
Computing Shapley Values in the Plane
Sergio Cabello
Department of Mathematics, FMF, University of Ljubljana, Slovenia
Department of Mathematics, IMFM, Ljubljana, Slovenia
https://www.fmf.uni-lj.si/~cabello/
sergio.cabello@fmf.uni-lj.si

Timothy M. Chan
Department of Computer Science, University of Illinois at Urbana-Champaign, USA
http://tmc.web.engr.illinois.edu/
tmc@illinois.edu

Abstract
We consider the problem of computing Shapley values for points in the plane, where each point is
interpreted as a player, and the value of a coalition is defined by the area of usual geometric objects,
such as the convex hull or the minimum axis-parallel bounding box.

For sets of n points in the plane, we show how to compute in roughly O(n3/2) time the Shapley
values for the area of the minimum axis-parallel bounding box and the area of the union of the
rectangles spanned by the origin and the input points. When the points form an increasing or
decreasing chain, the running time can be improved to near-linear. In all these cases, we use linearity
of the Shapley values and algebraic methods.

We also show that Shapley values for the area of the convex hull or the minimum enclosing disk
can be computed in O(n2) and O(n3) time, respectively. These problems are closely related to the
model of stochastic point sets considered in computational geometry, but here we have to consider
random insertion orders of the points instead of a probabilistic existence of points.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Shapley values, stochastic computational geometry, convex hull, minimum
enclosing disk, bounding box, arrangements, convolutions, airport problem

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.20

Related Version Full version available at http://arxiv.org/abs/1804.03894.

Funding Sergio Cabello: Supported by the Slovenian Research Agency (P1-0297, J1-8130, J1-8155).
Timothy M. Chan: Supported in part by NSF Grant CCF-1814026.

Acknowledgements The authors are very grateful to Sariel Har-Peled for fruitful discussions.

1 Introduction

One can associate several meaningful values to a set P of points in the plane, like for example
the area of the convex hull or the area of the axis-parallel bounding box. How can we split
this value among the points of P? Shapley values are a standard tool in cooperative games
to “fairly” split common cost between different players. Our objective in this paper is to
present algorithms to compute the Shapley values for points in the plane when the cost of
each subset is defined by geometric means.

Coalitional games in the plane. Formally, a coalitional game is a pair (P, v), where P
is the set of players and v : 2P → R is the characteristic function, which must satisfy
v(∅) = 0. Depending on the problem at hand, the characteristic function can be seen as a
cost or a payoff associated to each subset of players (usually called a coalition). Coalitional
games are a very common model for cooperative games with transferable utility.

© Sergio Cabello and Timothy M. Chan;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3183-4126
https://www.fmf.uni-lj.si/~cabello/
mailto:sergio.cabello@fmf.uni-lj.si
http://tmc.web.engr.illinois.edu/
mailto:tmc@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.20
http://arxiv.org/abs/1804.03894
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Computing Shapley Values in the Plane

var vbb vabbvch ved

Figure 1 Different costs associated to a point set that are considered in this paper. The cross
represents the origin. In all cases we focus on the area.

In our setting, the players will be points in the plane. Thus P ⊂ R2. Such scenario arises
naturally in the context of game theory through modeling: each point represents an agent,
and each coordinate of the point represents an attribute of the agent.

We will consider characteristic functions given by the area of shapes that “enclose” the
points. The shapes that we consider are succinctly described in Figure 1. More precisely, we
consider the following coalitional games.
AREACONVEXHULL game: The characteristic function is vch(Q) = area (CH (Q)) for each

nonempty Q ⊂ P , where CH (Q) denotes the convex hull of Q.
AREAENCLOSINGDISK game: The characteristic function is ved(Q) = area (med(Q)) for

each nonempty Q ⊂ P , where med(Q) is a disk of smallest radius that contains Q.
AREAANCHOREDRECT game: The characteristic function is var(Q) = area

(⋃
p∈QRp

)
for

each nonempty Q ⊂ P , where Rp is the axis-parallel rectangle with one corner at p and
another corner at the origin.

AREABOUNDINGBOX game: The characteristic function is vbb(Q) = area (bb(Q)) for each
nonempty Q ⊂ P , where bb(Q) is the smallest axis-parallel bounding box of Q.

AREAANCHOREDBOUNDINGBOX game: The characteristic function is vabb(Q), defined by
area (bb(Q ∪ {o})) for each nonempty Q ⊂ P , where o is the origin.

In the full version [5] we also consider variants of these problems where the perimeter of
the shapes is used.

Shapley values. Shapley values are probably the most popular solution concept for coali-
tional games. The objective is to split the value v(P) between the different players of a
coalitional game (P, v) in a meaningful way. It is difficult to overestimate the relevance of
Shapley values. See the book edited by Roth [26] or the survey by Winter [29] for a general
discussion showing their relevance. There are also different axiomatic characterizations of
the concept, meaning that Shapley values can be shown to be the only map satisfying certain
natural conditions. Shapley values can be interpreted as a cost allocation, a split of the
payoff, or, after normalization, as a power index. The Shapley-Shubik power index arises
from considering voting games, a particular type of coalitional game. We refer to some
textbooks in Game Theory ([11, Chapter IV.3], [19, Section 9.4], [21, Section 14.4]) for a
comprehensive treatment.

In a nutshell, the Shapley value of a player p in a coalitional game is the expected increase
in the value of the characteristic function when inserting the player p, if the players are
inserted in an order chosen uniformly at random. We next make this definition precise.

Consider a coalitional game (P, v). We denote by n the number of players and by [n]
the set of integers {1, . . . , n}. A permutation of P is a bijective map π : P → [n]. Let Π(P)
be the set of permutations of P . Each permutation π ∈ Π(P) defines an ordering in P ,
where π(p) is the position of p in that order. We will heavily use this interpretation of

S. Cabello and T.M. Chan 20:3

permutations as defining an order in P . For each element p ∈ P and each permutation
π ∈ Π(P), let P (π, p) be the elements of P before p in the order defined by π, including p.
Thus P (π, p) = {q ∈ P | π(q) ≤ π(p)}. We can visualize P (π, p) as adding the elements
of P one by one, following the order defined by π, until we insert p. The increment in v(·)
when adding player p is

∆(v, π, p) = v
(
P (π, p)

)
− v
(
P (π, p) \ {p}

)
.

The Shapley value of player p ∈ P in the game (P, v) is

φ(p, v) = 1
n!

