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Preface

This volume is the post-proceedings of the 24th International Conference on Types for Proofs
and Programs, TYPES 2018, which was held at Universidade do Minho in Braga, Portugal,
between the 18th and the 21st of June in 2018.

The TYPES meetings are a forum to present new and on-going work in all aspects of
type theory and its applications, especially in formalized and computer assisted reasoning
and computer programming. The meetings from 1990 to 2008 were annual workshops of a
sequence of five EU funded networking projects. Since 2009, TYPES has been run as an
independent conference series. Prior to the 2018 meeting in Braga, TYPES meetings took
place in Antibes (1990), Edinburgh (1991), Båstad (1992), Nijmegen (1993), Båstad (1994),
Torino (1995), Aussois (1996), Kloster Irsee (1998), Lökeberg (1999), Durham (2000), Berg
en Dal near Nijmegen (2002), Torino (2003), Jouy-en-Josas near Paris (2004), Nottingham
(2006), Cividale del Friuli (2007), Torino (2008), Aussois (2009), Warsaw (2010), Bergen
(2011), Toulouse (2013), Paris (2014), Tallinn (2015), Novi Sad (2016), and Budapest (2017)
with post-proceedings published in various outlets, with the last six in LIPIcs.

The TYPES areas of interest include, but are not limited to: foundations of type theory
and constructive mathematics; applications of type theory; dependently typed programming;
industrial uses of type theory technology; meta-theoretic studies of type systems; proof
assistants and proof technology; automation in computer-assisted reasoning; links between
type theory and functional programming; formalizing mathematics using type theory.

The TYPES conferences are traditionally of an open and informal character. Selection of
talks for presentation at the conference is based on short abstracts – reporting on work in
progress or work presented or published elsewhere is welcome. A formal, fully reviewed post-
proceedings volume of unpublished work is prepared after the conference. The programme
of TYPES 2018 included four invited talks by Cédric Fournet (Microsoft Research, UK)
on Building Verified Cryptographic Components Using F*, Delia Kesner (IRIF CNRS and
Université Paris-Diderot, France) on Multi Types for Higher-Order Languages, Matthieu
Sozeau (INRIA, France) on The Predicative, Polymorphic Calculus of Cumulative Inductive
Constructions and its Implementation, and Josef Urban (CIIRC, Czech Republic) on Machine
Learning for Proof Automation and Formalization. The contributed part of the programme
consisted of 42 talks. One of the sessions of the programme payed tribute to Martin Hofmann,
and included three of the contributed talks, and an invited talk by Ralph Matthes (CNRS,
IRIT, University of Toulouse, France). The conference was attended by more than 80
researchers.

TYPES 2018 was sponsored by the COST Action CA15123 EUTypes, supported by COST
(European Cooperation in Science and Technology), Centro de Matemática da Universidade
do Minho, Conselho Cultural da Universidade do Minho, and Câmara Municipal de Braga.
The call for contributions to the post-proceedings of TYPES 2018 was open and not restricted
to the authors and presentations of the conference. Out of 8 submitted papers, 7 were selected
after several rounds of refereeing; the final decisions were made by the editors. The papers
span a wide range of interesting topics: Bishop’s set theory; meta-theory of logics and type
systems and its formalisation; models of cubical type theory; normalization by evaluation;
non-strictly positive data types; program verification; semantic subtyping. We thank both
the authors and the reviewers for their hard work.

Peter Dybjer, José Espírito Santo, and Luís Pinto
September 2019
24th International Conference on Types for Proofs and Programs (TYPES 2018).
Editors: Peter Dybjer, José Espírito Santo, and Luís Pinto

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




List of Authors

Davide Ancona
DIBRIS, Università di Genova, Italy

Ulrich Berger
Dept. of Computer Science, Swansea
University, United Kingdom
u.berger@swansea.ac.uk

Giuseppe Castagna
CNRS, IRIF, Université Paris Diderot,
France

Andrej Dudenhefner
Technical University of Dortmund, Germany
andrej.dudenhefner@cs.tu-dortmund.de

Ralph Matthes
IRIT (CNRS and University of Toulouse),
France
Ralph.Matthes@irit.fr

Iosif Petrakis
Ludwig-Maximilians-Universität Munich,
Germany
petrakis@math.lmu.de

Tommaso Petrucciani
DIBRIS, Università di Genova, Italy and
IRIF, Université Paris Diderot, France

Jakob Rehof
Technical University of Dortmund, Germany
jakob.rehof@cs.tu-dortmund.de

Anders Schlichtkrull
DTU Compute - Department of Applied
Mathematics and Computer Science,
Technical University of Denmark, Denmark
andschl@dtu.dk

Filippo Sestini
Functional Programming Laboratory,
University of Nottingham, United Kingdom
filippo.sestini@nottingham.ac.uk

Anton Setzer
Dept. of Computer Science, Swansea
University, United Kingdom
a.g.setzer@swansea.ac.uk

Taichi Uemura
University of Amsterdam, The Netherlands
t.uemura@uva.nl

Elena Zucca
DIBRIS, Università di Genova, Italy

24th International Conference on Types for Proofs and Programs (TYPES 2018).
Editors: Peter Dybjer, José Espírito Santo, and Luís Pinto

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Martin Hofmann’s Case for Non-Strictly Positive
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Abstract
We describe the breadth-first traversal algorithm by Martin Hofmann that uses a non-strictly positive
data type and carry out a simple verification in an extensional setting. Termination is shown by
implementing the algorithm in the strongly normalising extension of system F by Mendler-style
recursion. We then analyze the same algorithm by alternative verifications first in an intensional
setting using a non-strictly positive inductive definition (not just a non-strictly positive data type),
and subsequently by two different algebraic reductions. The verification approaches are compared in
terms of notions of simulation and should elucidate the somewhat mysterious algorithm and thus
make a case for other uses of non-strictly positive data types. Except for the termination proof,
which cannot be formalised in Coq, all proofs were formalised in Coq and some of the algorithms
were implemented in Agda and Haskell.
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1:2 Martin Hofmann’s Case for Non-Strictly Positive Data Types

1 Introduction

Given a finitely-branching tree t with labels at all nodes there are different ways to traverse
it starting with its root. Depth-first traversal first goes along the entire left-most1 branch
until the leaf is reached and then backtracks and pursues with the next sibling. An efficient
implementation of depth-first traversal is possible by using a stack of entry points into
subtrees of t. In the beginning, t is pushed on the stack. While the stack is non-empty, a tree
is popped from it, its root visited and its children pushed on the stack from right to left. If
the tree is infinite, depth-first traversal does not visit all nodes in most cases. In particular,
if the left-most branch is infinite, the algorithm will be confined to traverse this branch. (It
visits all nodes if and only if all branches different from the right-most branch are finite.)

The described problem does not occur with breadth-first traversal. The latter means that
it first visits the root, then the roots of all immediate subtrees from left to right2, then in
turn the roots of their immediate subtrees from left to right, etc. An efficient implementation
is given by way of an efficiently implemented first-in, first-out queue (FIFO). The description
of the algorithm is as before for depth-first traversal, but now with the FIFO operations.
However, the immediate subtrees of the currently treated tree are put into the queue from
left to right.

While these algorithms are easy to provide in imperative languages with worst-case
linear execution time, functional programming languages only easily provide amortized linear
execution time for the breadth-first traversal. (In functional programming, the “traversal”
is replaced by the task to construct the list of all node labels in the order the imperative
algorithm would traverse them.) Okasaki [12] presented for the first time an elegant and
worst-case constant-time functional implementation of FIFO, thus yielding worst-case linear-
time breadth-first traversal. However, there are also different functional implementations
with worst-case linear time [8].

This paper is about breadth-first traversal in a functional programming language, but
efficiency is not the concern here. Instead, we explore an algorithm for breadth-first traversal
invented by Martin Hofmann, as presented in his posting [6] to the TYPES forum mailing list.
In a draft [7], Martin Hofmann shows how he crafted the data type on which his proposal is
based. There one also finds a sketch of a correctness proof by induction over binary trees.

We will first explain what is so special about Hofmann’s algorithm. In dependent type
theory one normally wants all programs to be terminating, i. e., the terms to be strongly
normalizing. A well-established way of ensuring strong normalization is to restrict recursion
to structural recursion on inductive structures obtained as least fixed points of monotone
operators. Monotonicity is usually replaced by the stronger syntactic condition of positivity,
which means that the expression that describes the operation must have its formal parameter
at positive positions only. Positivity does not exclude going twice to the left of the arrow
for the function type – only strict positivity would forbid that, but that latter is imposed
in most implementations of type theory, including the Coq system and Agda. Non-strictly
positive data types may not have a naive set-theoretic semantics [15], but they exist well in
system F [3], i. e., polymorphic lambda-calculus [14], where they can be encoded as weakly
initial algebras, in other words, as data types with constructors together with an iterator
for programming structurally recursive functions. As evaluation in system F is strongly
normalizing, all those structurally recursive programs are terminating.

1 The choice of the left direction is only for definiteness of our description.
2 This is again just for definiteness.
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Hofmann’s algorithm is based on the following non-strictly positive data type (our
notation):

Inductive Rou :=
| Over : Rou
| Next : ((Rou→ ListN)→ ListN)→ Rou

Rou stands for “routine”, and there is the constructor Over for the routine that is not executing
further, and the crucial non-strictly positive constructor Next that takes a functional of type
(Rou→ ListN)→ ListN as argument to yield a composite routine.3 Rou appears at a position
twice to the left of → in the type of the argument, hence positively. As we mentioned above,
such inductive definitions are ruled out in most proof assistants, notably in the Coq system
and in Agda.

While there is a generic iterator for Rou in system F – as mentioned before – the recursive
functions needed for the algorithm are not all instances of the iterator. Functions that
would calculate the same values can be defined by iteration, but they would not reflect the
algorithm properly. However, this shortcoming can be solved by using recursive functions
in the style of Mendler [11] which can be provided by a (mild) extension of system F. A
detailed account of these issues, which also settles the question of termination, is given in
Sect. 5. Besides that, the paper concentrates on different correctness proofs, most of them
based on simulations by related algorithms using different intermediate data types, with the
aim to reveal and explain the internal structure of Hofmann’s algorithm and to replace the
impredicative type Rou by a predicative type while preserving the structural characteristics
of the original algorithm.

Overview of the paper : After presenting an executable specification of breadth-first
traversal as the concatenation of all levels (niveaux) of a tree (Sect. 2) we introduce the
data type of routines and Hofmann’s algorithm breadthfirst (Sect. 3) and prove its partial
correctness (i. e., correctness assuming termination) following Hofmann’s proof sketch (Sect. 4).
Termination is proven in Sect. 5 by implementing the functions and data types in the strongly
normalising extension of system F by Mendler-style recursion.

Having thus set the stage, we dive into the analysis of Hofmann’s algorithm. We begin
with a correctness proof (Sect. 6) based on a non-strictly positive inductive representation
relation between routines and double lists (lists of lists) that does not require auxiliary
functions. This proof does not require extensionality which is a natural prerequisite for
Hofmann’s correctness proof. Next we present a proof based on the natural extension of
breadth-first traversal to forests (lists of trees) providing interesting insight into the internal
structure of Hofmann’s algorithm (Sect. 7). We give a meaning to the routine corresponding
to a forest ts. It is the routine (c ts) computing the traversal of a forest ts while recursively
calling (c (sub ts)) for the immediate subforest (sub ts) of ts. The function extract evaluates
these recursive functions, and the function br in Hofmann’s algorithm, that initially seems to
be mysterious, is decoded as an operation which computes (c (t :: ts)) from (c ts) and t.

Building on this insight we construct two predicative versions of this algorithm. The
first one introduced in Sect. 8 is based on the observation that the routines occurring in
the algorithm can be represented as lists of functions List N → List N. Therefore we can
replace the impredicative data type Rou by the predicative type Rou′ := List (ListN→ ListN).

3 ListN is the type of lists of natural numbers which are taken here for simplicity; any list type would be
fine. The data type is tailor-made to our breadth-first traversal problem that requires to compute an
element of ListN.

TYPES 2018



1:4 Martin Hofmann’s Case for Non-Strictly Positive Data Types

Meaning is given to the routine corresponding to a forest ts as the routine traverse ts : Rou′
which is the list of functions appending the levels of the forest. As before, the function br′
corresponding to br computes (traverse (t :: ts)) from (traverse ts). The second predicative
version (Sect. 9) observes that the functions in Rou′ constructed in the algorithms are append
functions, i. e., functions of the form λl . l′++ l. They can be represented as lists of natural
numbers, so we can replace Rou′ by the simpler type Rou′′ := List2 N of double lists. These
double lists correspond to the list of levels in the specification of breadth-first traversal.

The findings are summarized in Sect. 10 where we show that the various algorithms
and proofs all have the structure of a “simulation of systems”. In addition we show that
the two predicative algorithms provide a splitting of Hofmann’s algorithm into two simpler
phases. We round the paper off with a discussion of and pointers to the implementation and
formalization of our work in the proof assistants Coq and Agda, highlighting the difficulties
caused by non-strict positivity and how to overcome them (Sect. 11), and conclude with a
reflection on what was achieved and an outlook to a possible extension of the domain of the
algorithms to infinite trees.

2 Specification of breadth-first traversal

We fix the simplest setting to express the task of programming breadth-first traversal: our
trees are not arbitrarily finitely branching but just binary, and they are even finite. As did
Hofmann, we put labels on the inner nodes and the leaves. For simplicity, we restrict the
type of labels to be the natural numbers but any other type could be used instead.

Inductive Tree :=
| Leaf : N→ Tree
| Node : Tree→ N→ Tree→ Tree

We use the typing conventions

n : N
l : ListN
ls : List2N Def= List (List N)
t, tl, tr : Tree (tl and tr are typically used for the left and right subtree, respectively)

An extended use is made of the auxiliary function zip that “zips” the successive lists in
both arguments using the append function for lists (denoted by ++). More precisely, our zip
behaves like zipWith (++) (with zipWith in the Haskell basic library, and (++) the Haskell
notation for append viewed as a function) for arguments of equal lengths but if lengths differ
zip extends the shorter argument with empty lists wheras zipWith (++) truncates the longer
argument.

zip : List2N→ List2N→ List2N
zip [] ls = ls zip (l :: ls) [] = l :: ls zip (l :: ls) (l′ :: ls′) = (l++ l′) :: zip ls ls′

I Lemma 1 (basic properties of zip).
(a) zip ls [] = ls.
(b) zip ls1 (zip ls2 ls3) = zip (zip ls1 ls2) ls3.

We create the list of labels for every horizontal section of the tree, starting with its root
(niv refers to the French word “niveaux” for levels – the function collects the labels level-wise).
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niv : Tree→ List2N
niv (Leaf n) = [[n]] niv (Node t1 n t2) = [n] :: zip (niv t1) (niv t2)

From the definition, we see that niv is compositional, which the breadth-first traversal
function is not (as also remarked in Hofmann’s draft [7]). The latter is defined as follows:

breadthfirstspec : Tree→ ListN
breadthfirstspec t = flatten (niv t)

Here, flatten : List2N → ListN denotes concatenation of all those lists (the monad multi-
plication of the list monad). We do not consider this description of breadthfirstspec as an
implementation but as an executable specification.

I Example 2. Let t correspond to the following graphical representation:

1

2

4

6 7

5

8

10 11

9

3

Then niv t = [[1], [2, 3], [4, 5], [6, 7, 8, 9], [10, 11]] and breadthfirst t = [1, . . . , 11].

3 Definition of breadth-first traversal via routines

We again show the type Martin Hofmann came up with in his 1993 posting [6]:

Inductive Rou :=
| Over : Rou
| Next : ((Rou→ ListN)→ ListN)→ Rou

The names of the constructors are not those chosen by Hofmann but were suggested to
us by Olivier Danvy (since they are used for programming with coroutines). A routine of the
form (Next f) comes with a functional f of type (Rou → ListN) → ListN whose argument
can be seen as a “continuation”, and f k, with k such a continuation, denotes a list that
could be the result of our breadth-first traversal problem. In general, elements of Rou should
be seen as encapsulations of routines for the computation of lists of natural numbers.

We use the typing conventions

c : Rou (routines)
k : Rou→ ListN (continuations)
f : (Rou→ ListN)→ ListN

TYPES 2018



1:6 Martin Hofmann’s Case for Non-Strictly Positive Data Types

We define the following function (called apply by Hofmann) naively by pattern matching
on its first argument and show that this is a legal definition of a terminating function below
in Section 5:

unfold : Rou→ (Rou→ ListN)→ ListN
unfold Over = λk . kOver unfold (Next f) = f

The name unfold seems justified (and more intuitive than Hofmann’s choice of name) for the
second case of the definition since it unfolds (Next f) to its argument f . Unfolding Over is
curious since it yields again an expression involving Over.

The traversal algorithm is expressed as a transformation on routines, instructed by the
tree argument. It is by plain iteration on that tree argument (◦ denotes composition of
functions).

br : Tree→ Rou→ Rou
br (Leaf n) c = Next (λk . n :: unfold c k)
br (Node tl n tr) c = Next

(
λk . n :: unfold c (k ◦ br tl ◦ br tr)

)
We define a function extract which computes a result from a given routine. Again, we

naively define this function by pattern matching on the inductive type of routines, but we
here allow ourselves a recursive call, as follows:

extract : Rou→ ListN
extract Over = [] extract (Next f) = f extract

What is noteworthy here is that the recursive call is not to extract with some term smaller
than (Next f) in any sense. The term extract is even fed in as an argument to the term f ,
which is type-correct since extract is of the type of a continuation. In Section 5, we will show
that this is a plain form of iteration, thus ensuring termination and well-definedness. As we
are doing for unfold, we currently view the equations for extract as a specification, which
allows us to carry out verification in the next section.

Hofmann’s algorithm calculates the routine transformer br for the given tree, applies it
to the trivial routine and then extracts the result from the output routine:

breadthfirst : Tree→ ListN
breadthfirst t = extract(br tOver)

Of course, we have to make sure that breadthfirst is a total function and that its results agree
with those of breadthfirstspec.

4 Martin Hofmann’s verification of partial correctness

Here, we follow the sketch in Hofmann’s notes [6] and argue how functional correctness
(i. e., the algorithm’s result meets the specification) follows from the equational specification
of unfold and extract and the definitions of the other functions (br and those used for the
executable specification in Section 2).

We define a routine transformer that is instructed by a double list, by plain iteration on
that list.

γ : List2N→ Rou→ Rou
γ [] c = c γ (l :: ls) c = Next

(
λk . l++

(
unfold c (k ◦ γ ls)

))
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The following three lemmas (stated in Hofmann’s notes [6] without their simple proofs
shown below) on the function γ are all the preparations needed for the proof of functional
correctness (cf. Theorem 6).

I Lemma 3. extract (γ ls Over) = flatten ls.

Proof. Induction on ls.
extract (γ [] Over) = extract Over = [] = flatten [] .
extract (γ (l :: ls) Over) = extract (Next (λk . l++(unfold Over (k ◦ γ ls))))
= l++((extract ◦ γ ls) Over) IH= l++ flatten ls = flatten(l :: ls) . J

By ext= we denote extensional, i. e., pointwise, equality of functions. The following
lemma uses two instances of the principle of extensionality. The first states that functions
f : (Rou → ListN) → ListN respect extensional equality, i. e., k ext= k′ implies f k = f k′.
The second states extensionality of the constructor Next : ((Rou→ ListN)→ ListN)→ Rou
(w. r. t. extensional equality of its argument). The following two lemmas (4 and 5) and
consequently Theorem 6 depend on extensionality for their proofs.

I Lemma 4. γ ls ◦ γ ls′ ext= γ (zip ls ls′).

Proof. Induction on ls and ls′.
γ [] ◦ γ ls′ ext= γ ls′ = γ (zip [] ls′) .

γ ls ◦ γ [] ext= γ ls = γ (zip ls []) .
γ (l :: ls) (γ (l′ :: ls′) c)

= γ (l :: ls) (Next (λk′ . l′++(unfold c (k′ ◦ γ ls′))))
= Next (λk . l++(unfold (Next (λk′ . l′++(unfold c (k′ ◦ γ ls′))))) (k ◦ γ ls))
= Next (λk . l++(l′++(unfold c (k ◦ γ ls ◦ γ ls′))))
= Next (λk . l++(l′++(unfold c (k ◦ γ (zip ls ls′))))) (by ind. hyp. and extensionality)
= γ ((l++ l′) :: zip ls ls′) c (by associativity of ++)
= γ (zip (l :: ls) (l′ :: ls′)) c . J

I Lemma 5. br t ext= γ (niv t).

