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Abstract
The notion of Turing kernelization investigates whether a polynomial-time algorithm can solve an
NP-hard problem, when it is aided by an oracle that can be queried for the answers to bounded-
size subproblems. One of the main open problems in this direction is whether k-Path admits
a polynomial Turing kernel: can a polynomial-time algorithm determine whether an undirected
graph has a simple path of length k, using an oracle that answers queries of size kO(1)?

We show this can be done when the input graph avoids a fixed graph H as a topological minor,
thereby significantly generalizing an earlier result for bounded-degree and K3,t-minor-free graphs.
Moreover, we show that k-Path even admits a polynomial Turing kernel when the input graph
is not H-topological-minor-free itself, but contains a known vertex modulator of size bounded
polynomially in the parameter, whose deletion makes it so. To obtain our results, we build on
the graph minors decomposition to show that any H-topological-minor-free graph that does not
contain a k-path has a separation that can safely be reduced after communication with the oracle.
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1 Introduction

Suppose that Alice is a polynomial-time agent faced with an input to an NP-hard problem
that she wishes to solve exactly. To facilitate her in this process, she can ask questions to
an all-knowing oracle. These will be answered truthfully and instantly, but the oracle is
memory-less and will not take previous questions into account when answering the next
one. How large do these questions have to be, to allow Alice to find the answer to her
problem? Clearly, the answer can be established by sending the entire input to the oracle,
who determines the answer and sends it to Alice. Could there be a more clever strategy?
Alice can attempt to isolate a small but meaningful question about the behavior of her input,
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such that after learning its answer, she can reduce to a smaller input without changing the
outcome. Iterating this process solves her problem: when it has become sufficiently small, it
can be posed to the oracle in its entirety.

Such problem-solving strategies can be rigorously analyzed using the notion of Turing
kernelization that originated in parameterized algorithmics. The parameter makes it possible
to express how the size of the questions that Alice asks, depends on properties of the input
that she is given. (See Section 3 for a formal definition.)

Understanding the power of Turing kernelization is one of the main open research horizons
in parameterized algorithmics. There is a handful of problems for which a nontrivial Turing
kernelization is known [1, 2, 3, 5, 12, 15, 17, 19, 22, 24]. On the other hand, there is a
hierarchy of parameterized complexity classes which are conjectured not to admit polynomial
Turing kernels [14]. Arguably, the main open problem (cf. [4, 3, 14]) in this direction is
to determine whether the k-Path problem (determine whether an undirected graph has a
simple path of length k) has a polynomial Turing kernel. In earlier work [16], the first author
showed that k-Path indeed admits polynomial Turing kernels on several graph classes. In
this work, we develop Turing kernels for k-Path in a much more general setting.

Our results. Our algorithmic contributions are twofold. First of all, we extend the Turing
kernelization for k-Path to much broader families of sparse graphs. Whereas the earlier work
could only deal with K3,t-minor-free graphs, claw-free graphs, and bounded-degree graphs,
we show that a Turing kernelization exists on H-minor-free graphs for all fixed graphs H. We
even lift the kernelization to H-topological-minor-free graphs, thereby capturing a common
generalization of the bounded-degree and K3,t-minor-free cases.

I Theorem 1. For every fixed graph H, the k-Path problem, restricted to graphs excluding
H as a topological minor, admits a polynomial Turing kernel. Furthermore, the kernel runs
in time kOH(1)n2m and invokes kOH(1) · n calls to the oracle.

Our second contribution is the following theorem. By a novel algorithmic approach, we
obtain a Turing kernelization even when the input graph does not belong to the desired
restricted graph class itself, but contains a small known vertex modulator whose deletion
places the graph in such a graph class.

I Theorem 2. For every fixed graph H, the k-Path problem, on instances consisting of a
graph G, integer k, and a modulator M ⊆ V (G) such that G−M is H-topological-minor-free,
admits a polynomial Turing kernel, when parameterized by k and |M |.

Techniques. To explain our approach, we briefly recall the idea behind the Turing kernel-
ization for k-Path on planar graphs. At the core lies a win/win: there is a polynomial-time
algorithm that either (i) establishes that a planar graph G has a k-path (a simple path on k

vertices), or (ii) finds a separation (A, B) in G with the following property: the size of A is
polynomially bounded in k, but large enough that after marking a witness structure for each
reasonable way in which a k-path might intersect A, some vertex remains unmarked. Using
bounded-size oracle queries to mark the witness structures, this allows the problem to be
simplified by removing an unmarked vertex from A without changing the answer.