∑
π∈Π(P)

∆(v, π, p) = Eπ
[
∆(v, π, p)

]
,

where π is picked uniformly at random from Π(P). It is not difficult to see that the Shapley
values indeed split the value v(P) among the players, that is,

∑
p∈P φ(p, v) = v(P).

Since several permutations π define the same subset P (π, p), the Shapley value of p is
often rewritten as

φ(p, v) =
∑

S⊂P\{p}

|S|!(n− |S| − 1)!
n!

(
v(S ∪ {p})− v(S)

)
.

Computing Shapley values from these formulas is computationally infeasible because we
have to consider either all the permutations or all the subsets of the players. In fact, there
are several natural instances where computing Shapley values is difficult.

Overview of our contribution

We show that the Shapley values for the AreaConvexHull and AreaEnclosingDisk
games can be computed in O(n2) and O(n3) time, respectively. These problems resemble
the models recently considered in stochastic computational geometry; see for example [1, 2,
12, 13, 14, 23, 30]. However, there are some key differences in the models. In the most basic
model in stochastic computational geometry, sometimes called unipoint model, we have a
point set and, for each point, a known probability of being actually present, independently
for each point. Then we want to analyze a certain functional, for example, the expected area
of the minimum enclosing disk.

In our scenario, we have to consider random insertion orders of the points and analyze
the expected increase in the value of the characteristic function after the insertion of a fixed
point p. Thus, we have to consider subsets of points constructed according to a different
random process. In particular, whether other points precede p or not in the random order
are not independent events. Conditioning on properties of the shape before adding the
new point p, one can get polynomial-time algorithms. We improve the running time by
rewriting the Shapley values in a different way and grouping permutations with a similar
behavior. Finally, we use arrangements of lines and planes to speed up the computation by
an additional linear factor.

For the AreaAnchoredRect, AreaBoundingBox, and AreaAnchoredBound-
ingBox games we show that Shapley values can be computed in O(n3/2 logn) time. In
the special case where the points form a chain (increasing or decreasing y-coordinate for
increasing x-coordinate), the Shapley values of those games can be computed in O(n log2 n)
time. We refer to these games as axis-parallel games.

It is relative easy to compute the Shapley values for these axis-parallel games in quadratic
time using arrangements of rectangles and the linearity of Shapley values. We will discuss
this as an intermediary step towards our solution. However, it is not obvious how to

SoCG 2019

20:4 Computing Shapley Values in the Plane

get subquadratic time. Besides using the linearity of Shapley values, a key ingredient in
our algorithms is using convolutions to evaluate at multiple points some special rational
functions that keep track of the ratio of permutations with a certain property. The use
of algebraic methods in computational geometry is not very common, and there are few
results [3, 4, 15, 18] using such techniques in geometric problems.

Our O(n3/2 logn) algorithm bears some similarities with other existing algorithms with
near n3/2 time complexity in the computational geometry literature, for problems like Klee’s
measure problem [22]. As in these previous algorithms, we employ an orthogonal subdivision
where each region is empty of input points inside, and is “influenced” on average by O(

√
n) of

the points outside. What is new is our combination of such a geometric partitioning scheme
with the aforementioned algebraic techniques.

In summary, our results combine fundamental concepts from several different areas
and motivated by classical concepts of game theory, we introduce new problems related to
stochastic computational geometry and provide efficient algorithms for them.

Related work

The book by Chalkiadakis, Elkind, and Wooldridge [6] and the chapter by Deng and Fang [8]
give a summary of computational aspects of coalitional games. The book by Nisan et al. [20]
provides a general overview of the interactions between game theory and algorithms.

In the classical Airport problem considered by Littlechild and Owen [16], we have a set
P of points with positive coordinate on the real line, and the cost of a subset Q of the points
is given by max(Q). It models the portion of the runway that has to be used by each airplane,
and Shapley values provide a way to split the cost of the runway among the airplanes. As
pointed out before, the points represent agents, in this case airplanes. Several other airport
problems are discussed in the survey by Thomson [27]. Using inclusion-exclusion, the airport
problem is equivalent to the problem of allocating the length of the smallest interval that
contains a set of points on the line. The problems considered in this paper are natural
generalizations of the concept of interval when going from one to two dimensions.

Another very common solution concept for a coalitional game (P, v) is the core, defined as{
(xp)p∈P ∈ RP | ∀S ⊆ P :

∑
p∈S

xp ≥ v(S)
}
.

Sometimes the condition
∑
p∈P xp = v(P) is also added to the definition. The size of the

core is considered a proxy to the stability of the game and, in particular, it is of interest
whether the core is nonempty. There are other solution concepts for coalitional games; we
refer the reader to the aforementioned general references.

Puerto, Tamir and Perea [24] study the Minimum Radius Location Game in general
metric spaces. When specialized to the Euclidean plane, this is equivalent to using the
perimeter of the minimum enclosing disk. The paper also considers the L1-metric, which is
proportional to the perimeter of the minimum enclosing axis-parallel square (after applying
a rotation). However, the focus of their work is on understanding the core of the game,
and do not discuss the computation of Shapley values. In particular, they show that the
Minimum Radius Location Game in the Euclidean plane has nonempty core. Puerto, Tamir
and Perea [25] also discuss the Minimum Diameter Location Game, which can be defined for
arbitrary metric spaces, but then focus their discussion on graphs.

Faigle et al. [10] consider the TSP coalitional game in general metric spaces, specialize
some results to the Euclidean plane, and provide approximate allocations of the costs.

S. Cabello and T.M. Chan 20:5

The computation of Shapley values has been considered for several games on graphs. The
aforementioned Airport problem can be considered a shortest spanning-path game in a
(graph-theoretic) path. Megiddo [17] extended this to trees, while Deng and Papadimitriou [9]
discuss a game on arbitrary graphs defined by induced subgraphs. They show that the
Shapley values are easy to compute, while characterizing the core is NP-complete.

There is a very large body of follow up works for graphs, but we could not trace other
works considering the computation of Shapley values for games defined through planar
objects, despite being very natural.

Assumptions

We will assume general position in the following sense: no two points have the same x or y
coordinate, no three points are collinear, and no four points are cocircular. In particular, the
points are all different. The actual assumptions depend on the game under consideration. It
is simple to consider the general case, but it makes the notation more tedious.

