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Abstract
We introduce a version of the probabilistic mu-calculus (PMC) built on top of a probabilistic
modal logic that allows encoding n-ary inequational conditions on transition probabilities. PMC
extends previously studied calculi and we prove that, despite its expressiveness, it enjoys a series of
good meta-properties. Firstly, we prove the decidability of satisfiability checking by establishing
the small model property. An algorithm for deciding the satisfiability problem is developed. As
a second major result, we provide a complete axiomatization for the alternation-free fragment of
PMC. The completeness proof is innovative in many aspects combining various techniques from
topology and model theory.
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1 Introduction

From the perspective of industrial practice, especially in the area of embedded and cyber-
physical systems, an essential problem is how to deal with the high complexity of the
systems, while still meeting the requirements of correctness, predictability, performance and
also non-functional properties. In this respect, for embedded systems, specification and
verification should not only consider functional properties but also non-functional properties.
Particularly, effort has been put into formalisms and logics that address stochastic aspects of
a system. The seminal work of Hansson and Jonsson [13] introduced pCTL, a probabilistic
extension of CTL. In a number of recent work results related to decidability and complexity
of model checking and satisfiability checking of (variants of) pCTL have been established
[1, 14, 4, 22, 24, 5].

In parallel, various probabilistic modal µ-calculi have been considered. Typically, one
characterizes the probabilistic bisimulation by using a probabilistic version of modal logic with
the modality indexed by a subunital positive real: e.g. 〈〉>pφ describes that the probability
of reaching a next state satisfying φ is greater than p. Whereas the resulting logic does
fully characterize probabilistic bisimulation, it is not sufficiently expressive with respect to
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decomposition of properties under static operators. To address this, in [21] an extended
n-ary next-state modality ((in-)equational modality) was introduced: e.g. [〈x〉φ1, 〈y〉φ2 :
x+ y ≤ 0.7] describes that the probabilities x and y of reaching next-states satisfying φ1 and
φ2 respectively must satisfy the constraint x+ y ≤ 0.7. This modality allows one to encode
complex linear constraints on probabilities.

In this paper we introduce a probabilistic µ-calculus (PMC) for specifying and reasoning
about the Markov processes. PMC extends with block sequences (equation systems) the
modal logic of [21]. As a first main result, we prove the decidability of satisfiability checking
by establishing a small model property for this logic. As a second main result, we provide a
sound and complete axiomatization for the alternation-free fragment of PMC.

Related Work. The satisfiability problem for the probabilistic logics with fixed points has
been a hot topic for a number of years. While this is still an open problem for pCTL and
pCTL*, various fragments have been solved. In [14, 4], it is shown that qualitative pCTL
(expressing only whether a probability is bigger than 0 or equal to 1) has no finite model
property and its satisfiability problem is ExpTime-complete. Moreover, it is proven that
satisfiability checking for pCTL against models with bounded branching degree is highly
undecidable; however, every satisfiable formula has a model with branching degree bounded
by the size of the formula. More recently, in [1], pCTL satisfiability problem for bounded-size
models is studied and proved to be decidable. In [22, 24], the qualitative fragment of pCTL*
is proved to be decidable too. In recent works [23, 6], the satisfiability problem for an
extension of the logic in [20] with fixed points is proven to be decidable. This logic only
involves probabilistic next-state operator and it cannot express the (in-)equational modalities
of [21].

The decidability of probabilistic µ-calculus of [23] also derives as a particular case of the
more general results proven in [7], where it is shown that the decidability of coalgebraic
mu-calculi parametrized by a tractable set of so-called one-step rules is in ExpTime; in
[17] such a rule set has been exhibited for probabilistic modal logic with linear inequalities.
However, all these works were done only for finite sets with discrete probability distributions.

In [26, 27, 25] probabilistic modal µ-calculus, Łukasiewicz µ-calculus, probabilistic modal
µ-calculus with independent product are studied in the context of denotational semantics
and game semantics, relying on a satisfiability relation that is not essentially boolean but
rather quantitative.

Another fixed points probabilistic logic is proposed in [8]. Its syntax is divided into a
probabilistic part (so called state formulas) and a non-probabilistic part involving fixed points
(so called fuzzy formulas). This logic can encode the probabilistic modal logic and pCTL*
and it is studied from the perspective of (finite) model checking and bisimulation checking.

Considering the axiomatization, complete axiomatizations for the qualitative fragment of
pCTL* are shown in [22], but only for bounded finite systems.

Our Work. With respect to the related work described above, our probabilistic µ-calculus
involves the equational modalities of [21], thus allowing us to encode (in-)equational conditions
on probabilities. The logic is definitely more general than that of [23]. The semantics, with
respect to the other related works such as [7, 17] is in term of general (analytical) measurable
sets and not just finite spaces with discrete sigma-algebras; it has been repeatedly proven in
literature, see e.g. [28], that going from discrete systems to continuous systems is far from
being a trivial step, and complex topological and measure theoretical arguments applied to
model theory must be invoked.
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Our logic is incomparable with pCTL and pCTL* as it cannot express modalities such
as “probabilistic Until”. The work here includes a modality extension but does not try to
add this modality to the more complicated logics of [5, 26, 27, 25]. However, our logic can
be used to approximate pCTL formulas with arbitrary precision when restricting to finite
models. This is interesting as the satisfiability problem for quantitative pCTL is still open.

We prove that this logic enjoys the finite model property and its satisfiability problem is
decidable. We develop an algorithm that checks the satisfiability of a formula and, if the
formula is satisfiable, it constructs a finite model. Being the aforementioned state of the
art in the field, these are important results presenting our logic as a good trade-off between
expressiveness and decidability. Moreover, these results generalize the ones in [23] while our
proof constructs on top of the classic tableau method [33, 15, 34].

Another key contribution of our paper is the complete axiomatization that we propose
for the alternation-free fragment of PMC. At the best of our knowledge, the problem of
axiomatizing probabilistic µ-calculus has not been previously approached at this level of
generality. The completeness proof is a non-standard extension of the filtration method
relying on topological facts such as Rasiowa-Sikorski lemma and its relation to Lindenbaum’s
lemma (following the technique developed by the first two authors in collaboration with
Dexter Kozen and Prakash Panangaden [16]). The proof also applies the technique developed
in [18] by the authors for proving the completeness of fixed points logics. These can be easily
adapted to other versions of probabilistic µ-calculus.