Proof. Induction on t.
br (Leaf n) c = Next (λk . n :: unfold c k) = Next (λk . [n] ++(unfold c k)) = γ [[n]] c

= γ (niv (Leaf n)) c .
br (Node t1 n t2) c = Next (λk . n :: unfold c (k ◦ br t1 ◦ br t2))
IH, extensionality= Next (λk . n :: unfold c (k ◦ γ (niv t1) ◦ γ (niv t2)))

Lem. 4, extensionality= Next (λk . n :: unfold c (k ◦ γ (zip (niv t1) (niv t2))))
= γ ([n] :: zip (niv t1) (niv t2)) c = γ (niv (Node t1 n t2)) c . J

From these lemmas, we now directly (without further inductive arguments) obtain the
main result of this section.

I Theorem 6. breadthfirst ext= breadthfirstspec, i. e., for all trees t, we have
breadthfirst t = breadthfirstspec t.

Proof. breadthfirst t = extract (br tOver) Lem. 5= extract (γ (niv t) Over)
Lem. 3= flatten (niv t) = breadthfirstspec t . J

This completes the proof based on the sketch by Martin Hofmann.
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5 Termination of Hofmann’s algorithm

In his 1993 posting [6] Martin Hofmann argued about the existence of the functions unfold
and extract through an impredicative encoding of data types in system F, equipped with
parametric equality (equality that is defined as a logical relation by induction over the type
of terms being equated, which is impredicative for the case of the universal quantifier). This
is, in our opinion, not fully satisfactory, since a verification with parametric equality only
shows the existence of a function that yields breadth-first traversal but does not verify the
termination of the algorithm itself that is expressed by the defining equations.

Like Martin Hofmann, we are heading for a language-based termination guarantee: We
implement the data types and functions of this algorithm in system F extended by Mendler-
style recursion, which is known to be strongly normalising. In fact, all relevant data types
(including Rou) and all functions defined by iteration can be defined in plain system F in
the usual way [4]. Mendler’s extension is only needed to properly model the algorithmic
behaviour of the function unfold.

We begin with the system F encodings of the type Rou and the function extract as an
example of a plain iteration, since in these cases the encoding is very similar to Mendler’s
encoding.

If we strip off the names of the constructors so as to fit into the scheme of categorical
data types4, we get Rou as least fixed point of the “functor” RouF, defined on types by

RouFA := 1 + ((A→ ListN)→ ListN) ,

with the one-element type 1 (a. k. a. unit type with only inhabitant ∗) and the type constructor
+ for disjoint sums (with injections inl and inr and case analysis operator [s0, s1] : A0+A1 → C

for si : Ai → C, i = 0, 1). Clearly, the type A only occurs at a non-strictly positive position
in the right-hand side. The usual impredicative encoding of least fixed points in system F
(also called “Church encoding”) yields as least fixed point of RouF

RouImp := ∀A . (RouFA→ A)→ A .

Iteration over Rou is then given by “catamorphisms” for RouF-algebras since Rou itself is
the carrier of the initial RouF-algebra. Beware that initiality holds only with respect to a
categorical semantics. Computationally, one only gets weak initiality, that is, the existence
but not the uniqueness of the morphism (given by the iterator) in the standard commuting
diagram for initial algebras. Moreover, the single5 equation expressed by the commuting
diagram is computationally directed: we will later use the symbol B∗ for that relation,
instead of the symmetric = that appears in traditional categorical modeling.

This weak initiality principle already captures the behaviour of extract (but we will have
to define extract differently later since also unfold needs to be taken care of). The details are
as follows: We define the iterator

RouIt : ∀A . (RouFA→ A)→ RouImp → A RouItAs t = t A s

4 In the Haskell programming language, we would keep the constructors and define data RouF a = Over
| Next ((a -> List Nat) -> List Nat).

5 before we make informal use of pattern matching that splits the rule into two rules
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Due to positivity of RouF, there is a closed term RouFmap, defined by case analysis on
the sum as follows (slightly informally, for readability):

RouFmap : ∀A,B . (A→ B)→ RouFA→ RouFB
RouFmapAB hA→B (inlu1) = inlu
RouFmapAB hA→B (inr f (A→List N)→List N) = inr

(
λkB→List N . f (k ◦ h)

)
This allows us to define the RouF-algebra foldRouImp with carrier RouImp:

foldRouImp : RouF RouImp → RouImp
foldRouImp t A s = s

(
RouFmap RouImp A (RouItAs) t

)
.

The impredicative implementations of the constructors, OverImp and NextImp, are now instances
of foldRouImp:

OverImp := foldRouImp (inl ∗) : RouImp
NextImp := foldRouImp ◦ inr : ((RouImp → List N)→ List N)→ RouImp

For convenience, we define (λ_ is a void abstraction over unit type):

RouItImp : ∀A .A→ (((A→ ListN)→ ListN)→ A)→ RouImp → A

RouItImp As0 s1 = RouItA [λ_ . s0 , s1]

We will write B for the one-step reduction relation of system F and B∗ for its reflexive
transitive closure. The characteristic reduction behaviour of RouItImp is given by

RouItImp As0 s1 OverImp B∗ s0

RouItImp As0 s1 (NextImp f) B∗ s1

(
λkA→List N. f

(
k ◦ (RouItImp As0 s1)

))
We can implement extract, using the iterator with A := ListN:

extractImp : RouImp → ListN
extractImp = RouItImp (ListN) []

(
λg(List N→List N)→List N . g(λl . l)

)
and obtain proper recursive behaviour with three subsequent steps of β-reduction and one
η-reduction step (that can be assumed in Church-style versions of system F):

extractImp OverImp B
∗[] extractImp (NextImp f)B∗ f extractImp

The equational specification of unfold may seem innocuous, but Harper and Mitchell [5]
have shown that even rewrite rules that just have the form of a projection may break
termination when added to system F. Consider the type S := ∀A,B . (A→ A)→ B → B,
which is trivially inhabited by a term that maps constantly to the identity on B. A different
inhabitant J ′ of S is added to system F, and the reduction relation of system F is extended
by a specific rule for J ′: J ′AAfA→A B f for any type A. It is easy to construct a term
in this extension that rewrites in several steps to itself, hence creating an infinite loop.6
However, unfold is terminating, albeit not for trivial reasons.

We use the extension of system F by Mendler-style recursion which is strongly normaliz-
ing [11]. Already Mendler’s original work accommodates non-strictly positive inductive types,
as our Rou, but it was later shown that even that restriction to positivity is not necessary for

6 This is also presented in detail in a paper by the second author [10, p.122], together with a discussion
of a variant of the scheme of inductive types with iteration for which termination fails.
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strong normalization (see [9, Section 6.1.1] for a semantic and [1] for a syntactic proof). We
describe only the instance of Mendler-style primitive recursion that governs the data type
RouMen, which is the one obtained for RouF. Mendler’s extension permits the construction of
a RouF-algebra foldRouMen with carrier RouMen

Def= µRouF (with µ in the sense of Mendler),
i. e., we have

foldRouMen : RouF RouMen → RouMen with recursor RouRec : ∀A .StepMen A→ RouMen → A

where the type of step functions is

StepMenA := ∀X . (X → RouMen)→ (X → A)→ RouFX → A .

A step function s : StepMen A transforms a function X → A into a function RouFX → A,
possibly using a function X → RouMen. RouRec takes a step function and then transforms
elements of RouMen into elements of A. We have the rewrite rule

RouRecAs (foldRouMen t) B sRouMen (λxRouMen . x) (RouRecAs) t .

The individual constructors for RouMen are obtained as in the impredicative encoding:
OverMen := foldRouMen (inl ∗) and NextMen f := foldRouMen (inr f). Define the step terms for
extract and unfold as follows (which could be mapped to terms of system F with unit and
sum types):

sextract : StepMen (ListN)
sextract X iX→RouMen rX→List N (inlu1) = []
sextract X iX→RouMen rX→List N (inr f (X→List N)→List N) = f r

sunfold : StepMen Aunfold where Aunfold := (RouMen → ListN)→ ListN
sunfold X iX→RouMen rX→Aunfold (inlu1) = λk . kOverMen
sunfold X iX→RouMen rX→Aunfold (inr f (X→List N)→List N) = λk . f (k ◦ i)

Define the Mendler-style implementations:

extractMen : RouMen → ListN extractMen = RouRec (ListN) sextract
unfoldMen : RouMen → Aunfold unfoldMen = RouRec Aunfold sunfold

Obviously, extractMen OverMen B∗[], extractMen (NextMen f)B∗ f extractMen (as for the impre-
dicative implementation) and unfoldMen OverMen B∗ λk . kOverMen. Finally,

unfoldMen (NextMen f)B∗ λk . f (k ◦ (λx . x))B∗ f ,

where the latter reduction has one β- and two η-reduction steps at the end. Thus, extractMen
and unfoldMen are implementations of Hofmann’s functions, and the original defining equations
become reductions in the sense of B∗ of the Mendler-style extension of system F.

Of course, one can also encode any algebraic data types such as lists and trees and
functions defined by iteration on elements of such types in Mendler’s system. This can be
done in a similar (but simpler) way as sketched above for Rou and extract in plain system
F. Moreover, the interpretation is algorithmically faithful to the equational specification of
these functions in the sense that the defining equations become one or more term rewriting
steps in Mendler’s terminating system. In summary we have the following

I Theorem 7. The data types and functions involved in Hofmann’s algorithm for breadth-first
traversal can be algorithmically faithfully interpreted in the strongly normalising system of
Mendler-style recursion. Therefore, Hofmann’s algorithm is terminating.
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6 Verification by a non-strictly positive inductive relation

We now embark on giving alternative correctness proofs of Hofmann’s algorithm. They
explore different concepts and provide different intuitions for the correctness of this algorithm
(see Section 10 for a mathematical assessment of their relations). The first and mathematically
most challenging alternative proof given in this section uses a non-strictly positive inductive
relation between routines c : Rou and double lists ls : List2N that, intuitively, states that c
“represents” ls.

First, we define when a continuation k is an extractor for a binary relation R ⊆ Rou×List2N
(seen as a candidate for a representation relation) and an “initial” double list ls′.

isextractor(R, ls′, k) Def≡ ∀c, ls′′ . R(c, ls′′)→ k c = flatten (zip ls′ ls′′) .

The fact that R occurs negatively in the formula isextractor(R, ls′, k) means that the weaker
R is the more constraints are imposed in order for k to be an extractor for R and ls′. The
name “extractor” should convey the intuition that continuation k “extracts” the “right”
result for ls′′ out of routines c representing ls′′ in the sense of R with initialization ls′. Note
that the formula for the prescribed result does not mention the niv operation of the original
specification breadthfirstspec. Lemma 8 below shows that extract is an extractor for a suitable
representation relation R and initialization ls′ = [].

With this auxiliary concept of extractor (which, after all, is only an abbreviation for a
rather short formula of logic) we now define the representation relation rep ⊆ Rou× List2N
inductively by two rules. Not surprisingly, rep takes the role of relation R in the foregoing
definition. The reason why we formulated the notion of an extractor with a general relation
argument R is that this allows us to conveniently express the induction principle for rep (as
can be seen in the proof of Lemma 8 below). The inductive definition of rep is as follows:

(over)
rep(Over, [])

∀k, ls′ . isextractor(rep, ls′, k)→ f k = l++ flatten (zip ls′ ls)
(next)

rep(Next f, l :: ls)
where in (next) the variables f, l, ls are implicitly universally quantified. The premise of the
rule (next) contains the predicate rep positively (though not strictly positively) and therefore
depends monotonically on it. By Tarski’s fixed point theorem it follows that the smallest
relation rep closed under the rules (over) and (next) exists.

Note that, since the premise of the rule (next) refers only to the result of applying
f to k, the predicate rep respects extensional equality in the sense that if f ext= f ′, then
rep(Next f, l :: ls) iff rep(Next f ′, l :: ls). Therefore, unlike the proofs in the previous section,
the proofs of the following lemmas do not depend on extensionality principles.

The recursive function extract, equationally specified in Section 3 as a continuation, is
indeed an extractor for rep and the empty list:

I Lemma 8. isextractor(rep, [], extract), i. e., ∀c, ls . rep(c, ls)→ extract c = flatten ls.

Proof. Setting R0(c, ls′′) Def≡ extract c = flatten ls′′, isextractor(rep, [], extract) is equivalent to
rep ⊆ R0. We prove the latter by (non-strictly positive) induction, i. e., we show that the
closure conditions (over) and (next) hold if rep is replaced by R0.

(over): R0(Over, []) means extract Over = flatten [], which holds since both sides equal [].
(next): Assume ∀k, ls′ . isextractor(R0, ls′, k) → f k = l++ flatten (zip ls′ ls), which is our

induction hypothesis. Since, trivially, isextractor(R0, [], extract), the induction hypothesis
yields f extract = l++ flatten ls, which is equivalent to our goal, R0(Next f, l :: ls). J
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The following lemma shows that br t, defined in Section 2 as a routine transformer, is
well-behaved w. r. t. representation: if the argument routine c represents a (double) list ls,
then the resulting routine represents zip (niv t) ls: 7

I Lemma 9. rep(c, ls)→ rep(br t c, zip (niv t) ls).

Proof. Induction on t : Tree.
Case t = Leaf n: Assume rep(c, ls).

We have to show rep(Next (λk . n :: unfold c k), zip [[n]] ls).
Subcase ls = []: Then zip [[n]] ls = [n] :: [] and, since rep(c, []), c = Over. Hence we have to

show rep
(
Next (λk . n :: unfold Over k), [n] :: []

)
, i. e., for all k, ls′, if isextractor(rep, ls′, k),

then n :: kOver = [n] ++ flatten (zip ls′ []), i. e., kOver = flatten ls′. But the latter is
obtained by instantiating the assumption isextractor(rep, ls′, k) with Over and [].

Subcase ls = l :: ls0: Then zip [[n]] ls = (n :: l) :: ls0 and, since rep(c, l :: ls0), c = Next f
with

(+) ∀k, ls′ . isextractor(rep, ls′, k)→ f k = l++ flatten (zip ls′ ls0) .

We have to show that rep
(
Next (λk . n :: unfold (Next f) k), (n :: l) :: ls0

)
, i. e.,

∀k, ls′ . isextractor(rep, ls′, k)→ n :: f k = (n :: l) ++ flatten (zip ls′ ls0) .

But, cancelling n, this is exactly (+).
Case t = Node tl n tr: By induction hypothesis, for all c, ls with rep(c, ls) and all t′ ∈
{tl, tr}, rep(br t′ c, zip (niv t′) ls).
Assume rep(c, ls). We have to show rep(br t c, zip (niv t) ls), i. e.,

rep
(
Next (λk . n :: unfold c (k ◦ br tl ◦ br tr)), zip ([n] :: zip (niv tl) (niv tr)) ls

)
.

Subcase ls = []: Then zip ([n] :: zip (niv tl) (niv tr)) ls = [n] :: zip (niv tl) (niv tr), and, since
rep(c, []), c = Over. Hence, we have to show that for all k, ls′ such that isextractor(rep, ls′, k)
we have n :: (k ◦ br tl ◦ br tr) Over = [n] ++ flatten (zip ls′ (zip (niv tl) (niv tr))), i. e.,

k (br tl (br tr Over)) = flatten (zip ls′ (zip (niv tl) (niv tr))) .

Using isextractor(rep, ls′, k), instantiated with
c := br tl (br tr Over) and ls′′ := zip (niv tl) (niv tr), our goal reduces to showing
rep

(
br tl (br tr Over), zip (niv tl) (niv tr)

)
which, by the first induction hypothesis, further

reduces to rep(br tr Over, niv tr). Finally, by the second induction hypothesis (with ls := []),
the latter reduces to (over).

Subcase ls = l :: ls0: Then
zip ([n] :: zip (niv tl) (niv tr)) ls = (n :: l) :: zip (zip (niv tl) (niv tr)) ls0 and therefore, by the
assumption rep(c, ls), we get c = Next f with

(++) ∀k, ls′ . isextractor(rep, ls′, k)→ f k = l++ flatten (zip ls′ ls0) .

We have to show
rep

(
Next (λk . n :: unfold c (k ◦ br tl ◦ br tr)), (n :: l) :: zip (zip (niv tl) (niv tr)) ls0

)
,

i. e., for all k, ls′ with isextractor(rep, ls′, k),

n :: f (k ◦ br tl ◦ br tr) = (n :: l) ++ flatten
(
zip ls′ (zip (zip (niv tl) (niv tr)) ls0)

)
.

7 This descriptional pattern suggests to define representation of double list transformers by routine
transformers in the usual style of logical relations. With that definition in place, the lemma could be
stated as representation of zip (niv t) by br t.
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Deleting n and using associativity for zip we end up with the goal f (k ◦ br tl ◦ br tr) =
l++ flatten

(
zip (zip ls′ (zip (nivtl) (niv tr))) ls0

)
. By (++) it suffices to show

isextractor
(
rep, zip ls′ (zip (niv tl) (niv tr)), k ◦ br tl ◦ br tr

)
.

Assume rep(c, ls′′). We have to show

k (br tl (br tr c)) = flatten
(
zip (zip ls′ (zip (niv tl) (niv tr))) ls′′

)
.

By the assumption isextractor(rep, ls′, k), and using associativity of zip, it suffices to
show rep

(
br tl (br tr c), zip (niv tl) (zip (niv tr) ls′′)

)
. The first induction hypothesis reduces

this to rep(br tr c, zip (niv tr) ls′′) and the second further to rep(c, ls′′), which holds by
assumption. J

Alternative proof of Theorem 6. By the axiom (over), we have rep(Over, []). Therefore,
by Lemma 9, rep(br tOver, niv t). Since, by Lemma 8, isextractor(rep, [], extract), it follows
extract (br tOver) = flatten (niv t), i. e., breadthfirst t = breadthfirstspec t. J

7 Verification by interpreting routines as recursive programs

In this section we give a correctness proof, which is based on understanding the elements of
Rou as recursive programs. We give a meaning to routines by defining what it means for a
routine to compute the breadth-first traversal of a tree, and use this in order to state and
prove in Lemma 12 the correctness condition fulfilled by the key operation br.

Following Okasaki [13], one can understand the breadth-first traversal of a tree by
understanding the more general notion of the breadth-first traversal of elements of Forest :=
List Tree. We use ts (for lists of trees) as variables for forests.

The obvious lifting of breadthfirstspec to forests is

breadthfirstf,spec
Def= flatten ◦ nivf : Forest→ List N ,

where nivf zips all niv t for t in ts, i. e.

nivf : Forest→ List2 N
nivf [] = [] nivf (t :: ts) = zip (niv t) (nivf ts)

Clearly, breadthfirstspec t = breadthfirstf,spec [t].
It is our goal to prove the correctness of Hofmann’s algorithm via an embedding of forests

into routines that is in a certain sense simpler than the embedding γ and explains the roles
of the functions br : Tree→ Rou→ Rou and extract : Rou→ List N.

Our programs will not recurse on the length of a forest but on its depth, and will access
its roots and its immediate subforest:

depth : Tree→ N, depth(Leaf n) = 1, depth(Node tl n tr) = max{depth tl , depth tr}+ 1.
depthf : Forest→ N, depthf [t1, . . . , tn] = max{0, depth t1, . . . , depth tn}.
roots : Forest→ List N
roots [] = [] roots (Leaf n :: ts) = roots (Node tl n tr :: ts) = n :: roots ts
sub : Forest→ Forest calculates the immediate subforest:
sub [] = [], sub (Leaf n :: ts) = sub ts, sub (Node tl n tr :: ts) = tl :: tr :: sub ts.
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I Lemma 10.
(a) length (nivf ts) = depthf ts.
(b) For ts 6= [] we have depthf ts = depthf (sub ts) + 1.
(c) If ts 6= [] then nivf ts = roots ts :: nivf (sub ts).