We assume a unit-cost real-RAM model of computation. In a model of computation
that accounts for bit complexity, time bounds may increase by polynomial factors (even if
the input numbers are integers, the outputs may be rationals with large numerators and
denominators).

Organization

Because of space constraints, we limit our presentation to a selection of our results and an
overview of the ideas. In this version we do not include our algorithm for computing the
Shapley values for the AreaEnclosingDisk game in O(n3) time. Also, our results about
considering the perimeter are not described in this version; they can be found in the full
version [5].

We start with preliminaries in Section 2, where we set the notation, present basic properties
of Shapley values, and discuss our needs of algebraic computations. The AreaConvex-
Hull game is considered in Section 3. In Section 4 we discuss the main ideas for the
AreaAnchoredRect game and provide some discussion concerning the AreaBound-
ingBox and AreaAnchoredBoundingBox games. We conclude in Section 5 with some
discussion.

2 Preliminaries

All point sets will be in the Euclidean plane R2. The origin is denoted by o. For a point
p ∈ R2, let Rp be the axis-parallel rectangle with one corner at the origin o and the opposite
corner at p. As already mentioned in the introduction, for each Q ⊂ R2 we use bb(Q) for the
(minimum) axis-parallel bounding box of Q, med(Q) for a smallest (actually, the smallest)
disk that contains Q, and CH (Q) for the convex hull of Q.

We try to use the word rectangle when one corner is defined by an input point, while
the word box is used for more general cases. All rectangles and boxes in this paper are
axis-parallel, and we drop the adjective axis-parallel when referring to them. An anchored
box is a box with one corner at the origin.

For a point p ∈ R2 we denote by x(p) and y(p) its x- and y-coordinate, respectively. We
use x(Q) for {x(q) | q ∈ Q}, and similarly y(Q). A set P of points is a decreasing chain,
if x(p) < x(q) implies y(p) > y(q) for all p, q ∈ P . A set P of points is an increasing chain
if x(p) < x(q) implies y(p) < y(q) for all p, q ∈ P .

SoCG 2019

20:6 Computing Shapley Values in the Plane

p

q q′

p

q q′

H(q, q′)

Figure 2 Left: triangulating the difference between CH (P (π, p)) and CH (P (π, p) \ {p}). Right:
in order for 4pqq′ to be in T (π, p), q and q′ must appear before p, which in turn must appear before
all other points in the halfplane H(q, q′).

Shapley values. It is easy to see that Shapley values are linear in the characteristic functions.
This means that for any two characteristic functions v1, v2 : 2P → R and for each λ1, λ2 ∈ R
we have

φ(p, λ1v1 + λ2v2) = λ1 · φ(p, v1) + λ2 · φ(p, v2).

The Shapley values when the characteristic function v is constant over all nonempty subsets
of P is given φ(p, v) = v(P)/n.

Algebraic computations. For axis-parallel problems we will use the lemma below, which
provides multipoint evaluation for a special type of rational functions. The lemma follows
from a simple application of convolution, via fast Fourier transform; see the full paper for the
proof. (A more general approach of Aronov, Katz and Moroz [4, 18] for arbitrary rational
functions gives a slightly worse running time.)

I Lemma 1. Let b0, . . . , bn,∆ be real numbers and consider the rational function

R(x) =
n∑
t=0

bt
∆ + t+ x

.

Given an integer ` > −∆, possibly negative, and a positive integer m, we can evaluate R(x)
at all the integer values x = `, `+ 1, . . . , `+m in O((n+m) log(n+m)) time.

3 Convex hull

In this section we consider the area of the convex hull of the points. Consider a fixed set P
of points in the plane. For simplicity we assume that no three points are collinear.

I Lemma 2. For each point p of P we can compute φ(p, vch) in O(n2) time.

Proof. For each q, q′ ∈ P (q 6= q′), let H(q, q′) be the open halfplane containing all points to
the left of the directed line from q to q′. Define level(q, q′) to be the number of points in
P ∩H(q, q′).

We can decompose the difference between CH (P (π, p)) and CH (P (π, p) \ {p}) into a set
T (π, p) of triangles (see Figure 2 (left)), where

T (π, p) = {4pqq′ | p ∈ H(q, q′), q and q′ appear before p in π, and
no points before p in π lie in H(q, q′)}.

S. Cabello and T.M. Chan 20:7

In other words, 4pqq′ ∈ T (π, p) if and only if p ∈ H(q, q′), and among the level(q, q′) + 2
points in H(q, q′) ∪ {q, q′}, the two earliest points are q and q′, and the third earliest point
is p. See Figure 2 (right). (Note that if CH (P (π, p)) = CH (P (π, p) \ {p}), then T (π, p) is
empty.) For fixed p, q, q′ ∈ P with p ∈ H(q, q′), simple counting implies that the probability
that 4pqq′ ∈ T (π, p) with respect to a random permutation π is exactly

ρ(q, q′) = (level(q, q′)− 1)! 2!
(level(q, q′) + 2)! = 2

(level(q, q′) + 2)(level(q, q′) + 1) level(q, q′) .

It follows that the Shapley value of p is

φ(p, vch) =
∑

q, q′ ∈ P (q 6= q′)
with p ∈ H(q, q′)

area(4pqq′) · ρ(q, q′). (1)

From the formula, we can immediately compute φ(p, vch) for any given p ∈ P in O(n2) time,
if all ρ(q, q′) values have been precomputed.

Each value ρ(q, q′) can be computed from level(q, q′) using O(1) arithmetic operations.
Thus, precomputing ρ(q, q′) requires precomputing level(q, q′) for all O(n2) pairs q, q′. In the
dual, this corresponds to computing the levels of all O(n2) vertices in an arrangement of n
lines. The arrangement of n lines can be constructed in O(n2) time [7, Chapter 8], and the
levels of all vertices can be subsequently generated by traversing the arrangement in O(1)
time per vertex. J

Naively applying Lemma 2 to all points p ∈ P gives O(n3) total time. We can speed up
the algorithm by a factor of n:

I Theorem 3. The Shapley values of the AreaConvexHull game for n points can be
computed in O(n2) time.