Due to space limit, most of the results stated here are without proofs. For a detailed
presentation with the proofs and some of the classical definitions and lemmas, the reader is
referred to http://people.cs.aau.dk/~bingt/probaMuCalc.pdf

2 Probabilistic Mu-Calculus

Probabilistic µ-Calculus (PMC) that we develop in this paper encodes properties of Markov
processes. As usual with µ-Calculus based on equation systems, the syntax is given in two
stages: we firstly introduce the basic formulas and secondly use them to define blocks. The
basic formulas are boolean formulas, constructed on top of a set A of atomic propositions
and involving the following:

recursive-variables range over the set X ; they are used to define simultaneous recursive
equations in order to express maximal and minimal fixed points, in the style of [19, 9, 10, 2];
(in-)equational modalities of type 〈x1〉φ1, . . . , 〈xn〉φn : Σni=1aixi ≥ r where x1, . . . , xn are
probability variables ranging over a set V and a1, . . . , an, r ∈ Q.

I Definition 1 (Basic formulas). The basic formulas of PMC are defined by the following
grammar, for arbitrary p ∈ A, X ∈ X , a1, . . . , an, r ∈ Q, x1, . . . , xn ∈ V:

L : φ := p | ¬φ | φ ∨ φ | 〈x1〉φ1, . . . , 〈xn〉φn : Σni=1aixi ≥ r | X .

Notation: For arbitrary x ∈ Vn, a ∈ Qn, r ∈ Q and φ ∈ Ln, instead of 〈x1〉φ1 . . . 〈xn〉φn,
we simply write 〈x〉φ and instead of Σni=1aixi≥r we write a·x≥r. This will simplify the syntax
of the equational modalities and instead of 〈x1〉φ1 . . . 〈xn〉φn : Σn

i=1aixi ≥ r, we will write
〈x〉φ : a·x≥r. In this case, n is called the length of 〈x〉φ : a·x≥r. If 〈x〉φ = 〈x1〉φ1 . . . 〈xn〉φn
and a ·x = Σni=1aixi, for k <n, let 〈x〉φ

∣∣
k

def= 〈x1〉φ1 . . . 〈xk〉φk and a ·x
∣∣
k

def= Σki=1aixi.
Observe that in the basic formulas we only allow one inequality using ≥ to specify the

constraints on x. However, we can, for instance, encode reversed inequalities since we are
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using all rationals; and we can encode a finite set of constraints by involving conjunctions of
the equational modalities.

The dual of 〈x〉φ : a ·x ≥ r can be defined as 〈x〉φ : a ·x < r; for this reason, we write
constraints freely using ≥,≤, > or <. We use both E and D to range over the set {≤,≥}
such that {E,D} = {≤,≥}. Similarly, we use C and B to range over the set {<,>} such
that {C,B} = {<,>}.

Now we introduce the equation blocks. Given φ, ψ1, . . . , ψh ∈ L and X1, . . . , Xh ∈ X ,
let φ{ψ1/X1, . . . , ψh/Xh} be the formula obtained by substituting each occurrence of
Xi in φ with ψi for i = 1, . . . , h; denoted shortly φ{ψ/X}, where ψ = (ψ1, . . . , ψh) and
X = (X1, . . . , Xh). Following [9, 10, 2], we allow sets of the maximal or minimal blocks of
mutually recursive equations in PMC.

I Definition 2 (Equation Blocks). An equation block B over the set XB = {X1, . . . , XN} ⊆ X
of pairwise distinct variables has one of two forms – min{E} or max{E}, where E is a system
of (mutually recursive) equations such that for any i, j ∈ {1, . . . , N}, φi is monotonic in Xj .

E : 〈 X1 = φ1, . . . , XN = φN 〉 .

If B = max{E} or B = min{E}, the elements of XB are called max-variables or min-
variables respectively. Given the system E of equations in the previous definition, its dual
is

Ẽ : 〈 X1 = ¬φ1{¬X1/X1, . . . ,¬XN/XN}, . . . , XN = ¬φN{¬X1/X1, . . . ,¬XN/XN} 〉 .

If B = max{E} or B = min{E}, then its dual is B̃ = min{Ẽ} or B̃ = max{Ẽ} respectively.
We say that a formula φ ∈ L depends on B if it involves variables in XB . If XB ∩XB′ = ∅,

we say that B is dependent on B′ if the right hand side formulas of the equations in B

depend on B′.

I Definition 3 (Block Sequence). A sequence B = B1, . . . , Bm of m ≥ 1 pairwise-distinct
equation blocks is a block sequence if XBi ∩ XBj = ∅ for i 6= j. A block sequence B =
B1, . . . , Bm of m ≥ 1 is called alternation-free if Bi is not dependent on Bj whenever i < j.

A formula φ ∈ L is dependent on B if it is dependent of each block in the sequence.
The semantics of our calculus is defined in terms of (probabilistic) Markov processes [28].

I Definition 4 (Markov Process). A (probabilistic) Markov process (PMP) is a tupleM =
(M,Σ, l, θ) with (M,Σ) an analytic measurable space1 of states, l : M → 2A a labeling
function associating a set of state labels (i.e., atomic propositions) to each state and θ : M →
Π(M,Σ) the transition function associating a probability measure over (M,Σ) to each state.

Given a PMPM = (M,Σ, l, θ), an environment is a function ρ : X → 2M that interprets
the recursive-variables as sets of states. We use 0 as the empty environment that associates
∅ to all recursive-variables. Given an environment ρ and S ⊆ M , let ρ[X 7→ S] be the
environment that interprets X as S and all the other recursive-variables as ρ does. Similarly,
for a pairwise-disjoint tuple X = (X1, . . . , XN ) ∈ XN and S = (S1, . . . , SN ) ⊆ MN , let
ρ[X 7→ S] be the environment that interprets Xi as Si for all i = 1, . . . , N and all the other
variables as ρ does.

1 An analytic space1 is a continuous image of a Polish space in a Polish space; a Polish space is the
topological space underlying a complete separable metric space.
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Given a PMPM = (M,Σ, l, θ) and an environment ρ, the semantics for the basic formulas
in L is defined, on top of the classic semantics for Boolean logic, inductively as follows,

M,m, ρ |= p iff p ∈ l(m);
M,m, ρ |=¬φ iffM,m, ρ 6|= φ;
M,m, ρ |=φ1 ∨ φ2 iffM,m, ρ |= φ1 orM,m, ρ |= φ2;
M,m, ρ |=X iff m ∈ ρ(X);

M,m, ρ |= 〈x〉φ : a ·x≥ r iff Σni=1aiθ(m)(JφiKMρ ) ≥ r,

where JφKMρ = {m ∈M | M,m, ρ |= φ}.
Following [19, 9, 10, 2], we extend now the semantics to include the restrictions imposed

by a sequence of blocks and obtain the so-called block-semantics.
Given a set of equations E with X = (X1, . . . , XN ), an environment ρ and Υ =

(Υ1, . . . ,ΥN ) ⊆ MN , let the function fρE : (2M )N −→ (2M )N be defined as: fρE(Υ) =
〈Jφ1Kρ[X 7→Υ], . . . , JφN Kρ[X 7→Υ]〉.