Theorem 1 is established by lifting this win/win approach to H-(topological)-minor-
free graphs. This requires an adaptation of the decomposition theorems of Robertson and
Seymour [21] (for minors) and of Grohe and Marx [13] (for topological minors), to obtain
the following. Every H-free graph that does not have a k-path, has a tree decomposition of
constant adhesion and width poly(k). A reducible separation can be found by inspecting
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this tree decomposition. To establish this result, we exploit known theorems stating that
triconnected n-vertex graphs that exclude K3,t as a minor for some t [7], contain paths of
length Ω(nε) for some ε > 0. Roughly speaking, this allows us to infer the existence of a
k-path if there is a large embedded part in the nearly-embeddable graph corresponding to a
bag of the graph minors decomposition, since graphs embeddable in a fixed surface are K3,t-
minor-free for some t. We use lower bounds on the circumference of graphs of bounded
degree [6, 23] to achieve a similar conclusion from the existence of a large bounded-degree bag
in the topological-minor-free decomposition. Several technical steps are needed to translate
this into the desired win/win, due to the existence of vortices, virtual edges, and the lack of
a direct polynomial-time algorithm to compute the decomposition.

To prove Theorem 2, we introduce a new algorithmic tool for finding irrelevant vertices
for the k-Path problem in the presence of a modulator M in the input graph G. Since
Theorem 1 can be applied to find a k-path in G−M if one exists, the challenge is to detect
a k-path in G that jumps between M and G−M several times. The absence of a k-path
in G−M implies it has a tree decomposition of width poly(k) and constant adhesion. Using
Theorem 1 as a subroutine, along with a packing argument, we can compute a vertex set X

of size polynomial in k + |M | with the following guarantee. If there is a k-path, then there
is a guarded k-path P in which each successive pair of vertices in M ∩ P are connected by
a subpath through G−M that intersects X. Using the tree decomposition of G−M , the
standard ancestor-marking technique allows us to identify a vertex subset C of G− (M ∪X)
that is adjacent to constantly many vertices from X. Unless G is already small, we can find
such a set C that is sufficiently large to be reducible but small enough that we may invoke
the oracle for questions about it. We can then reduce the graph without losing the existence
of a guarded k-path, by marking a witness for each sensible way in which a constant-size
subset from M can connect to prescribed vertices in X through C. The fact that C only
has constantly many neighbors in X implies that there are only polynomially many relevant
choices. We may then safely remove the unmarked vertices.

Organization. After preliminaries in Section 2, we give a generic Turing-style reduction rule
for k-Path in Section 3. In Section 4 we show that an H-minor-free graph either has a k-path
or a separation that is suitable for reduction. In Section 5 we extend this to topological
minors. Finally, in Section 6 we present a Turing kernel applicable when the input graph has
a small modulator to a suitable graph class. Proofs of statements marked with ♠ can be
found in the full version [18].

2 Preliminaries

All graphs we consider are finite, simple, and undirected. A separation of a graph G is a
pair (A, B), A, B ⊆ V (G) such that A ∪ B = V (G) and there are no edges between A \ B

and B \ A. The order of the separation (A, B) is |A ∩ B|. A graph is triconnected if it is
connected and cannot be disconnected by deleting fewer than three vertices. When referring
to the size of a graph in our statements, we mean the number of vertices.

A tree decomposition of a graph G is a pair (T,X ) where T is a rooted tree and X is a
function that assigns to every node t ∈ V (T ) a subset X (t) of V (G) called a bag such that:⋃

t∈V (T ) X (t) = V (G);
for each edge uv ∈ E(G), there is a node t ∈ V (T ) with u, v ∈ X (t);
for each v ∈ V (G), the nodes {t | v ∈ X (t)} induce a (connected) subtree of T .