Proof. Let p = (x, y) ∈ P . Observe that for fixed q, q′ ∈ P (q 6= q′), if p ∈ H(q, q′),
then area(4pqq′) is a linear function in x and y and can thus be written as a(q, q′)x +
b(q, q′)y + c(q, q′). Let A(q, q′) = a(q, q′) · ρ(q, q′), B(q, q′) = b(q, q′) · ρ(q, q′), and C(q, q′) =
c(q, q′) · ρ(q, q′). (As noted earlier, we can precompute all the ρ(q, q′) values in O(n2) time
from the dual arrangement of lines.) By (1),

φ(p, vch) =
∑

q, q′ ∈ P (q 6= q′)
with p ∈ H(q, q′)

(A(q, q′)x+B(q, q′)y+C(q, q′)) = A(p)x+B(p)y+ C(p),

where

A(p) =
∑

q, q′ ∈ P (q 6= q′)
with p ∈ H(q, q′)

A(q, q′), B(p) =
∑

q, q′ ∈ P (q 6= q′)
with p ∈ H(q, q′)

B(q, q′), C(p) =
∑

q, q′ ∈ P (q 6= q′)
with p ∈ H(q, q′)

C(q, q′).

We describe how to compute A(p), B(p), and C(p) for all p ∈ P in O(n2) total time.
Afterwards, we can compute φ(p, vch) for all p ∈ P in O(n) additional time.

The problem can be reduced to 3 instances of the following:

Given a set P of n points in the plane, and given O(n2) lines each through 2 points
of P and each assigned a weight, compute for all p ∈ P the sum of the weights of all
lines below p (or similarly all lines above p).

SoCG 2019

20:8 Computing Shapley Values in the Plane

= + + +

Figure 3 It is enough to consider the cases where all points are in a quadrant.

In the dual, the problem becomes:

Given a set L of n lines in the plane, and given O(n2) vertices in the arrangement,
each assigned a weight, compute for all lines ` ∈ L the sum S(`) of the weights of all
vertices below `.

To solve this problem, we could use known data structures for halfplane range searching,
but a direct solution is simpler. First construct the arrangement in O(n2) time. Given
`, `′ ∈ L, define S(`, `′) to be the sum of the weights of all vertices on the line `′ that are
below `. For a fixed `′ ∈ L, we can precompute S(`, `′) for all ` ∈ L \ {`′} in O(n) time,
since these values correspond to prefix or suffix sums over the sequence of weights of the
O(n) vertices on the line `′. The total time for all lines `′ ∈ L is O(n2).

Afterwards, for each ` ∈ L, we can compute S(`) in O(n) time by summing S(`, `′) over
all `′ ∈ L \ {`} and dividing by 2 (since each vertex is counted twice). The total time for all
` ∈ L is O(n2). J

4 Axis-parallel problems

Most of this section is dedicated to the AreaAnchoredRect game defined by the char-
acteristic function var. Towards the end we discuss the additional challenges to handle the
AreaBoundingBox and AreaAnchoredBoundingBox games. Unless stated explicitly,
the game under consideration is the AreaAnchoredRect.

For the AreaAnchoredRect game, it is easy to see that one can focus on the special
case where all the points are in a quadrant; see Figure 3.

4.1 Notation for axis-parallel problems
Consider a fixed set P of points in the positive quadrant. In the notation we drop the
dependency on P . For simplicity, we assume general position: no two points have the same
x- or y-coordinate. We first introduce some notation.

For each point q of the plane, we use the “cardinal directions” to define subsets of points
in quadrants with apex at q:

NW(q) = {p ∈ P | x(p) ≤ x(q), y(p) ≥ y(q)},
NE(q) = {p ∈ P | x(p) ≥ x(q), y(p) ≥ y(q)},
SE(q) = {p ∈ P | x(p) ≥ x(q), y(p) ≤ y(q)}.

We use lowercase to denote their cardinality: nw(q) = |NW(q)|, ne(q) = |NE(q)| and
se(q) = |SE(q)|. See Figure 4, left.

Let x1 < . . . < xn denote the x-coordinates of the points of P , and let y1 < . . . < yn be
their y-coordinates. We also set x0 = 0 and y0 = 0. For each i, j ∈ [n] we use wi = xi − xi−1
(for width) and hj = yj − yj−1 (for height).

S. Cabello and T.M. Chan 20:9

q

NE(q)NW(q)

SE(q)

xi xi+1xi−1

yj

yj+1

yj−1

ci,j ci+1,j

ci+1,j+1ci,j+1

wi wi+1

hj

hj+1

Figure 4 Left: the quadrants to define NW(q), NE(q) and SE(q). Right: cells of A.

1

2

2

23

3

3

3

4 2

2

1

4

45

5

5

6

67

4

3

2

1

4

1

1

3 2 1

1 1

1

1

1

1

1

1

Figure 5 The non-zero counters ne(c) for the bounded cells c of A. The intensity of the color
correlates with the counter ne(c).

Let L be the set of horizontal and vertical lines that contain some point of P . We add
to L both axes. The lines in L define a partition of the plane into cells, usually called the
arrangement and denoted by A = A(L). The (2-dimensional) cells of A are open sets whose
closure is a rectangle, possibly unbounded in some direction. We are only interested in the
bounded cells, and with a slight abuse of notation, we use A for the set of bounded cells.
We denote by ci,j the cell between the vertical lines x = xi−1 and x = xi and the horizontal
lines y = yj−1 and y = yj . Note that ci,j is the interior of a rectangle with width wi and
height hj . See Figure 4, right.

Since NE(q) is constant over each 2-dimensional cell c of A, we can define NE(c), for each
cell c ∈ A. The same holds for NW(c), SE(c), ne(c), nw(c) and se(q). See Figure 5.

A block is a set of cells B = B(i0, i1, j0, j1) = {ci,j | i0 ≤ i ≤ i1, j0 ≤ j ≤ j1} for some
indices i0, i1, j0, j1, with 1 ≤ i0 ≤ i1 ≤ n and 1 ≤ j0 ≤ j1 ≤ n. The number of columns and
rows in B is i1 − i0 + 1 + j1 − j0 + 1 = O(i1 − i0 + j1 − j0). A block B is empty if no point
of P is on the boundary of at least three cells of B. Equivalently, B is empty if no point of
P is in the interior of the union of the closure of the cells in B. See Figure 6 for an example.