Observe that (2M )N forms a complete lattice with the ordering, join and meet operations
defined as the point-wise extensions of the set-theoretic inclusion, union and intersection,
respectively. Moreover, for any E and ρ, fρE is monotonic with respect to the order of
the lattice and therefore, it has a greatest fixed point denoted by νX.fρE and a least
fixed point denoted by µX.fρE [9]. These can be characterized as: νX.fρE =

⋃
{Υ | Υ ⊆

fρE(Υ)}, µX.fρE =
⋂
{Υ | fρE(Υ) ⊆ Υ}.

The blocks max{E} and min{E} define environments that satisfy all the equations in E;
max{E} is the greatest fixed point and min{E} is the least fixed point. The environment
defined by the block B is denoted by JBKρ. Given a block sequence B = B1, . . . , Bm and an
environment ρ0, let ρ1, . . . , ρm be defined by ρi = JBiKρi−1 for i = 1, . . . ,m. The semantics
of B is then given by

JBKρ0 = ρm.

I Definition 5 (Block-Semantics). Given a block sequence B, the B-semantics of a formula
φ ∈ L that depends on B is given for a PMP M = (M,Σ, l, θ) with m ∈ M and an
environment ρ, as follows,

M,m, ρ |=B φ iff M,m, JBKρ |= φ.

We say that a formula φ is B-satisfiable if there exists at least one PMP that satisfies
it for the block sequence B in one of its states under some environment; φ is a B-validity,
written |=B φ, if it is satisfied for B in all states of any PMP under any environment.

I Example 6. Suppose a file is divided into n blocks that are distributed among several
peers in a peer-to-peer network. When a user wants to get the complete file from the network,
he needs to download all n blocks. When the user tries to download a block, there are three
possibilities: (1) he gets the block successfully and he will try to download the next block
(with probability 0.6); (2) the block is not available anymore, in which case it is not possible
to get the complete file (with probability 0.1); (3) the peer did not response within a time
limit and the user retries (with probability 0.3). To simplify the example, we assume that
only one block can be downloaded at one time. The system (1) in Figure 1 is one of this
type.

Consider the safety property that “it will never FAIL to get the file” as shown in the
system (2) in Figure 1. In the non-probabilistic case, this can be specified by the mu-calculus
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m0

m1

...

mn−1

mn SUCCESS

mf
...

FAIL

0.6

0.3

0.6

0.6

0.3

0.6

0.3

1

1

0.1

0.1

0.1

(1) Probabilistic System

m′0

m′1

...

m′n−1

m′n SUCCESS

m′f

FAIL

(2) Non-probabilistic System

Figure 1 Peer-to-peer file sharing network.

formula φ:

φ = SUCCESS ∨X

B = max
{
X = ¬FAIL ∧ ¬SUCCESS

∧(〈〉SUCCESS ∨ 〈〉X)

}
,

where φ is satisfied by m′0, . . . ,m′n and X is satisfied by m′0, . . . ,m′n−1.
Consider the probabilistic safety property that “at any moment, the probability of FAIL

to get the file is less than or equal to 0.1”. This requirements can be expressed in PMC as:

φ = SUCCESS ∨X

B = max
{
X = ¬FAIL ∧ ¬SUCCESS∧
(〈x1〉SUCCESS, 〈x2〉X : x1 + x2 ≥ 0.9)

}
,

where φ is satisfied by m′0, . . . ,m′n and X by m′0, . . . ,m′n−1. Notice that, they still hold when
the system is infinite, i.e., n goes to +∞.

3 Decidability and finite model property

In this section, we prove that the B-satisfiability problem of PMC is decidable, i.e., it is
decidable whether a given formula φ of PMC which is closed w.r.t. a block sequence B is
satisfiable. We do this by involving the tableau construction [33, 15, 34] that will eventually
help us constructing a model for φ. We show that PMC enjoys the finite model property
and present a decision procedure. This work is done for the entire PMC and not only for the
alternation-free fragment.

Given a formula φ dependent on B, the construction of the model follows 4 steps (in brief):
1. Find the so-called co-prime formula φc for φ, which has a special format and admits the

same models as φ. Similarly, we construct a co-prime block sequence Bc. Both φc and Bc
only involve integer inequalities with co-prime coefficients in the equational modalities.

2. Construct a set of formulas which is vital in constructing the tableau for φc. In contrast
to that of the classical µ-calculus, this set not only contains the subformulas of φc and Bc
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but also it is still a finite set of formulas. This construction involves complex continuity
arguments on rationals and this makes it particularly different from any similar techniques
used previously with µ-calculi. The basic idea behind it is that every rational inequality
(system) has (at least) one rational solution.

3. Construct a tableau for φc by adapting the classical tableau method. They key here is to
use maximal sets as nodes, in order to get the probability distributions over the state
space.

4. The tableau provides a PMP, which is also a model for φc, hence also for φ.

I Definition 7 (Co-Prime). A block sequence B (a formula φ ∈ L dependent on B) is said to
be co-prime iff for any 〈x〉ψ : a ·x≥ r that appears in B (in φ or B), a1, . . . , an are co-prime
integers.

For any inequality Σn
i=1aixi ≥ r, one can divide both sides of the inequality by the

greatest common divisor of a1, . . . , an to get an inequality that has the same solution. Hence,
for any block sequence (formula), one can get its co-prime block sequence (co-prime formula)
by changing all inequalities in it by the above mentioned method.

Properties:
1. For any block sequence B, there exists a unique co-prime block sequence denoted by Bc;

for any formula φ, there exists a unique co-prime formula denoted by φc.
2. For any formula 〈x〉φ : ax≥ r, (〈x〉φ : ax≥ r)c ∈ {〈x〉φ : x ≤ r

a , 〈x〉φ : x ≥ r
a}.

I Proposition 8. For any φ ∈ L dependent on B and its co-prime formula φc, any model
satisfying one also satisfies the other, i.e., for any PMPM = (M,Σ, l, θ) with m ∈M and
any environment ρ,

M,m, ρ |=B φ iffM,m, ρ |=Bc φc.

Therefore, for solving the satisfiability problem of a formula, it is sufficient to solve the
satisfiability problem of its co-prime formula.

