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Abstract
Motivated by the role of triadic closures in social networks, and the importance of finding a
maximum subgraph avoiding a fixed pattern, we introduce and initiate the parameterized study
of the Strong F -closure problem, where F is a fixed graph. This is a generalization of
Strong Triadic Closure, whereas it is a relaxation of F -free Edge Deletion. In Strong
F -closure, we want to select a maximum number of edges of the input graph G, and mark them
as strong edges, in the following way: whenever a subset of the strong edges forms a subgraph
isomorphic to F , then the corresponding induced subgraph of G is not isomorphic to F . Hence
the subgraph of G defined by the strong edges is not necessarily F -free, but whenever it contains
a copy of F , there are additional edges in G to destroy that strong copy of F in G.

We study Strong F -closure from a parameterized perspective with various natural para-
meterizations. Our main focus is on the number k of strong edges as the parameter. We show
that the problem is FPT with this parameterization for every fixed graph F , whereas it does
not admit a polynomial kernel even when F = P3. In fact, this latter case is equivalent to
the Strong Triadic Closure problem, which motivates us to study this problem on input
graphs belonging to well known graph classes. We show that Strong Triadic Closure does
not admit a polynomial kernel even when the input graph is a split graph, whereas it admits
a polynomial kernel when the input graph is planar, and even d-degenerate. Furthermore, on
graphs of maximum degree at most 4, we show that Strong Triadic Closure is FPT with
the above guarantee parameterization k−µ(G), where µ(G) is the maximum matching size of G.
We conclude with some results on the parameterization of Strong F -closure by the number
of edges of G that are not selected as strong.
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1 Introduction

Graph modification problems are at the heart of parameterized algorithms. In particular,
the problem of deleting as few edges as possible from a graph so that the remaining graph
satisfies a given property has been studied extensively from the viewpoint of both classical
and parameterized complexity for the last four decades [23, 11, 8]. For a fixed graph F , a
graph G is said to be F-free if G has no induced subgraph isomorphic to F . The F -Free
Edge Deletion problem asks for the removal of a minimum number of edges from an input
graph G so that the remaining graph is F -free. In this paper, we introduce a relaxation of
this problem, which we call Strong F -closure. Our problem is also a generalization of
the Strong Triadic Closure problem, which asks to select as many edges as possible of
a graph as strong, so that whenever two strong edges uv and vw share a common endpoint
v, the edge uw is also present in the input graph (not necessarily strong). This problem is
well studied in the area of social networks [12, 2], and its classical computational complexity
has been studied recently both on general graphs and on particular graph classes [22, 18].

In the Strong F -closure problem, we have a fixed graph F , and we are given an
input graph G, together with an integer k. The task is to decide whether we can select at
least k edges of G and mark them as strong, in the following way: whenever the subgraph
of G spanned by the strong edges contains an induced subgraph isomorphic to F , then the
corresponding induced subgraph of G on the same vertex subset is not isomorphic to F . The
remaining edges of G that are not selected as strong, will be called weak. Consequently,
whenever a subset S of the strong edges form a copy of F , there must be an additional strong
or weak edge in G with endpoints among the endpoints of edges in S. A formal definition of
the problem is easier to give via spanning subgraphs. If two graphs H and F are isomorphic
then we write H ' F , and if they are not isomorphic then we write H 6' F . Given a graph
G and a fixed graph F , we say that a (not necessarily induced) subgraph H of G satisfies
the F -closure if, for every S ⊆ V (H) with H[S] ' F , we have that G[S] 6' F . In this case,
the edges of H form exactly the set of strong edges of G.

Strong F -closure
Input: A graph G and a nonnegative integer k.
Task: Decide whether G has a spanning subgraph H that satisfies the F -closure, such that

|E(H)| ≥ k.

Based on this definition and the above explanation, the terms “marking an edge as weak
(in G)” and “removing an edge (of G to obtain H)” are equivalent, and we will use them
interchangeably. An induced path on three vertices is denoted by P3. Relating Strong
F -closure to the already mentioned problems, observe that Strong P3-closure is exactly
Strong Triadic Closure. Observe also that a solution for F -free Edge Deletion is a
solution for Strong F -closure, since the removed edges in the first problem can simply
be taken as the weak edges in the second problem. However it is important to note that
the reverse is not always true. All of the mentioned problems are known to be NP-hard.
The parameterized complexity of F -free Edge Deletion has been studied extensively
when parameterized by `, the number of removed edges. With this parameter, the problem
is FPT if F is of constant size [4], whereas it becomes W[1]-hard when parameterized by the
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size of F even for ` = 0 [15]. Moreover, there exists a small graph F on seven vertices for
which F -free Edge Deletion does not admit a polynomial kernel [19] when the problem
is parameterized by `. To our knowledge, Strong Triadic Closure has not been studied
with respect to parameterized complexity before our work.