We will be using maximal rows and columns within a block B to compute some partial
information. Thus, for each block B and each index i, we define the vertical slab V (i, B) =
{ci,j | 1 ≤ j ≤ n, ci,j ∈ B}. Similarly, for each block B and each index j, we define the
horizontal slab H(j, B) = {ci,j | 1 ≤ i ≤ n, ci,j ∈ B}. Such slabs are meaningful only for

SoCG 2019

20:10 Computing Shapley Values in the Plane

wi

hj

yj1

yj

yj0−1

xixi−1

yj−1

xi0−1 xi1

V
(i
,B

)

H(j, B)ci,j

Figure 6 An empty block B = B(i0, i1, j0, j1) with a vertical and a horizontal slab shaded.

indices within the range that defines the slab. We call them the slabs within B.

4.2 Interpreting Shapley values geometrically
First, we reduce the problem of computing Shapley values to a neat geometric problem. The
following result can be shown by decomposing the game into several games, one per cell of
A, and using the linearity of Shapley values.

I Lemma 4. If P is in the positive quadrant, then for each p ∈ P we have

φ(p, var) =
∑

c∈A, c⊂Rp

area(c)
ne(c) .

For each subset C of cells of A, we define

σ(C) =
∑
c∈C

area(c)
ne(c)

(We will only consider sets C of cells with ne(c) > 0 for all c ∈ C.) Note that we want to
compute σ(·) for the sets of cells contained in the rectangles Rp for all p ∈ P .

Using standard tools in computational geometry we can compute the values φ(p, var) for
all p ∈ P in near-quadratic time, as follows. An explicit computation of A takes quadratic
time, and we can use standard data structures for orthogonal range searching ([28], [7,
Chapter 5]) to compute ne(c) for each cell c ∈ A. Finally, replacing each cell c by a point
qc ∈ c with weight wc = area(c)/ne(c), computing φ(p, var) reduces to computing

∑
qc∈Rp

wc,
which is again an orthogonal range query. An alternative is to use dynamic programming
across the cells of A to compute ne(c) and partial sums of the weights wc.

Our objective in the following sections is to improve this result using the correlation
between adjacent cells. While at first glance it seems that segment trees [7, Section 10.3]
may be useful, the weights are inversely proportional to ne(c), which gives problems

S. Cabello and T.M. Chan 20:11

4.3 Handling empty blocks
In the following we assume that we have preprocessed P in O(n logn) time such that ne(q)
can be computed in O(logn) time for each point q given at query time [28]. This is a standard
range counting for orthogonal ranges.

When a block B is empty, then we can use multipoint evaluation to obtain the partial
sums σ(·) for each vertical and horizontal slab of the block.

I Lemma 5. Let B be an empty block with k columns and rows. We can compute in
O(k logn) time the values σ(C) for all slabs C within B.

Proof. Assume that B is the block B(i0, i1, j0, j1). We only explain how to compute
the values σ(V (i, B)) for all i0 ≤ i ≤ i1. The computation for the horizontal slabs
σ(H(j0, B)), . . . , σ(H(j1, B)) is similar.

We look into the first vertical slab V (i0, B) and make groups of cells depending on their
value ne(·). More precisely, for each ` we define J(`) = {j | j0 ≤ j ≤ j1, ne(ci0,j) = `}. Let
`0 and `1 be the minimum and the maximum ` such that J(`) 6= 0, respectively.

Recall that hj is the height of the cell ci,j for all i0 ≤ i ≤ i1. We set up the following
rational function with variable x:

R(x) =
`1∑
`=`0

∑
j∈J(`) hj

`+ x
.

Setting t = `− `0, bt =
∑
j∈J(`0+t) hj and ∆ = `0, we have

R(x) =
`1−`0∑
t=0

bt
∆ + t+ x

.

Thus, this is a rational function of the shape considered in Lemma 1 with `1−`0 ≤ j1−j0+1 ≤
k terms. The coefficients can be computed in O(k logn) time because we only need the
values hj and ne(ci0,j) for each j.

Note that

wi0 ·R(0) = wi0 ·
`1∑
`=`0

∑
j∈J(`)

hj
`

=
j1∑
j=j0

wi0hj
ne(ci0,j)

=
j1∑
j=j0

area(ci0,j)
ne(ci0,j)

= σ(V (i0, B)).

A similar statement holds for all the other vertical slabs within B, as follows.
Consider two consecutive vertical slabs V (i, B) and V (i + 1, B) within the block B.

Because the block B is empty, the difference ne(ci+1,j)− ne(ci,j) is independent of j. See
Figure 7. It follows that, for each index i with i0 ≤ i ≤ i1, there is an integer δi such that
ne(ci,j) = ne(ci0,j) + δi for all j with j0 ≤ j ≤ j1. Moreover, for each i with i0 ≤ i ≤ i1 and
each ` with `0 ≤ ` ≤ `1, the value of ne(ci,j) is constant over all j ∈ J(`). Therefore, for each
j ∈ J(`) we have ne(ci,j) = `+ δi.

Each value δi can be obtained using that δi = ne(ci,j0)− ne(ci0,j0). This means that the
values δi0 , . . . , δi1 can be obtained in O(k logn) time.

Now we note that, for each index i with i0 ≤ i ≤ i1, we have

wi ·R(δi) = wi ·
`1∑
`=`0

∑
j∈J(`)

hj
`+ δi

=
j1∑
j=j0

wihj
ne(ci,j)

=
j1∑
j=j0

area(ci,j)
ne(ci,j)

= σ(V (i, B)).

We use Lemma 1 to evaluate the i1 − i0 + 1 ≤ k values R(δi), where i0 ≤ i ≤ i1, in
O(k log k) = O(k logn) time. After this, we get each value σ(V (i, B)) = wi · R(δi) in
constant time. J

SoCG 2019

20:12 Computing Shapley Values in the Plane

wi+1

h j

wi wi+2

h j1

h j0

wi+3

0

0

0

0

0

0

0

0

−1

−1

−1

−1

−1 −1

−1

Figure 7 Changes in the values of ne(·) when passing from a vertical slab to the next one. The
rightmost transition shows the need to deal with empty blocks for our argument.

4.4 Chains
In this section we consider the case where the points are a chain. As discussed before, it is
enough to consider that P is in the positive quadrant. After sorting, we can assume without
loss of generality that the points of P are indexed so that 0 < x(p1) < · · · < x(pn).

For increasing chains, the problem is actually an Airport game in disguise and Shapley
values can be computed using prefix sums. See Figure 8.

I Lemma 6. If P is an increasing chain in the positive quadrant, then we can compute the
Shapley values of the AreaAnchoredRect game in O(n logn).