Consider φ ∈ L dependent on B. The set of all the recursive-variables in φ and B is
denoted X [φ,B]. Let R[φ,B] ⊆ Q be the set of all rationals in φ or B; let R∗[φ,B] ⊆ Q be
the set of all r

ai
s.t. 〈x〉ψ : (a1, .., an) ·x≥ r appears in φ or B and ai 6= 0. Obviously, R[φ,B]

and R∗[φ,B] are both finite.
The granularity of φ dependent on B, denoted by gr(φ,B), is the least common denomin-
ator of the elements of R∗[φ,B]. Let I[φ,B] be the set of all rationals of type p

gr(φ,B) in
the interval [min(R∗[φ,B]),max(R∗[φ,B])], for p ∈ Z. Notice that I[φ,B] = ∅ whenever
R∗[φ,B] = ∅.
The modal depth of φ dependent on B, denoted by md(φ,B), is defined inductively by

md(φ,B) =


0, if φ = p or φ = X

md(ψ,B), if φ = ¬ψ
max{md(ψ),md(ψ′)}, if φ = ψ ∨ ψ′
max{md(ψi) | i = 1, . . . , n}+ 1, if φ = 〈x〉ψ : a ·x≥ r

The modality length of φ dependent on B, denoted by ml(φ,B), is largest length of the
sub-formula 〈x〉ψ : a ·x≥ r that appears in φ or B.

In the following, we fix a co-prime formula φc ∈ L dependent on a co-prime block sequence
Bc and we construct a model for it. Let

(~) L[φc,Bc] = {φ ∈ L | X [φ,Bc] ⊆ X [φc,Bc], R[φ,B] ⊆ R[φc,Bc],
I[φ,B] ⊆ I[φc,Bc],md(φ,Bc) ≤ md(φc,Bc),ml(φ,Bc) ≤ ml(φc,Bc)}.
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The classical construction will take sets of formulas from the set L[φc,Bc], which are
propositional maximal as defined in the next definition. However, in our setting, the set
L[φc,Bc] does not contain enough quantitative information for constructing the model yet.
Therefore, there are two extension steps to gather all the quantitative information to get the
right candidate for the states of the model, which are quantitative maximal and quantitative
complete as defined in Definition 10 and Definition 11. This information will make sure that
we are able to find the rational solutions for all the inequalities, which will be used to define
the probabilities on the transitions.

I Definition 9 (Propositional Maximal Set). A set Λ ⊆ L[φc,Bc] is (propositional) maximal
iff:
1. if φ ∈ Λ, then ¬φ 6∈ Λ; if φ ∨ ψ ∈ Λ, then φ ∈ Λ or ψ ∈ Λ; if X ∈ Λ and X = φ ∈ Bc,

then φ ∈ Λ;
2. for all φ ∈ L[φc,Bc], 〈x〉φ : x≥ 0 ∈ Λ and 〈x〉φ : x≤ 1 ∈ Λ;
3. if 〈x〉ψ : a ·x C r ∈ Λ, then 〈x〉ψ : a ·x E r ∈ Λ.

Let Π[φc,Bc] the set of all the (propositional) maximal sets of L[φc,Bc]. Since L[φc,Bc]
is finite, Π[φc,Bc] is finite and any Λ ∈ Π[φc,Bc] is finite. As we mentioned earlier, L[φc,Bc]
is not sufficient for constructing the model, so we will extend L[φc,Bc] and Π[φc,Bc] in two
steps. Firstly, Λ∈ Π[φc,Bc] is not quantitative maximized defined as follows:

I Definition 10 (Quantitatively Maximized Set). A set A ⊆ L is quantitatively maximized
iff
1. if 〈x〉φ : x E r ∈ A, then 〈x〉¬φ : x D 1− r ∈ A;
2. if 〈x〉(φ ∧ ψ) : x E r1 ∈ A and 〈x〉(φ ∧ ¬ψ) : x E r2 ∈ A, then 〈x〉φ : x E r1 +r2 ∈ A;
3. if 〈xn〉φn : xnDrn ∈ A, 〈x〉φ : a·xEr ∈ A and an ≥ 0, then 〈x〉φ

∣∣
n−1 : a·x

∣∣
n−1Er−anrn ∈ A;

4. if 〈xn〉φn : xnDrn ∈ A, 〈x〉φ : a·xCr ∈ A and an ≥ 0, then 〈x〉φ
∣∣
n−1 : a·x

∣∣
n−1Cr−anrn ∈ A;

5. if 〈xn〉φn : xnErn ∈ A, 〈x〉φ : a·xEr ∈ A and an ≤ 0, then 〈x〉φ
∣∣
n−1 : a·x

∣∣
n−1Er−anrn ∈ A;

6. if 〈xn〉φn : xnErn ∈ A, 〈x〉φ : a·xCr ∈ A and an ≤ 0, then 〈x〉φ
∣∣
n−1 : a·x

∣∣
n−1Cr−anrn ∈ A.

The quantitative maximization extends the lower bound and upper bound of all the
rationals considered. This makes sure that all the numbers related to the given formula are
included. These numbers are needed in order to find all the solutions for the inequalities in
φc and Bc.

Extension Step I: Let pmax

gr(φc,Bc) ,
pmin

gr(φc,Bc) with pmax, pmin ∈ Z and max′,min′ ∈ Q be such
that if the conditions 1 – 4 below are satisfied, then for any Λ ∈ Π[φc,Bc], there exists
Λ′ ∈ Π′[φc,Bc] such that Λ ⊆ Λ′ and Λ′ is quantitatively maximized,
1. I ′[φc,Bc] be the set of all p

gr(φc,Bc) in the interval [ pmax

gr(φc,Bc) ,
pmin

gr(φc,Bc) ] for any p ∈ Z;
2. R′[φc,Bc] = {r ∈ Q | min′ ≤ r ≤ max′]};
3. L′[φc,Bc] ⊇ L[φc,Bc] is the set of formulas defined as (~) based on I ′[φc,Bc] and

R′[φc,Bc];
4. Π′[φc,Bc] the set of the propositional maximal sets of L′[φc,Bc].

In order to find the maximal number related to 2 in Definition 10, one can start with
adding the 〈x〉φ : xE r1 + r2 and its negation which are not in L[φc,Bc] to get L′[φc,Bc] and
continue doing the same to the new L′[φc,Bc]. Since L[φc,Bc] is finite, this procedure will
terminate. Similarly one can do the same for the others and find the numbers. It is obvious
that L′[φc,Bc] and Π′[φc,Bc] are still finite. For any Λ ∈ Π[φc,Bc], choose Λ′ ∈ Π′[φc,Bc]
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Table 1 Tableau Rules.

