set of all such m̃. Note that each m̃ ∈ M̃ has degree exactly deg(m) + deg(m1) ∈
[d+ s, d+ e]. Thus, for fP to have degree < d+ s , the coefficient of each m̃ must vanish.
Further, since |M̃| = |Ds,e(m1)| = |Us,e(m1)| it suffices to show that the linear equations
corresponding to the different m̃ ∈ M̃ are all linearly independent.

To prove this, we argue as follows. Let m′ be a monomial of degree at most e. We say that
m′ influences m̃ ∈ M̃ if αm′ appears with non-zero coefficient in the equation corresponding
to m̃. We now make the following claim.

I Claim 3.4. Let m̃ ∈ M̃ and m ∈ Ds,e(m1) be such that m̃ = m ∗m1. Then, m influences
m̃. Further, if some monomial m′ influences m̃, then m′ ≥ m.

Assuming the above claim, we complete the proof of the lemma as follows. Consider the
matrix B of coefficients obtained by writing the above linear system in the following manner.
For each m̃ = m ∗m1 ∈ M̃, we have a row of B and let the rows be arranged from top to
bottom in increasing order of m (w.r.t. the graded lexicographic order). Similarly, for each
m′ of degree at most e, we have a column and again the columns are arranged from left to
right in increasing order of m′. The (m̃,m′)th entry contains the coefficient of αm′ in the
equation corresponding to the coefficient of m̃.

Restricting our attention only to columns corresponding to m′ ∈ Ds,e(m1), Claim 3.4
guarantees to us that the submatrix thus obtained is a |Ds,e(m1)| × |Ds,e(m1)| matrix that
is upper triangular with non-zero entries along the diagonal. Hence, the submatrix is full
rank. In particular, the matrix B (and hence our linear system) has rank at least |Ds,e(m1)|.
This proves the lemma. J

Proof of Claim 3.4. We start by showing that m does indeed influence m̃. The linear
equation corresponding to m̃ is∑

(m′,j):m′·mj=m̃

βjαm′ = 0 (2)

where m′ runs over all monomials of degree at most e.
Clearly, one of the summands in the LHS above is β1αm. Thus, to ensure that m

influences m̃, it suffices to ensure that no other summand containing the variable αm appears.
That is, that m ·mj 6= m̃ for any j > 1. (Note that in general unique factorization is not
true in Pq(n), since Xq = X.)

FSTTCS 2016
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To see this, note further that m ·mj is either equal to m ∗mj (if they are disjoint) or has
smaller degree than m ∗mj . In either case, we have m ·mj ≤ m ∗mj . Thus, we obtain

m ·mj ≤ m ∗mj < m ∗m1 = m̃

where the second inequality follows from the fact that m1 > mj and hence (Fact 2.2)
m′ ∗m1 > m′ ∗mj for any monomial m′. This shows that αm appears precisely once in the
left hand side of (2) and in particular, that it must influence m̃.

Now, we show that no m′ < m influences m̃. Fix some m′ < m. For any j ∈ [N ] we have

m′ ·mj ≤ m′ ∗mj ≤ m′ ∗m1 < m ∗m1 = m̃

where the first two inequalities follow from a similar reasoning to above and the third from
the fact that m′ < m. Hence, we see that no monomial that is a product of m′ with another
monomial from f can equal m̃. In particular, this means that m′ cannot influence m̃.

This completes the proof of the claim. J

I Corollary 3.5. Let n, e, d, P, f be as in Lemma 3.3. Further, let r be such that (q−1)n−d = r

and assume r ≥ 2e+ (q − 1). Then, PrP∼Pq(n,e)[deg(fP ) < d+ e] ≤ q−qΩ(e/q)
.

Proof. To prove the corollary, we use Lemma 3.3 with s = e and prove a lower bound
on |Ue,e(m0)| = |Ue(m0)| = |De(m0)| where m0 is the monomial from the statement of
Lemma 3.1. Let T index the t =

⌊
r
q−1

⌋
variables not present in the monomial m0. We can

lower bound |De(m0)| by the number of monomials of degree exactly e in Pq(n, e) supported
on variables from T ; letM denote this set of monomials.