1

1
2

1
3

1
4

1
5

1
6

p6

p5

p4

p3

p2

p1

Figure 8 Increasing chain. Each region is marked with the multiplicative weight for its area.

S. Cabello and T.M. Chan 20:13

w1 w2 w3 w4 w5 w6

h6

h5

h4

h3

h2

h1

1

1
2

1
3

1
4

1
5

1
6

1

1
2

1
3

1
4

1
5

1

1
2

1
3

1
4

1

1
2

1
3

1

1
2 1

w1 w2 w3 w4

1
4

1
5

1
6

1
3

1
4

1
5

1
2

1
3

1
4

1

1
2

1
3

p1

p2

p3

p4

p5

p6

p4

h1

h2

h3

c1,5 c2,5

c1,4 c2,4 c3,4

c1,3 c2,3 c3,3 c4,3

c1,2 c2,2 c3,2 c4,2 c5,2

c1,1 c2,1 c3,1 c4,1 c5,1 c6,1

Figure 9 Decreasing chain. Left: Each cell ci,j is marked with the multiplicative weight 1
ne(c) for

its area. Right: the cells whose contribution we have to add for the point p4.

H(n−m, B`,r)

pm

p`

pm

pr

p`

V (`+ 2, B`,r)

pr

Figure 10 Vertical and horizontal slabs for the divide-and-conquer.

It remains the more interesting case, when the chain is decreasing. See Figure 9 for
an example. In this case, the values ne(c) have a special structure, we do not need data
structures to obtain ne(ci,j), and the proof of Lemma 5 can be simplified.

We use a divide-and-conquer paradigm considering certain empty blocks defined by two
indices ` and r, where ` < r. Since the indexing of rows is not the most convenient in this
case, it is better to introduce the notation B`,r for the block B(`+ 1,m, n− r+ 2, n−m+ 1),
where m = m(`, r) = b(`+ r)/2c. Initially we will have ` = 0 and r = n+ 1, which means
that we start with the block B0,n+1 = B(1,m, 1,m). See Figure 10 for a generic case.

The blocks B`,r that we consider are in bijection with the intervals (`, r) that correspond
to nodes in a binary search tree with values {0, . . . , n+ 1} at the leaves. For each block B`,r
considered during the recursion, we compute σ(C) for each slab C within B`,r using Lemma 5.
Furthermore, within each block we compute the sums of σ() for prefixes of horizontal and
vertical slabs within the block. This means that, for a block B`,r, we compute

σ(V (`+ 1, B`,r)), σ(V (`+ 1, B`,r) ∪ V (`+ 2, B`,r)), . . . , σ(B`,r),

and a similar prefix sums for horizontal slabs.

SoCG 2019

20:14 Computing Shapley Values in the Plane

pn/2

pn/4

pn/8

p3n/16
pa

Figure 11 Expressing Rpa as the union of O(logn) prefixes of slabs within blocks.

For each point pa ∈ P , the rectangle Rpa is the disjoint union of O(logn) prefixes of slabs
within blocks considered in the algorithm. Whether we use a column prefix or a row prefix
of a block B(`, r) depends on the relative order of the index a of the point and the median
index m = m(`, r). See Figure 11. Thus, σ(Rpa

) can be computed as the sum of O(logn)
values that are already computed. This approach leads to the following result.

I Lemma 7. If P is a decreasing chain with n points in the positive quadrant, then we can
compute the Shapley values of the AreaAnchoredRect game in O(n log2 n) time.

When the point set is a chain over different quadrants, we can use symmetry to reduce it
to a few problems over the positive quadrant, possibly changing the increasing/decreasing
character of chain. From Lemmas 6 and 7 we then obtain the following.

I Theorem 8. If P is a chain with n points, then we can compute the Shapley values of the
AreaAnchoredRect game in O(n log2 n) time.

4.5 General point sets
We consider now the general case, where the points do not form a chain, as in Figure 5. Like
before, we restrict the discussion to the case where P is in the positive quadrant.

In this scenario we consider horizontal bands. A horizontal band B is the block between
two horizontal lines. Thus, B = {ci,j | j0 ≤ j ≤ j1} for some indices 1 ≤ j0 ≤ j1 ≤ n. See
Figure 12. We keep using the notation introduced for blocks. Thus, for each i ∈ [n], let
V (i, B) be the vertical slab with the cells ci,j ∈ B. Let PB be the points of P that are the
top-right corner of some cell of B. We use kB = |PB |. Because of our assumption on general
position, kB = j1 − j0 + 1 and thus kB is precisely the number of horizontal slabs in the
band B. Furthermore, for each point p ∈ PB we define the rectangle R(p,B) as the cells of
B to the left and bottom of p. Formally R(p,B) = {c ∈ B | c ⊂ Rp}.

Each band can be decomposed further into O(kB) empty blocks, and for each such block
we can use Lemma 5 to compute σ(C) for each slab C within each block. We can then
compute prefix sums of the values σ() for the horizontal and vertical slabs within each block,
and express σ(R(p,B)), for each single p ∈ PB, as the sum of O(kB) prefixes of rows, at
most one per block. This leads to the following.

S. Cabello and T.M. Chan 20:15

wi

h j

y j1

y j

y j−1

x1 x2 xnxn−1x ix i−1

ci+1, j

V
(i

,B
)

m1 col m2 col mt col

qt

qt−1

q2

R(q2, B)
H(j, Bt)

h j0

Figure 12 Notation for a band B.

I Lemma 9. For a band B with kB rows we can compute in O(((kB)2 + n) logn) time
σ(V (i, B)), for all i ∈ [n], and σ(R(p,B)), for all p ∈ PB.

Finally, we can express σ(Rp) as the sum of at most one prefix sum of vertical slabs
per band, and σ(R(p,B)) for the band B that contains p. Using O(

√
n) bands, each with

kB = O(
√
n), this means that we can compute each σ(Rp) as the sum of O(

√
n) values.

Again, the relevant values can be computed with some bookkeeping as prefix sums.

I Theorem 10. The Shapley values of the AreaAnchoredRect game for n points can be
computed in O(n3/2 logn) time.

4.6 Area of the bounding box
Here we would like to present some of the additional challenges when adapting the algorithm
for the AreaAnchoredRect game to the AreaBoundingBox game, defined by the
characteristic function vbb. A reduction using inclusion-exclusion shows that it suffices to
consider the anchored version, AreaAnchoredBoundingBox, when the points are in the
positive quadrant.