(∧) {φ1, φ2,∆} ⊆ Λ+

{φ1 ∧ φ2,∆} ⊆ Λ+ (∨) {φi,∆} ⊆ Λ+

{φ1 ∨ φ2,∆} ⊆ Λ+ φi ∈ Λ+, i = 1 or 2 (Reg) {φX ,∆} ⊆ Λ+

{X,∆} ⊆ Λ+ X = φX ∈ B

(Mod)
∆1 ⊆ Λ+

1 · · · ∆k ⊆ Λ+
k

∆ ⊆ Λ+ ∅ 6= ∆j ⊆
⋃

〈x〉φ : a·x≥r∈∆

{φ1, . . . , φn} ⊆
⋃

j=1,...,k
∆j

s.t. Λ ⊆ Λ′ and Λ′ is quantitatively maximized. Let the set of the chosen Λ′ be Ω′[φc,Bc],
which is finite.

In order to define the distribution on the model correctly, we need to obtain more
information about the maximal sets, which is the quantitative completeness defined as
follows.

I Definition 11 (Quantitatively Complete Set). Given any finite set L∗ ⊆ L. A propositional
maximal set Λ∗ of L∗ is called quantitatively complete iff ulφΛ∗ = urφΛ∗ for any φ ∈ L∗, where

ulφΛ∗ = max{r ∈ Q | 〈x〉φ : x≥ r ∈ Λ∗}, urφΛ∗ = min{s ∈ Q | 〈x〉φ : x≤ s ∈ Λ∗}.

The above notion captures the accuracy of the rationals, which states how precise we
can express in the logic. This makes sure that we include (at least) one rational solution for
every inequality.

I Lemma 12. For any φ ∈ L′[φc,Bc] (L[φc,Bc]) and any Λ′ ∈ Ω′[φc,Bc] (Λ ∈ Π[φc,Bc]),
1. ulφΛ′ , ur

φ
Λ′ ∈ [0, 1] ∩Q;

2. either ulφΛ′ = urφΛ′ or ul
φ
Λ′ + 1

gr(φc,Bc) = urφΛ′ .

Extension Step II: Let h ∈ N be such that if the conditions 1 – 3 below are satisfied,
then for any Λ′ ∈ Ω′[φc,Bc], there exists Λ+ ∈ Π+[φc,Bc] such that Λ′ ⊆ Λ+ and Λ+ is
quantitatively complete.
1. gr+(φc,Bc) = gr(φ,B) · 2h;
2. L+[φc,Bc] ⊇ L′[φc,Bc] is the set of formulas defined as (~) based on gr+(φc,Bc);
3. Π+[φc,Bc] the set of the propositional maximal sets of L+[φc,Bc].

Since L′[φc,Bc] is finite and all the numbers in the constraints on the quantitative variables
are rationals, there exist rational solutions for the inequality systems. Hence, we can find
such an h in finitely many steps by multiplying the granularity by 2 every time. Obviously
L+[φc,Bc] and Π+[φc,Bc] are finite. For any Λ′ ∈ Ω′[φc,Bc], choose Λ+ ∈ Π+[φc,Bc] s.t.
Λ′ ⊆ Λ+ and Λ+ is quantitatively complete. Let the set of the chosen Λ+ be Ω+[φc,Bc].

I Lemma 13. For any φ ∈ L+[φc,Bc] and any Λ+ ∈ Ω+[φc,Bc],

ulφΛ+ = urφΛ+ ∈ [0, 1] ∩Q.

In what follows, let uφΛ+ = ulφΛ+ = urφΛ+ . Now we are ready to construct a model for
φc dependent on Bc. We construct a tableau T [φc,Bc] for φc with Λ+ ⊆ Ω+[φc,Bc] as the
nodes. The reason for here, unlike in the standard construction [33, 15, 34], we consider
Λ+ as a node is because we need to derive information about probabilities from the nodes.
The tableau rules are listed in Table 1, where ∆ ⊆ Λ+ denotes Λ+ including ∆ and {φ,∆}
denotes {φ} ∪∆.

If (Mod) is applied at node t, the nodes ∆j ⊆ Λ+
j obtained from 〈x〉φ : a · x ≥ r s.t.

φi ∈ ∆j are called φi-sons of t. The tableaux may be infinite. However, because Ω+[φc,Bc]
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and any Λ+ ∈ Ω+[φc,Bc] are both finite, the nodes of the type ∆ ⊆ Λ+ appear in T [φc,Bc]
are finitely many.

As in the classic method for µ-calculus [33, 15, 34], we use max-trace, min-trace to capture
the idea of a history of the regeneration of a formula (similar to the classic definitions and
presented in the full version of the paper). We adapt the notions of markings, consistent
markings to the probability case to characterize B-satisfiability of a formula in a state of a
PMP.

I Definition 14 (Marking). For a tableau T , we define its marking with respect to a PMP
M = (M,Σ, l, θ) and state m0 ∈ M to be a relation M ⊆ M × T satisfying the following
conditions:
(i) (m0, t0) ∈M, where t0 is the root of T ;
(ii) if (m, t) ∈ M and a rule other than (Mod) was applied at t, then for the son t′ of t,

(m, t′) ∈M;
(iii) if (m, t) ∈ M with t = (∆ ⊆ Λ+) and rule (Mod) was applied at t, then for any

〈x〉φ : a ·x≥ r ∈ ∆, there exists F1, . . . , Fn ⊆M s.t. for any i = 1, . . . , n:
(a) for every φi-son t′ of t, there exists a state m′ ∈ Fi s.t. (m′, t′) ∈M, and
(b) for every state m′ ∈ Fi, there exists a φi-son t′ of t s.t. (m′, t′) ∈M, and
(c) uφi

Λ+ = θ(m)(Fi).

I Definition 15 (Consistent Marking). A marking M of T is consistent with respect to
M = (M,Σ, l, θ) and m0 ∈M , if and only if M satisfies the following conditions:

local consistency: for any node t = (∆ ⊆ Λ+) ∈ T and state m ∈M , if (m, t) ∈M then
for any ψ ∈ ∆,M,m, 0 |=B ψ;
global consistency: for every path P = t0, t1, . . . of T s.t. there exist πi with (πi, ti) ∈M

for i = 0, 1, . . ., there is no min-trace on P.

I Lemma 16. φc is satisfied at state m0 in a PMPM = (M,Σ, l, θ) if and only if there is
a consistent marking of T [φc,Bc] with respect toM and m0.