In this paper, we study the parameterized complexity of Strong F -closure with three
different natural parameters: the number of strong edges, the number of strong edges above
guarantee (maximum matching size), and the number of weak edges.

In Section 3, we show that Strong F -closure is FPT when parameterized by k = |E(H)|
for a fixed F . Moreover, we prove that the problem is FPT even when we allow the
size of F to be a parameter, that is, if we parameterize the problem by k + |V (F )|,
except if F has at most one edge. In the latter case Strong F -closure is W[1]-hard
when parameterized by |V (F )| even if k ≤ 1. We also observe that Strong F -closure
parameterized by k + |V (F )| admits a polynomial kernel if F has a component with at
least three vertices and the input graph is restricted to be d-degenerate. This result is
tight in the sense that it cannot be generalized to nowhere dense graphs.
In Section 4, we focus on the case F = P3, that is, we investigate the parameterized
complexity of Strong Triadic Closure. We complement the FPT results of the
previous section by proving that Strong Triadic Closure does not admit a polynomial
kernel even on split graphs. It is straightforward to see that if F has a connected component
on at least three vertices, then a matching in G gives a feasible solution for Strong
F -closure. Thus the maximum matching size µ(G) provides a lower bound for the
maximum number of edges of H. Consequently, parameterization above this lower bound
becomes interesting. Motivated by this, we study Strong F -closure parameterized by
|E(H)|−µ(G). It is known that Strong Triadic Closure can be solved in polynomial
time on subcubic graphs, but it is NP-complete on graphs of maximum degree at most d
for every d ≥ 4 [17]. As a first step in the investigation of the parameterization above
lower bound, we show that Strong Triadic Closure is FPT on graphs of maximum
degree at most 4, parameterized by |E(H)| − µ(G).
Finally, in Section 5, we consider Strong F -closure parameterized by ` = |E(G)| −
|E(H)|, that is, by the number of weak edges. We show that the problem is FPT and
admits a polynomial (bi-)kernel if F is a fixed graph. Notice that, contrary to the
parameterization by k + |V (F )|, we cannot hope for FPT results when the problem
is parameterized by ` + |V (F )|. This is because, when ` = 0, Strong F -closure
is equivalent to asking whether G is F -free, which is equivalent to solving Induced
Subgraph Isomorphism that is well known to be W[1]-hard [11, 15]. We also state
some additional results and open problems. Our findings are summarized in Table 1 1.

2 Preliminaries

All graphs considered here are simple and undirected. We refer to Diestel’s classical book
[9] for standard graph terminology that is undefined here. Given an input graph G, we use
the convention that n = |V | and m = |E|. Two vertices u and v are false twins if uv /∈ E
and N(u) = N(v), where N(u) is the neighborhood of u. For a graph F , it is said that
G is F -free if G has no induced subgraph isomorphic to F . For a positive integer d, G is

1 Due to space constraints in this extended abstract, some proofs marked with an asterisk (*) were
removed, whereas other proofs marked with a plus (+) contain only a sketch of the basic idea; full
proofs are given in [14].
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23:4 Parameterized Aspects of Strong Subgraph Closure

Table 1 Summary of our results: parameterized complexity analysis of Strong F -closure.

Parameter Restriction Parameterized Complexity Theorem

|E(H)|+ |V (F )|

|E(F )| ≤ 1 W[1]-hard 3, 4

|E(F )| ≥ 2 FPT 9

F has a component with ≥ 3 polynomial kernel 11
vertices, G is d-degenerate

|E(H)| F has no isolated vertices FPT 10

F = P3, G is split no polynomial kernel 12

|E(H)| − µ(G) F = P3, ∆(G) ≤ 4 FPT 13

|E(G)| − |E(H)| None FPT 14

polynomial (bi-)kernel 15

d-degenerate if every subgraph of G has a vertex of degree at most d. The maximum degree
of G is denoted by ∆(G). We denote by G+H the disjoint union of two graphs G and H.
For a positive integer p, pG denotes the disjoint union of p copies of G. A matching in G is
a set of edges having no common endpoint. The maximum matching number, denoted by
µ(G), is the maximum number of edges in any matching of G. We say that a vertex v is
covered by a matching M if v is incident to an edge of M . An induced matching, denoted by
qK2, is a matching M of q edges such that G[V (M)] is isomorphic to qK2.

Let us give a couple of observations on the nature of our problem. An F -graph of a
subgraph H of G is an induced subgraph H[S] ' F such that G[S] ' F . Clearly, if H is
a solution for Strong F -closure on G, then there is no F -graph in H, even though H
might have induced subgraphs isomorphic to F . For F -free Edge Deletion, note that
the removal of an edge that belongs to a forbidden subgraph might generate a new forbidden
subgraph. However, for Strong F -closure problem, it is not difficult to see that the
removal of an edge that belongs to an F -graph cannot create a new critical subgraph.