Partition T arbitrarily into two sets T1 and T2 such that |T1| = e′ = be/(q − 1)c.
To lower bound |M|, note that given any monomial m1 in Pq(n, e) in the variables of

T1, we can find a monomial m2 over the variables of T2 such that their product has degree
e. The reason for this is that m1 can have degree at most e′(q − 1) ≤ e and further, the
maximum degree of any monomial in the variables in T2 is

(t− e′)(q − 1) ≥
(

r

q − 1 − 1− e

q − 1

)
(q − 1) = r − e− (q − 1) ≥ e

where the last inequality follows from our assumed lower bound on r. Hence, we can always
find a monomial m2 such that deg(m1m2) = e. Hence, we can lower bound |M| by the
number of monomials m1 over the variables in T1 which is q|T1| = qΩ(e/q). We have thus
shown that |Ue,e(m0)| = qΩ(e/q). An application of Lemma 3.3 now implies the corollary. J

3.1 Connection to the Schwartz-Zippel Lemma over Fq

Consider the special case of Lemma 3.3 when e = (q − 1)n and s = 0. In this case, note that
Pq(n, e) is just the ring Pq(n) and hence the above lemma implies PrP∼Pq(n)[deg(fP ) <
d] ≤ 1

q|Us,e(m0)| where m0 is the monomial from the statement of Lemma 3.1. Note that as a
special case, this implies that PrP∼Pq(n)[fP = 0] ≤ 1

q|Us,e(m0)| .
Observe that by Fact 2.1, fP = 0 if and only if the polynomial fP vanishes at each

point of Fnq . However, since P evaluates to an independent random value in Fq at each
input x ∈ Fnq , we see that the probability that fP evaluates to 0 at each point is exactly
the probability that P (x) = 0 at each point where f(x) 6= 0. This happens with probability
exactly 1

q|Supp(f)| .
Putting it all together, we see that 1

q|Supp(f)| ≤ 1
q|Us,e(m0)| and hence, |Supp(f)| ≥

|Us,e(m0)| = |Ds,e(m0)|.
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For the chosen values of e and s, the latter quantity is exactly the total number of
monomials – of any degree – that are disjoint from m0, which is exactly (q − v)qn−u−1,
matching the Schwartz-Zippel lemma over Fq (Fact 2.1).

It is also known that the Schwartz-Zippel lemma over Fq is tight for a suitably chosen
degree d polynomial f . Lemma 3.3 is also tight for the same polynomial f . This fact is not
required for the other results of this paper and thus we defer it to the full version.

4 Analyzing Teste,k

We prove the main theorem of the paper, namely Theorem 1.4, in this section. The results
of this section only hold for prime fields. For lack of space, a part of the proof has been
omitted.

We argue that the theorem holds by considering two cases. We argue that when f is
∆-far from polynomials of degree d+ r/4 – a much stronger assumption than the hypothesis
of the theorem – then a modification of the proof of Dinur and Guruswami [4] coupled with
a suitable choice of basis for Pq(n, d) (see the full version for details) yields the desired
conclusion.

If not, then f is ∆-close to some polynomial of degree d′ that is slightly larger than d. In
this case, we can argue that f is “essentially” a polynomial of degree d′ and for any such
polynomial, the product fP1 . . . Pk is, w.h.p., a polynomial of degree exactly d′ + ek and
hence f 6∈ Pq(n, d+ ek). This requires the results of Section 3.

We will assume throughout that r is greater than or equal to some fixed constant (possibly
depending on q, k) since otherwise the statement of the theorem is trivial.

Case 1: f is ∆-far from Pq(n, d + r
4). For lack of space, this section has been omitted.