Proof. Easy. J

We begin with the observation (which is made precise in Lemma 12 below) that the routines
created in a run of the algorithm breadthfirst are either Over or of the form (next (addroots ts) c)
where

next : (List N→ List N)→ Rou→ Rou next g c = Next (λk . g (k c)).
addroots : Forest→ List N→ List N addroots ts = append (roots ts)

We can regard these routines as recursive programs: Over is the routine which immediately
terminates returning []. The routine (next g c) makes a recursive call to c, and if the result
returned there is l it returns (g l). extract executes these recursive programs: We have
extract Over = [] and extract (next g c) = g (extract c).
We now construct for ts : Forest the routine (c ts) which represents the computation of the
breadth-first traversal of ts. If ts = [], then Over represents the traversal of ts which is [].
Otherwise, c represents the traversal of ts if it recursively calls a routine representing the
traversal of (sub ts) and adds to the result (roots ts). More formally we define c ts : Rou by
recursion on the measure depthf ts:

c ts =
{

Over if ts = [],
next (addroots ts) (c (sub ts)) otherwise.

We show that extract evaluates the routines c ts to the breadth-first traversal of ts:

I Lemma 11. extract ◦ c ext= breadthfirstf,spec.

Proof. We show extract (c ts) = breadthfirstf,spec ts by induction on depthf ts:
If depthf ts = 0 then ts = [], and extract (c ts) = [] = flatten (nivf ts) = breadthfirstf,spec ts.
Otherwise by IH extract (c (sub ts)) = breadthfirstf,spec (sub ts)), and therefore, by Lemma 10
extract (c ts) = extract (next (addroots ts) (c (sub ts))) = addroots ts (extract (c (sub ts)))

= roots ts ++ flatten (nivf (sub ts)) = flatten (roots ts :: nivf (sub ts))
= flatten (nivf ts) = breadthfirstf,spec ts . J

The next lemma is a key lemma for br. It shows that (br t c) translates a routine c
computing the traversal of ts into a routine computing the traversal of (t :: ts):

I Lemma 12. br t ◦ c ext= c ◦ cons t.

Proof. We show br t (c ts) = c (t :: ts) by induction on depth t:
Case 1 ts = []. Then c ts = Over.
Case 1.1 t = Leaf n. We have

br t (c ts) = next (consn) Over
= next (addroots (t :: ts)) (c (sub (t :: ts))) = c (t :: ts)

.

Case 1.2 t = Node tl n tr . Then by IH we get
br t (c ts) = next (consn) (br tl (br tl (c ts)))

= next (consn) (c (tl :: tr :: ts))
= next (addroots (t :: ts)) (c (sub (t :: ts))) = c (t :: ts)
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Case 2 Otherwise. Then c ts = next (addroots ts) (c (sub ts)).

Case 2.1 t = Leaf n.
br t (c ts) = next (consn ◦ addroots ts) (c (sub ts))

= next (addroots (t :: ts)) (c (sub (t :: ts))) = c (t :: ts)

Case 2.2 t = Node tl n tl. Then
br t (c ts) = next (consn ◦ addroots ts) (br tl (br tl (c (sub ts))))

= next (addroots (t :: ts)) (c (tl :: tr :: (sub ts)))
= next (addroots (t :: ts)) (c (sub (t :: ts))) = c (t :: ts) J

Alternative proof of Theorem 6. breadthfirst t = extract (br tOver) = extract (br t (c [])) =
extract (c [t]) = breadthfirstf,spec [t] = breadthfirstspec t. J

8 A predicative version of breadthfirst

In this section we present a variant of breadth-first traversal that, like Hofmann’s algorithm,
avoids the repeated use of list concatenation but is predicative since it doesn’t use the data
type of routines. Instead lists of functions are used as intermediate data type.

As observed in the previous section, the only elements of Rou created by the operations
br and breadthfirst are Over and next g c, where g : List N→ List N and c : Rou, and c is itself
created by the algorithm. We can represent the elements of Rou that are defined inductively
by these clauses as lists of functions g : List N→ List N, and therefore obtain them as those
in the image of the function Φ defined as follows:

Rou′ = List(ListN→ ListN)
Φ : Rou′ → Rou Φ [] = Over Φ (g :: gs) = next g (Φ gs)

We denote elements of Rou′ with the variable gs.
We translate br into a function br′ referring to Rou′ s. t. Φ ◦ br′ t ext= br t ◦ Φ:

br′ : Tree→ Rou′ → Rou′
br′ (Leaf n) [] = consn :: []
br′ (Leaf n) (g :: gs) = (consn ◦ g) :: gs
br′ (Node tl n tr) [] = consn :: br′ tl (br′ tr [])
br′ (Node tl n tr) (g :: gs) = (consn ◦ g) :: br′ tl (br′ tr gs)
The defining equations for br′ are easily derived by transforming the right-hand side of

the desired functional equation Φ (br′ t gs) = br t (Φ gs) into the form Φ gs′ and then setting
br′ t gs = gs′.

I Lemma 13. Φ ◦ br′ t ext= br t ◦ Φ.

Proof. One shows Φ (br′ t gs) = br t (Φ gs) by a straightforward induction on t and case
analysis on gs (formalized in the Coq proof br’_Lemma, see Section 11). J

We can in the same way translate extract into a function extract′ operating on Rou′

s. t. extract′ ext= extract ◦ Φ: From this condition one can immediately derive its defining
equations:
extract′ : Rou′ → List N extract′ [] = [] extract′ (g :: gs) = g (extract′ gs)

I Lemma 14. extract′ ext= extract ◦ Φ.
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Proof. We show extract′ gs = extract (Φ gs) by induction on gs:
extract′ [] = [] = extract (Φ [])
extract′ (g :: gs) = g (extract′ gs) = g (extract (Φ gs))

= extract (next g (Φ gs)) = extract (Φ (g :: gs)) J

Now we define breadthfirst′ : Tree→ List N, breadthfirst′ t = extract′ (br′ t []). It follows:

I Lemma 15. breadthfirst′ ext= breadthfirst.

Proof. breadthfirst′ t = extract′ (br′ t []) = extract (Φ (br′ t [])) = extract (br t (Φ []))
= extract (br tOver) = breadthfirst t. J

In the next section 9 we will see how breadthfirst′ can be reduced to breadthfirst′′ which
is extensionally equal to breadthfirstspec, giving an algebraic proof of the correctness of
breadthfirst. However, we can give as well a direct correctness proof of breadthfirst′:
The routine computing the traversal of a ts : Forest having nivf = [l1, . . . , lm] is given by
traverse ts = [append l1, . . . , append ln]. A recursive definition (recursion on the measure
depth ts) of traverse ts : Rou′ is as follows:

traverse ts =
{

[] if ts = [],
addroots ts :: traverse (sub ts) otherwise.

I Lemma 16. extract′ ◦ traverse ext= breadthfirstf,spec.

I Lemma 17. br′ t ◦ traverse ext= traverse ◦ (cons t).

Proof of Lemmas 16 and 17. One shows extract′ (traverse ts) = breadthfirstf,spec ts by in-
duction on depth ts and br′ t (traverse ts) = traverse (t :: ts) by induction on t. J

We obtain an alternative proof of Theorem 6 which contains as well the correctness
of breadthfirst′:

I Theorem 18. breadthfirst ext= breadthfirst′ ext= breadthfirstspec.

Proof. The first equation is Lemma 15. The 2nd equation follows as the alternative proof of
Theorem 6 in Sect. 7 but using Lemmas 16 and 17 instead of Lemmas 11 and 12, respectively,
and replacing Over by [] : Rou′. J

9 A simplified predicative version of breadthfirst

The predicative algorithm for breadth-first traversal developed in the previous section can
be simplified by observing that the type Rou′ is only used with lists of functions that are
formed from (consn) by composition, i. e., functions of the form λl . l′++ l for some l′ : List N.
We can therefore denote them by elements of List N, and the elements of Rou′ by elements of
List2 N. Therefore, we define

Rou′′ := List2 N
Ψ : Rou′′ → Rou′ Ψ ls = map append ls
where map : (A→ B)→ ListA→ ListB map f [l1, . . . , ln] = [f l1, . . . , f ln]

We translate br′ into a function br′′ referring to Rou′′:
br′′ : Tree→ Rou′′ → Rou′′
br′′ (Leaf n) [] = [[n]]
br′′ (Leaf n) (l :: ls) = consn l :: ls
br′′ (Node tl n tr) [] = [n] :: br′′ tl (br′′ tr [])
br′′ (Node tl n tr) (l :: ls) = consn l :: br′′ tl (br′′ tr ls)
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I Lemma 19. Ψ ◦ br′′ t ext= br′ t ◦Ψ.

Proof. We show Ψ (br′′ t ls) = br′ t (Ψ ls) by induction on t:
Ψ (br′′ (Leaf n) []) = Ψ [[n]] = consn :: [] = br′ (Leaf n) []
Ψ (br′′ (Leaf n) (l :: ls)) = Ψ (consn l :: ls)

= (consn ◦ append l) :: Ψ ls
= br′ (Leaf n) (append l :: Ψ ls)

Ψ (br′′ (Node tl n tr) []) = Ψ ([n] :: br′′ tl (br′′ tr []))
= consn :: br′ tl (br′ tr [])
= br′ (Node tl n tr) []

Ψ (br′′ (Node tl n tr) (l :: ls)) = Ψ(consn l :: (br′′ tl (br′′ tr ls)))
= consn ◦ append l :: (br′ tl (br′ tr (Ψ ls)))
= br′ (Node tl n tr) (append l :: Ψ ls) J

I Lemma 20. br′′ t ext= zip (niv t).

Proof. We show br′′ t ls = zip (niv t) ls by induction on t: For t = Leaf n this follows
immediately by the definition of br′′. In the case that t = Node tl n tr and ls = []
we get using the IH br′′ t ls = [n] :: br′′ tl (br′′ tr []) = [n] :: zip (niv tl) (zip (niv tr) []) =
[n] :: zip (niv tl) (niv tr) = niv t = zip (niv t) []. In case of t = Node tl n tr and ls = l′ :: ls′ we
get using the IH br′′ t ls = consn l′ :: br′′ tl (br′′ tr ls′) = consn l′ :: zip (niv tl) (zip (niv tr) ls′) =
consn l′ :: zip (zip (niv tl) (zip (niv tr))) ls′) = zip ([n] :: zip (niv tl) (zip (niv tr))) (l′ :: ls′) =
zip(niv t) ls. J

I Lemma 21. flatten ext= extract′ ◦Ψ.

Proof. By induction on the list argument:
flatten [] = [] = extract′ []
flatten (l :: ls) = l++ flatten ls = append l (extract′ (Ψ ls)) = extract′ (Ψ (l :: ls)) J

Now we define breadthfirst′′ : Tree→ List N by breadthfirst′′ t = flatten (br′′ t []).
We obtain an alternative proof of Theorem 6 which contains as well the correctness

of breadthfirst′ and breadthfirst′′:

I Theorem 22. breadthfirst ext= breadthfirst′ ext= breadthfirst′′ ext= breadthfirstspec.

Proof. The first equation is Lemma 15. We prove the second equation:
breadthfirst′′ t = flatten (br′′ t []) = extract′ (Ψ (br′′ t [])) = extract′ (br′ t (Ψ [])) =
extract′ (br′ t []) = breadthfirst′ t.
Furthermore, by Lemma 20, we get
breadthfirst′′ t = flatten (br′′ t []) = flatten (zip (niv t) []) = flatten (niv t) = breadthfirstspec t. J

10 Formal comparison of the obtained algorithms and proofs

In this section we isolate the common structure of the algorithms and proofs we have seen so
far. Since, as remarked earlier, breadth-first traversal is not modular, all algorithms first
compute some intermediate result (in a modular way) from which then the final result can
be easily extracted. In fact, the program computing the intermediate result has an extra
parameter which makes it possible to replace list concatenation (featuring in the specification)
by function composition. We capture this common structure by the notion of a “system” and
show that all proofs boil down to establishing a “simulation” relation between systems.
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I Definition 23.

A system is a quadruple S = (A,Nil, g, e) where A : Set, Nil : A, g : Tree→ A→ A, and
e : A→ ListN.

S is correct (for breadth-first traversal) if e (g tNil) = breadthfirstspec t for all trees t.

Let S′ = (A′,Nil′, g′, e′) be another system. A relation R on A×A′ is a simulation between
S and S′, S R∼ S′, if (1) R(Nil,Nil′), and, whenever R(a, a′), then (2) R(g t a, g′ t a′) for
all trees t, and (3) e a = e′ a′.

Let S, S′ be systems. S and S′ are similar, S ∼ S′, if there exists a simulation between
S and S′.

I Lemma 24. If S ∼ S′ then S is correct if and only if S′ is correct.

Proof. If S R∼ S′, then R(g tNil, g′ tNil′), by (1) and (2), hence e (g tNil) = e′ (g′ tNil′),
by (3). J

Note that if R is functional, i. e., defined as the graph of a function φ : A′ → A, by
setting R(a, a′) iff a = φa′, then the simulation conditions become (1) Nil = φNil′, (2)
g t ◦ φ ext= φ ◦ g′ t for all trees t, and (3) e ◦ φ ext= e′. In this situation we write S φ← S′. All
but one of the simulations described below are functional.

The specification of breadth-first traversal given in Section 2 corresponds to the sys-
tem Sspec

Def≡ (List2N, [], zip ◦ niv, flatten). Correctness holds since flatten ((zip ◦ niv) t []) =
flatten (niv t) = breadthfirstspec t.

In the new view of systems, we may say that Hofmann defined his algorithm breadthfirst
by the system SMH

Def≡ (Rou,Over, br, extract) (Sect. 3) and showed that SMH
γOver← Sspec where

γOver ls Def≡ γ ls Over (Sect. 4). Condition (1) holds by the definition of γ, (2) holds by
Lemmas 4 and 5, and (3) is Lemma 3.

The proofs given in Section 6 amount to showing SMH
rep∼ Sspec. (1) is the axiom (over),

(2) is Lemma 9, and (3) is Lemma 8.
The (spec.-like) algorithm λt . breadthfirstf,spec [t] of Section 7 works with forests as the

intermediate data type. The underlying system is Sforest
Def≡ (Forest, [], cons, breadthfirstf,spec).

Correctness of this system is easily established via the functional simulation Sspec
nivf← Sforest

((2) holds by definition of nivf , (3) is trivial). However, the point of Sforest is to provide a new
correctness proof for SMH. This is achieved by showing SMH

c← Sforest. (1) holds by definition
of c, (2) is Lemma 12, and (3) is Lemma 11.

The first predicative version of breadth-first traversal introduced in Section 8 defines
the system Spred1

Def≡ (Rou′, [], br′, extract′) and proves the simulation SMH
Φ← Spred1. The

simulation conditions (2),(3) are shown in Lemmas 13 and 14, while (1) holds by definition
of Φ. The correctness of Spred1 is shown via the simulation Spred1

traverse← Sforest.

The simplified predicative algorithm in Section 9 is defined by the system Spred2
Def≡

(List2N, [], br′′, flatten). Spred2 is in fact (extensionally) equal to Sspec since br′′ ext= zip ◦ niv,
by Lemma 20. We show Spred1

Ψ← Spred2: the simulation conditions (2),(3) are given by the
Lemmas 19 and 21, while (1) holds by definition of Ψ.
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The following diagram gives an overview of the simulations:

SMH

Sforest
traverse

c
-

- Spred1

�

Φ

Sspec
ext= Spred2

rep γOver

6

Ψ

-

nivf -

In fact, the functions in the diagram are fully commutative assuming extensionality (regarding
rep all we know at this stage is that it is a simulation, but we don’t know its relationship to
the simulation defined by γOver):

I Lemma 25.
(a) γOver

ext= Φ ◦Ψ.
(b) traverse ext= Ψ ◦ nivf .
(c) c ext= Φ ◦ traverse ext= γOver ◦ nivf .

Proof. Φ (Ψ ls) = γOver ls can be easily shown by induction on ls. However, the proof
uses the extensionality principle (cf. Section 4). The equation traverse ts = Ψ(nivf ts) is
obvious from the definition of traverse. c ts = Φ (traverse ts) follows by induction on depth ts.
c ext= γOver ◦ nivf follows from the previous equations. J

In particular, the simulations SMH
Φ← Spred1

Ψ← Spred2 provide a splitting of Hofmann’s
simulation SMH

γOver← Sspec into simpler components.

11 Implementation and formalization in proof assistants

Here, we comment on our (partial) implementation of the presented ideas in Coq and
Agda, that is publicly available in a Git repository [2]. The Coq system does not allow
any inductive data type beyond strictly positive ones.8 We overcome this by working
with a version of Coq augmented by the plugin TypingFlags provided by Simon Boulier.9
The effect of this plugin is to disable the checks for strict positivity, guardedness and
termination. If, in such a development, one has established Lemma lem (for example),
then Print Assumptions lem reveals for which constructions the plugin has forced Coq
to accept them. For the formalization of Theorem 6, the forced acceptance only concerns
the inductive data type Rou and the recursive function extract (and we also referred to
Logic.FunctionalExtensionality.functional_extensionality, which is nothing but
assuming equality of pointwise equal functions). The formalization and its verification
present no difficulties at all, given the detailed proofs we provide in the paper. Thus, all of
the elaborated mathematical developments in the Sections 2 to 10, with the notable exception
of Section 5 (that is situated outside of Coq since it reflects on the term evaluation mechanism)

8 See the Coq reference manual, in particular https://coq.inria.fr/distrib/current/refman/
language/cic.html#positivity-condition.

9 Plugin available at https://github.com/SimonBoulier/TypingFlags/.
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are fully formalized in Coq, under the above provisos, i. e., with forced acceptance by Coq
of the type Rou, the function extract, the relation rep and its induction principle rep_ind
that is “manually” defined and not generated by the system, and by sometimes employing
extensionality. For the recapitulations in form of the four formalized correctness proofs of
SMH – through Hofmann’s function γ, through the relation rep, through forests and through
the two predicative systems, lines of the form Print Assumptions S_MH_correct* reveal
what is assumed beyond the core of Coq: Rou and extract in all cases since the algorithm is
expressed in terms of them, rep and its induction principle only for the second proof, and
extensionality only for the first and fourth proof.

Agda has the feature that using pragmas one can switch off strict positivity checks locally
for data types and termination checks locally for functions. This allowed us to implement
the functions used in the paper. Using quantification of set levels we were able to write down
a substantial part of the operations defined in System F in Sect. 5, and after using postulates
and the REWRITE pragma as well the extension by Mendler recursion. This allowed us to
check that the reductions hold (at least that the left-hand and right-hand side of a reduction
have the same normal form). Carrying out the proofs not requiring extensionality is still
work in progress.

12 Conclusion and further work

In this paper we studied an intriguing algorithm by Martin Hofmann for the breadth-first
traversal of finite binary trees which uses a non-strictly positive data type Rou of routines.
We completed Hofmann’s proof sketch of correctness (Sect. 4) and provided a justification
for the termination of the algorithm by reduction to Mendler-style recursion in system F
(Sect. 5). Furthermore we presented various alternative breadth-first traversal algorithms and
correctness proofs with the aim to provide an explanation of Hofmann’s somewhat mysterious
construction. In Sect. 6 we transformed the data type Rou into a non-strictly positive inductive
relation rep between routines and double lists and proved directly that the algorithm maps a
tree to a routine that represents its levels from which correctness follows immediately. While
the proof in Sect. 6 exploits non-strict positive induction as a proof principle, the other proofs
only use structural induction (on lists or trees) but instead introduce new constructions that
explain the roles of the components of Hofmann’s algorithm and break it (the algorithm) into
smaller, simpler, parts. The proof in Sect. 7 proves the correctness of Hofmann’s algorithm
breadthfirst via a simulation by a straightforward extension of breadth-first traversal to forests
(which is closely related to the common approach to breadth-first traversal [13]). This reveals
that the crucial component, br, of breadthfirst performs – via this simulation – nothing but
the cons-operation on lists of trees. Through an analysis of the behaviour of breadthfirst we
showed in Section 8 how to replace the impredicative type Rou of routines by the type Rou′
of lists of list functions and provided a predicative version, breadthfirst′, of breadthfirst. In
Section 9, this predicative algorithm is further simplified by observing that only functions of
the form λl . l′++ l are needed which can be represented by the list l′. Section 10 isolates the
common structure of the algorithms by the notion of a system and the common structure of
the correctness proofs by the notion of a simulation. In addition it shows that the simulation
SMH

γOver← Sspec, which corresponds to Hofmann’s original proof, is split into the two, simpler
and predicative, simulations SMH

Φ← Spred1
Ψ← Spred2.