I Observation 1. Let G be a graph, and let H and H ′ be spanning subgraphs of G such that
E(H ′) ⊆ E(H). If H satisfies the F -closure for some F , then H ′ satisfies the F -closure.

In particular, Observation 1 immediately implies that if an instance of Strong F -
closure has a solution, it has a solution with exactly k edges.

We conclude this section with some definitions from parameterized complexity and
kernelization. A problem with input size n and parameter k is fixed parameter tractable (FPT),
if it can be solved in time f(k) · nO(1) for some computable function f . A bi-kernelization [1]
(or generalized kernelization [3]) for a parameterized problem P is a polynomial algorithm
that maps each instance (x, k) of P with the input x and the parameter k into to an instance
(x′, k′) of some parameterized problem Q such that i) (x, k) is a yes-instance of P if and
only if (x′, k′) is a yes-instance of Q, ii) the size of x′ is bounded by f(k) for a computable
function f , and iii) k′ is bounded by g(k) for a computable function g. The output (x′, k′) is
called a bi-kernel (or generalized kernel) of the considered problem. The function f defines
the size of a bi-kernel and the bi-kernel has polynomial size if the function f is polynomial.
If Q = P , then bi-kernel is called kernel. Note that if Q is in NP and P is NP-complete,
then the existence of a polynomial bi-kernel implies that P has a polynomial kernel because
there exists a polynomial reduction of Q to P . A polynomial compression of a parameterized
problem P into a (nonparameterized) problem Q is a polynomial algorithm that takes as
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an input an instance (x, k) of P and returns an instance x′ of Q such that i) (x, k) is a
yes-instance of P if and only if x′ is a yes-instance of Q, ii) the size of x′ is bounded by p(k)
for a polynomial p. For further details on parameterized complexity we refer to [8, 11].

3 Parameterized complexity of Strong F-closure

In this section we give a series of lemmata, which together lead to the conclusion that
Strong F -closure is FPT when parameterized by k. Observe that in our definition of the
problem, F is a fixed graph of constant size. However, the results of this section allow us to
also take the size of F as a parameter, making the results more general. We start by making
some observations that will rule out some simple types of graphs as F .

I Observation 2. Let p be a positive integer. A graph G has a spanning subgraph H

satisfying the pK1-closure if and only if G is pK1-free, and if G is pK1-free, then every
spanning subgraph H of G satisfies the pK1-closure.

By combining Observation 2 and the well known result that Independent Set is W[1]-
hard when parameterized by the size of the independent set [11], we obtain the following:

I Proposition 3. For a positive integer p, Strong pK1-closure can be solved in time
nO(p), and it is co-W[1]-hard for k ≥ 0 when parameterized by p.

Using Proposition 3, we assume throughout the remaining parts of the paper that every
considered graph F has at least one edge. We have another special case F = pK1 +K2.

I Proposition 4 (*). For a nonnegative integer p, Strong (pK1 + K2)-closure can be
solved in time nO(p), and it is co-W[1]-hard for k ≥ 1 when parameterized by p.

From now on we assume that F 6= pK1 and F 6= pK1 + K2. We show that Strong
F -closure is FPT when parameterized by k and |V (F )| in this case. We will consider
separately the case when F has a connected component with at least 3 vertices and the case
F = pK1 + qK2 for p ≥ 0 and q ≥ 2.

I Lemma 5. Let F be a graph that has a connected component with at least 3 vertices. Then
Strong F -closure can be solved in time 2O(k2)(|V (F )|+ k)O(k) + nO(1).

Proof. We show the claim by proving that the problem has a kernel with at most
22k−2(|V (F )| + k) + 2k − 2 vertices. Let (G, k) be an instance of Strong F -closure.
We recursively apply the following reduction rule in G:

I Rule 5.1. If there are at least |V (F )|+ k + 1 false twins in G, then remove one of them.

To show that the rule is sound, let v1, . . . , vp be false twins of G for p = |V (F )|+ k + 1
and assume that G′ is obtained from G by deleting vp. We claim that (G, k) is a yes-instance
of Strong F -closure if and only if (G′, k) is a yes-instance.