The proof of Lemma 16 relies on notion of signature, similar to that considered by Streett
and Emerson [33]. These notions come from the characterization of fixed point formulas by
means of transfinite chains of approximations, which have been extended to the setting with
fixed points defined with blocks in [9, 10]. Involving these, the previous lemma is proven
similarly to the case of classic µ-calculus [33, 15, 34]. The correctness of the cases with
probability is guaranteed by the quantitative maximatization and quantitative completeness
defined in Definition 10 and 11.

This lemma allows us to prove the finite model property for PMC, by following the classic
proof strategy of [15]; the only difference consists in managing the probability modalities.

I Theorem 17 (Finite Model Property). Let φ0 ∈ L be a formula that depends of B0. If φ0
is B0-satisfiable, then there exists a finite PMPMf = (Mf ,Σf , θf ) with mf ∈Mf and an
environment ρf such thatMf ,mf , ρf |=B0 φ0.

According to Proposition 8, Lemma 16 and Theorem 17, we can obtain an algorithm to
decide the satisfiability of a given PMC formula.

I Algorithm. Given a PMC formula φ0 ∈ L dependent on the block sequence B0, the
algorithm constructs a finite PMPMf = (Mf ,Σf , lf , θf ) and an environment ρf such that
Mf ,mf , ρ

f |=B0 φ0 in the following steps:
1. Construct the co-prime block sequence Bc0 of B0 and the co-prime formula φc0 of φ0.
2. Construct L[φc0,Bc0] and Π[φc0,Bc0], which are finite.
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m0

m1 SUCCESS

m′

FAIL
0.6

0.3 1
0.1

Figure 2 Small model Construction.

3. Construct L′[φc0,Bc0] and Ω′[φc0,Bc0] by Extension Step I. L′[φc0,Bc0] and Ω′φc0,Bc0] are
finite.

4. Construct L+[φc0,Bc0] and Ω+[φc0,Bc0] by Extension Step II. L+[φc0,Bc0] and Ω+[φc0,Bc0]
are finite.

5. Construct the tableau T [φc0,Bc0] according to the rules in Table 1.
6. ConstructMf = (Mf ,Σf , θf ) as follows:

Mf is the set of the nodes of t ∈ T [φc0,Bc0] such that either (Mod) is appiled at t or no
rules are applicable at t (t is a leaf).
Let LφiM = {Λ+

i | φi ∈ Λ+
i ∈Mf}, N = {LψM | (Mod) is applied in T [φc0,Bc0] for 〈x〉φ

n
: a·

x≥ r, ψ = φi for some i}. Then Σf = σ(N).
lf is defined as: for any t = Λ+ ∈Mf , lf (t) = {p ∈ A | p ∈ Λ+}.
For t = Λ+ ∈Mf where (Mod) is applied, let θf (t)(LφM) = uφΛ+ for any LφM ∈ N .
Let ρf (X) = {Λ+ | X ∈ Λ+} for X ∈ X . By Theorem 17Mf , t, ρf |=Bc

0
φc0 for t = Λ+

s.t. φc0 ∈ Λ+.
7. Therefore,Mf , t, ρf |=B0 φ0, by Theorem 8.

I Example 18. Consider the property in Example 6:

φ = SUCCESS ∨X

B = max
{
X = ¬FAIL ∧ ¬SUCCESS
∧ (〈x1〉SUCCESS, 〈x2〉X : x1 + x2 ≥ 0.9)

}
,

As discussed in Example 6, φ is satisfiable. We can use the above algorithm to construct a
model for it (the smallest one), as shown in Figure 2. The detailed steps of construction is
omitted here.

I Theorem 19 (Decidability of B-Satisfiability). The B-satisfiability problem for PMC is
decidable.

PMC can be used to approximate pCTL formulas with arbitrary precision when restricting
to finite models. Our approximation is based on a partition P : 0 < π1 < · · · < πk < 1 of
[0, 1]. To (under-)approximate the pCTL formula φi = P≥πi

(φ1Uφ2) in PMC, we define
recusively:

BP = min{Xu
i = φu2 ∨ (φu1 ∧ 〈xj〉Xu

j : (xj − xj+1)πj ≥ πi | i = 1 . . . k}.

Let Si be the set of states satisfying the pCTL formula φi. Then the vector 〈Si : i = 1 . . . k〉
is a fixed point to the block B above, and it follows (from minimal fixed point semantics
of B) that Xu

i ⇒ φi. Thus successful application of our finite-model property construction
to Xu

i will provide a model for φi as well. We conjecture that if there is a finite model
M satisfying φi = P≥π(φ1Uφ2), then for any ε > 0 we can find a partitioning P such that
M |=BP

Xu
i where πi ≥ π − ε. This will be an alternative to the construction for pCTL
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Table 2 Axiomatic System of PMC basic formulas.

(A1): ` 〈x〉φ : x≥ 0 ∧ 〈x〉φ : x≤ 1
(A2): ` 〈x〉φ : a ·x≥ r ∨ 〈x〉φ : a ·x≤ r
(A3): ` 〈x〉φ : a ·x≤ r → 〈x〉φ : a ·x <s, r < s

(A4): ` ¬(〈x〉φ : a ·x≥ r)↔ 〈x〉φ : a ·x <r
(A5): ` 〈x〉φ : a ·x≥ r ↔ 〈x〉¬φ : a ·x <a− r
(A6): ` 〈x1〉(φ ∧ ψ) : x1 E r1 ∧ 〈x2〉(φ ∧ ¬ψ) : x2 E r2 → 〈x〉φ : x E r1 +r2
(A7): ` 〈x〉φ : a ·x≥ r → 〈x〉φ : α ·(a ·x)≥αr, α ∈ Q≥0
(A8): ` 〈x〉φ : a ·x≥ r ∧ 〈x〉φ : b ·x≥ s→ 〈x〉φ : (a+ b) ·x≥ r + s

(A9): if an = 0, then ` 〈x〉φ : a ·x≥ r → 〈x〉φ
∣∣
n−1 : a ·x

∣∣
n−1 ≥ r

(R1): if ` φ↔ ψ, then ` 〈x〉φ : x E r ↔ 〈x〉ψ : x E r

(R2): {C[〈x〉φ : a ·x E r] | r B s} ` C[〈x〉φ : a ·x E s]

satisfiability problem in [1]. This also shows that, when restricting to finite models, even
though we could not encode pCTL in PMC (e.g., the until operator), we could use a PMC
theory (a (infinite) set of formulas) to approximate it.

4 Axiomatization for Alternation-free PMC

In this section, we propose an axiomatization for the validities of alternation-free fragment
of PMC with respect to the PMP-semantics and prove it sound and (weak-)complete.