All algorithms were implemented and verified in the proof assistant Coq using various
tweaks and extensions to accommodate non-strict positivity and some algorithms were
implemented in Agda and Haskell [2].
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Is the mystery of non-strictly positive breadth-first traversal now completely solved?
Far from it. Looking at the algorithms it is quite clear that they should work for infinite
(and hence non-well-founded) binary trees as well. This is confirmed by experiments with
implementations in Haskell [2]. In order to formally prove this, coinductive data types and
proof principles will be required which rely on the productivity of algorithms instead of
the well-foundedness of their inputs. Carrying this out in current proof systems (whose
capabilities of dealing with coinduction are still in their infancy) will be an exciting challenge.

Another mysterious algorithm that can be formulated with a non-strictly positive inductive
type similar to the type of routines is a solution to the “same-fringe problem” that was
suggested to us by Olivier Danvy. The problem is well-known: testing whether two finite
trees have the same fringe, i. e., the same left-to-right listing of labels at their leaves. This
problem is essentially different from breadth-first traversal since it relies on trees being finite.
Its analysis is left to further work.
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Abstract
Provability in the intuitionistic second-order propositional logic (resp. inhabitation in the polymorphic
lambda-calculus) was shown by Löb to be undecidable in 1976. Since the original proof is heavily
condensed, Arts in collaboration with Dekkers provided a fully unfolded argument in 1992 spanning
approximately fifty pages. Later in 1997, Urzyczyn developed a different, syntax oriented proof.
Each of the above approaches embeds (an undecidable fragment of) first-order predicate logic into
second-order propositional logic.

In this work, we develop a simpler undecidability proof by reduction from solvability of Diophan-
tine equations (is there an integer solution to P (x1, . . . , xn) = 0 where P is a polynomial with integer
coefficients?). Compared to the previous approaches, the given reduction is more accessible for
formalization and more comprehensible for didactic purposes. Additionally, we formalize soundness
and completeness of the reduction in the Coq proof assistant under the banner of “type theory inside
type theory”.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases System F, Lambda Calculus, Inhabitation, Propositional Logic, Provability,
Undecidability, Coq, Formalization

Digital Object Identifier 10.4230/LIPIcs.TYPES.2018.2

Supplement Material https://github.com/mrhaandi/ipc2

Acknowledgements We would like to thank Paweł Urzyczyn for sharing his insights on second order
propositional logic provability, which helped to develop the presented results.

1 Introduction

Polymorphic λ-calculus (also known as Girard’s system F [7] or λ2 [2]) is directly related to
intuitionistic second-order propositional logic (IPC2) via the Curry–Howard isomorphism
(for an overview see [11]). In particular, provability in the implicational fragment of IPC2 (is
a given formula an IPC2 theorem?) corresponds to inhabitation in system F (given a type,
is there a term having that type in system F?).

Provability in IPC2 was shown by Löb to be undecidable [8] (see also [5] for an earlier
approach by Gabbay in an extension of IPC2). Löb’s proof is by reduction from provability
in first-order predicate logic via a semantic argument. Since the original proof is heavily con-
densed (14 pages), Arts in collaboration with Dekkers provided a fully unfolded argument [1]
(50 pages) reconstructing the original proof. Later, Urzyczyn developed a different, syntax
oriented proof showing undecidability of inhabitation in system F [13] (6 pages, moderately
condensed). Urzyczyn’s proof is by reduction from two-counter automata to a fragment of
first-order predicate logic to inhabitation in system F. In 2010 Sørensen and Urzyczyn [12]
gave a general translation of intuitionistic first-order predicate logic, covering the full set of
logical connectives, into intuitionistic second-order propositional logic.
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In order to show undecidability of provability in IPC2, each of the above approaches
embeds (a fragment of) first-order predicate logic into IPC2. However, if one is solely
interested in a concise and rigorous undecidability proof (e.g. for formalization or didactics),
then there is no need to represent an expressive logic.

In this work we provide a reduction from solvability of Diophantine equations (is there an
integer solution to P (x1, . . . , xn) = 0 where P is a polynomial with integer coefficients?) to
inhabitation in system F. Compared to the previous approaches, the described reduction is
more accessible for formalization and more comprehensible for didactic purposes. Compared
to Löb’s proof, we separate IPC2 proof normalization from the main argument. Compared
to Urzyczyn’s proof, we only need to axiomatize natural number addition and multiplication,
instead of a fragment of first-order predicate logic.

Additionally, we formalize [3] soundness and completeness of the reduction in the Coq
proof assistant under the banner of “type theory inside type theory”.

Organization of the paper. The polymorphic λ-calculus (system F) is described in Section 2
together with the associated inhabitation problem (Problem 6). In Section 3 we reduce a
decision problem (Problem 9), which is equivalent to solvability of Diophantine equations,
to inhabitation in system F. Additionally, in Paragraph 3.3 we outline a formalization of
soundness (Theorem 27) and completeness (Theorem 19) of the described reduction. We
conclude the paper in Section 4.

2 Polymorphic Lambda-Calculus

The Polymorphic Lambda-Calculus (also known as Girard’s system F [7] or λ2 [2]) pro-
vides a concise proof notation for the implicational fragment of intuitionistic second-order
propositional logic (IPC2) under the Curry-Howard isomorphism. In this section we as-
semble necessary prerequisites in order to discuss inhabitation in system F (or equivalently
provability in IPC2).

We denote polymorphic types (Definition 1) by σ, τ, ρ, where type variables are denoted by
a, b, c and drawn from the denumerable set A. Conventionally, the operator → binds more
strongly than ∀.

I Definition 1 (Polymorphic Types, T). T 3 σ, τ, ρ ::= a | (σ → τ) | (∀a.σ)

Type variables that are not bound by the operator ∀ are free, and the set of free type variables
in a type σ is denoted by Var(σ) = {a ∈ A | a is free in σ}. A substitution of occurrences of
a free type variable a in σ by τ is denoted by σ[a := τ ].

We denote Church-style polymorphic λ-terms (Definition 2) byM,N , where term variables
are denoted by x, y, z.

I Definition 2 (Church-style Polymorphic λ-Terms).
M,N ::= x | (M N) | (λx : σ.M) | (Λa.M) | (M τ)

A type environment, denoted by ∆, is a finite set of type assumptions having the shape x : σ
for distinct term variables.

I Definition 3 (Type Environment). ∆ ::= {x1 : σ1, . . . , xn : σn} where xi 6= xj for i 6= j

We define the domain, the erasure, the extension of ∆, and the free type variables in ∆.
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I Definition 4 (Domain, Erasure, Extension, Free Type Variables).
dom(∆) = {x1, . . . , xn} |∆| = {σ1, . . . , σn}

∆, x : σ = ∆ ∪ {x : σ} if x 6∈ dom(∆) Var(∆) =
⋃
σ∈|∆|

Var(σ)

The rules of the system F with judgements of shape ∆ ` M : σ are given below (cf. [11,
Section 12]). This system enjoys subject reduction and strong normalization properties.

I Definition 5 (system F).

(Ax)
∆, x : τ ` x : τ

∆ ` M : σ → τ ∆ ` N : σ (→E)
∆ ` M N : τ

∆ ` M : ∀a.σ (∀E)
∆ ` M τ : σ[a := τ ]

∆, x : σ ` M : τ (→I)
∆ ` λx : σ.M : σ → τ

∆ ` M : τ a 6∈ Var(∆)
(∀I)

∆ ` Λa.M : ∀a.τ
We sometimes superscript types assigned to subterms in a derivation of a judgement, e.g.

∅ `
(
λx : (∀a.a→ a).

(
(x (b→ b))(b→b)→(b→b) (x b)

)b→b) (Λa.λy : a.y
)∀a.a→a

: b→ b

One core decision problem for any typing system is inhabitation (Problem 6).

I Problem 6 (Inhabitation, ∆ ` ? : τ). Given a type environment ∆ and a type τ , is there a
term M such that ∆ `M : τ?

Inhabitation in system F directly corresponds to provability in IPC2 [11, Section 12] (Propo-
sition 7).

I Proposition 7. ∆ ` M : τ iff τ is derivable from |∆| in the intuitionistic second-order
propositional logic.

Whenever the particular inhabitant M is immaterial, we write |∆| ` τ for ∆ `M : τ . A key
property of system F is that given a type derivation ∆ ` M : τ , there exists a term Nτ

in β-normal η-long form such that ∆ ` N : τ [13, Lemma 4]. The property of η-longness
(Definition 8, cf. fully applied in [13]) is defined inductively, taking into account types
(ascribed in supersripts) which are assigned to individual subterms.

I Definition 8 (η-longness). A term Mτ is η-long if one of the following conditions is met
Mτ = xσ t1 . . . tn and τ = a for some term variable x, type variable a and types or η-long
terms t1, . . . , tn
Mτ = (λx : σ.Nρ)σ→ρ where Nρ is η-long
Mτ = (Λa.Nρ)∀a.ρ where Nρ is η-long

We say that N is a long normal inhabitant of τ in ∆, if ∆ ` N : τ and Nτ is in β-normal
η-long form.

3 Undecidability of Inhabitation

In the remainder of this work we use N to denote the set of positive integers. As a starting
point, we use the following Problem 9, which is undecidable by reduction from solvability
of Diophantine equations (for an overview see [9]). In particular, solvability of Diophantine
equations in integers is equivalent to solvability of Diophantine equations in N, which by
routine subterm decomposition is equivalent to Problem 9.
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I Problem 9. Given a set A = {e1, . . . el} of constraints over variables V = {a1, . . . , an}
where each e ∈ A is of shape either a .= 1 or a .= b+ c or a .= b · c for some a, b, c ∈ V, does
there exist a substitution ζ : V → N that satisfies A?

I Proposition 10. Problem 9 is undecidable.

In order to reduce Problem 9 to inhabitation in system F it suffices to axiomatize natural
number addition and multiplication. Let us fix an instance A of Problem 9 over variables
V = {a1, . . . , an}. In the remainder of this section we construct the type environment ∆A
such that A has a solution iff there exists a term M such that ∆A `M : N.

For our construction let us fix the type variables †, u, s, p,N, •1, •2, •3 and i for i ∈ N.
Additionally, for each variable ai ∈ V let us fix the type variable ai.

Similarly to [13, Section 7], we define the following types to represent particular predicates
on natural numbers.

I Definition 11 (Types †σ, U(σ), S(σ, τ, ρ), P (σ, τ, ρ)).
†σ = σ → †

U(σ) = (†σ → •1)→ (σ → •2)→ u

S(σ, τ, ρ) = (†σ → •1)→ (†τ → •2)→ (†ρ→ •3)→ s

P (σ, τ, ρ) = (†σ → •1)→ (†τ → •2)→ (†ρ→ •3)→ p

Intuitively, the type U(σ) is used to assert that σ represents a natural number, and S(σ, τ, ρ)
(resp. P (σ, τ, ρ)) is used to assert that the sum (resp. product) of natural numbers represented
by σ and τ is represented by ρ. The motivation behind the above encoding (including types †σ)
is of technical nature, leading to convenient inversion lemmas.

Using above types, we represent constraints as follows

I Definition 12 (Constraint Representation).

a
.= 1 = P (1, 1, a) a

.= b+ c = S(b, c, a) a
.= b · c = P (b, c, a)

Next, we axiomatize finite fragments of natural number arithmetic as follows

I Definition 13 (Type Environments ∆N,∆1).
∆N =

{
xu : ∀a.

(
U(a)→ ∀b.(U(b)→ S(a, 1, b)→ P (b, 1, b)→ N)→ N

)
,

xs : ∀abcde.
(
U(a)→ U(b)→ U(c)→ U(d)→ U(e)→

S(a, b, c)→ S(b, 1, d)→ S(c, 1, e)→ (S(a, d, e)→ N)→ N
)
,

xp : ∀abcde.
(
U(a)→ U(b)→ U(c)→ U(d)→ U(e)→

P (a, b, c)→ S(b, 1, d)→ S(c, a, e)→ (P (a, d, e)→ N)→ N
)}

∆1 =
{
yU(1) : U(1), yP (1,1,1) : P (1, 1, 1)

}
As we will see in the subsequent development, type assumptions in ∆N ∪∆1 encompass

the following assertions about members of a universe U which represent natural numbers
yU(1) asserts that 1 ∈ U and yP (1,1,1) asserts that 1 · 1 = 1
xu asserts that for any a ∈ U there is b ∈ U such that a+ 1 = b and b · 1 = b

xs asserts for a, b, c, d, e ∈ U : if a+ b = c, b+ 1 = d and c+ 1 = e, then a+ d = e

xp asserts for a, b, c, d, e ∈ U : if a · b = c, b+ 1 = d and c+ a = e, then a · d = e
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The choice of ∆N is motivated by the fact that a solution of A is supported by an appropriately
large finite fragment of natural number arithmetic and does not require the induction principle.

Let the type environment ∆A (Definition 14) encompass the axiomatization of natural
number arithmetic together with the assumption that the representation of a solution of A
implies N. We will reduce solvability of A to ∆A ` ? : N.

I Definition 14 (Type Environments ∆I ,∆A).
∆I = ∆N ∪

{
xA : ∀a1 . . . an.

(
U(a1)→ . . .→ U(an)→ e1 → . . .→ el → N

)}
∆A = ∆I ∪∆1

In the above, the type variable N assumes the role of the type variable false in [13].
Whereas [13] uses a positive description of first-order predicate logic, we (again, for technical
convenience) use doubly-negated conclusions in ∆N. Following this intuition, the type of xu
corresponds to ∀a.U(a)→ ¬(∀b.¬(U(b) ∧ S(a, 1, b) ∧ P (b, 1, b))) (cf. list of assertions above).
Possibly, we could have used a more natural second-order axiomatization of natural numbers
with conventional negation (¬σ = σ → ∀a.a) and existential (∃a.σ = ∀b.((∀a.(σ → b))→ b))
representations. However, both introduce additional universal quantifiers that are neither
necessary nor convenient in the proof.

In the remainder of this section we establish completeness (Theorem 19) and soundness
(Theorem 27) of the reduction from solvability of A to ∆A ` ? : N.

3.1 Completeness
In this paragraph we show that satisfiability of A implies ∆A ` M : N for some term M .
Intuitively, we derive |∆A| ` N in four steps by approaching the goal N many times, each
time adding new assumptions. Step 1 introduces representations 2, . . . ,N of natural numbers
2, . . . ,N, where N is the maximal element in the codomain of some solution of A. Additionally,
step 1 introduces assumptions U(i), S(i− 1, 1, i) and P (i, 1, i) for i = 2 . . .N. Step 2
introduces information on addition for numbers 1, . . . ,N, i.e. for i+j = k ≤ N we introduce the
assumption S(i, j, k). Step 3 introduces information on multiplication for numbers 1, . . . ,N,
i.e. for i·j = k ≤ N we introduce the assumption P (i, j, k). Finally, step 4 uses the introduced
assumptions to derive N using xA : ∀a1 . . . an.

(
U(a1)→ . . .→ U(an)→ e1 → . . .→ el → N

)
.

For a more accessible presentation of the proof of completeness (Theorem 19), we define
type environments ∆m

U ,∆m
S ,∆m

P that contain assumptions for natural numbers up to a
bound m that are introduced using xu. Observe that ∆1 = ∆1

U ∪∆1
S ∪∆1

P .

I Definition 15 (Type Environments ∆m
U ,∆m

S ,∆m
P ). For m ∈ N let

∆m
U = {yU(i) : U(i) | i = 1 . . .m}

∆m
S = {yS(i−1,1,i) : S(i− 1, 1, i) | i = 2 . . .m}

∆m
P = {yP (i,1,i) : P (i, 1, i) | i = 1 . . .m}

The following Lemmas 16, 17, and 18 each contain the inductive argument used in
the outlined steps 1, 2, and 3. Specifically, these lemmas are used to introduce sufficient
information on representations of natural numbers to verify a solution of A.

I Lemma 16. Let m ∈ N. If ∆I ∪∆m+1
U ∪∆m+1

S ∪∆m+1
P ` N : N,

then ∆I ∪∆m
U ∪∆m

S ∪∆m
P `M : N for some M .

Proof. Immediate using M = xu m yU(m) (Λm+ 1.M ′), where
M ′ = λyU(m+1) : U(m+ 1).λyS(m,1,m+1) : S(m, 1,m+ 1).λyP (m+1,1,m+1) : P (m+ 1, 1,m+ 1).N .

J
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I Lemma 17. Let i, j, k,m ∈ N be such that i, j, k ≤ m and let ∆S ⊇ ∆m
S be a type

environment such that (yS(i,j,k) : S(i, j, k)) ∈ ∆S.
If ∆I ∪∆m

U ∪∆S ∪ {yS(i,j+1,k+1) : S(i, j + 1, k + 1)} ∪∆m
P ` N : N,

then ∆I ∪∆m
U ∪∆S ∪∆m

P `M : N for some M .

Proof. Immediate using
M = xs i j k j + 1 k + 1 yU(i) yU(j) yU(k) yU(j+1) yU(k+1) yS(i,j,k) yS(j,1,j+1) yS(k,1,k+1) M

′,
where M ′ = λyS(i,j+1,k+1) : S(i, j + 1, k + 1).N . J

I Lemma 18. Let i, j, k,m ∈ N be such that i, j, k ≤ m, ∆S ⊇ ∆m
S be such that

(yS(k,i,k+i) : S(k, i, k + i)) ∈ ∆S and ∆P be such that (yP (i,j,k) : P (i, j, k)) ∈ ∆P .
If ∆I ∪∆m

U ∪∆S ∪∆P ∪ {yP (i,j+1,k+i) : P (i, j + 1, k + i)} ` N : N,
then ∆I ∪∆m

U ∪∆S ∪∆P `M : N for some M .

Proof. Immediate using
M = xp i j k j + 1 k + i yU(i) yU(j) yU(k) yU(j+1) yU(k+i) yP (i,j,k) yS(j,1,j+1) yS(k,i,k+i) M

′,
where M ′ = λyP (i,j+1,k+i) : P (i, j + 1, k + i).N . J

By repeated application of the above Lemmas 16, 17, and 18 we show that a solution of
A induces an inhabitant M such that ∆A `M : N.

I Theorem 19 (Completeness). If A has a solution, then ∆A `M : N for some M .

Proof. Let ζ : V → N solve A, and let N = max{ζ(a) | a ∈ V}. We derive ∆A ` M : N in
four steps.

Step 1: By repeated application of Lemma 16, in order to derive |∆A| ` N, it suffices to
derive |∆I ∪∆N

U ∪∆N
S ∪∆N

P | ` N. Observe that
For S(i, j, k) ∈ |∆N

S | we have j = 1 and i+ j = k

For P (i, j, k) ∈ |∆N
P | we have j = 1 and i · j = k

Step 2: By repeated application of Lemma 17, in order to derive |∆I∪∆N
U∪∆N

S∪∆N
P | ` N,

it suffices to derive |∆I ∪∆N
U ∪∆S ∪∆N

P | ` N,
where ∆S = {yS(i,j,k) : S(i, j, k) | i, j, k ∈ N and i+ j = k ≤ N}.

Step 3: By repeated application of Lemma 18, in order to derive |∆I∪∆N
U∪∆S∪∆N

P | ` N,
it suffices to derive |∆I ∪∆N

U ∪∆S ∪∆P | ` N,
where ∆P = {yP (i,j,k) : P (i, j, k) | i, j, k ∈ N and i · j = k ≤ N}.

Step 4: Finally, the claim follows from the following judgement

∆I ∪∆N
U ∪∆S ∪∆P ` xA ζ(a1) . . . ζ(an) y

U(ζ(a1)) . . . yU(ζ(an)) ye1 . . . yel : N

In particular, we have
ζ(ai) ≤ N implies U(ζ(ai)) ∈ |∆N

U | for i = 1 . . . n

ζ(a) = 1 implies ζ(a) .= 1 = P (1, 1, 1) ∈ |∆P |

ζ(a) = ζ(b) + ζ(c) ≤ N implies ζ(a) .= ζ(b) + ζ(c) = S(ζ(b), ζ(c), ζ(a)) ∈ |∆S |

ζ(a) = ζ(b) · ζ(c) ≤ N implies ζ(a) .= ζ(b) · ζ(c) = P (ζ(b), ζ(c), ζ(a)) ∈ |∆P | J
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3.2 Soundness

In this paragraph we show that ∆A `M : N implies satisfiability of A. Intuitively, we show
that a derivation of ∆A ` M : N, where M is β-normal and η-long, necessarily completes
(parts of) the four steps described in Section 3.1, only adding sound assumptions wrt. addition
and multiplication.