Let (G, k) be a yes-instance. By Observation 1, there is a solution H for (G, k) such
that |E(H)| = k. Since |E(H)| = k, there is i ∈ {1, . . . , p} such that vi is an isolated
vertex of H. Since v1, . . . , vp are false twins we can assume without loss of generality that
i = p. Then H ′ = H − vp is a solution for (G′, k), that is, this is a yes-instance. Assume
that (G′, k) is a yes-instance of Strong F -closure. Let H ′ be a solution for the instance
with k edges. Denote by H the spanning subgraph of G with E(H) = E(H ′). We show
that H satisfies the F -closure with respect to G. To obtain a contradiction, assume that
there is a set of vertices S of G such that H[S] ' F and G[S] ' F . Since H ′ satisfies the
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23:6 Parameterized Aspects of Strong Subgraph Closure

F -closure with respect to G, vp ∈ S. Note that vp is an isolated vertex of H. Because
p = |V (F )|+ k + 1, there is i ∈ {1, . . . , p − 1} such that vi is an isolated vertex of H and
vi /∈ S. Let S′ = (S \ {vp}) ∪ {vi}. Since vi and vp are false twins, H[S′] = H ′[S′] ' F

and G[S′] ' F ; a contradiction. Therefore, we conclude that H satisfies the F -closure with
respect to G, that is, H is a solution for (G, k).

It is straightforward to see that the rule can be applied in polynomial time. To simplify
notations, assume that (G, k) is the instance of Strong F -closure obtained by the
exhaustive application of Rule 5.1. We greedily find an inclusion maximal matching M in G.
Notice that the spanning subgraph H of G with E(H) = M satisfies the F -closure because
every component of H has at most two vertices and by the assumption of the lemma F has
a component with at least 3 vertices. Therefore, if |M | ≥ k, we have that H is a solution for
the instance. Respectively, we return H and stop.

Assume that |M | ≤ k − 1. Let X be the set of end-vertices of the edges of M . Clearly,
|X| ≤ 2k − 2 and X is a vertex cover of G. Let Y = V (G) \ X. We have that Y is an
independent set. Every vertex in Y has its neighbors in X. Hence, there are at most
2|X| vertices of Y with pairwise distinct neighborhoods. Hence, the vertices of Y can be
partitioned into at most 2|X| classes of false twins. After applying Rule 5.1, each class of
false twins has at most |V (F )|+ k vertices. It follows that |Y | ≤ 2|X|(|V (F )|+ k) and

|V (G)| = |X|+ |Y | ≤ |X|+ 2|X|(|V (F )|+ k) ≤ (2k − 2) + 22k−2(|V (F )|+ k).

Now we can find a solution for (G, k) by brute force checking all subsets of edges of size
k by Observation 1. This can be done it time |V (G)|O(k). Hence, the total running time is
2O(k2)(|V (F )|+ k)O(k) + nO(1). J

Now we consider the case F = pK1 + qK2 for p ≥ 0 and q ≥ 2. First, we explain how to
solve Strong qK2-closure for q ≥ 2. We use the random separation technique proposed
by Cai, Chen and Chan [6] (see also [8]). To avoid dealing with randomized algorithms and
subsequent standard derandomization we use the following lemma stated in [7].

I Lemma 6 ([7]). Given a set U of size n and integers 0 ≤ a, b ≤ n, one can construct in
time 2O(min{a,b} log(a+b)) · n logn a family S of at most 2O(min{a,b} log(a+b)) · logn subsets of
U such that the following holds: for any sets A,B ⊆ U , A ∩B = ∅, |A| ≤ a, |B| ≤ b, there
exists a set S ∈ S with A ⊆ S and B ∩ S = ∅.

I Lemma 7. For q ≥ 2, Strong qK2-closure can be solved in time 2O(k log k) · nO(1).

Proof. Let (G, k) be an instance of Strong qK2-closure. If k < q, then every spanning
subgraph H of G with k edges satisfies the F -closure, that is, (G, k) is a yes-instance of
Strong F -closure if k ≤ |E(G)|. Assume from now that q ≤ k.

Suppose that G has a vertex v of degree at least k. Let X be the set of edges of G
incident to v and consider the spanning subgraph H of G with E(H) = X. Since F = qK2
and q ≥ 2, H satisfies the F -closure. Hence, H is a solution for (G, k). We assume that this
is not the case and ∆(G) ≤ k − 1.

Suppose that (G, k) is a yes-instance. Then by Observation 1, there is a solution H with
exactly k edges. Let A = E(H) and denote by X the set of end-vertices of the edges of
A. Denote by B the set of edges of E(G) \ A that have at least one end-vertex in N [X].
Clearly, A ∩ B = ∅. We have that |A| = k and because the maximum degree of G is at
most k − 1, |B| ≤ 2k(k − 1)(k − 2). Applying Lemma 6 for the universe U = E(G), a = k

and b = 2k(k − 1)(k − 2) , we construct in time 2O(k log k) · nO(1) a family S of at most
2O(k log k) · logn subsets of E(G) such that there exists a set S ∈ S with A ⊆ S and B∩S = ∅.
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For every S ∈ S, we find (if it exists) a spanning subgraph H of G with k edges such that (i)
E(H) ⊆ S and (ii) for every e1, e2 ∈ S that are adjacent or have adjacent end-vertices, it
holds that either e1, e2 ∈ E(H) or e1, e2 /∈ E(H). By Lemma 6, we have that if (G, k) is a
yes-instance of Strong F -closure, then it has a solution satisfying (i) and (ii). Hence,
if we find a solution for some S ∈ S, we return it and stop and, otherwise, if there is no
solution satisfying (i) and (ii) for some S ∈ S, we conclude that (G, k) is a no-instance.