The geometric interpretation of the Shapley values for the AreaAnchoredBounding-
Box game becomes slightly more complicated because a cell c of A is inside bb(Q ∪ {o})
if and only if Q contains some point in NE(c) or it contains some point in NW(c) and in
SE(c). To obtain a precise description, we define the following values for each cell c of A:

ψNE(c) = 1
ne(c) + nw(c) + 1

ne(c) + se(c) −
1

ne(c) + nw(c) + se(c) ,

ψNW(c) = 1
ne(c) + nw(c) −

1
ne(c) + nw(c) + se(c) ,

ψSE(c) = 1
ne(c) + se(c) −

1
ne(c) + nw(c) + se(c) .

The next lemma provides a geometric description of the Shapley values; see Figure 13.

SoCG 2019

20:16 Computing Shapley Values in the Plane

∑
c

area(c) · ψNE(c)

∑
c

area(c) · ψNW(c)

∑
c

area(c) · ψSE(c)

bb(P ∪ {o})

p

o

Figure 13 The formula in Lemma 11.

I Lemma 11. If P is in the positive quadrant, then for each p ∈ P the Shapley value
φ(p, vabb) is∑
c∈A, p∈NE(c)

area(c) · ψNE(c) +
∑

c∈A, p∈NW(c)

area(c) · ψNW(c) +
∑

c∈A, p∈SE(c)

area(c) · ψSE(c).

Following the paradigm used for the AreaAnchoredRect game, we compute

σNE(C) =
∑
c∈C

area(c) · ψNE(c),

σNW(C) =
∑
c∈C

area(c) · ψNW(c),

σSE(C) =
∑
c∈C

area(c) · ψSE(c)

for multiple horizontal and vertical slabs C inside empty blocks and inside bands. For this
we use again the coherence between adjacent slabs of an empty block. More precisely, for
two columns within an empty block, the difference between the counters ne(), nw() and
se() is independent of the row. See Figure 14. This is the key idea to obtain an analogue of
Lemma 5 for the anchored bounding box.

The rest of the approach used for the AreaAnchoredRect game essentially works for
the AreaAnchoredBoundingBox game, with a few minor modifications. We refer to the
full version [5] for additional information. We summarize the final result.

I Theorem 12. The Shapley values of the AreaAnchoredBoundingBox and Are-
aBoundingBox games for n points can be computed in O(n3/2 logn) time. If the points
form a chain, then we need O(n log2 n) time.

5 Conclusions

In game theory, quite often one considers coalitional games where some point, say the origin,
has to be included in the solutions that are considered. This setting is meaningful, for
example, when we split the costs to connect to a fixed landmark. For example, we could
use the minimum enclosing disk that contains also the origin. We do this for the anchored
versions of the games. Our results also hold in this setting through an easy adaptation.

S. Cabello and T.M. Chan 20:17

hj

hj1

hj0

counter ne(ci,j)

hj

hj1

hj0

counter nw(ci,j)

hj

hj1

hj0

counter se(ci,j)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

1+

1+

1+

1+

1+

Figure 14 Changes in the counter ne(·) (left), nw(·) (center) and se(·) (right) depending on the
position of the points of P .

The problems we consider here are a new type of stochastic problems in computational
geometry. The relation to other problems in stochastic computational geometry is unclear.
For example, computing the expected length of the minimum spanning tree (MST) in the
plane for a stochastic point set is #P-hard [13]. Does this imply the same for the coalitional
game based on the length of the Euclidean MST? Is there also a FPRAS for computing
the Shapley values of the game defined using the Euclidean MST? Since the length of the
Euclidean spanning tree is not monotone, a priori some Shapley values could be potentially
0, which, at least intuitively, makes it harder to get approximations.

In the coalitional games that we consider, the Shapley values that we compute can be
interpreted as the relevance of each point within the point set for different geometric concepts.
It would be worthwhile to understand whether there is some relation between Shapley values
in geometric settings and the concept of depth in point sets, like the Tukey depth. For
stochastic points, this relation has been explored and exploited by Agarwal et al. [1].

References
1 Pankaj K. Agarwal, Sariel Har-Peled, Subhash Suri, Hakan Yildiz, and Wuzhou Zhang.

Convex Hulls Under Uncertainty. Algorithmica, 79(2):340–367, 2017. doi:10.1007/
s00453-016-0195-y.

2 Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. Range-max queries on
uncertain data. J. Comput. Syst. Sci., 94:118–134, 2018. doi:10.1016/j.jcss.2017.09.006.

3 Deepak Ajwani, Saurabh Ray, Raimund Seidel, and Hans Raj Tiwary. On Computing the
Centroid of the Vertices of an Arrangement and Related Problems. In Frank K. H. A. Dehne,
Jörg-Rüdiger Sack, and Norbert Zeh, editors, 10th International Workshop Algorithms and
Data Structures, WADS 2007, volume 4619 of Lecture Notes in Computer Science, pages
519–528. Springer, 2007. doi:10.1007/978-3-540-73951-7_45.

4 Boris Aronov and Matthew J. Katz. Batched Point Location in SINR Diagrams via Algebraic
Tools. ACM Trans. Algorithms, 14(4):41:1–41:29, 2018. doi:10.1145/3209678.

5 Sergio Cabello and Timothy M. Chan. Computing Shapley values in the plane. CoRR,
abs/1804.03894, 2018. arXiv:1804.03894.

6 Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. Computational Aspects of
Cooperative Game Theory. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2011. doi:10.2200/S00355ED1V01Y201107AIM016.

SoCG 2019

http://dx.doi.org/10.1007/s00453-016-0195-y
http://dx.doi.org/10.1007/s00453-016-0195-y
http://dx.doi.org/10.1016/j.jcss.2017.09.006
http://dx.doi.org/10.1007/978-3-540-73951-7_45
http://dx.doi.org/10.1145/3209678
http://arxiv.org/abs/1804.03894
http://dx.doi.org/10.2200/S00355ED1V01Y201107AIM016

20:18 Computing Shapley Values in the Plane

7 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

8 Xiaotie Deng and Qizhi Fang. Algorithmic Cooperative Game Theory. In Altannar
Chinchuluun, Panos M. Pardalos, Athanasios Migdalas, and Leonidas Pitsoulis, editors,
Pareto Optimality, Game Theory And Equilibria, pages 159–185. Springer New York, 2008.
doi:10.1007/978-0-387-77247-9_7.