Let us define the set of types C (Definition 20), observing that † 6∈ C and 1 6∈ C.

I Definition 20 (Set of Types C). C = {u, s, p,N, •1, •2, •3}.

We use C, from which any formula in |∆A| is derivable, to hide particular structure of ∆A
and identify certain types that are “logically equivalent” wrt. ∆A.

I Lemma 21. Let a, b ∈ A \ (C ∪ {†}) be type variables. If C ` †a→ †b, then a = b.

Proof. A long normal inhabitant M of †a→ †b in C is necessarily of the shape
M = λx : †a.λy : b.(x†a yb)†, which implies a = b. J

I Corollary 22. Let σ, τ be types and let a, b ∈ A\ (C ∪{†}) be type variables. If C ` †a→ †σ,
C ` †σ → †τ and C ` †τ → †b, then a = b.

Using the above Corollary 22 we can lift functions with type variable domain to functions
with type domain (Definition 23).

I Definition 23. Given a map J·K : U → N for some finite set U ⊆ A \ (C ∪ {†}) of type vari-

ables, we define J·K∗ : T→ N by JσK∗ =
{

JaK if a ∈ U , C ` †a→ †σ and C ` †σ → †a
undefined otherwise, i.e. there is no such a

By Corollary 22 the partial map J·K∗ : T → N is well-defined. Intuitively, the condition
C ` †a → †σ and C ` †σ → †a identifies σ with a wrt. ∆A in the sense of the following
Lemma 24.

I Lemma 24. Let σ ∈ T be a type and let U ⊆ A \ (C ∪ {†}) be a finite set of type variables.
If {s, p,N} ∪ {U(a) | a ∈ U} ` U(σ), then C ` †a→ †σ and C ` †σ → †a for some a ∈ U .

Proof. A long normal inhabitant M of U(σ) is necessarily of the shape

M = λx1 : †σ → •1.λx2 : σ → •2.zU(a) (λy1 : †a.x1 N
†σ
1 )†a→•1 (λy2 : a.x2 N

σ
2 )a→•2

for some a ∈ U . Therefore, for Γ = {s, p,N} ∪ {U(a) | a ∈ U} we have
1. Γ, †σ → •1, σ → •2, †a ` †σ which implies C ` †a→ †σ
2. Γ, †σ → •1, σ → •2, a ` σ which implies C ` a→ σ, therefore C ` †σ → †a J

I Corollary 25. Let σ ∈ T be a type and let J·K : U → N be a map for some finite set
U ⊆ A \ (C ∪ {†}) of type variables. If {s, p,N} ∪ {U(a) | a ∈ U} ` U(σ), then JσK∗ ∈ N.

The above Corollary 25 establishes a correspondence between σ and some type variable
a ∈ U via derivability of U(σ). This will allow us to reason about arbitrary (impredicative)
instances of types in ∆A. The following Lemma 26 extends this correspondence to sums and
products.
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I Lemma 26. Given a map J·K : U → N for some finite set U ⊆ A\(C∪{†}) of type variables,
let ΓS ⊆ {S(σ1, σ2, σ3) | Jσ1K∗ + Jσ2K∗ = Jσ3K∗ ∈ N}
and ΓP ⊆ {P (σ1, σ2, σ3) | Jσ1K∗ · Jσ2K∗ = Jσ3K∗ ∈ N}.
For types τ1, τ2, τ3 ∈ T such that Jτ1K∗, Jτ2K∗, Jτ3K∗ ∈ N we have
(i) If {u, p,N} ∪ ΓS ` S(τ1, τ2, τ3), then Jτ1K∗ + Jτ2K∗ = Jτ3K∗ ∈ N.

(ii) If {u, s,N} ∪ ΓP ` P (τ1, τ2, τ3), then Jτ1K∗ · Jτ2K∗ = Jτ3K∗ ∈ N.

Proof. For (i), let Γ = {u, p,N} ∪ ΓS and assume Γ ` S(τ1, τ2, τ3). A long normal inhabi-
tant M of S(τ1, τ2, τ3) is necessarily of the shape

M = λx1 : †τ1 → •1.λx2 : †τ2 → •2.λx3 : †τ3 → •3.zS(σ1,σ2,σ3) N†σ1→•1
1 N†σ2→•2

2 N†σ3→•3
3

where Ni = (λyi : †σi.xi L†τi

i ) for i = 1, 2, 3 and S(σ1, σ2, σ3) ∈ ΓS .
Therefore, we have Γ, †τ1 → •1, †τ2 → •2, †τ3 → •3 ` †σi → †τi for i = 1, 2, 3, which

implies C ` †σi → †τi for i = 1, 2, 3. Additionally, by Definition 23 there exist type variables
a1, a2, a3, b1, b2, b3 ∈ U such that C ` †ai → †σi and C ` †τi → †bi for i = 1, 2, 3. By
Corollary 22, we obtain JσiK∗ = JτiK∗ for i = 1, 2, 3, which implies the claim.

The proof of (ii) is analogous to the proof of (i). J

Finally, we establish soundness of our reduction in the following Theorem 27.

I Theorem 27 (Soundness). If ∆A `M : N for some M , then A has a solution.

Proof. We show a more general claim. Given a map J·K : U → N for some finite set
U ⊆ A \ (C ∪ {†}) of type variables such that 1 ∈ U and J1K = 1, let ∆ = ∆I ∪∆U ∪∆S ∪∆P

such that

|∆U | = {U(a) | a ∈ U}
|∆S | ⊆ {S(σ1, σ2, σ3) | Jσ1K∗ + Jσ2K∗ = Jσ3K∗ ∈ N}
|∆P | ⊆ {P (σ1, σ2, σ3) | Jσ1K∗ · Jσ2K∗ = Jσ3K∗ ∈ N}

We show that |∆| ` N implies that A has a solution.
Assume |∆| ` N, then there exists a long normal form M such that ∆ ` M : N. We

proceed by induction on the depth of M , which necessarily has one of the following shapes:
xuσN

U(σ)(Λb.λyu : U(b).λys : S(σ, 1, b).λyp : P (b, 1, b).MN
1
)
:

Wlog. b, yu, ys, yp are fresh. We have
∆ ` N : U(σ), therefore JσK∗ ∈ N by Corollary 25.
∆, yu : U(b), ys : S(σ, 1, b), yp : P (b, 1, b) `M1 : N.

For U ′ = U ∪ {b} extending the domain of J·K to b by JbK := JσK∗ + 1, ∆′U = ∆U ∪ {yu :
U(b)}, ∆′S = ∆S ∪ {ys : S(σ, 1, b)} and ∆′P := ∆P ∪ {yp : P (b, 1, b)}, we have that
∆I∪∆′U∪∆′S∪∆′P `M1 : N. Since JbK∗ = JbK = JσK∗+1 = JσK∗+J1K and JbK∗ = JbK∗ ·J1K∗,
by the induction hypothesis we obtain the claim.
xsσ1 . . . σ5N

U(σ1)
1 . . . N

U(σ5)
5 L

S(σ1,σ2,σ3)
1 L

S(σ2,1,σ4)
2 L

S(σ3,1,σ5)
3 (λys : S(σ1, σ4, σ5).MN

1 ):
Wlog. ys is fresh. We have

∆ ` Ni : U(σi), therefore JσiK∗ ∈ N for i = 1 . . . 5 by Corollary 25.
∆ ` L1 : S(σ1, σ2, σ3), ∆ ` L2 : S(σ2, 1, σ4) and ∆ ` L3 : S(σ3, 1, σ5). Therefore,
Jσ1K∗ + Jσ2K∗ = Jσ3K∗, Jσ2K∗ + J1K∗ = Jσ4K∗ and Jσ3K∗ + J1K∗ = Jσ5K∗ by Lemma 26.
∆, ys : S(σ1, σ4, σ5) `M1 : N

For ∆′S = ∆S ∪ {ys : S(σ1, σ4, σ5)} we have ∆I ∪ ∆U ∪ ∆′S ∪ ∆P ` M1 : N. Since
Jσ5K∗ = Jσ3K∗ + J1K∗ = Jσ1K∗ + Jσ2K∗ + J1K∗ = Jσ1K∗ + Jσ4K∗, by the induction hypothesis
we obtain the claim.
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xpσ1 . . . σ5N
U(σ1)
1 . . . N

U(σ5)
5 L

P (σ1,σ2,σ3)
1 L

S(σ2,1,σ4)
2 L

S(σ3,σ1,σ5)
3 (λyp : P (σ1, σ4, σ5).MN

1 ):
Wlog. yp is fresh. We have

∆ ` Ni : U(σi), therefore JσiK∗ ∈ N for i = 1 . . . 5 by Corollary 25.
∆ ` L1 : P (σ1, σ2, σ3), ∆ ` L2 : S(σ2, 1, σ4) and ∆ ` L3 : S(σ3, σ1, σ5). Therefore,
Jσ1K∗ · Jσ2K∗ = Jσ3K∗, Jσ2K∗ + J1K∗ = Jσ4K∗ and Jσ3K∗ + Jσ1K∗ = Jσ5K∗ by Lemma 26.
∆, yp : P (σ1, σ4, σ5) `M1 : N

For ∆′P = ∆P ∪ {yp : P (σ1, σ4, σ5)} we have ∆I ∪ ∆U ∪ ∆S ∪ ∆′P ` M1 : N. Since
Jσ5K∗ = Jσ3K∗ + Jσ1K∗ = Jσ1K∗ · Jσ2K∗ + Jσ1K∗ = Jσ1K∗ · (Jσ2K∗ + J1K∗) = Jσ1K∗ · Jσ4K∗, by
the induction hypothesis we obtain the claim.
xAσ1 . . . σnN

U(σ1)
1 . . . N

U(σn)
n L

e1[ai:=σi|i=1...n]
1 . . . L

el[ai:=σi|i=1...n]
l :

We have ∆ ` Ni : U(σi), therefore JσiK∗ ∈ N for i = 1 . . . n by Corollary 25. We show
that the map ai 7→ JσiK∗ satisfies each ej ∈ A by distinguishing the following cases for ej :
Case ai

.= 1: We have ej[ai := σi | 1 = 1 . . . n] = P (1, 1, σi). Since ∆ ` Lj : P (1, 1, σi),
we have JσiK∗ = J1K∗ · J1K∗ = 1 by Lemma 26.

Case ai1
.= ai2 + ai3 : We have ej[ai := σi | 1 = 1 . . . n] = S(σi2 , σi3 , σi1). Since

∆ ` Lj : S(σi2 , σi3 , σi1), we have Jσi1K∗ = Jσi2K∗ + Jσi3K∗ by Lemma 26.
Case ai1

.= ai2 · ai3 : We have ej[ai := σi | 1 = 1 . . . n] = P (σi2 , σi3 , σi1). Since
∆ ` Lj : P (σi2 , σi3 , σi1), we have Jσi1K∗ = Jσi2K∗ · Jσi3K∗ by Lemma 26. J

3.3 Formalization
In this paragraph we outline a formalization [3] of the above soundness (Theorem 27) and
completeness (Theorem 19) results in Coq 8.8 using the SSReflect proof methodology. The
formalization spans 4000 lines of code, of which three quarters is boilerplate.

The main result is formalized in MainResult.v as

Theorem correctness : ∀ (ds : list diophantine), Diophantine.solvable ds ↔
derivation (ΓI ds ++ [U one; P one one one]) triangle.

In the above, constraints of shape either a .= 1 or a .= b+ c or a .= b · c that are used in
Problem 9 are captured in Diophantine.v by the inductive type Inductive diophantine : Set.
Derivability in system F (or rather IPC2) is formalized in Derivations.v by the inductive
type

Inductive derivation (Γ : list formula) : formula → Prop

The property of long normal inhabitation (reflecting Definition 8) is internalized in the
definition of inductive type (also containing a bound on the depth of the derivation as the
first parameter)

Inductive normal_derivation : nat → list formula → formula → Prop

For an in-depth analysis of type derivations in system F see [6]. Normalization of system F
and existence of η-long inhabitants, i.e. completeness of normal_derivation wrt. derivation
is (at the time of writing) not part of the formalization

Axiom normal_derivation_completeness : ∀ (Γ : list formula) (s: formula),
derivation Γ s → ∃ (n : nat), normal_derivation n Γ s.

whereas soundness of normal_derivation wrt. derivation is shown by

Theorem normal_derivation_soundness : ∀ (n : nat) (Γ : list formula) (s: formula),
normal_derivation n Γ s → derivation Γs.

TYPES 2018
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The more general claim that is used in the proof of soundness (Theorem 27) is formalized in
Soundness.v as
Theorem soundness : ∀ (n : nat) (ΓU ΓS ΓP : list formula),
(∀ {s : formula}, In s ΓU → represents_nat s) →
(∀ {s : formula}, In s ΓS → encodes_sum s) →
(∀ {s : formula}, In s ΓP → encodes_prod s) →
∀ (ds : list diophantine),
normal_derivation n (( Encoding.ΓI ds) ++ ΓU ++ ΓS ++ ΓP) Encoding.triangle →
Diophantine.solvable ds.

Completeness (Theorem 19) is formalized in Completeness.v as
Lemma completeness : ∀ (ds : list diophantine), Diophantine.solvable ds →

derivation (ΓI ds ++ [U one; P one one one]) triangle.

where the first three steps in the proof of Theorem 19 are formalized individually as
Theorem completeness_U, Theorem completeness_S, and Theorem completeness_P.

At the time of writing, theorems soundness and completeness use only the above axiom
normal_derivation_completeness as an assumption that is not formally proven.

Several aspects of the “informal” proof, at first glance, appear problematic and are
clarified in the formal proof. In Definition 23 we partially define an interpretation J·K∗ of
arbitrary types as natural numbers based on derivability in system F. Not only is derivability
undecidable, but it is the actual subject of our analysis. The map J·K∗ is formalized in
Encoding.v as
Inductive interpretation (s : formula) (n : nat) : Prop

and its well-definedness is shown in Soundness.v by
Lemma interpretation_soundness : ∀ (s : formula) (m1 m2 : nat),

interpretation s m1 → interpretation s m2 → m1 = m2.

The absence of classical principles or the axiom of choice (resp. Hilbert’s epsilon) as
assumptions in our main result ensures that the whole argument is constructive.

Another aspect elaborated in the formal proof is the argumentation based on the necessary
shape of long normal inhabitants. Clearly, a complete case analysis of all imaginable
inhabitants would clutter an “informal” proof, that is supposed to focus on interesting
cases. Luckily, the formal proof can utilize numerous tactics to deal with the trivial cases
automatically. Most prominently, the tactic decompose_USP implemented in Soundness.v
discovers and transforms suitable assumptions by full case analysis to apply Lemma 26.

4 Conclusion

This work contains the (as of yet) simplest, syntax oriented proof that inhabitation in
system F (resp. provability in intuitionistic second-order propositional logic) is undecidable.
The proof is by reduction from (a variant of) solvability of Diophantine equations. In spirit,
the reduction can be considered an instance of Sørensen’s and Urzyczyn’s reduction from
provability in first-order predicate logic to provability in second-order propositional logic.
Additionally, we formalized soundness and completeness results in the Coq proof assistant.

The next step is to eliminate the axiom regarding existence of long normal inhabitants in
system F by using existing work [10]. In near future, we envision to embed the formalization
into the larger framework of computational reductions in Coq [4] already containing a
collection of formalized reductions that are used in undecidability results.
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Abstract
According to the standard, non type-theoretic accounts of Bishop’s constructivism (BISH), dependent
functions are not necessary to BISH. Dependent functions though, are explicitly used by Bishop
in his definition of the intersection of a family of subsets, and they are necessary to the definition
of arbitrary products. In this paper we present the basic notions and principles of CSFT, a semi-
formal constructive theory of sets and functions intended to be a minimal, adequate and faithful,
in Feferman’s sense, semi-formalisation of Bishop’s set theory (BST). We define the notions of
dependent sum (or exterior union) and dependent product of set-indexed families of sets within
CSFT, and we prove the distributivity of

∏
over

∑
i.e., the translation of the type-theoretic

axiom of choice within CSFT. We also define the notions of dependent sum (or interior union) and
dependent product of set-indexed families of subsets within CSFT. For these definitions we extend
BST with the universe of sets V0 and the universe of functions V1.
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1 Introduction

Bishop’s original approach to constructive mathematics, developed in his seminal book
Foundations of Constructive Analysis, was an important motivation to Martin-Löf’s type
theory (MLTT). Martin-Löf opened his first published paper on type theory ([23], p. 73) as
follows.

The theory of types with which we shall be concerned is intended to be a full scale
system for formalizing intuitionistic mathematics as developed, for example, in the
book of Bishop.

As Martin-Löf explains in [22], p. 13, he got access to Bishop’s book only shortly after his
own book on constructive mathematics [22] was finished. A surprising historical fact is that
the first who considered a type-theoretic system as a formal system for Bishop’s book [5] was
Bishop himself. In the unpublished manuscript [6] Bishop developed an extensional dependent
type theory with one universe as a formal system for his book. In the also unpublished
manuscript [7] Bishop elaborated the implementation of his type theory into Algol. A
similar pattern is followed in [8], where, influenced by Gödel’s Dialectica interpretation,
Bishop introduced Σ, a variant of HAω, as a formal system for his book, and discussed the
implementation of Σ into Algol (see [8], p. 70).
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3:2 Dependent Sums and Dependent Products in Bishop’s Set Theory

The question Q of finding a formal system suitable for Bishop’s system of informal
constructive mathematics BISH was a major question in the foundational studies of the
1970’s. Myhill’s system CST, introduced in [26], and later Aczel’s CZF (see [1]), Friedman’s
system B, developed in [18], and Feferman’s system of explicit mathematics T0 (see [16]
and [17]), are some of the systems motivated by Q, but soon developed independently from
it. These systems were influenced a lot from the classical Zermelo-Fraenkel set theory, and
could be described as “top-down” approaches to Q, as they have many “unexpected” features
with respect to BISH1. Beeson’s systems S and S0 in [3], and Greenleaf’s system of liberal
constructive set theory LCST in [19] were dedicated to Q. Especially Beeson tried to find
a faithful and adequate formalisation of BISH, and by including a serious amount of proof
relevance to his systems stands in between the set-theoretic, proof-irrelevant point of view
and the type-theoretic, proof-relevant point of view.

All aforementioned systems though, were not really “tested” with respect to BISH. Only
very small parts of BISH were actually implemented in them, and their adequacy for BISH
was mainly a claim, rather than a shown fact. The implementation of Bishop’s constructivism
within a formal system for it was taken seriously in the type-theoretic formalisations of BISH,
and especially in the work of Coquand (see e.g., [12] and [13]), Palmgren (see e.g., [20] and
the collaborative work [11]), the Nuprl research group of Constable (see e.g., [15]), and the
Minimalist Foundation of Sambin and Maietti (see [37] and [21]).

Bishop’s (informal) set theory (BST), developed in Chapter 3 of [5] (or [9]), is reflected
in MLTT through the theory of setoids (see especially the work of Palmgren [27]-[29]). The
identity type of MLTT (see [24]) though, has no counterpart in BST, a fact with many
consequences, as e.g., the existence in MLTT of a free setoid from a given type (see [28],
p. 90), a result crucial to the proof of the presentation axiom in MLTT (see [11], p. 75).

The standard, non type-theoretic view regarding dependency within BST is that dependent
functions are not necessary. Dependent functions though, do appear explicitly in Bishop’s
definition of the intersection of

⋂
t∈T λ(t), where T is an inhabited set and λ is a family of

subsets of some set X indexed by T . In [5], p. 65, and in [9], p. 70, Bishop writes that “. . .,
an element u of

⋂
t∈T λ(t) is a rule that associates an element at of λ(t) to each element

t of T”. Dependent functions are also necessary to the definition of products of families
of sets indexed by an arbitrary set, and can be avoided, if one is restricted to countable
products only. Although Bishop himself considered e.g., only countable products of metric
spaces, the constructive development of general algebra (see [25]), or general topology (see
e.g., [30], [32], [31], and [33]), require the use of arbitrary products, hence the use of dependent
functions. As we noted above, Bishop also defined in [6] a notion of dependent types within
his type-theoretic system for BISH.