See the full version for details.
Case 2: f is ∆-close to Pq(n, d + r

4). Let F ∈ Pq(n, d+ r
4 ) be such that f is ∆-close to

F . Let d′ = deg(F ). Note that d′ > d since f is ∆-far from Pq(n, d) by assumption.
Hence, we must have d < d′ ≤ d+ r

4 .
Note that for any P1, . . . , Pk ∈ Pq(n, e), we have fP1 · · ·Pk is ∆-close to FP1 · · ·Pk (since
f(x) = F (x) implies that f(x) ·

∏
i Pi(x) = F (x) ·

∏
i Pi(x)). We have FP1 · · ·Pk ∈

Pq(n, d′+ r/4) ⊆ Pq(n, d+ r/2). Now if fP1 · · ·Pk ∈ Pq(n, d+ ek) ⊆ Pq(n, d+ r/2), then
by the Schwartz Zippel lemma over Fq (Fact 2.1) applied to polynomials of degree at most
d+ r/2, we see that fP1 · · ·Pk = FP1 · · ·Pk. Hence, we have FP1 · · ·Pk ∈ Pq(n, d+ ek)
which in particular implies that FP1 · · ·Pk must have degree strictly less than d′ + ek.
For this event to occur there must be some i < k such that FP1 · · ·Pi has degree exactly
d′i := d′ + ei but FP1 · · ·Pi+1 has degree strictly less than d′i + e.
The above reasoning implies

Pr
P1,...,Pk

[fP1 · · ·Pk ∈ Pq(n, d+ ek)] ≤ Pr
P1,...,Pk

[deg(FP1 · · ·Pk) < d′ + ek]

≤
k∑
i=1

Pr
P1···Pk

[deg(FP1 · · ·Pi−1Pi) < d′i + e | deg(FP1 · · ·Pi−1) = d′i]. (3)

For each i, conditioning on any fixed choice of P1, . . . , Pi−1, the right hand side of (3)
can be bounded by q−qΩ(e/q) = q−q

Ω(r) using Corollary 3.5 applied with d replaced by
d′i ≤ d+ r/2− e = (q − 1)n− (r/2 + e). This implies Theorem 1.4 in this case.
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5 Two applications

5.1 A question of Dinur and Guruswami
In this section, we show how Theorem 1.4 implies Lemma 1.5, thus answering a open question
raised by Dinur and Guruswami [4].

Proof of Lemma 1.5. The proof of the lemma for robustness ∆′ can be reduced to The-
orem 1.4 for k = 1 + dlogq/(q−1)(2∆′)e as follows.

Let f be ∆-far from Pq(n, d) as stated in the lemma. Call P “lucky” if ∆(f ·P,Pq(m, d+
e)) ≤ ∆′. We need to bound the probability PrP∈Pq(n,e)[P is lucky ]. For a lucky P , let F
be a degree-(d+ e) polynomial that is ∆′-close to f · P . Define k := 1 + dlogq/(q−1)(2∆′)e.
Now, choose P1, . . . , Pk−1 ∈R Pq(n, e) and let g = fP ·

∏
i<k Pi. Also, let G = F ·

∏
i<k Pi;

note that G ∈ Pq(n, d+ ek).
Observe that for any x such that F (x) 6= f(x)P (x), the probability that G(x) 6= g(x)

is at most the probability that all the Pi(x) are non-zero and this is
(

1− 1
q

)k−1
≤ 1

2∆′ .
Hence, the probability that any point of difference between F and fP survives as a point of
difference between G and g is at most 1

2 . Since no new points of difference are introduced,
we see that

Pr
P,P1,...,Pk−1

[fP1P2 · · ·Pk ∈ Pq(n, d+ ek)]

≥ Pr
P

[P is lucky ] · Pr
P,P1,...,Pk−1

[f · P ·
∏
i<k

Pi ∈ Pq(n, d+ ek) | P is lucky ]

= Pr
P

[P is lucky ] · Pr
P,P1,...,Pk−1

[g ∈ Pq(n, d+ ek) | P is lucky ]

≥ Pr
P

[P is lucky ] · Pr
P,P1,...,Pk−1

[g = G | P is lucky ] ≥ Pr
P

[P is lucky ] · 1
2 .