9 Xiaotie Deng and Christos H. Papadimitriou. On the Complexity of Cooperative Solution
Concepts. Mathematics of Operations Research, 19(2):257–266, 1994. doi:10.1287/moor.19.
2.257.

10 Ulrich Faigle, Sándor P. Fekete, Winfried Hochstättler, and Walter Kern. On approximately
fair cost allocation in Euclidean TSP games. Operations-Research-Spektrum, 20(1):29–37, 1998.
doi:10.1007/BF01545526.

11 Thomas S. Ferguson. Game Theory, 2nd edition, 2014. Electronic text available at https:
//www.math.ucla.edu/~tom/Game_Theory/Contents.html.

12 Martin Fink, John Hershberger, Nirman Kumar, and Subhash Suri. Hyperplane separability
and convexity of probabilistic point sets. JoCG, 8(2):32–57, 2017. URL: http://jocg.org/
index.php/jocg/article/view/321.

13 Pegah Kamousi, Timothy M. Chan, and Subhash Suri. Stochastic minimum spanning trees
in Euclidean spaces. In Ferran Hurtado and Marc J. van Kreveld, editors, Proceedings of
the 27th ACM Symposium on Computational Geometry, SoCG’11, pages 65–74. ACM, 2011.
doi:10.1145/1998196.1998206.

14 Pegah Kamousi, Timothy M. Chan, and Subhash Suri. Closest pair and the post office problem
for stochastic points. Comput. Geom., 47(2):214–223, 2014. doi:10.1016/j.comgeo.2012.10.
010.

15 Stefan Langerman. On the Complexity of Halfspace Area Queries. Discrete & Computational
Geometry, 30(4):639–648, 2003. doi:10.1007/s00454-003-2856-2.

16 Stephen C. Littlechild and Guillermo Owen. A Simple Expression for the Shapely Value in A
Special Case. Management Science, 20(3):370–372, 1973. doi:10.1287/mnsc.20.3.370.

17 Nimrod Megiddo. Computational Complexity of the Game Theory Approach to Cost Allocation
for a Tree. Mathematics of Operations Research, 3(3):189–196, 1978. doi:10.1287/moor.3.3.
189.

18 Guillaume Moroz and Boris Aronov. Computing the Distance between Piecewise-Linear
Bivariate Functions. ACM Trans. Algorithms, 12(1):3:1–3:13, 2016. doi:10.1145/2847257.

19 Roger B. Myerson. Game theory - Analysis of Conflict. Harvard University Press, 1997.
20 Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory.

Cambridge University Press, 2007.
21 Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT Press, 1994.
22 Mark H. Overmars and Chee-Keng Yap. New Upper Bounds in Klee’s Measure Problem.

SIAM J. Comput., 20(6):1034–1045, 1991. doi:10.1137/0220065.
23 Pablo Pérez-Lantero. Area and Perimeter of the Convex Hull of Stochastic Points. Comput.

J., 59(8):1144–1154, 2016. doi:10.1093/comjnl/bxv124.
24 Justo Puerto, Arie Tamir, and Federico Perea. A cooperative location game based on the

1-center location problem. European Journal of Operational Research, 214(2):317–330, 2011.
doi:10.1016/j.ejor.2011.04.020.

25 Justo Puerto, Arie Tamir, and Federico Perea. Cooperative location games based on the
minimum diameter spanning Steiner subgraph problem. Discrete Applied Mathematics, 160(7-
8):970–979, 2012. doi:10.1016/j.dam.2011.07.020.

26 Alvin E. Roth, editor. The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge
University Press, 1988.

27 William Thomson. Cost allocation and airport problems, 2013. Rochester Center for Economic
Research Working Paper. Version of 2014 available at http://www.iser.osaka-u.ac.jp/
collabo/20140524/Airport_Problems.pdf.

http://dx.doi.org/10.1007/978-0-387-77247-9_7
http://dx.doi.org/10.1287/moor.19.2.257
http://dx.doi.org/10.1287/moor.19.2.257
http://dx.doi.org/10.1007/BF01545526
https://www.math.ucla.edu/~tom/Game_Theory/Contents.html
https://www.math.ucla.edu/~tom/Game_Theory/Contents.html
http://jocg.org/index.php/jocg/article/view/321
http://jocg.org/index.php/jocg/article/view/321
http://dx.doi.org/10.1145/1998196.1998206
http://dx.doi.org/10.1016/j.comgeo.2012.10.010
http://dx.doi.org/10.1016/j.comgeo.2012.10.010
http://dx.doi.org/10.1007/s00454-003-2856-2
http://dx.doi.org/10.1287/mnsc.20.3.370
http://dx.doi.org/10.1287/moor.3.3.189
http://dx.doi.org/10.1287/moor.3.3.189
http://dx.doi.org/10.1145/2847257
http://dx.doi.org/10.1137/0220065
http://dx.doi.org/10.1093/comjnl/bxv124
http://dx.doi.org/10.1016/j.ejor.2011.04.020
http://dx.doi.org/10.1016/j.dam.2011.07.020
http://www.iser.osaka-u.ac.jp/collabo/20140524/Airport_Problems.pdf
http://www.iser.osaka-u.ac.jp/collabo/20140524/Airport_Problems.pdf

S. Cabello and T.M. Chan 20:19

28 Dan E. Willard. New Data Structures for Orthogonal Range Queries. SIAM J. Comput.,
14:232–253, 1985. doi:10.1137/0214019.

29 Eyal Winter. The Shapley value. In R.J. Aumann and S. Hart, editors, Handbook of Game
Theory with Economic Applications, volume 3, chapter 53, pages 2025–2054. Elsevier, 1 edition,
2002. doi:10.1016/S1574-0005(02)03016-3.

30 Jie Xue, Yuan Li, and Ravi Janardan. On the separability of stochastic geometric objects,
with applications. Comput. Geom., 74:1–20, 2018. doi:10.1016/j.comgeo.2018.06.001.

SoCG 2019

http://dx.doi.org/10.1137/0214019
http://dx.doi.org/10.1016/S1574-0005(02)03016-3
http://dx.doi.org/10.1016/j.comgeo.2018.06.001

	Introduction
	Preliminaries
	Convex hull
	Axis-parallel problems
	Notation for axis-parallel problems
	Interpreting Shapley values geometrically
	Handling empty blocks
	Chains
	General point sets
	Area of the bounding box

	Conclusions