Currently, we revisit question Q in [34] and [35], aiming at a minimal, adequate and
faithful formalisation of BST. For that we elaborate a semi-formal2, constructive set and
function theory (CSFT), as the first necessary step to an adequate and faithful formalisation
of BST. Although a universe of sets V0 and a universe of functions V1 are included in CSFT,

1 Using Feferman’s terminology from [17], these formal systems are not, in our view, faithful to BISH,
as they contain concepts or axioms that do not appear, neither explicitly nor implicitly, in BISH.
Feferman also introduced the notion of an adequate formalisation T of a body of informal mathematics
M . Namely, T is adequate for M , if every concept, argument, and result of M is represented by a
concept, proof, and a theorem, respectively, of T (see also [3], p. 153).

2 The theory CSFT is semi-formal in the following sense: it fills the “gaps” in Bishop’s presentation of
the fundamental concepts of BST in a minimal way such that an adequate and faithful formalisation of
CSFT can be generated. Hence, CSFT stands between Bishop’s informal and incomplete theory of sets
and a suitable formal system for it.
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and not explicitly mentioned in BST, in section 5 we explain why these classes are implicit3
in BST. The somewhat “silent” existence of dependency in BISH is replaced by a central
presence in CSFT. This is necessary, if we want to make some very basic definitions in BISH
precise enough to be formalised.

2 Basic notions of CSFT

Next we briefly present those fundamentals of CSFT required to the material presented in
the following sections. A complete presentation is planned to be included in [35].

The general logical framework of (a formalisation of) CSFT is a kind of a many-sorted
intuitionistic first-order predicate logic with equality (:=). The expression4 a := b is to be
read as “a is by definition equal to b”. Similarly, the expression P :⇔ Q is read as “P is by
definition equivalent to Q”. The basic primitives of CSFT are the set of natural numbers
N, equipped with its basic equality =N, operations and order, a primitive notion of n-tuple
of given objects, for every natural n larger than 2, an undefined notion of finite routine, or
construction, or algorithm, and the assignment routines pri(a1, . . . , an) := ai, for every i
between 1 and n, and for every n larger than 2, where an assignment routine is defined as a
certain finite routine.

A defined totality X is defined by a membership conditionMX i.e., x ∈ X :⇔MX(x),
andMX(x) is the membership formula for X. If X,Y are defined totalities with membership
formulasMX andMY , respectively, we say that X and Y are definitionally equal, X := Y ,
if
[
MX(x) :⇔MY (x)

]
. A totality is either the primitive N or a defined totality. A totality

X is called inhabited, if there is x0 ∈ X. A defined totality with equality is a defined totality
X equipped with an equality condition EX i.e., x =X y :⇔ EX(x, y), where the equality
formula EX(x, y) satisfies the defining conditions of an equivalence relation. A defined set is
a defined totality with equality such that the membership formulaMX(x) for X represents
a construction, or a finite routine. A set is the primitive N or a defined set. IfMX(x) does
not reflect a construction, then X is a class. E.g., if X,Y are sets, their product X × Y is
the defined totality with equality given by

z ∈ X × Y :⇔ ∃x∈X∃y∈Y
(
z := (x, y)

)
,

z =X×Y w :⇔ pr1(z) =X pr1(w) & pr2(z) =Y pr2(w).

For simplicity, we usually write an equality formula, as that forX×Y , as follows: (x, y) =X×Y
(x′, y′) :⇔ x =X x′ & y =Y y′. In contrast to MLTT, we allow the use of the equality :=
within membership formulas (only). Clearly, if X,Y are sets, then X × Y is also a set, since
the construction of an element of X × Y is reduced to the construction of an element of X
and of an element of Y .

If X,Y are totalities, an assignment routine f : X  Y from X to Y is a finite routine
assigning an element y of Y i.e.,MY (y)), to each given element x of X i.e.,MX(x). In this
case we write f(x) := y. E.g., the assignment routine prX from X × Y to X is defined by
prX(x, y) := pr1(x, y) := x, for every (x, y) ∈ X × Y . If X,Y, Z are totalities, f : X  Y

and g : Y  Z are assignment routines, the composition assignment routine g ◦ f : X  Z

is defined by (g ◦ f)(x) := g(f(x)), for every x ∈ X. If f and g are assignment routines
from X to Y , they are definitionally equal, f := g, if ∀x∈X

(
f(x) := g(x)

)
. E.g., for the

3 In [34] we do not use V1, but instead we consider a dependent assignment routine as a primitive notion.
4 Bishop’s notation for definitional equality is a ≡ b.
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assignment routine idX : X  X, defined by idX(x) := x, for every x ∈ X, we have that
f ◦ idX := f . If X,Y are sets, we call an assignment routine from X to Y an operation,
while a function f : X → Y from a set X to a set Y is an extensional operation from X to
Y i.e., f(x) =Y f(x′), for every x, x′ ∈ X such that x =X x′. A function f : X → Y is an
embedding of X into Y , if x =X x′, whenever f(x) =Y f(x′). We denote such an embedding
by f : X ↪→ Y . If X,Y are sets, the defined totality with equality F(X,Y ) of functions from
X to Y , defined by

z ∈ F(X,Y ) :⇔ z := f : X → Y,

f =F(X,Y ) g :⇔ ∀x∈X
(
f(x) =Y f(y)

)
,

is a set, asMF(X,Y )(z) represents a construction. A subset of a set X is a pair (A, iA), where
A is a set and iA : A ↪→ X. The powerset of X is the defined totality P(X) of subsets of X
with equality defined by

(A, iA) =P(X) (B, iB) :⇔ ∃f :A→B∃g:B→A
(
iA ◦ g =F(B,X) iB & iB ◦ f =F(A,X) iA

)

A X

B.

B

iA

f
iB

iBg

If f and g realize the equality between (A, iA) and (B, iB) in P(X), we write (f, g) :
(A, iA) =P(X) (B, iB). For simplicity, we may write A =P(X) B instead of (A, iA) =P(X)
(B, iB). To construct an element of P(X) one needs to construct a set A and an embedding
from A to X. This membership condition does not express a construction that can be
carried out in a finite time, since there is no known finite algorithm to construct a set.
Consequently, P(X) is a class. If P (x) is an extensional property on X i.e., a formula
satisfying ∀x,y∈X

(
x =X y & P (x)⇒ P (y)

)
, the totality with equality XP is defined by

x ∈ XP :⇔ x ∈ X & P (x),

and x =XP
x′ :⇔ x =X x′. We may also use the notation {x ∈ X | P (x)} for XP . If X is a

set, then XP is a set, and the pair (XP , iXP
), where iXP

: XP ↪→ X is defined by iXP
(x) := x,

for every x ∈ XP , is in P(X). We call XP the extensional subset of X generated by P (x). If
X is a set, the diagonal of X is the set

D(X) := {(x, y) ∈ X ×X | x =X y}

i.e., the extensional subset of X ×X generated by P (x, y) :⇔ x =X y on X ×X.
If (A, iA) and (B, iB) are subsets of X, their intersection A ∩B is defined by

A ∩B := {(a, b) ∈ A×B | iA(a) =X iB(b)}.

Let i : A∩B  X the assignment routine defined by i(a, b) := iA(pr1(a, b)) := iA(a), for every
(a, b) ∈ A∩B. The equality on A∩B is defined by (a, b) =A∩B (a′, b′) :⇔ i(a, b) =X i(a′, b′).
It is immediate to show that =A∩B satisfies the conditions of an equivalence relation and
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that A ∩B is a set. Moreover, the assignment routine i is an embedding of A ∩B into X,
hence the pair (A ∩B, i) is a subset of X.

The union A ∪B of A and B is the totality defined by z ∈ A ∪B :⇔ z ∈ A or z ∈ B. If
j : A ∪B  X is defined by

j(z) :=
{
iA(z) , z ∈ A
iB(z) , z ∈ B,

for every z ∈ A ∪ B, we define z =A∪B w :⇔ j(z) =X j(w). It is immediate to show that
=A∪B satisfies the conditions of an equivalence relation and that A ∪B is a set. Moreover,
the assignment routine j is an embedding of A ∪ B into X, hence the pair (A ∪ B, j) is a
subset of X.

The universe of sets V0 is the defined totality with equality defined by X ∈ V0 :⇔
X is a set, and X =V0 Y :⇔ ∃f :X→Y ∃g:Y→X

(
g ◦ f =idX

& f ◦ g = idY
)

Y X

Y .

X

g

idY
f

idX
f

If the functions f, g realize the equality between X and Y in V0, we write (f, g) : X =V0 Y.

It is easy to show that X =V0 Y satisfies the conditions of an equivalence relation5. The
defined totality with equality V0 is a class, since its membership condition does not reflect a
construction. It is also easy to see that if (f, g) : (A, iA) =P(X) (B, iB), then (f, g) : A =V0 B.
Since sets and functions in BST are objects that are not reduced to one another, the next
defined totality complements naturally the universe of sets V0 and it is proven instrumental
to the formulation of dependency within CSFT. The universe of functions V1 is the defined
totality with equality defined by z ∈ V1 :⇔ ∃X,Y ∈V0∃f∈F(X,Y )

(
z := (X,Y, f)

)
, and

(X,Y, f) =V1 (Z,W, g) :⇔ ∃eXZ∈F(X,Z)∃eZX∈F(Z,X)∃eY W∈F(Y,W )∃eW Y ∈F(W,Y )(
(eXZ , eZX) : X =V0 Z, & (eYW , eWY ) : Y =V0 W & eYW ◦ f = g ◦ eXZ

)

Z W.

YX

g

f

eXZ eYW

If eXZ , eZX , eYW and eWY realize the equality (X,Y, f) =V1 (Z,W, g) in V1, we write

(eXZ , eZX , eYW , eWY ) : (X,Y, f) =V1 (Z,W, g).

5 The defined equality on the universe V0 expresses that V0 is univalent, as isomorphic sets are equal in
V0. In univalent type theory, which is MLTT extended with Voevodsky’s axiom of univalence (see [36]),
the existence of a pair of quasi-inverses between types A and B implies that they are equivalent in
Voevodsky’s sense, and by the univalence axiom, also propositionally equal. The univalence of V0 in
CSFT is not a surprise. Already in BST the type-theoretic axiom of function extensionality is just the
defined equality on the function space.
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Clearly, V1 is a class. It is straightforward to show that (X,Y, f) =V1 (Z,W, g) satisfies the
conditions of an equivalence relation. It is also easy to see that if (f, g) : (A, iA) =P(X) (B, iB),
then (f, g, idX , idX) : (A,X, iA) =V1 (B,X, iB).

3 Exterior union and dependent products in CSFT

The concept of a family of sets indexed by a (discrete) set was asked to be defined in [5]
(Exercise 2, p. 72), and the required definition, attributed to Richman, is included in [9],
(Exercise 2, p. 78), where the discreteness-hypothesis is omitted. The definition has a strong
type-theoretic flavor, although Richman’s motivation was categorical 6. The concept of a
(discrete) set-indexed family of sets is tacitly used in [5] in the definition of a countable
product of metric spaces (see also the related comment in [9], p. 125.). We reformulate
Richman’s definition using the universes V0, V1 and the notion of assignment routine.

I Definition 1. Let I be a set and D(I) its diagonal. A family of sets indexed by I, or
an I-family of sets, is a pair Λ := (λ0, λ1), where λ0 : I  V0 and λ1 : D(I)  V1 are
assignment routines such that for every (i, j) ∈ D(I) we have that λ1(i, j) := (λ0(i), λ0(j), λij)
such that for every i ∈ I we have that λii := idλ0(i), and for every i, j, k ∈ I, satisfying i =I j

and j =I k, the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λjk

λij λik

We call I the index set of the family Λ, the function λij the transport function7 from λ0(i) to
λ0(j), and the assignment routine λ1 the modulus of function-likeness of λ0. If Y is a set
and λ0(i) := Y , for every i ∈ I, and λ1(i, j) := (Y, Y, idY ), for every (i, j) ∈ D(I), we call Λ
the constant I-family Y .

Next we see why we used the term modulus of function-likeness for the routine λ1.
I Remark 2. If Λ = (λ0, λ1) is an I-family of sets and i =I j, then (λij , λji) : λ0(i) =V0 λ0(j).

Proof. By Definition 1 we have that λii = λji ◦ λij and λjj = λij ◦ λji. J

Next we give some useful examples of set-indexed families of sets (see Proposition 9).

I Definition 3. Let Λ2 := (λ2
0 , λ

2
1), where λ2

0 : 2  V0 with λ2
0(0) := X and λ2

0(1) := Y ,
and λ2

1 : {(0, 0), (1, 1)} V1 is defined by λ2
1(0, 0) := (X,X, idX) and λ2

1(1, 1) := (Y, Y, idY ).
We call Λ2 the 2-family of X and Y . The n-family of the sets X1, . . . , Xn, for every n ≥ 1,
is defined similarly. Let ΛN := (λN0 , λN1 ), where λN0 : N  V0 with λN0 (n) := Xn, and
λN1 : {(n, n) | n ∈ N}  V0 is defined by λN1 (n, n) := (Xn, Xn, idXn

), for every n ∈ N. We
call ΛN the N-family of (Xn)n.

Following Beeson’s notation in [4], p. 44, we use the type-theoretic notation of
∑

-types
for the exterior union of a set-indexed family of sets.

6 In a personal communication, Richman referred to the definition of a set-indexed family of objects of a
category, given in [25], p. 18, as the source of the definition attributed to him in [9], p. 78.

7 We draw this term from MLTT.
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I Definition 4. Let Λ := (λ0, λ1) be an I-family of sets. The exterior union, or disjoint
union,

∑
i∈I λ0(i) of Λ is defined by

w ∈
∑
i∈I

λ0(i) :⇔ ∃i∈I∃x∈λ0(i)
(
w := (i, x)

)
.

(i, x) =∑
i∈I

λ0(i) (j, y) :⇔ i =I j & λij(x) =λ0(j) y.

I Remark 5. The equality on
∑
i∈I λ0(i) satisfies the conditions of an equivalence relation,

and
∑
i∈I λ0(i) is a set.

Proof. Let (i, x), (j, y) and (k, z) ∈
∑
i∈I λ0(i). Since i =I i and λii := idλ0(i), we get

(i, x) =∑
i∈I

λ0(i) (i, x). If (i, x) =∑
i∈I

λ0(i) (j, y), then j =I i and λji(y) = λji(λij(x)) =
λii(x) := idλ0(i)(x) := x, hence (j, y) =∑

i∈I
λ0(i) (i, x). If (i, x) =∑

i∈I
λ0(i) (j, y) and

(j, y) =∑
i∈I

λ0(i) (k, z), then from the hypotheses i =I j and j =I k, we get i =I k, and
λik(x) = (λjk ◦ λij)(x) := λjk(λij(x)) = λjk(y) = z. Clearly, the membership condition of∑
i∈I λ0(i) reflects a construction. J

I Definition 6. Let Λ := (λ0, λ1) be an I-family of sets. The first projection on
∑
i∈I λ0(i)

is the assignment routine pr1(Λ) :
∑
i∈I λ0(i) I, defined by, for every (i, x) ∈

∑
i∈I λ0(i),

pr1(Λ)(i, x) := pr1(i, x) := i.

We may only write pr1, when the family of sets Λ is clearly understood from the context.

By the definition of equality on
∑
i∈I λ0(i) we get immediately that pr1 :

∑
i∈I λ0(i)→ I.

At the moment, for the second projection rule pr2(i, x) := x, for every (i, x) ∈
∑
i∈I λ0(i),

we do not have a way to describe its codomain. If ΛN is the N-family of (Xn)n (Definition 3),
its exterior union is by definition∑

n∈N
Xn =: {(n, x) | n ∈ N & x ∈ Xn},

(n, x) =∑
n∈N

Xn
(m, y) :⇔ n =N m & x =Xn

y.

Traditionally, the countable product of this sequence of sets is defined by∏
n∈N

Xn :=
{
φ : N→

∑
n∈N

Xn | ∀n∈N
(
φ(n) ∈ Xn

)}
,

which is a rough writing of the following∏
n∈N

Xn :=
{
φ : N→

∑
n∈N

Xn | ∀n∈N
(
pr1(φ(n)) =N n

)}
.

In the second writing the condition pr1(φ(n)) =N n implies that pr1(φ(n)) := n, hence, if
φ(n) := (m, y), then m := n and y ∈ Xn. When the equality of I though, is not like that of
N, we cannot solve this problem in a satisfying way. One could define

φ ∈
∏
i∈I

λ0(i) :⇔ φ ∈ F
(
I,
∑
i∈I

λ0(i)
)

& ∀i∈I
(
pr1(φ(i)) := i

)
.

This approach has the problem that the property

Q(φ) :⇔ ∀i∈I
(
pr1(φ(i)) := i

)
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3:8 Dependent Sums and Dependent Products in Bishop’s Set Theory

is not necessarily extensional; let φ =
F
(
I,
∑

i∈I
λ0(i)

) θ i.e., ∀i∈I
(
φ(i) =∑

i∈I
λ0(i) θ(i)

)
, and

suppose that Q(φ). If we fix some i ∈ I, and φ(i) := (i, x) and θ(i) := (j, y), we only get
that j =I i. The universe of functions V1 allows us to take a different approach to the
definition of an arbitrary product, which, in our view, reflects accurately Bishop’s formulation
of dependent functions in [5], p. 65.

I Definition 7. Let Λ := (λ0, λ1) be an I-family of sets, and let 1 := {x ∈ N | x =N 0} =: {0}.
A dependent function over Λ is an assignment routine Φ : I  V1, where, for every i ∈ I,

Φ(i) := (1, λ0(i), φi)

such that, for every (i, j) ∈ D(I), the following diagram commutes

1 λ0(i)

1 λ0(j)

id1

φi

φj

λij

Since φi : 1 → λ0(i), the triple Φ(i) determines the element φi(0) ∈ λ0(i). If i =I j,
the commutativity of the above diagram gives that φj(0) =λ0(j) λij(φi(0)). A dependent
function Φ is a function-like object i.e., i =I j ⇒ Φ(i) =V1 Φ(j), since (id1, id1, λij , λji) :
(1, λ0(i), φi) =V1 (1, λ0(j), φj). Since id1 is the only function from 1 to 1, from now on we
avoid mentioning it in commutative diagrams.

I Definition 8. Let Λ := (λ0, λ1) be an I-family of sets. The I-product of the family Λ is
the totality

∏
i∈I λ0(i) of dependent functions over Λ equipped with the equality

Φ =∏
i∈I

λ0(i) Θ :⇔ ∀i∈I
(
φi(0) =λ0(i) θi(0)

)

1 λ0(i)

1 λ0(i)

φi

θi

λii

If Y is a set and Λ is the constant I-family Y , we use the notation Y I :=
∏
i∈I Y.

Clearly, the equality on
∏
i∈I λ0(i) satisfies the conditions of an equivalence relation, and∏

i∈I λ0(i) is a set. As expected, the dependent product generalises the cartesian product.

I Proposition 9. If Λ2 is the 2-family of the sets X and Y , then∏
i∈2

λ2
0(i) =V0 X × Y.

Proof. If Φ ∈
∏
i∈I λ

2
0(i), then Φ : 2 V1, where Φ(0) := (1, X, φ0) with φ0 : 1→ X, and

Φ(1) := (1, X, φ1) with φ1 : 1→ Y , such that the following diagrams commute
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1 X

X1 1 Y

1 Y .
φ0

φ0

idX

φ1

φ1

idY

Since this is always the case, φ0, φ1 are arbitrary. If Φ,Θ ∈
∏
i∈I λ

2
0(i), then Φ =∏

i∈I
λ2

0(i) Θ,
if the following diagrams commute

1 X

X1 1 Y

1 Y
θ0

φ0

idX

θ1

φ1

idY

i.e., if θ0(0) =X φ0(0) and θ1(0) =Y φ1(0). If we define f :
∏
i∈I λ

2
0(i) → X × Y by

f(Φ) := (φ0(0), φ1(0)), and g : X × Y →
∏
i∈I λ

2
0 by g(x, y) := Φx,y with φ0(0) := x and

φ1(0) := y, it is immediate to show that (f, g) :
∏
i∈I λ

2
0(i) =V0 X × Y. J

If ΛN := (λN0 , λN1 ) is the N-family of (Xn)n, and if Φ ∈
∏
n∈NXn, then, for every n ∈ N,

we have that Φ(n) := (1, Xn, φn) and the required diagram is commutative. If (Xn, ρn) is
a metric space, for every n ∈ N, Bishop’s definition in [5], p. 79, of the countable product
metric on

∏
n∈NXn takes the form

ρ(Φ,Θ) :=
∞∑
n=1

ρn
(
φn(0), θn(0)

)
2n .