Assume that S ∈ S is given. We describe the algorithm for finding a solution H with k
edges satisfying (i) and (ii). Let R be the set of end-vertices of the edges of S. Consider the
graph G[R] and denote by C1, . . . , Cr its components. Let Ai = E(Ci) ∩ S for i ∈ {1, . . . , r}.

Observe that if H is a solution with k edges satisfying (i) and (ii), then for each
i ∈ {1, . . . , r}, either Ai ⊆ E(H) or Ai ∩ E(H) = ∅. It means that we are looking for a
solutionH such that E(H) is union of some sets Ai, that is, E(H) = ∪i∈IAi for I ⊆ {1, . . . , r}.
Let ci = |Ai| for i ∈ {1, . . . , r}. Clearly, we should have that

∑
i∈I ci = k. In particular, it

means that if |Ai| > k, then the edges of Ai are not in any solution. Therefore, we discard
such sets and assume from now that |Ai| ≤ k for i ∈ {1, . . . , r}. For i ∈ {1, . . . , r}, denote
by wi the maximum number of edges in Ai that form an induced matching in Ci. Since
each |Ai| ≤ k, the values of wi can be computed in time 2k · nO(1) by brute force. Observe
that for distinct i, j ∈ {1, . . . , r}, the vertices of Ci and Cj are at distance at least two in G
and, therefore, the end-vertices of edges of Ai and Aj are not adjacent. It follows, that the
problem of finding a solution H is equivalent to the following problem: find I ⊆ {1, . . . , r}
such that

∑
i∈I ci = k and

∑
i∈I wi ≤ q. It is easy to see that we obtain an instance of a

variant of the well known Knapsack problem (see, e.g., [16]); the only difference is that we
demand

∑
i∈I ci = k instead of

∑
i∈I ci ≥ k as in the standard version. This problem can be

solved by the standard dynamic programming algorithm (again see, e.g., [16]) in time O(kn).
Since the family S is constructed in time 2O(k log k) ·nO(1) and we consider 2O(k log k) · logn

sets S, we obtain that the total running time is 2O(k log k) · nO(1). J

We use Lemma 7 to solve Strong (pK1 + qK2)-closure.

I Lemma 8 (*). For p ≥ 0 and q ≥ 2, Strong (pK1 + qK2)-closure can be solved in time
2O((k+p) log(k+p)) · nO(1).

Combining Lemmata 5, 7, and 8, we obtain the following theorem.

I Theorem 9. If F 6= pK1 for p ≥ 1 and F 6= pK1 +K2 for p ≥ 0, then Strong F -closure
is FPT when parameterized by |V (F )|+ k.

Notice that if |E(F )| > k, then (G, k) is a yes-instance of Strong F -closure. This
immediately implies the following corollary.

I Corollary 10. If F has no isolated vertices, then Strong F -closure is FPT when
parameterized by k, even when F is given as a part of the input.

We conclude this section with a kernel result. Observe that if the input graph G is
restricted to be a graph from a sparse graph class C, namely if C is nowhere dense (see [21])
and is closed under taking subgraphs, then the kernel constructed in Lemma 5 becomes
polynomial. This observation is based on the results Eickmeyer et al. [13] that allow to
bound the number of distinct neighborhoods of vertices in V (G) \X in the construction of
the kernel in the proof of Lemma 5. For simplicity, we demonstrate it here on d-degenerate
graphs 2.

2 NP-completeness result for F = P3 restricted to planar graphs (and, thus, 5-degenerate graphs) is given
in Section 5.
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I Proposition 11 (*). If F has a connected component with at least 3 vertices, then Strong
F -closure has a kernel with kO(d)d(|V (F )|+ k) vertices on d-degenerate graphs.

In particular, we have a polynomial kernel when F = P3. Similar results can be obtained
for some classes of dense graphs. For example, if G is dK1-free, then V (G) \X has at most
d− 1 vertices and we obtain a kernel with 2k + d− 3 vertices.

4 Parameterized complexity of Strong Triadic Closure

In this section we study the parameterized complexity of Strong P3-closure, which is
more famously known as Strong Triadic Closure.