IPEC 2017
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The width of (T,X ) is maxt∈V (T ) |X (t)| − 1. Its adhesion is maxtt′∈E(T ) |X (t) ∩ X (t′)|. We
also call the set X (t)∩X (t′) the adhesion of tt′, for every edge tt′ of T . For a decomposition
(T,X ) of G and a node t ∈ V (T ), the torso, denoted torso(G,X (t)), is the graph obtained
from G[X (t)] by adding an edge between each pair of vertices in X (t) ∩ X (t′), for every
neighbor t′ of t in T (so each adhesion induces a clique in the torso). Added edges not
present in G are called virtual edges. For a subtree T ′ ⊆ T we write X (T ′) for the union⋃

t∈V (T ′) X (t) of bags in T ′.
For an edge t1t2 ∈ E(T ), let Ti be the connected component of T − {t1t2} that contains

ti. Let Vi = X (Ti). Observe that the properties of a tree decomposition imply that (V1, V2)
is a separation with V1 ∩ V2 = X (t1) ∩X(t2).

A decomposition (T,X ) is connected if for every t ∈ V (T ) and its child t′, if Tt′ is the
subtree of T rooted at t′, we have (i) that G[X (Tt′)\X (t)] is connected, and (ii) that X (Tt′)\
X (t) has edges to every vertex of the adhesion X (t) ∩ X (t′). It is straightforward to turn
any decomposition into a connected one without increasing its width nor adhesion.

We will also need the following non-standard complexity measure of a tree decomposition
(T,X ). For every t ∈ V (T ), the number of distinct adhesions X (t) ∩ X (t′) for t′ ∈ NT (t)
is called the adhesion degree of t. The maximum adhesion degree over all nodes t is the
adhesion degree of the decomposition (T,X ). Observe that if a tree decomposition (T,X )
has width less than ` and adhesions of size at most h, then its adhesion degree is at most

h∑
i=0

(
`

i

)
≤ (1 + `)h.

However, in sparse graph classes we can prove a much better bound on the adhesion degree
due to linear bounds on the number of cliques in such graphs; cf. Lemma 17.

3 Turing kernels

In this section we introduce a general toolbox and notation for our Turing kernel bounds.

3.1 Definitions and the auxiliary problem
For a parameterized problem Π and a computable function f , a Turing kernel of size f is an
algorithm that solves an input instance (x, k) of Π in polynomial time, given access to an
oracle that solves instances (x′, k′) of Π with |x′|, k′ ≤ f(k). A Turing kernel is a polynomial
one if f is a polynomial.

If we are only interested in distinguishing between NP-complete problems admitting a
polynomial Turing kernel from the ones that do not admit such a kernel, we can assume
that the oracle solves an arbitrary problem in NP, not necessarily the k-Path problem.
Indeed, note that by the definition of NP-completeness, an oracle to a problem in NP can
be implemented with an oracle to k-Path with only polynomial blow-up in the size of the
passed instances.

In our work, it will be convenient to reduce to the Auxiliary Linkage problem, defined
as follows. The input consists of an undirected graph G′, an integer k′, a set of terminals
S ⊆ V (G′), and a number of requests R1, R2, . . . , Rr; a request is a set of at most two
terminals. A path Pi in G is said to satisfy a request Ri if V (Pi) ∩ S = Ri and every vertex
of V (Pi) ∩ S is an endpoint of Pi. With such an input, the Auxiliary Linkage problem
asks for a sequence of r paths P1, P2, . . . , Pr such that Pi satisfies Ri for every 1 ≤ i ≤ r,
|
⋃r

i=1 V (Pi)| = k′, and every vertex of V (G) \ S is contained in at most one path Pi (i.e.,
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N(A)
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1

2

3

Z

Figure 1 A set A (blue) and a path with three A-traverses (bold). The path is guarded
w.r.t. Z ⊆ N(A) (the red set), since each A-traverse has an endpoint in it. (A path fully contained
in A (with one A-traverse) or disjoint from A (with no A-traverses) would also be guarded.)

the paths Pi are vertex-disjoint, except that they may share an endpoint, but only if the
requests ask them to do so).

We remark that Auxiliary Linkage is a more general problem than k-Path: an instance
with G′ = G, k′ = k, S = ∅, r = 1, and R1 = ∅ asks precisely for a k-path in G.

Clearly, the decision version of the Auxiliary Linkage problem belongs to the class
NP. By using its self-reducibility (cf. [16, Lemma 2]), we assume that the oracle returns a
sequence of paths (Pi)r

i=1 in case of a positive answer. That is, in all subsequent bounds
on the number of Auxiliary Linkage oracle calls, the bound adheres to the number of
calls to an oracle that returns the actual paths Pi; if one wants to use a decision oracle, one
should increase the bound by the blow-up implied by the self-reducibility application (i.e.,
at most |E(H)| for calls on a graph H).