I Proposition 10. If Λ := (λ0, λ1) is the constant I-family Y , then Y I =V0 F(I, Y ).

Proof. Let the assignment routine e : Y I  F(I, Y ) be defined by Φ 7→ e(Φ), and e(Φ)(i) :=
φi(0), where Φ(i) := (1, λ0(i), φi), for every i ∈ I. This routine is well-defined, since,
if i =I j, and using the equality λij(φi(0)) =λ0(j) φj(0), we get e(Φ)(i) := φi(0) =λ0(j)
φj(0) := e(Φ)(j), hence e(Φ) is in F(I, Y ). The assignment routine e is also a function i..e,
Φ =Y I Θ ⇒ e(Φ) =F(I,Y ) e(Θ), since for every i ∈ I, we have that e(Φ)(i) := φi(0) =λ0(i)
θi(0) := e(Θ)(i). Let the assignment routine e′ : F(I, Y ) Y I be defined by f 7→ e′(f), and
e′(f)(i) := (1, Y, fi), where fi : 1→ Y is defined by fi(0) := f(i). The assignment routine e′ is
a function i.e., f =F(I,Y ) g ⇒ e′(f) =Y I e′(g), by the equalities fi(0) := f(i) =Y g(i) := gi(0)
and the resulting commutativity of the following diagram

1 Y

1 Y

gi

fi

idY

for every i ∈ I. Since e′(f)(i) := (1, Y, fi), we get e(e′(f))(i) := fi(0) := f(i), hence e◦e′ := f .
Since e′(e(Φ))(i) := (1, Y, e(Φ)i), where e(Φ)i : 1→ Y is defined by e(Φ)i(0) := e(Φ)(i) :=
φi(0), we get e(Φ)i := φi, and since Φ(i) := (1, Y, φi), for every i ∈ I, we conclude that
e′(e(Φ)) := Φ. Consequently, (e, e′) : Y I =V0 F(I, Y ). J
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I Definition 11. Let Λ := (λ0, λ1) be an I-family of sets. The
∑
i∈I λ0(i)-family MΛ :=

(µ0, µ1) of sets is defined by

µ0(i, x) := λ0(i),

µ1
(
(i, x), (j, y)

)
:=
(
µ0(i, x), µ0(j, y), µ(i,x)(j,y)

)
:= (λ0(i), λ0(j), λij),

for every (i, x) ∈
∑
i∈I λ0(i) and

(
(i, x), (j, y)

)
in the diagonal of

∑
i∈I λ0(i). The second

projection on
∑
i∈I λ0(i) is the assignment routine pr2(Λ) :

∑
i∈I λ0(i) V1, defined, for

every (i, x) ∈
∑
i∈I λ0(i), by

pr2(Λ)(i, x) := (1, λ0(i), φ(i,x)),

where φ(i,x) : 1→ λ0(i) is defined by φ(i,x)(0) := x. We may only write pr2, when the family
of sets Λ is clearly understood from the context.

I Proposition 12. If Λ and MΛ are as in Definition 11, then

pr2(Λ) ∈
∏

w∈
∑

i∈I
λ0(i)

µ0(w) :=
∏

w∈
∑

i∈I
λ0(i)

λ0(pr1(w)).

Proof. It suffices to show that if (i, x) =∑
i∈I

λ0(i) (j, y), the following diagram commutes

1 λ0(i)

1 λ0(j)

φ(i,x)

φ(j,y)

λij

By the related definitions we get λij(φ(i,x)(0)) := λij(x) =λ0(j) y := φ(j,y)(0). J

3.1 The distributivity of ∏ over ∑
Next we prove the translation of the type-theoretic axiom of choice within CSFT (Theorem 18),
or, as it was suggested to us by M. Maietti, the distributivity of

∏
over

∑8. For the proof
of Theorem 18 we need some preparation.

I Definition 13. Let X,Y be sets, and R := (ρ0, ρ1) a family of sets indexed by X × Y . If
x ∈ X let Λx := (λx0 , λx1), where λx0 : Y  V0 with λx0(y) := ρ0(x, y), and λx1 : D(Y )  V1
with

λx1(y, y′) :=
(
λx0(y), λx0(y′), λxyy′

)
:=
(
ρ0(x, y), ρ0(x, y′), ρ(x,y)(x,y′)

)
,

for every y ∈ Y and every (y, y′) ∈ D(Y ), respectively. Let also M := (µ0, µ1), where
µ0 : X  V0 with µ0(x) :=

∑
y∈Y ρ0(x, y), and µ1 : D(X) V1 with

µ1(x, x′) :=
(
µ0(x), µ0(x′), µxx′

)
:=
(∑
y∈Y

ρ0(x, y),
∑
y∈Y

ρ0(x′, y), µxx′

)
,

8 We would like to E. Palmgren for pointing to us that such a distributivity holds in every locally cartesian
closed category. In [38] it is mentioned that this fact is generally attributed to Martin-Löf and his
work [24]. For a proof see [2].
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for every x ∈ X and every (x, x′) ∈ D(X), respectively. For every (y, u) ∈
∑
y∈Y ρ0(x, y), let

µxx′ :
∑
y∈Y

ρ0(x, y)→
∑
y∈Y

ρ0(x′, y) & µxx′(y, u) :=
(
y, ρ(x,y)(x′,y)(u)

)
.

I Lemma 14. The pairs Λx := (λx0 , λx1) and M := (µ0, µ1) in Definition 13 are families of
sets indexed by Y and X, respectively.

Proof. Since by hypothesis R is an X × Y -family of sets, we get

λx1(y, y) :=
(
ρ0(x, y), ρ0(x, y), ρ(x,y)(x,y)

)
:=
(
ρ0(x, y), ρ0(x, y), idρ0(x,y)

)
,

and the commutativity of the left diagram

λx0(y′) λx0(y′′)

λx0(y) ρ0(x, y)

ρ0(x, y′) ρ0(x, y′′)
λxy′y′′

λxyy′ λxyy′′ ρ(x,y)(x,y′) ρ(x,y)(x,y′′)

ρ(x,y′)(x,y′′)

is by definition the known commutativity of the right diagram. Similarly,

µ1(x, x) :=
(
µ0(x), µ0(x), µxx

)
:=
(∑
y∈Y

ρ0(x, y),
∑
y∈Y

ρ0(x, y), µxx
)
,

where µxx :
∑
y∈Y ρ0(x, y)→

∑
y∈Y ρ0(x, y) is defined by

µxx(y, u) :=
(
y, ρ(x,y)(x,y)(u)

)
:=
(
y, idρ0(x,y)(u)

)
:= (y, u),

for every (y, u) ∈
∑
y∈Y ρ0(x, y). For the commutativity of the left diagram

µ0(x′) µ0(x′′)

µ0(x) ρ0(x, y)

ρ0(x′, y) ρ0(x′′, y)
µx′x′′

µxx′ µxx′′ ρ(x,y)(x′,y) ρ(x,y)(x′′,y)

ρ(x′,y)(x′′,y)

we use the known commutativity of the right diagram, since

µx′x′′
(
µxx′(y, u)

)
:= µx′x′′

(
y, ρ(x,y)(x′,y)(u))

)
:=
(
y, ρ(x′,y)(x′′,y)(ρ(x,y)(x′,y)(u))

)
:=
(
y, ρ(x,y)(x′′,y)(u)

)
:= µxx′′(y, u),

for every (y, u) ∈
∑
y∈Y ρ(x, y). J

I Lemma 15. Let R := (ρ0, ρ1), Λx := (λx0 , λx1) and M := (µ0, µ1) be the families of sets of
Definition 13. If Φ ∈

∏
x∈X µ0(x), then Φ generates a function fΦ : X → Y .

Proof. By definition, Φ : X  V1, where, for every x ∈ X,

Φ(x) := (1, µ0(x), φx) :=
(
1,
∑
y∈Y

ρ0(x, y), φx
)
,

where φx : 1→
∑
y∈Y ρ0(x, y). We define the assignment routine fΦ : X  Y by the rule

fΦ(x) := pr1(φx(0)), for every x ∈ X. Next we show that the routine fΦ is a function. Let
x =X x′. By the commutativity of the following diagram
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1 µ0(x)

1 µ0(x′)

φx

φx′

µxx′

we have that, if φx(0) := (y, u), for some y ∈ Y and u ∈ ρ0(x, y), then

µxx′(φx(0)) := µxx′(y, u) :=
(
y, ρ(x,y)(x′,y)(u)

)
=∑

y∈Y
ρ0(x′,y) φx′(0),

hence, since pr1 is a function, we get

f(x′) := pr1(φx′(0)) =Y pr1
(
y, ρ(x,y)(x′,y)(u)

)
:= y := pr1(φx(0)) := f(x). J

I Lemma 16. Let R := (ρ0, ρ1), Λx := (λx0 , λx1) and M := (µ0, µ1) be the families of sets of
Definition 13. If f : X → Y , let Nf := (νf0 , ν

f
1 ), where νf0 : X  V0 and νf1 : D(X) V1

are defined by

νf0 (x) := ρ0(x, f(x)),

νf1 (x, x′) :=
(
νf0 (x), νf0 (x′), νfxx′

)
:=
(
ρ0(x, f(x)), ρ0(x′, f(x′)), ρ(x,f(x))(x′,f(x′)

)
,

for every x ∈ X and every (x, x′) ∈ D(X), respectively, then Nf is an X-family of sets.

Proof. Since by hypothesis R is an X × Y -family of sets, we get

νf1 (x, x) :=
(
ρ0(x, f(x)), ρ0(x, f(x)), ρ(x,f(x))(x,f(x))

)
:=
(
ρ0(x, f(x)), ρ0(x, f(x)), idρ0(x,f(x))

)
.

Since by Lemma 15 fΦ is a function, the commutativity of the left diagram

νf0 (x′) νf0 (x′′)

νf0 (x) ρ0(x, f(x))

ρ0(x′, f(x′)) ρ0(x′′, f(x′′))
νfx′x′′

νfxx′ νfxx′′
ρ(x,f(x))(x′,f(x′)) ρ(x,f(x))(x′′,f(x′′))

ρ(x′,f(x′))(x′′,f(x′′))

is by definition the known commutativity of the right diagram. J

I Lemma 17. Let R := (ρ0, ρ1) be the family of sets in Definition 13, and Nf := (νf0 , ν
f
1 )

the family of sets defined in Lemma 16. If Ξ := (ξ0, ξ1), where ξ0 : F(X,Y )  V0 and
ξ1 : D(F(X,Y )) V1 are defined by

ξ0(f) :=
∏
x∈X

νf0 (x) :=
∏
x∈X

ρ0(x, f(x))

ξ1(f, f ′) :=
(
ξ0(f), ξ0(f ′), ξff ′

)
,

where

ξff ′ :
∏
x∈X

ρ0(x, f(x))→
∏
x∈X

ρ0(x, f ′(x))
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is defined by

ξff ′(H)(x) :=
(
1, ρ0(x, f ′(x)), h′x

)
,

h′x(0) := ρ(x,f(x))(x,f ′(x))
(
hx(0)

)
,

and

H(x) :=
(
1, νf0 (x), hx

)
:=
(
1, ρ0(x, f(x)), hx

)
for every H ∈

∏
x∈X ρ0(x, f(x)) and x ∈ X, then Ξ is a family of sets indexed by F(X,Y ).

Proof. First we show that if f =F(X,Y ) f
′, then

ξff ′(H) ∈
∏
x∈X

ρ0(x, f ′(x)) :=
∏
x∈X

νf
′

0 (x),

by showing that if x =X x′, then the commutativity of the left diagram

1 ρ0(x, f(x)) 1 ρ0(x, f ′(x))

1 ρ0(x′, f(x′)) 1 ρ0(x′, f ′(x′))

hx

hx′

νfxx′

h′x

h′x′

νf
′

xx′

implies the commutativity of the right one. By definition we have that

νf
′

xx′

(
h′x(0)

)
:= νf

′

xx′

(
ρ(x,f(x))(x,f ′(x))

(
hx(0)

))
:= ρ(x,f ′(x))(x′,f ′(x′))

(
ρ(x,f(x))(x,f ′(x))

(
hx(0)

))
=ρ0(x′,f ′(x′)) ρ(x,f(x)(x′,f ′(x′))

(
hx(0)

)
.

since the pairs (x, f(x)), (x, f ′(x)) and (x′, f ′(x′)) are equal in X × Y , by the hypotheses
x =X x′ and f =F(X,Y ) f

′. Moreover, by the commutativity of the left diagram above we get

hx′(0) =ρ0(x′,f(x′)) νfxx′

(
hx(0)

)
=ρ0(x′,f(x′)) ρ(x,f(x))(x′,f(x′))

(
hx(0)

)
,

hence,

h′x′(0) := ρ(x′,f(x′)(x′,f ′(x′)
(
hx′(0)

)
=ρ0(x′,f(x′)) ρ(x′,f(x′)(x′,f ′(x′)

(
ρ(x,f(x))(x′,f(x′))

(
hx(0)

))
=ρ0(x′,f(x′)) ρ(x,f(x)(x′,f ′(x′))

(
hx(0)

)
,

and consequently, νf
′

xx′

(
h′x(0)

)
=ρ0(x′,f(x′)) h′x′(0). Next we show that ξ1 satisfies the

properties of Definition 1. By definition ξff (H)(x) :=
(
1, ρ0(x, f(x)), h′x

)
, where

h′x(0) := ρ(x,f(x))(x,f(x))
(
hx(0)

)
:= idρ0(x,f(x))

(
hx(0)

)
:= hx(0),

hence ξff (H) := H, and since H is arbitrary, we get ξff := idξ0(f). Finally, if f =F(X,Y )
f ′ =F(X,Y ) f

′′, we show the commutativity of the following diagram
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ξ0(f ′) ξ0(f ′′).

ξ0(f)

ξf ′f ′′

ξff ′ ξff ′′

If H ∈ ξ0(f), we show ξff ′′(H) =ξ0(f ′′) ξf ′f ′′(ξff ′(H)) i.e.,

ξff ′′(H) =∏
x∈X

ρ0(x,f ′′(x)) ξf ′f ′′(ξff ′(H)).

By definition we have that [ξf ′f ′′(ξff ′(H))](x) := (1, ρ0(x, f ′′(x)), h′′x), where

h′′x(0) := ρ(x,f ′(x))(x,f ′′(x))
(
h′x(0)

)
.

Since ξff ′(H)(x) := (1, ρ0(x, f ′(x)), h′x), where h′x(0) := ρ(x,f(x))(x,f ′(x))
(
hx(0)

)
, we get

h′′x(0) := ρ(x,f ′(x))(x,f ′′(x))

(
ρ(x,f(x))(x,f ′(x))

(
hx(0)

))
= ρ(x,f(x))(x,f ′′(x))

(
hx(0)

)
:= τx(0),

where ξff ′′(H)(x) := (1, ρ0(x, f ′′(x)), τx), with τx(0) := ρ(x,f(x))(x,f ′′(x))
(
hx(0)

)
, and since

x ∈ X is arbitrary, the required commutativity is shown. J

I Theorem 18 (Distributivity of
∏

over
∑

). Let X,Y be sets, and R := (ρ0, ρ1), Λx :=
(λx0 , λx1), M := (µ0, µ1) the families of sets of Definition 13. If

Φ ∈
∏
x∈X

µ0(x) :=
∏
x∈X

∑
y∈Y

ρ0(x, y),

there is ΘΦ ∈
∏
x∈X ν

fΦ
0 (x), where fΦ : X → Y is defined in Lemma 15, and(

fΦ,ΘΦ
)
∈

∑
f∈F(X,Y )

∏
x∈X

νf0 (x) :=
∑

f∈F(X,Y )

∏
x∈X

ρ0(x, f(x)).

Moreover, the assignment routine

ac :
∏
x∈X

∑
y∈Y

ρ0(x, y)  
∑

f∈F(X,Y )

∏
x∈X

ρ0(x, f(x))

ac(Φ) :=
(
fΦ,ΘΦ

)
is a function.

Proof. By Proposition 12 we have that

pr2(Λx) ∈
∏

w∈
∑

y∈Y
λx

0 (y)

λx0(pr1(w)) :=
∏

w∈
∑

y∈Y
ρ0(x,y)

ρ0(x, pr1(w)),

where, if (y, u) ∈
∑
y∈Y ρ0(x, y), then pr2(Λx)(y, u) :=

(
1, ρ0(x, y), σ(y,u)

)
, and σ(y,u) : 1→

ρ0(x, y) is defined by σ(y,u)(0) := u. We define the assignment routine ΘΦ : X  V1 by

ΘΦ(x) :=
(
1, νfΦ

0 (x), θx
)

:=
(
1, ρ0(x, fΦ(x)), θx

)
,

where θx : 1 → ρ0(x, fΦ(x)) is defined by θx(0) := σ(y,u)(0) := u, and φx(0) := (y, u) :=
(fΦ(x), u). Since (y, u) := φx(0) ∈

∑
y∈Y ρ0(x, y), we have that u ∈ ρ0(x, y) := ρ0(x, fΦ(x)).

In order to show that ΘΦ ∈
∏
x∈A ν

fΦ
0 (x) :=

∏
x∈A ρ0(x, fΦ(x)), we need to show, for x =X x′,

the commutativity of the following diagram
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1 ρ0(x, fΦ(x))

1 ρ0(x′, fΦ(x′)).

θx

θx′

νfΦ
xx′

Since Φ ∈
∏
x∈X µ0(x) :=

∏
x∈X

∑
y∈Y ρ0(x, y), we have the commutativity of the diagram

1
∑
y∈Y ρ0(x, y)

1
∑
y∈Y ρ0(x′, y),

φx

φx′

µxx′

where by Definition 13 this commutativity becomes

µxx′(φx(0)) := µxx′(y, u) :=
(
y, ρ(x,y)(x′,y)(u)

)
:=
(
y, ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=∑

y∈Y
ρ0(x′,y) φx′(0) := (y′, u′) := (fΦ(x′), u′).

Since the equality(
y, ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=∑

y∈Y
ρ0(x′,y) (y′, u′)

is by definition the equality(
y, ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=∑

y∈Y
λx′

0 (y) (y′, u′),

we have that y =Y y′ and

λx
′

yy′

(
ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=λx′

0 (y′) u′,

while by the definition of λx′

yy′ and since λx′

0 (y′) := ρ0(x′, y′) we get

ρ(x′,y)(x′,y′)
(
ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=ρ0(x′,y′) u′

i.e.,

ρ(x′,fΦ(x))(x′,fΦ(x′)
(
ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=ρ0(x′,y′) u′.

By the commutativity of the following diagram

ρ0(x′, fΦ(x))

ρ0(x, fΦ(x))

ρ0(x′, fΦ(x′))

ρ(x,fΦ(x))(x′,fΦ(x))

ρ(x′,fΦ(x))(x′,fΦ(x′))

ρ(x,fΦ(x))(x′,fΦ(x′))
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we get

ρ(x,fΦ(x))(x′,fΦ(x′)(u) =ρ0(x′,y′) u′,

and the required commutativity of the diagram for ΘΦ is shown as follows:

νfΦ
xx′(θx(0)) := νfΦ

xx′(σ(y,u)(0)) := νfΦ
xx′(u0) := ρ(x,fΦ(x))(x′,fΦ(x′))(u) =ρ0(x′,y′) u′ := θx′(0).