Note that Strong Triadic Closure is FPT and admits an algorithm with running time
2O(k2) · nO(1) by Lemma 5. We complement this result by showing that Strong Triadic
Closure does not admit a polynomial kernel, even when the input graph is a split graph. A
graph is a split graph if its vertex set can be partitioned into an independent set and a clique.
Strong Triadic Closure is known to be NP-hard on split graphs [18].

I Theorem 12 (+). Strong Triadic Closure has no polynomial compression unless
NP ⊆ coNP/ poly, even when the input graph is a split graph.

Proof. We give a reduction from the Set Packing problem: given a universe U of t elements
and subsets B1, . . . , Bp of U decide whether there are at least k subsets which are pairwise
disjoint. Set Packing (also known as Rank Disjoint Set problem), parameterized by
|U|, does not admit a polynomial compression [10]. Given an instance (U , B1, . . . , Bp, k) for
the Set Packing, we construct a split graph G with a clique U ∪ Y and an independent set
W ∪X as follows:

The vertices of U correspond to the elements of U .
For every Bi there is a vertex wi ∈W that is adjacent to all the vertices of (U ∪ Y ) \Bi.
X and Y contain additional 2t vertices with X = {x1, . . . , xt} and Y = {y1, . . . , yt} such
that yi is adjacent to all the vertices of (W ∪ X) \ {xi} and xi is adjacent to all the
vertices of (U ∪ Y ) \ {yi}.

Notice that the clique of G contains 2t vertices. We will show that there are at least k pairwise
disjoint sets in {B1, . . . , Bp} if and only if there is a solution for Strong P3-closure on G
with at least k′ = |E(U ∪ Y )|+ (k + t)/2 edges.

Assume that B′ is a family of k pairwise disjoint sets of B1, . . . , Bp. For every B′i ∈ B′ we
choose three vertices wi, yi, xi from W , Y , and X, respectively, such that xi is non-adjacent
to yi with the following strong edges: wi is strongly adjacent to yi and xi is strongly adjacent
to the vertices of B′i in U . We also make weak the edges inside the clique between the vertices
of B′i and yi. All other edges incident to wi and xi are weak. Let W ′, Y ′, X ′ be the set of
vertices that are chosen from the family B′ according to the previous description. Every
vertex of W \W ′ is not incident to a strong edge. For the t− k vertices of Y \ Y ′ we choose
a matching and for each matched pair yj , yj′ we make the following edges strong: xjyj′ and
xj′yj where xj and xj′ are non-adjacent to yj and yj′ , respectively. Moreover each edge
yjyj′ of the clique is weak and all other edges incident to xj and xj′ are weak. The rest of
the edges inside the clique U ∪ Y are strong. It is not difficult to verify that the described
labeling satisfies the P3-closure with the claimed number of strong edges.

For the opposite direction, assume that H is a subgraph of G that satisfies the P3-closure
with at least k′ edges. For a vertex v ∈W ∪X, let S(v) be the strong neighbors of v in H
and let B(v) be the non-neighbors of v in U ∪Y . Our task is to show that for any two vertices
u, v of W ∪X with non-empty sets S(u), S(v), we have B(u) ∩ B(v) = ∅. We accomplish



P.A. Golovach, P. Heggernes, A. L. Konstantinidis, P. T. Lima, and C. Papadopoulos 23:9

that, by showing the following arguments: (i) for any weak edge e inside the clique there
must be strong edges between the endpoints of e and special vertices of the independent set,
(ii) in order to achieve the bound k′, there are strong edges incident to the vertices of W , (iii)
any component of the clique spanned by weak edges induces a tree of height one, and (iv)
for any two vertices u, v of W ∪X with non-empty sets S(u), S(v), their non-neighborhoods
B(u), B(v) do not have the containment property. Then by the last two arguments we know
that all vertices of W that are incident to at least one strong edge in H must have disjoint
non-neighborhood. Since B(wi) = Bi, there are k pairwise disjoint sets in {B1, . . . , Bp} for
the k vertices of W that are incident to at least one strong edge in H. Therefore there is a
solution for the Set Packing problem for (U , B1, . . . , Bp, k). J

Let F be a graph that has at least one component with at least three vertices. If M
is a matching in a graph G, then the spanning subgraph H of G with E(H) = M satisfies
the F -closure. It implies that an instance (G, k) of Strong F -Closure is a yes-instance
of the problem if the maximum matching size µ(G) ≥ k. Since a maximum matching can
be found in polynomial time [20], we can solve Strong F -Closure in polynomial time
for such instances. This gives rise to the question about the parameterized complexity of
Strong F -Closure with the parameter r = k − µ(G). We show that Strong Triadic
Closure is FPT with this parameter for the instances where ∆(G) ≤ 4. Note that Strong
Triadic Closure is NP-complete on graphs G with ∆(G) ≤ d for every d ≥ 4 [17].