3.2 Generic reduction rule
We now show a generic reduction rule for the k-Path problem. We start with a few definitions.

I Definition 3. For a graph G, a subset A ⊆ V (G), and a simple path P in G, an A-traverse
of P is a maximal subpath of P that contains at least one vertex of A and has all its internal
vertices in A.

Note that if Q is an A-traverse of P , then every endpoint of Q is either an endpoint of P

or lies in NG(A). See Figure 1.

I Definition 4. Let G be a graph, A ⊆ V (G), and let k be an integer. A set Z ⊆ N(A) is
called a k-guard of A if the following implication holds: if G admits a k-path, then there
exists a k-path P in G that is either contained in A or such that every A-traverse of P has
at least one endpoint in Z.

Given a graph G, a set A ⊆ V (G), and a k-guard Z ⊆ N(A) of A, a k-path P satisfying
properties as in the above definition is called guarded (w.r.t. k, A, and Z). If the integer k

and the set A are clear from the context, we call such a set Z simply a guard.
Observe that Z = N(A) is always a guard, but sometimes we will be able to find smaller

ones. Of particular interest will be guards of constant size, as our kernel sizes will depend
exponentially on the guard size. To describe our single reduction rule, we show how solutions
to Auxiliary Linkage can be used to preserve the existence of guarded k-paths.

Assume we are given a graph G, a set A ⊆ V (G), an integer k, and a k-guard Z ⊆ N(A)
of A. Let h = |Z| and ` = |N(A)|. Furthermore, assume that G admits a k-path, and
let P be a guarded one w.r.t. A and Z. Let (Q1, Q2, . . . , Qr) be the A-traverses of P , let

IPEC 2017
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Ri = V (Qi) \ A = V (Qi) ∩ N(A) for 1 ≤ i ≤ r, let G′ = G[N [A]], S = N(A), and let
k′ = |

⋃r
i=1 V (Qi)|. Observe that (Q1, Q2, . . . , Qr) is a feasible solution to the Auxiliary

Linkage instance IP := (G[N [A]], k′, S, (Ri)r
i=1); the instance IP is henceforth called induced

by P and A. Furthermore, it is easy to see that if (Q′1, Q′2, . . . , Q′r) is a different feasible
solution to IP , then a path P ′ obtained from P by replacing every subpath Qi with Q′i is
also a guarded k-path in G.

The crucial observation is that a small guard limits the number of A-traverses.

I Lemma 5. The number r of traverses of the guarded k-path P is bounded by max(1, 2|Z|).

Proof. Every vertex of Z can be an endpoint of at most two traverses. If r > 1, then none
of the traverses Qi are contained in G[A], and thus every traverse has at least one endpoint
in the guard Z. J

Lemma 5 in turn limits the number of possible instances I that can be induced by a guarded
k-path, for a fixed set A and guard Z. Note that we have 0 ≤ k′ ≤ k and 0 ≤ r ≤ max(1, 2|Z|).
Furthermore, unless r = 1 and R1 = ∅, we have Ri ⊆ N(A), |Ri| ∈ {1, 2}, and every set Ri

needs to have at least one element of Z; there are at most |Z| · (|N(A)|+ 1) = h(` + 1) choices
for such a set Ri. Consequently, the number of possibilities for the instance I is at most

(k + 1) ·
(

1 +
2h∑

r=0
hr(` + 1)r

)
≤ (k + 1) · (h(` + 1))2h+1 =: p(k, `, h). (1)

Reduction rule

If |A| > k · p(k, `, h), then we can apply the following reduction rule. For each Auxiliary
Linkage instance I out of at most p(k, `, h) reasonable instances for A-traverses of a guarded
k-path in G, we invoke an oracle on the instance I, and mark the vertices of the solution if
the oracle finds one. The whole process will mark at most k · p(k, `, h) < |A| vertices, thus at
least one vertex of |A| will remain unmarked. We delete any such vertices.

The observation that on a guarded k-path P one can replace a solution to the instance
IP induced by P and A by a different solution provides safeness of this reduction. Finally,
note that the reduction invokes at most p(k, `, h) calls to the oracle; each call operates on a
subgraph of the graph G[N [A]] with k′ ≤ k and r ≤ 2|Z|.