The lemma now follows since Theorem 1.4 implies that PrP,P1,...,Pk−1 [fP1P2 · · ·Pk ∈ Pq(n, d+
ek)] ≤ q−qΩ(r)

. J

I Remark 5.1. An anonymous reviewer for FSTTCS 2016 pointed out to us that Lemma 1.5
only works if log ∆′ = O(k), which in particular implies that ∆′ must be a constant
(independent of n and d). However, an easy modification of the above idea actually shows a
statement of the above form for ∆′ as large as qΩ(r). We refer the reader to the full version
for details.

5.2 Analysis of Corr-h
Recall the test Corr-h defined in the introduction where h ∈ Pq(n, k) is a polynomial of exact
degree k. In this section, we analyze this test Corr-h, thus proving Corollary 1.6.

For this we need the following properties of polynomials.

Dual of Pq(n, d): For any two functions, f, g ∈ Fq(b), define 〈f, g〉 :=
∑
x∈Fn

q
f(x) · g(x).

The set of polynomials Pq(n, r − 1) is the dual to the set of polynomials Pq(n, d) in the
following sense.

For any two polynomials P ∈ Pq(n, d) and Q ∈ Pq(n, r − 1), we have 〈P,Q〉 = 0.
Furthermore, for any P /∈ Pq(n, d) and a random Q ∈R Pq(n, r − 1), we have that
〈P,Q〉 is an unbiased element of Fq.
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This implies that the indicator variable for the event “f ∈ Pq(n, d)” can be equivalently
written as 1f∈Pq(n,d) = EQ∈Pq(n,r−1)

[
ω〈f,Q〉

]
, where ω = e2πi/q.

Squaring trick: We use a standard squaring trick to bound the absolute value of the quantity
EP

[
ω〈h(P ),f〉]. Let us consider the case when h(P ) = P 2. In this case we have

∣∣∣E
P

[
ω〈P

2,f〉
]∣∣∣4 =

∣∣∣∣ E
P,P1

[
ω〈(P+P1)2,f〉 · ω〈−P

2,f〉
]∣∣∣∣2 =

∣∣∣∣ E
P,P1

[
ω〈2PP1+P 2

1 ,f〉
]∣∣∣∣2

≤ E
P1

[∣∣∣E
P

[
ω〈2PP1+P 2

1 ,f〉
]∣∣∣2]

= E
P1

[
E
P,P2

[
ω〈2(P+P2)P1+P 2

1 ,f〉 · ω〈−(2PP1+P 2
1 ),f〉

]]
= E
P1

[
E
P,P2

[
ω〈2P1P2,f〉

]]
= E
P1,P2

[
ω〈2P1P2,f〉

]
A similar argument shows that when h(P ) is a polynomial of degree exactly k, we have∣∣∣E

P

[
ω〈h(P ),f〉

]∣∣∣2k

≤ E
P1,...,Pk

[
ω〈k!P1···Pk,f〉

]
We are now ready to prove Corollary 1.6.

Proof of Corollary 1.6.

Pr
P∈Pq(n,e)

[f · h(P ) ∈ Pq(n, d+ ek)] =
∣∣∣∣ E
P∈Pq(n,e),Q∈Pq(n,s−1)

[
ω〈f ·h(P ),Q〉

]∣∣∣∣
=
∣∣∣∣EQ [EP [ω〈h(P ),fQ〉

]]∣∣∣∣2k/2k

≤
(

E
Q

[∣∣∣E
P

[
ω〈h(P ),fQ〉

]∣∣∣2k])1/2k

≤
(

E
Q

[
E

P1,...,Pk

[
ω〈k!P1···Pk,fQ〉

]])1/2k

=
(

E
P1,...,Pk

[
E
Q

[
ω〈P1···Pkf,Q〉

]])1/2k

=
(

Pr
P1,...,Pk

[
f ·
∏
i

Pi ∈ Pq(n, d+ ek)
])1/2k

The corollary now follows from Theorem 1.4. J
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