I Theorem 13 (+). Strong Triadic Closure can be solved in time 2O(r) · nO(1) on
graphs of maximum degree at most 4, where r = k − µ(G).

Proof. Let (G, k) be an instance of Strong Triadic Closure such that ∆(G) ≤ 4. We
construct the set of vertices X and the set of edges A as follows. Initially, X = ∅ and A = ∅.
Then we exhaustively perform the following steps in a greedy way:
1. If there exists a copy of K4 in G−X, we add the vertices of this K4 to X and the edges

between these vertices to A.
2. If there exists a triangle T in G−X such that µ(G−X) < 3 + µ(G−X − T ), we add

the vertices of T to X and and the edges of T to A.
Let M be a maximum matching of G−X for the obtained set X. Note that the spanning
subgraph H of G with the set of edges A ∪M satisfies the P3-closure. Assume that Step 1
was applied p times and we used Step 2 q times. Clearly, |A| = 6p + 3q. Notice that the
vertices of a copy of K4 can be incident to at most 4 edges of a matching and the complete
graph with 4 vertices has 6 edges. Observe also that by Step 2, we increase the size of A by 3
and µ(G−X)− µ(G−X − T ) ≤ 2. This implies that |E(H)| = |A|+ |M | ≥ µ(G) + 2p+ q.
Therefore, if 2p+ q ≥ r, (G, k) is a yes-instance. Assume from now that this is not the case.
In particular |X| ≤ 4r and G′ = G−X is a K4-free graph.

We need some structural properties of G′ and (possible) solutions for the considered
instance. By Step 2, we know that for every triangle T in G′: (i) T contains no edge of
M and (ii) every vertex of T is incident to an edge of M . We say that a solution H for
(G, k) is regular if H −X is a disjoint union of triangles, edges and isolated vertices. We
also say that a solution H is triangle-maximal if (i) it contains the maximum number of
edges and, subject to (i), (ii) contain the maximum number of pairwise distinct triangles.
By the fact that ∆(G) ≤ 4, it can be proved that if (G, k) is a yes-instance, then it has a
triangle-maximal regular solution. Next we derive the following properties for triangles in G′
that are at distance one or more from X.

For any triangle T at distance one from X, if T is included in H then H contains no
other edge incident to T .

SWAT 2018
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For any triangle T at distance at least two from X that does not intersect any other
triangle, T is included in every triangle-maximal regular solution for (G, k).
If T1 and T2 are two intersecting triangles in G′, then (i) T1 and T2 have one edge in
common and (ii) no other triangle intersects T1 or T2.
If T1 and T2 are two intersecting triangles such that T1 is at distance at least two from
X, then either T1 or T2 is included in every regular triangle-maximal solution for (G, k).

Now we are ready to solve the problem by finding a triangle-maximal regular solution if
it exists. The crucial step is to sort out triangles in G′. Since |X| ≤ 4r and since every
vertex of X has at least two neighbors inside X, we have |NG(X)| ≤ 8r. By the triangle
properties, at most 2 triangles of G′ contain the same vertex. Thus, the number of pairwise
distinct triangles in G′ that are at distance at most one from X is at most 16r. We list all
these triangles, and branch on all at most 216r choices of the triangles that are included in a
triangle-maximal regular solution. Then, for each choice of these triangles, we try to extend
the partial solution. If we obtain a solution for one of the choices we return it; otherwise,
the algorithm returns NO.

Assume that we are given a set T1 of triangles at distance one from X that should be in
a solution. We apply the following reduction rule.

I Rule 13.1. Set G = G− ∪T∈T1T and set k = k − 3|T1|.

Now we deal with triangles that are at distance at least 2. Consider the set T2 of triangles
in G′ that are at distance at least 2 from X and have no common vertices with other triangles
in G′. Such triangles are in every triangle-maximal regular solution which gives us the
following:

I Rule 13.2. Set G = G− ∪T∈T2T and set k = k − 3|T2|.

To consider the remaining triangles for every such a triangle T , T is intersecting with
a unique triangle T ′ of G′ and T, T ′ are sharing an edge. Let T3 be the set of triangles in
G′ that are at distance at least 2 from X in G and have a common edge with a triangle at
distance one from X.

I Rule 13.3. Set G = G− ∪T∈T3T and set k = k − 3|T3|.

Let G′ = G−X. The remaining triangles in G′ at distance at least 2 from X in G form
pairs {T1, T2} such that T1 and T2 have a common edge and are not intersecting any other
triangle. Let P be the set of all such pairs. We apply the property that a triangle-maximal
regular solution contains either T1 or T2 to construct the following rule.