We shall apply the Reduction Rule for a medium-sized set A and a guard set Z of
constant size formed from adhesions of a tree decomposition. For most of the paper we will
use Z = N(A) with ` = h = |Z| a constant (depending on the excluded (topological) minor,
in the results of Sections 4 and 5). Only in Section 6, when dealing with a modulator M such
that G−M has an appropriate structure, it will be important to consider N(A) potentially
containing all of M , with a guard set Z of constant size disjoint from M .

3.3 Separation oracles
The natural way of using our reduction rule is to find in a graph a large (but not too large)
part of the graph with a small (preferably, constant) boundary. Let us first make an abstract
definition of an algorithm finding such a separation.

I Definition 6. For a graph class G, a constant h, and a computable coordinate-wise
nondecreasing function q : Z≥0×Z≥0 → Z≥0, an algorithm S is called a (h, q, TS)-separation
oracle if, given a graph G ∈ G and integers k and p, in time TS(|G|, k, p) it finds a separation
(A, B) in G of order at most h with p < |A| ≤ q(k, p), or correctly concludes that G contains
a k-path.
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For all considered graph classes, we will be able to provide a separation oracle with q

being a polynomial. This, in turn, allows the following generic Turing kernel.

I Lemma 7. Let S be a (h, q, TS)-separation oracle for a hereditary graph class G. Take
ĥ := (2h)4h+3. Then, the k-Path problem restricted to graphs from G can be solved:

in time O
(
TS(|G|, k, k2ĥ) · |V (G)| + kĥ · |V (G)| · |E(G)|

)
,

using at most kĥ · |V (G)| calls to Auxiliary Linkage,
each call on an induced subgraph of the input graph of size at most q(k, k2ĥ).

Proof. Let p = k · p(k, h, h) + h ≤ k(k + 1)(h(h + 1))2h+1 + h ≤ 2k2(2h)4h+2 ≤ k2ĥ.
As long as |V (G)| > p, we proceed as follows. Invoke algorithm S on G. If S claims that G

admits a k-Path, we simply output the answer yes. Otherwise, let (A′, B′) be the separation
output by S. Apply the Reduction Rule for k, A := A′ \ B′, and Z = N(A) ⊆ A′ ∩ B′.
Note that as |Z| ≤ h, the Reduction Rule deletes at least one vertex of A. Furthermore, the
Reduction Rule invokes at most p(k, h, h) ≤ kĥ calls to the oracle, each call on an induced
subgraph of G of size at most |A′| ≤ q(k, p) ≤ q(k, k2ĥ).

Once we obtain |V (G)| ≤ p, we solve the instance using a single call to Auxiliary
Linkage with k′ = k, r = 1, and R1 = ∅. The bounds follow, as there are at most |V (G)|
applications of the Reduction Rule, and each call to the oracle takes O(|E(G)|) time to
prepare the instance and parse the output. J

Note that for any graph class where separations as in Definition 6 exist, there exists a
trivial separation oracle which finds them, running in time nh+O(1): one iterates over every
candidate for A ∩ B and, for fixed set A ∩ B, a straightforward knapsack-type dynamic
programming algorithm checks if one can assemble A\B of the desired size from the connected
components of G− (A ∩B).

However, this running time bound is unsatisfactory, as it greatly exceeds the number of
used oracle calls. For all considered graph classes we prove a much stronger property than
just merely the prerequisites of Lemma 7, in particular providing a more efficient separation
oracle. We provide necessary definitions in the next section.

3.4 Decomposable graph classes
I Definition 8. For a constant h and a computable nondecreasing function w : Z≥0 → Z≥0,
a graph class G is called (w, h)-decomposable if for every positive integer k and every G ∈ G
that does not admit a k-path, the graph G admits a tree decomposition of width less than
w(k) and adhesions of size at most h.

A standard argument shows that in a decomposable graph class, given the decomposition
with appropriate parameters, it is easy to provide a separation oracle.

I Lemma 9. Assume we are given a graph G and a tree decomposition (T,X ) of G of width
less than w, adhesion at most h, and adhesion degree at most a ≥ 2. Then, given an integer p

such that |V (G)| > p, one can in time hO(1) · (|V (G)|+ |E(G)|+ |V (T )|+
∑

t∈V (T ) |X (t)|)
find a separation (A, B) of order at most h such that

p < |A| ≤ w + p · a.

Proof. Root the tree T in an arbitrary node, and for t ∈ V (T ) let Tt be the subtree of T

rooted in t. Let t0 be the lowest node of T such that |X (V (Tt0))| > p; such a node can be
computed in linear time in the size of G and (T,X ).