4.1 Sound axiomatization
In order to state the axioms for PMC we need to establish some notions. Let X be a
metavariable quantifying over L and 〈x〉φ(X) = 〈x1〉φ1, . . . , 〈xi〉[X], . . . , 〈xn〉φn. For arbitrary
sequences φj = φj1 . . . φjkj and xj = xj1 . . . xjkj , j = 1, . . . , l, we construct the following
generic formula involving X:

C[X] = 〈x1〉φ1(〈x2〉φ2(· · · (〈xl〉φl(X) : al ·xl ≥ rl) · · · ) : a2 ·x2 ≥ r2) : a1 ·x1 ≥ r1.

We call C[X] a context; it can be instantiated to a PMC formula C[φ] for φ ∈ L. Also ε[X]
is a context - the empty one - and for φ ∈ L, ε[φ] = φ. Notice that the metavariable X only
appears once in the syntax of the context, i.e., we only consider contexts with one hole.

The axiomatization of PMC is given in two phases. Firstly, we provide axioms for
deriving the validities that do not depend on sequences of blocks; and secondly, we extend the
axiomatization to recursive constructs. The axioms and rules presented in Table 2 together
with the axioms and the rules of propositional logic axiomatize a classic deducibility relation
(see [12]) for the non-recursive validities of PMC denoted by `. The axioms and the rules
are stated for arbitrary φ, ψ ∈ L, r, s ∈ Q, x, y ∈ V and arbitrary context C[X], where
{E,D} = {≤,≥} and B ∈ {<,>}.

The axiom (A1) states that x is a probability. The axioms (A2)-(A3) state simple
arithmetic facts. (A4) states that the dual of the equatioanl modality is itself. (A5) and (A6)
state that the probability of reaching φ or ¬φ is 1. The axioms (A7)-(A9) show the arithmetic
transformation of inequalities. The rule (R1) states that the probabilities of reaching two
equivalent formulas are the same. (R2) is infinitary and encode the Archimedean properties
of rational numbers.
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Table 3 Axiomatic System of Maximal
Equation Blocks.

(max-R1): If `∗ φ, then `∗B φ
(max-A1): `∗B

∧
i=1,...,N

(Xi → φi)
(max-R2): If `∗B

∧
i=1,...,N

(ψi → φi{Ψ/X }),
then `∗B

∧
i=1,...,N

(ψi → Xi)

Table 4 Axiomatic System of Minumum
Equation Blocks.

(min-R1): If `∗ φ, then `∗B φ
(min-A1): `∗B

∧
i=1,...,N

(φi → Xi)
(min-R2): If `∗B

∧
i=1,...,N

(φi{Ψ/X } → ψi),
then `∗B

∧
i=1,...,N

(Xi → ψi)

I Theorem 20 (Soundness). The axiomatic system of ` is sound, i.e., for arbitrary φ ∈ L,

` φ implies |= φ.

Now we can proceed with the recursive constructs.
Given a maximal equation block B = max{X1 = φ1, . . . , XN = φN} and an arbitrary

classical deducibility relation `∗, we define the deducibility relation `∗B as the extension
of `∗ given by the axioms and rules in Table 3, which are the equation-version of the
classic fixed points axioms of µ-calculus [15, 32, 29]. These are stated for arbitrary φ ∈ L
and Ψ = (ψ1, . . . , ψN ) ∈ LN , where X = (X1, . . . , XN ). Similarly, we define a classical
deducibility relation `∗B for a minimal equation block B = min{X1 = φ1, . . . , XN = φN}
based on `∗ by using the axioms and rules in Table 4.

Given an alternation-free block sequence B = B1, . . . , Bm, we define the classical dedu-
cibility relations `0,`1, . . . ,`m as follows and consequently get `B=`m.

`0 = `; `i = `i−1
Bi

for i = 1, . . . ,m

As usual, we say that a formula φ (or a set Φ of formulas) is B-provable, denoted by `B φ
(respectively `B Φ), if it can be proven from the given axioms and rules of `B. We denote by
Ψ = {φ ∈ L | Ψ `B φ}. An induction on the structure of the alternation-free blocks shows
that all the theorems of `B are sound in the PMC-semantics.

I Theorem 21 (Extended Soundness). The axiomatic system of `B is sound, i.e., for any
φ ∈ L,

`B φ implies |=B φ.

4.2 Completeness
In the rest of this section we prove that the axiomatic system of `B is not only sound, but
also (weak-) complete, meaning that all the B-validities can be proved, as theorems, from
the proposed axioms and rules, i.e., for arbitrary φ ∈ L, |=B φ implies `B φ. To complete
this proof it is sufficient to show that any B-consistent formula has a model.

For some set S ⊆ L, Φ is (S,B)-maximally consistent if it is B-consistent and no formula
in S can be added to Φ without making it inconsistent. Φ is B-maximally-consistent if it is
(L,B)-maximally-consistent.

In the following we fix a consistent formula φ0 depending on a fixed alternation-free
sequence B0 and we construct a model. Let

(~) L[φ0,B0] = {φ ∈ L | X [φ,B0] ⊆ X [φ0,B0], R[φ,B] ⊆ R[φ0,B0],
I[φ,B] ⊆ I[φ0,B0],md(φ,B0) ≤ md(φ0,B0),ml(φ,B0) ≤ ml(φ0,B0)}

and Π[φ0,B0] be the set of all the maximal consistent sets of L[φ0,B0]. Similar to the
arguments in Section 3, L[φ0,B0] and Π[φ0,B0] are finite. Let Π be the set of the L-maximal
consistent sets.
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Different from the model construction in Section 3, we take L-maximally consistent sets
as states. However, we don’t take all the L-maximally consistent sets as the state space,
which are countably many. We will develop a finite state space as follows.

Since the set of instances of the infinitary rule in Table 2 is countable, we can use the
Rasiowa-Sikorski Lemma [30, 12] to prove Lindenbaum’s Lemma [11, 12] for PMC, following
the technique in [16]. These lemmas are presented in the full version of the paper. Suppose
that for each Λ ∈ Π[φ0,B0] we chose one Γ ∈ Π such that Λ ⊆ Γ (Lindenbaum’s Lemma); to
identify it, we denote this Γ by Λe. Let Θ = {Λe ∈ Π | Λ ∈ Π[φ0,B0]}. Since Π[φ0,B0] is
finite, Θ is obviously finite as well.