I Rule 13.4. For every pair {T1, T2} ∈ P, delete the vertices of T1 and T2 from G, construct
a new vertex u and make it adjacent to the vertices of NG((T1 \ T2) ∪ (T2 \ T1)). Set
k = k − 3|P|.

Denote by (Ĝ, k̂) the instance obtained from (G, k) by the application of Rule 13.4. We
can show the following important claim.

I Claim 13.1. The instance (G, k) has a regular solution H that has no triangles in G−X
at distance one from X if and only if there is a solution Ĥ for (Ĝ, k̂) such that Ĥ −X is a
disjoint union of edges and isolated vertices.

Thus we have to find a solution for the instance (Ĝ, k̂) such that Ĥ − X is a disjoint
union of edges and isolated vertices. We do it by branching on all possible choices of edges in
a solution that are incident to the vertices of X. Since |X| ≤ 4r and ∆(G) ≤ 4, there are at
most 16r edges that are incident to the vertices of X and, therefore, we branch on at most
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216r choices of a set of edges S. Then for each choice of S, we are trying to extend it to a
solution. If we can do it for one of the choices, we return the corresponding solution, and the
algorithm returns NO otherwise. First, we verify whether the spanning subgraph of G with
the set of edges S satisfies the P3-closure. If it is not so, we discard the current choice of S
since, trivially, S cannot be extended to a solution. Assume that this is not the case. Let
R = Ĝ−X. We modify R by the exhaustive application of the following rule.

I Rule 13.5. If there is xy ∈ E(R) such that there is z ∈ X with xz ∈ S and yz /∈ E(Ĝ),
then delete xy from R.

Let R′ be the graph obtained from R by the rule. Observe that the edges deleted by
Rule 13.5 cannot belong to a solution. Hence, to extend S, we have to complement it by
some edges of R′ that form a matching. Every matching of R′ could be used to complement
S. Respectively, we find a maximum matching M in R′ in polynomial time. Then the
spanning subgraph Ĥ of Ĝ with E(Ĥ) = S ∪M satisfies the P3-closure. We verify whether
|S|+ |M | ≥ k̂. If it holds, we return Ĥ. Otherwise, we discard the current choice of S. J

5 Concluding remarks

To complement our results so far, we give here the parameterized complexity results when
our problem is parameterized by the number of weak edges. The following result is not
difficult to deduce using similar ideas to those used in proving that F -free Edge Deletion
is FPT by the number of deleted edges [4].

I Theorem 14 (*). For every fixed graph F , Strong F -closure can be solved in time
2O(`) · nO(1), where ` = |E(G)| − k.

Next we show that Strong F -closure has a polynomial bi-kernel with this parameter-
ization whenever F is a fixed graph. We obtain this result by constructing bi-kernelization
that reduces Strong F -closure to the d-Hitting Set problem that is the variant of
Hitting Set with all the sets in C having d elements. Notice that this result comes in
contrast to the F -free Edge Deletion problem, as it is known that there are fixed graphs
F for which there is no polynomial compression [5] unless NP ⊆ coNP/ poly.

I Theorem 15 (*). For every fixed graph F , Strong F -closure has a polynomial bi-kernel,
when parameterized by ` = |E(G)| − k.

We would like to underline that Theorems 14 and 15 are fulfilled for the case when F is
a fixed graph of constant size, as the degree of the polynomial in the running time of our
algorithm depends on the size of F and, similarly, the size of F is in the exponent of the
function defining the size of our bi-kernel. We can hardly avoid this dependence as it can
be observed that for ` = 0, Strong F -closure is equivalent to asking whether the input
graph G is F -free, that is, we have to solve the Induced Subgraph Isomorphism problem.
It is well known that Induced Subgraph Isomorphism parameterized by the size of F
is W[1]-hard when F is a complete graph or graph without edges [11], and the problem is
W[1]-hard when F belongs to other restricted families of graphs [15].

We conclude with a few open problems. An interesting question is whether Strong
Triadic Closure is FPT when parameterized by r = k − µ(G). We proved that this holds
on graphs of maximum degree at most 4, and we believe that this question is interesting not
only on general graphs but also on various other graph classes. In particular, what can be
said about planar graphs? To set the background, we show that Strong Triadic Closure
is NP-hard on this class.
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I Theorem 16 (*). Strong Triadic Closure is NP-hard on planar graphs.

The same question can be asked for the case when F 6= P3 has a connected component with
at least three vertices. As a first step, we give an FPT result when F is a star.

I Theorem 17 (*). For every t ≥ 3, Strong K1,t-closure can be solved in time 2O(r2) ·
nO(1), where r = k − µ(G) .

Another direction of research is to extend Strong F -closure by replacing F with a
list of forbidden subgraphs F and settle the complexity differences compared to F = {F}.
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