IPEC 2017
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Group the children t′ of t0 according to their adhesions X (t′) ∩ X (t0). Due to the bound
on the adhesion degree, there are at most a groups. For every adhesion S, let Xt0,S be the
set of the children of t0 with S = X (t′) ∩ X (t0). Define VS =

⋃
t′∈Xt0,S

X (Tt′).
We consider now two cases. First, assume that |VS | ≤ p for every adhesion S. Then, by

the adhesion degree bound, we have |X (Tt0)| ≤ |X (t0)|+ ap ≤ w + ap. Consequently, we can
return the separation (A, B) with A = X (Tt0) and B = X (T − V (Tt0)).

In the other case, there exists an adhesion S with |VS | > p. We greedily take a minimal
subset Yt0,S ⊆ Xt0,S such that V ′S :=

⋃
t′∈Yt0,S

X (Tt′) is of size greater than p. By the mini-
mality of t0, for every t′ ∈ Xt0,S we have |X (Tt′)| ≤ p and, consequently |V ′S | ≤ 2p. Thus, we
can return the separation (A, B) for A = V ′S and B = NG[V (G)\V ′S ], as then A∩B ⊆ S. J

A critical insight is that the decomposition used by Cygan et al. [8] to solve the Minimum
Bisection problem in fact provides an approximate decomposition in a decomposable graph
class. Let us first recall the main technical result of [8].

I Definition 10. A vertex set X ⊆ V (G) of a graph G is called (q, h)-unbreakable if every
separation (A, B) of order at most h satisfies |(A \B) ∩X| ≤ q or |(B \A) ∩X| ≤ q.

I Theorem 11 ([8]). There is an algorithm that given a graph G and integer h runs in
time 2O(h2)|V (G)|2|E(G)| and outputs a connected tree decomposition (T,Y) of G such that:
(i) for each t ∈ V (T ), the bag Y(t) is (2O(h), h)-unbreakable in G, and (ii) for each tt′ ∈ E(T )
the adhesion Y(t) ∩ Y(t′) has at most 2O(h) vertices and is (2h, h)-unbreakable in G.

An unbreakable set can be bounded using only the existence of an appropriate tree decom-
position. Thus, the decomposition computed by Theorem 11 approximates the decomposition
required in a decomposable graph class:

I Lemma 12 (♠). Let G be a graph and suppose there exists a decomposition (T,X ) of G

of width less than w, adhesion h, and adhesion degree a. Let (T ′,Y) be a tree decomposition
of G such that for each t ∈ V (T ′), the bag Y(t) is (2O(h), h)-unbreakable in G. Then
|Y(t)| ≤ w + a · 2O(h).

I Corollary 13. Let G be a (w, h)-decomposable graph class. Then, for every G ∈ G and
k ∈ N, one can in 2O(h2)|V (G)|2|E(G)| time either correctly conclude that G admits a k-path,
or find a tree decomposition of G of width at most (w(k) + 1)O(h) and adhesion at most 2O(h).

Let us now combine all the above. That is, given an integer k and a graph G from a
hereditary (w, h)-decomposable graph class G, we start by computing the tree decomposition
of Corollary 13 (or conclude there is a k-path). In general this approximated decomposition
has adhesion degree (w(k) + 1)2O(h) . We use this decomposition to find separations of any
induced subgraphs of G using the algorithm of Lemma 9 in time 2O(h) times linear in the
size of G and the computed decomposition. This gives a (h, q, T )-separation oracle with
q(k, p) = p · (w(k) + 1)2O(h) and T (n, k, p) = 2O(h) · n · (w(k) + 1)O(h), for any hereditary
(w, h)-decomposable graph class. By plugging it into Lemma 7, we obtain the following.

I Corollary 14. Let G be a hereditary (w, h)-decomposable graph class. Then, the k-Path
problem, restricted to graphs from G, can be solved in time 22O(h) |V (G)|2|E(G)| using 22O(h)

kn

calls to Auxiliary Linkage on induced subgraphs of the input graph of size k2(1+w(k))2O(h) .

We would like to remark that we do not want to claim in this paper the idea that, in the
context of H-(topological)-minor-free graphs, the decomposition of Theorem 11 should be
related to the decomposition of the Global Structure Theorem via an argument as in the
proof of Lemma 12. In particular, this observation appeared previously in a work of the
second author with Daniel Lokshtanov, Michał Pilipczuk, and Saket Saurabh [20].
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4 Excluding a minor

In this section we tackle proper minor-closed graph classes, that is, we prove Theorem 1 for
graph classes excluding a fixed minor, by proving the following.