In what follows we will construct a PMPM = (Θ,Σ, l, θ) that satisfies φ0 in one of its
states. To do this, we have to properly define l, Σ and θ. l is defined as: l(Γ) = {p ∈ A | p ∈ Γ}
for any Γ ∈ Θ.

For defining Σ and θ, we firstly observe that given a B0-maximally-consistent set of
formulas, the information contained about the resource-variable for a given formula is
complete, in the sense that we can really identify its value, since any real number can be seen
as the limit of some sequences of rational numbers. This is exactly what the next lemma
states.

I Lemma 22. For arbitrary Γ ∈ Θ and φ ∈ L[φ0,B0],

sup{r ∈ Q≥0 | 〈x〉φ : x≥ r ∈ Γ} = inf{s ∈ Q | 〈x〉φ : x≤ s ∈ Γ} ∈ R ∪ [0, 1].

I Lemma 23. Let LφM = {Γ ∈ Θ | φ ∈ Γ} and N = {LφM | φ ∈ L[φo,B0]}. Then 2Θ = N.

Then let Σ = σ(N), where σ(N) is the least σ-algebra generated by N . Then the previous
lemmas allow us to define, for any Γ ∈ Θ and φ ∈ L[φ0,B0],

θ(Γ)(LφM) = sup{r ∈ Q≥0 | 〈x〉φ : x≥ r ∈ Γ}.

θ(Γ) is a set function defined on the field N . According to Theorem 11.3 of [3] 2, θ(Γ) can
be uniquely extended to a measure on Σ if it is finitely additive and countably subadditive
on LφM. Since Θ is finite, we only need to prove that θ(Γ) is finitely additive, as stated in the
following lemma. Notice also that since Θ is finite, (Θ,Σ) is an analytic space.

I Lemma 24. For any Γ ∈ Θ, the function θ(Γ) is finitely additive, i.e., for any Lφ1M and
Lφ2M s.t. Lφ1M ∩ Lφ2M = ∅, θ(Γ)(Lφ1M ∪ Lφ2M) = θ(Γ)(Lφ1M) + θ(Γ)(Lφ2M).

I Theorem 25. M = (Θ,Σ, l, θ) is a probabilistic Markov process.

Let ρ0 be the environment defined as: for any X ∈ X , by ρ0(X) = {Γ | X ∈ Γ}.
Firstly, we prove the restricted truth lemma that does not consider recursive constructs.

I Lemma 26 (Restricted Truth Lemma). For φ ∈ L[φ0,B0] and Γ ∈ Θ,

M,Γ, ρ0 |= φ iff φ ∈ Γ.

On the restricted truth lemma we can base the following two results that indicate how
we can extend the results to include the recursive cases, as developed in [18].

2 If F ⊆ 2M is a field of sets and µ : F → R≥0 is finitely additive and countably subadditive, then µ
extends uniquely to a measure on σ(F)
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I Lemma 27. Let B = max{X1 = φ1, . . . , XN = φN} be an equation block in the sequence
B0 and ρ an environment such that ρ(Xi) = {Γ | Xi ∈ Γ} for any i = 1, .., N . For any
φ ∈ L[φ0,B0] and Γ ∈ Θ,

if [M,Γ, ρ |= φ iff φ ∈ Γ], then [M,Γ, JBKρ |= φ iff φ ∈ Γ].

Since the minimal blocks are dual of the maximal ones, we have a similar lemma for minimal
blocks.

I Lemma 28. Let B = min{X1 = φ1, . . . , XN = φN} be an equation block in the sequence
B0 and ρ an environment such that ρ(Xi) = {Γ | Xi ∈ Γ} for any i = 1, ..N . For any
φ ∈ L[φ0,B0] and Γ ∈ Θ,

if [M,Γ, ρ |= φ iff φ ∈ Γ], then [M,Γ, JBKρ |= φ iff φ ∈ Γ].

These lemmas allow us to prove the stronger version of the truth lemma.

I Theorem 29 (Extended Truth Lemma). For φ ∈ L[φ0,B0] and Γ ∈ Θ,

M,Γ, ρ0 |=B φ iff φ ∈ Γ.

A direct consequence of Theorem 29 is the completeness3 of the axiomatic system.

I Theorem 30 (Completeness). The axiomatic system of `B is complete, i.e., for arbitrary
φ ∈ L,

|=B φ implies `B φ.

5 Conclusions

In this paper we have extended the probabilistic modal logic of [21], which is a modal logic
allowing (in-)equational conditions on probabilities, with fixed point constructions in the
form of block sequences, thus obtaining the probabilistic µ-calculus (PMC).

We prove that PMC enjoys the finite model property and its satisfiability problem is
decidable. In order to do this, we involved the classic tableau construction that had to be
adapted to the more challenging probabilistic settings. These results generalize previous
results from [23] and recommend our logic as a good trade-off between expressiveness and
decidability. The second key contribution of our paper is the sound-complete axiomatization
that we propose for the alternation-free fragment of PMC. At the best of our knowledge, the
problem of axiomatizing probabilistic µ-calculus has not been previously approached. The
completeness proof is a non-standard extension of the filtration method, which can be easily
adapted to other versions of probabilistic µ-calculus.

Unlike for the standard µ-calculus, the complexity of our algorithm is not clear. This
is because for every formula, we only know that there exists the number h in Extension
Step II such that all the inequalities in the given formula have rational solutions that can
be expressed according to the accuracy defined, but we do not know how big h would be.
The complexity of the satisfiability algorithm will be studied in the future work.

One might wonder whether there exists a finite axiomatization, as the model construction
here is similar to that in Section 3 and the rules there are all finite. However, how we

3 In this context by completeness we mean the weak-completeness. Since PMC is not compact, the weak-
and strong-completeness do not coincide.
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define the probability on the transition in Section 3 is using the truth that there is always
rational solution(s) for any rational inequality. In [35], Zhou proved that there exists a
finite axiomatization for Markov Logic by involving a finitary Archimedean rule (similar to
our Rule (R2)). The idea there is similar to our satisfiability algorithm. We believe that
similar arguments for finite axiomatization can be made for our logic as well by applying the
Fourier–Motzkin elimination method [31] as in [35]. However, it is difficult to formalize this
finite axiomatization. As we discussed in the last paragraph, we cannot know how precise we
need to be in the logic in order to specify the solutions for the inequalities. Whether one can
axiomatize and if yes how to will be interesting to look into.

Moreover, axiomatization for the full logic will also be considered. In the axiomatization
here, the axioms and rules for fixed points are the same as those for the µ-calculus. Hence,
for the full PMC, we believe that the axiomatization would look the same. However, the
difficulty for proving the completeness will be at least that for the full modal µ-calculus [34].
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