I Theorem 15. For every fixed graph H, the k-Path problem restricted to H-minor-free
graphs can be solved in time OH(n2m) using OH(kn) calls to Auxiliary Linkage on
instances being induced subgraphs of the input graph of size OH(k24).

Our main technical result is the following:

I Theorem 16 (♠). For every H, the class of H-minor-free graphs is (w, h)-decomposable
for w(k) = OH(k22) and h = OH(1).

By plugging the above into Corollary 14, we obtain the desired polynomial Turing kernel,
but with worse bounds than promised by Theorem 15. To obtain better bounds, we need to
recall the folklore bound on the adhesion degree in sparse graph classes.

I Lemma 17 (♠). Let G be a graph not containing H as a topological minor, and let (T,X )
be a connected tree decomposition of G of width less than ` and adhesion h. Then the adhesion
degree of (T,X ) is bounded by f(h, H) ·` for some integer f(h, H) depending only on h and H.

This way, we conclude that H-minor-free graphs without k-paths have tree decompositions
of width OH(k22), adhesion OH(1) and adhesion degree OH(k22), which we can approximate
with Theorem 11. Then Theorem 15 follows from Lemma 7 if we find separations applying
Lemma 9 to this decomposition.

Thus, it remains to prove Theorem 16. For the proof, we use the graph minors structure
theorem, decomposing an H-minor-free graph G into parts ‘nearly embeddable’ in surfaces
(precise definitions are given in the full version). By carefully analyzing details of the
structure, we either find a large triconnected embedded part, which must contain a long
path by the following theorem of Chen et al. [7], or we tighten the graph structure to give a
tree decomposition where all parts are small (polynomial in k) and adhesions (‘boundaries’)
between them are of constant size.

I Theorem 18 ([7]). There is a constant ε > 0 such that for every integer t, every triconnected
graph on n ≥ 3 vertices embeddable in a surface of (Euler) genus g contains a cycle of length
at least nε/2(2g+3)2 .

Two intertwined problems that arise with this approach is that torsos of decompositions
are not necessarily triconnected, and long paths in them do not necessarily imply long
paths in the original graph, because of virtual edges added in torsos. Torsos can be made
triconnected if their near-embeddings include cycles or paths around each vortex, but these
may use virtual edges in essential ways. On the other hand, the decomposition can be
modified so that virtual edges can be replaced with paths in the original graph, but this
requires changes that remove virtual edges, hence potentially removing paths around vortices
and destroying triconnectedness.

Because of that, we need to go a little deeper and use a local, strong version of the
structure theorem from Graph Minors XVII [21]. For the same reason we cannot use existing
algorithms for finding the graph minors decompositions. Instead, we only prove the existence
of a tree decomposition of bounded adhesion, small width, and with nearly embeddable bags.

The statements of [21] (as exposed in [10]) allow us to assume that: (i) any virtual edges
in torsos coming from distinct adhesions (from distinct parts of the decomposition) can be
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replaced by paths, (ii) every large vortex has a path of at least the same length, (iii) a torso
of the decomposition is triconnected, even if each vortex is replaced by a wheel (a cycle plus
a universal vertex). These ingredients allow us to use Theorem 18 on this variant of the
torso. Thus, if it contains a long path, we prove the original graph must also contain one,
otherwise we conclude the bound required in Theorem 16.

5 Excluding a topological minor

In this section we tackle graph classes excluding a topological minor, that is, we prove
Theorem 1 by proving the following.

I Theorem 19. For every fixed graph H, the k-Path problem restricted to H-topological-
minor-free graphs can be solved in time OH(n2m) using OH(kn) calls to Auxiliary Linkage
on instances being induced subgraphs of the input graph of size kOH(1).

This follows as before from the following decomposability theorem. Note the exponent in
the polynomial bound on width (bag size) now depends on H.

I Theorem 20 (♠). For every graph H, the class of H-topological-minor-free graphs is
(w, h)-decomposable for w(k) = kOH(1) and h = OH(1).

To prove the above theorem, we use the structure theorem of Grohe and Marx [13]: when
excluding a topological minor, graphs admit a similar structure as for excluding a minor, but
apart from nearly embeddable parts, one needs to consider parts that have bounded degree
except for a bounded number of vertices. By appropriately contracting everything outside
such a part, we obtain a single graph of almost bounded degree. We remove the few vertices
of high degree, find the Tutte decomposition into triconnected components, which can be
bounded using the following theorem by Shan [23] (see also Chen et al. [6]).

I Theorem 21 ([23]). If G is a triconnected graph with maximum degree at most ∆ ≥ 425,
then G has a cycle of length at least n1/ log2(∆−1)/4 + 2.

Such a small-width Tutte decomposition can then be lifted back to a decomposition of the
part we originally considered. Finally, arguments involving tangles allow us to conclude that
such a part can be assumed to be small itself. Together with the bound for nearly-embeddable
parts, this proves Theorem 20.

6 Adding a modulator

In this section we prove Theorem 2 in a more general setting of Section 3. More precisely,
Theorem 2 follows directly from the following theorem via Theorems 16 and 20.

I Theorem 22. One can solve in polynomial time a given k-Path instance (G, k), given
access to a set M ⊆ V (G) such that G−M admits a tree decomposition of width less than
w and adhesion h = O(1), and an oracle that solves the Auxiliary Linkage problem for
instances (G′, k′, S, (Ri)r

i=1) with G′ being a subgraph of G, r, k′ ≤ k, |S| ≤ |M |+O(1), and
|V (G′)| being bounded polynomially in k, w, and |M |.

Here the exponent in the polynomial bound on the size of oracle calls substantially depends
on h = O(1). Therefore, the result of this section is a purely theoretical result classifying the
aforementioned parameterization as admitting a polynomial Turing kernel. Let us sketch how,
after approximating a tree decomposition of G−M , we find a set A with a guard Z of constant
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size, to which we can apply the Reduction Rule. For each u, v ∈ M , we mark up to k + 1
disjoint u−v paths within G−M . We mark all their vertices, the bags that contain them, and
the lowest-common-ancestor closure of these bags in the decomposition. In total, this still gives
polynomially many marked vertices and polynomially many components of the decomposition
between marked bags. Using the tree decomposition we can find a medium sized part A of such
a component, with a boundary Z contained in at most two adhesions of the decomposition.
Now N(A) ⊆ Z ∪M , but additionally it is easy to check that any A-traverse of any k-path
with endpoints u, v ∈M can be replaced with a marked u− v path. Hence Z guards A.

7 Conclusions

We significantly extended the graph classes on which k-Path has a polynomial Turing kernel.
In addition, we showed that even an instance that does not belong to such a class, but has
a small vertex modulator whose deletion makes it so, can be solved efficiently using small
queries to an oracle. A subdivision-based argument (cf. [11]) shows that we cannot generalize
much beyond H-topological-minor-free graphs without settling the problem in general. In
particular, the existence of a polynomial Turing kernel for graphs of bounded expansion
implies its existence in general graphs.

While our narrative focused on k-Path, after small modifications our techniques can also
be applied to prove analogues of Theorems 1 and 2 for the k-Cycle problem of detecting a
simple cycle of length at least k. The main difficulty in adapting our arguments to k-Cycle is
the fact that, a priori, the only cycles of length at least k may be arbitrarily much larger than k.
However, this issue can easily be resolved in the following way. Since a cycle is contained
within a single biconnected component, a Turing kernelization can decompose its input into
biconnected components and solve the problem independently in each of them. We then start
by testing for the existence of a path with k2 vertices using the algorithms developed in the
paper. If there is a path of length k2 in a biconnected component, then by a classic theorem
of Dirac [9] there is a cycle of length at least k, and we are done. If no such path exists, then
the longest cycle in G has length less than 2k, and we can continue under the guarantee
that the cycle we are looking for has length at least k and less than 2k. In this setting, our
arguments can be easily adapted. In particular, the absence of a path of length k2 implies the
existence of suitable tree decompositions from which reducible separations can be extracted.

A significant portion of the technical work in this paper was devoted to modifying the
graph minors decomposition to obtain the win/win that either answers the problem or finds
a reducible separation. In this way, the algorithmic question has driven a challenging graph-
theoretic project. It would be interesting to find more problems amenable to such an approach.
We conclude with some concrete open problems. Does k-Path have a polynomial Turing
kernel on chordal graphs? How about Induced or Directed k-Path, on planar graphs?
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