Next we show that ac is a function i.e., Φ =∏
x∈X

µ0(x) Φ′ ⇒ ac(Φ) =∑
f∈F(X,Y )

ξ0(f) ac(Φ′).
If

Φ(x) := (1, µ0(x), φx) := (1,
∑
y∈Y

ρ0(x, y), φx),

Φ′(x) := (1, µ0(x), φ′x) := (1,
∑
y∈Y

ρ0(x, y), φ′x),

the hypothesis Φ =∏
x∈X

µ0(x) Φ′ is reduced to φx(0) =µ0(x) φ
′
x(0), for every x ∈ X. By

definition the equality(
fΦ,ΘΦ

)
=∑

f∈F(X,Y )
ξ0(f)

(
fΦ′ ,ΘΦ′

)
is reduced to fΦ =F(X,Y ) fΦ′ and

ξfΦfΦ′ (ΘΦ) =ξ0(fΦ′ ) ΘΦ′ :⇔ ξfΦfΦ′ (ΘΦ) =∏
x∈X

ρ0(x,fΦ′ (x)) ΘΦ′ .

If x ∈ X, then

fΦ(x) := pr1(φx(0)) =Y pr1(φ′x(0)) := fΦ′(x),

hence, since x ∈ X is arbitrary, fΦ =F(X,Y ) fΦ′ . By definition Φ(x) := (1,
∑
y∈Y ρ0(x, y), φx)

and ΘΦ(x) := (1, ρ0(x, fΦ(x)), θx), where θx(0) := σ(y,u)(0) := u, and φx(0) := (y, u) :=
(fΦ(x), u). Similarly, Φ′(x) := (1,

∑
y∈Y ρ0(x, y), φ′x) and ΘΦ′(x) := (1, ρ0(x, fΦ′(x)), θ′x),

where θ′x(0) := σ(y′,u′)(0) := u′, and φ′x(0) := (y′, u′) := (fΦ′(x), u′). Moreover,

ξfΦfΦ′ (ΘΦ)(x) := (1, ρ0(x, fΦ′(x)), h′x),

h′x(0) := ρ(x,fΦ(x))(x,fΦ′ (x))
(
θx(0)

)
:= ρ(x,fΦ(x))(x,fΦ′ (x))(u).

By definition, we need to show that, for every x ∈ X,

θ′x(0) =ρ0(x,fΦ′ (x)) h′x(0) :⇔ u′ =ρ0(x,fΦ′ (x)) ρ(x,fΦ(x))(x,fΦ′ (x))(u).

Since

φx(0) =µ0(x) φ
′
x(0) :⇔ φx(0) =∑

y∈Y
ρ0(x,y) φ

′
x(0) :⇔ (fΦ(x), u) =∑

y∈Y
λx

0 (y) (fΦ′(x), u′),

we get

λxyy′(u) =ρ0(x,y′) u
′ :⇔ ρ(x,fΦ(x))(x,fΦ′ (x))(u) =ρ0(x,y′) u

′,

which is exactly what we need to show. J
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4 Interior union and dependent products in CSFT

Next we formulate Bishop’s definition of a set-indexed family of subsets, given in [5], p. 65,
in analogy to our definition of a set-indexed family of sets.

I Definition 19. Let X and I be sets. A family of subsets of X indexed by I is a triple
λ := (λ0, σ1, λ1), where λ0 : I  V0, and σ1 : I  V1, such that, for every i ∈ I, we have
that σ1(i) := (λ0(i), X, ei) and ei is an embedding of λ0(i) into X. Moreover, λ1 : D(I) V1
is called the modulus of function-likeness of λ0, and for every i ∈ I it satisfies λii := idλ0(i),

while for every (i, j) ∈ D(I) it satisfies (λij , λji) : λ0(i) =P(X) λ0(j) i.e., the following inner
diagrams commute

λ0(i) X

λ0(j).

λ0(j)

ei

λij
ej

ej
λji

I Remark 20. If λ := (λ0, σ1, λ1) is an I-family of subsets of X, then Λλ := (λ0, λ1) is an
I-family of sets.

Proof. Let i =I j =I k. If a ∈ λ0(i), by the commutativity of the following inner diagrams

λ0(i) X

λ0(j) λ0(k)

λ0(i)ei

λij
ej λikek

ei

λjk

and omitting the subscripts in the following equalities, we have that

ek
(
λjk(λij(a))

)
= ej(λij(a)) = ei(a) = ek

(
λik(a)

)
,

hence λjk(λij(a)) = λik(a), and since a ∈ λ0(i) is arbitrary, we get λjk ◦ λij = λik. J

I Definition 21. Let λ := (λ0, σ0, λ1) be an I-family of subsets of X. The interior union of
λ is the totality

⋃
i∈I λ0(i) defined by

z ∈
⋃
i∈I

λ0(i) :⇔ ∃i∈I∃x∈λ0(i)
(
z := (i, x)

)
.

Let the assignment routine ε :
⋃
i∈I λ0(i)  X be defined by ε(i, x) := ei(x), for every

(i, x) ∈
⋃
i∈I λ0(i), where ei : λ0(i) ↪→ X is the embedding of λ0(i) into X, for every i ∈ I.

The equality on
⋃
i∈I λ0(i) is defined by

(i, x) =⋃
i∈I

λ0(i) (j, y) :⇔ ε(i, x) =X ε(j, y).
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It is immediate to show that (i, x) =⋃
i∈I

λ0(i) (j, y) satisfies the conditions of an equival-
ence relation, and

⋃
i∈I λ0(i) is a set. Moreover, the assignment routine ε is an embedding

of
⋃
i∈I λ0(i) into X, hence the pair

(⋃
i∈I λ0(i), ε

)
is a subset of X. Note that

∑
i∈I λ0(i)

and
⋃
i∈I λ0(i) have the same membership formula, but different equalities. The equality

of
∑
i∈I λ0(i) is determined externally by the transport function λij , while the equality of⋃

i∈I λ0(i) is determined internally by the embeddings ei, ej .

I Definition 22. Let λ := (λ0, σ0, λ1) be an I-family of subsets of X. A dependent function
over λ is9 a dependent function over Λλ. Based on Definition 7, and using a superscript to
emphasize that we deal with a family of subsets, we denote their set by

∏X

i∈I λ0(i).

Next we define the intersection of a set-indexed family of subsets (see also [5], p. 65).

I Definition 23. Let λ := (λ0, σ1, λ1) be an I-family of subsets of X, where I is inhabited
by some element i0. The intersection

⋂
i∈I λ0(i) of λ is the totality defined by

Φ ∈
⋂
i∈I

λ0(i) :⇔ Φ ∈
X∏
i∈I

λ0(i) & ∀i,i′∈I
(
ei(φi(0)) =X ei′(φi′(0))

)
,

where, for every i ∈ I, Φ(i) := (1, λ0(i), φi) and σ1(i) := (λ0(i), X, ei). Let the assignment
routine e :

⋂
i∈I λ0(i) X be defined by e(Φ) := ei0

(
φi0(0)

)
. If Φ,Θ ∈

⋂
i∈I λ0(i), we define

Φ =⋂
i∈I

λ0(i) Θ :⇔ e(Φ) =X e(Θ).

It is immediate to show that Φ =⋂
i∈I

λ0(i) Θ satisfies the conditions of an equivalence
relation, and

⋂
i∈I λ0(i) is a set. Moreover, the assignment routine e is an embedding of⋂

i∈I λ0(i) into X, hence the pair
(⋂

i∈I λ0(i), e
)
is a subset of X. As expected, Definition 21

is the family-version of the definition of A ∪B, and Definition 23 is the family-version of the
definition of A ∩B. Working as in Proposition 9, we get the following.

I Remark 24. Let A,B ∈ P(X), and let λ2 := (λ2
0 , σ

2
1 , λ

2
1) be a 2-family of subsets of X,

where λ2
0 , λ2

1 are defined as in Definition 3, σ2
1 (0) := (A,X, iA), and σ2

1 (1) := (B,X, iB).
Then⋃

i∈2
λ0(i) =P(X) A ∪B &

⋂
i∈2

λ0(i) =P(X) A ∩B.

5 Concluding remarks

There are many issues regarding the relation between BST and CSFT that, due to lack of
space, cannot be elaborated here. E.g., in the literature of constructive mathematics (see
e.g., [10]) the powerset P(X) of a set X is treated as a set. Bishop’s comment in [5], p. 68,
on the existence of a map (i.e., a function) from the complemented subsets of X to P(X)
seems to support such a view. In his definition though, of a set-indexed family of subsets
in [5], p. 65, Bishop is careful to use the notion of a rule (an assignment routine) which
only behaves like a function. As Bishop himself explains in [8], p. 67, on the occasion of the

9 The definition of
∏

i∈I
λ0(i), given in [9], p. 70, as the set

{
f : I →

⋃
i∈I

λ0(i) | ∀i∈I

(
f(i) ∈ λ0(i)

)}
is

not compatible with the precise definition of
⋃

i∈I
λ0(i), given previously in the same page, and it is

not included in [5].
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precise definition of a measure space, one must rewrite appropriately the material in [5], in
order to be “comfortably” formalised. Such an appropriate rewriting explains our use of the
universes V0 and V1. In our view, the totality V0 is implicit in Bishop’s formulation in [5],
p. 72, regarding the definition of a set-indexed family of sets. There he writes about “. . . a
rule which assigns to each t in a discrete set T a set λ(t)”. Similarly, the universe V1 is just
a way to rewrite appropriately notions of rules that assign elements of an index set to sets
and functions between them with certain properties.

A variation of Definition 1 is the constructive version of the direct spectrum over a
directed set (see [14], p. 420). If I is a set and i � j an extensional and transitive relation on
I × I, let � (I) := {(i, j) ∈ I × I | i � j}. An I-transitive family of sets with respect to � is a
pair Λ� := (λ0, λ

�
1 ), where λ0 : I  V0, λ�1 :� (I) V1 where λ�1 (i, j) := (λ0(i), λ0(j), λ�ij),

such that for every i, j, k ∈ I with i � j and j � k the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λ�jk

λ�ij λ�ik

If (I,�) is a directed preorder i.e., i � j is irreflexive, transitive, and directed i.e.,
∀i,j∈I∃k∈I

(
i � k & j � k

)
, we call Λ� a direct family of sets over I. One can define

on
∑
i∈I λ0(i) the following equality

(i, x) =∑
i∈I

λ0(i) (j, y) :⇔ ∃k∈I
(
i � k & j � k & λ�ik(x) =λ0(k) λ

�
jk(y)

)
.

We study the direct families of sets and their corresponding dependent sums and dependent
products in [34].

In [5], p. 65, Bishop defined an I-set of subsets of a set X as an I-family λ := (λ0, σ0, λ1)
of subsets of X such that ∀i,j∈I

(
λ0(i) =P(X) λ0(j)⇒ i =I j

)
i.e., the converse to i =I j ⇒

λ0(i) =P(X) λ0(j) also holds. A basic property of such a family is that functions on the index
set I generate functions on the set λ0I defined by z ∈ λ0I :⇔ ∃i∈I

(
z := λ0(i)

)
, equipped

with the equality λ0(i) =λ0I λ0(j) :⇔ λ0(i) =P(X) λ0(j). This property is crucial to the
definition of measure space, given in [9], p. 282 (see Bishop’s comment in [8], p. 67).

A general feature of BST is its harmonious relationship with the topology of Bishop
spaces (see [30]). If Fi is a Bishop topology on λ0(i), for every i ∈ I, in [34] we define,
with the use of the notion of a least Bishop topology, a canonical Bishop topology on the
exterior union

∑
i∈I λ0(i) and the dependent product

∏
i∈I λ0(i). A precise formulation of

the least Bishop topology relies on the study of inductively defined sets within Bishop’s
system BISH∗ and its expected reconstruction within an appropriate extension CSFT∗ of
CSFT. The development of CSFT∗, the extension of CSFT with inductive definitions of sets
using rules with countably many premisses, is, hopefully, future work.
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Abstract
Semantic subtyping is an approach to define subtyping relations for type systems featuring union
and intersection type connectives. It has been studied only for strict languages, and it is unsound
for non-strict semantics. In this work, we study how to adapt this approach to non-strict languages:
in particular, we define a type system using semantic subtyping for a functional language with
a call-by-need semantics. We do so by introducing an explicit representation for divergence in
the types, so that the type system distinguishes expressions that are results from those which are
computations that might diverge.
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1 Introduction

Semantic subtyping is a powerful framework which allows language designers to define
subtyping relations for rich languages of types – including union and intersection types – that
can express precise properties of programs. However, it has been developed for languages
with call-by-value semantics and, in its current form, it is unsound for non-strict languages.
We show how to design a type system which keeps the advantages of semantic subtyping
while being sound for non-strict languages (more specifically, for call-by-need semantics).

1.1 Semantic subtyping
Union and intersection types can be used to type several language constructs – from branching
and pattern matching to function overloading – very precisely. However, they make it
challenging to define a subtyping relation that behaves precisely and intuitively.

Semantic subtyping is a technique to do so, studied by Frisch, Castagna, and Benzaken [20]
for types given by:

t ::= b | t→ t | t× t | t ∨ t | t ∧ t | ¬t | 0 | 1 where b ::= Int | Bool | · · ·

Types include constructors – basic types b, arrows, and products – plus union t∨t, intersection
t ∧ t, negation (or complementation) ¬t, and the bottom and top types 0 and 1 (actually,
t1 ∧ t2 and 1 can be defined respectively as ¬(¬t1 ∨ ¬t2) and ¬0). The grammar above
is interpreted coinductively rather than inductively, thus allowing infinite type expressions
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4:2 Semantic Subtyping for Non-Strict Languages

that correspond to recursive types. Subtyping is defined by giving an interpretation J · K of
types as sets and defining t1 ≤ t2 as the inclusion of the interpretations, that is, t1 ≤ t2
is defined as Jt1K ⊆ Jt2K. Intuitively, we can see JtK as the set of values that inhabit t
in the language. By interpreting union, intersection, and negation as the corresponding
operations on sets and by giving appropriate interpretations to the other constructors, we
ensure that subtyping will satisfy all commutative and distributive laws we expect: for
example, (t1 × t2) ∨ (t′1 × t′2) ≤ (t1 ∨ t′1)× (t2 ∨ t′2) or (t→ t1) ∧ (t→ t2) ≤ t→ (t1 ∧ t2).

This relation is used in [20] to type a call-by-value language featuring higher-order
functions, data constructors and destructors (pairs), and a typecase construct which models
runtime type dispatch and acts as a form of pattern matching. Functions can be recursive and
are explicitly typed; their type can be an intersection of arrow types, describing overloaded
behaviour. A simple example of an overloaded function is

let f x = if (x is Int) then (x + 1) else not(x)

which tests whether its argument x is of type Int and in this case returns its successor, its
negation otherwise. This function can be given the type (Int→ Int) ∧ (Bool→ Bool), which
signifies that it has both type Int→ Int and type Bool→ Bool: the two types define its two
possible behaviours depending on the outcome of the test (and, thus, on the type of the input).
This is done in [20] by explicitly annotating the whole function definition. Using notation for
typecases from [20]: let f : (Int→ Int)∧ (Bool→ Bool) =λx. (x ∈ Int) ? (x+ 1) : (not x). The
type deduced for this function is (Int→ Int) ∧ (Bool→ Bool), but it can also be given the
type (Int ∨ Bool)→ (Int ∨ Bool): the latter type states that the function can be applied to
both integers and booleans and that its result is either an integer or a boolean. This latter
type is less precise than the intersection, since it loses the correlation between the types of
the argument and of the result. Accordingly, the semantic definition of subtyping ensures
(Int→ Int) ∧ (Bool→ Bool) ≤ (Int ∨ Bool)→ (Int ∨ Bool).

The work of [20] has been extended to treat more language features, including parametric
polymorphism [11,12,14], type inference [13], and gradual typing [10] and adapted to SMT
solvers [6]. It has been used to type object-oriented languages [1,16], XML queries [9], NoSQL
languages [5], and scientific languages [27]. It is also at the basis of the definition of CDuce,
an XML-processing functional programming language with union and intersection types [4].
However, only strict evaluation had been considered, until now.

1.2 Semantic subtyping in lazy languages
Our work started as an attempt to design a type system for the Nix Expression Language [17],
an untyped, purely functional, and lazily evaluated language for Unix/Linux package manage-
ment. Since Nix is untyped, some programming idioms it encourages require advanced type
system features to be analyzed properly. Notably, the possibility of writing functions that
use type tests to have an overloaded-like behaviour made intersection types and semantic
subtyping a good fit for the language. However, existing semantic subtyping relations are
unsound for non-strict semantics; this was already observed in [20] and no adaptation has
been proposed later. Here we describe our solution to define a type system based on semantic
subtyping which is sound for a non-strict language. In particular, we consider a call-by-need
variant of the language studied in [20].

Current semantic subtyping systems are unsound for non-strict semantics because of
the way they deal with the bottom type 0, which corresponds to the empty set of values
(J0K = ∅). The intuition is that a reducible expression e can be safely given a type t only
if all results (i.e., values) it can return are of type t. Accordingly, 0 can only be assigned
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to expressions that are statically known to diverge (i.e., that never return a result). For
example, the ML expression let rec f x = f x in f () can be given type 0. Let us use ē to
denote any diverging expression that, like this, can be given type 0. Consider the following
typing derivations, which are valid in current semantic subtyping systems (π2 projects the
second component of a pair).

[']
` (ē, 3) : 0× Int
` (ē, 3) : 0× Bool
` π2 (ē, 3) : Bool

[']
` λx. 3 : 0→ Int
` λx. 3 : 0→ Bool ` ē : 0

` (λx. 3) ē : Bool

Note that both π2 (ē, 3) and (λx. 3) ē diverge in call-by-value semantics (since ē must be
evaluated first), while they both reduce to 3 in call-by-name or call-by-need. The derivations
are therefore sound for call-by-value, while they are clearly unsound with non-strict evaluation.

Why are these derivations valid? The crucial steps are those marked with ['], which
convert between types that have the same interpretation; ' denotes this equivalence relation.
With semantic subtyping, 0× Int ' 0× Bool holds because all types of the form 0× t are
equivalent to 0 itself: none of these types contains any value (indeed, product types are
interpreted as Cartesian products and therefore the product with the empty set is itself
empty). It can appear more surprising that 0→ Int ' 0→ Bool holds. We interpret a type
t1 → t2 as the set of functions which, on arguments of type t1, either diverge or return results
in type t2. Since there is no argument of type 0 (because, in call-by-value, arguments are
always values), all types of the form 0→ t are equivalent (they all contain every well-typed
function).

1.3 Our approach
The intuition behind our solution is that, with non-strict semantics, it is not appropriate to
see a type as the set of the values that have that type. In a call-by-value language, operations
like application or projection occur on values: thus, we can identify two types (and, in some
sense, the expressions they type) if they contain (and their expressions may produce) the
same values. In non-strict languages, though, operations also occur on partially evaluated
results: these, like (ē, 3) in our example, can contain diverging sub-expressions below their
top-level constructor.

As a result, it is unsound, for example, to type (ē, 3) as 0× Int, since we have that 0× Int
and 0× Bool are equivalent. It is also unsound to have subtyping rules for functions which
assume implicitly that every argument will eventually be a value.

One approach to solve this problem would be to change the interpretation of 0 so that it
is non-empty. However, the existence of types with an empty interpretation is important for
the internal machinery of semantic subtyping. Notably, the decision procedure for subtyping
relies on them (checking whether t1 ≤ t2 holds is reduced to checking whether the type
t1 ∧ ¬t2 is empty). Therefore, we keep the interpretation J0K = ∅, but we change the type
system so that this type is never derivable, not even for diverging expressions. We keep it as
a purely “internal” type useful to describe subtyping, but never used to type expressions.

We introduce instead a separate type ⊥ as the type of diverging expressions. This type is
non-empty but disjoint from the types of constants, functions, and pairs: J⊥K is a singleton
whose unique element represents divergence. Introducing the type ⊥ means that we track
termination in types. In particular, we distinguish two classes of types: those that are disjoint
from ⊥ (for example, Int, Int → Bool, or Int × Bool) and those that include ⊥ (since the
interpretation of ⊥ is a singleton, no type can contain a proper subset of it). Intuitively, the
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former correspond to computations that are guaranteed to terminate: for example, Int is
the type of terminating expressions producing an integer result. Conversely, the types of
diverging expressions must always contain ⊥ and, as a result, they can always be written in
the form t ∨ ⊥, for some type t. Subtyping verifies t ≤ t ∨ ⊥ for any t: this ensures that a
terminating expression can always be used when a possibly diverging one is expected. This
subdivision of types suggests that ⊥ is used to approximate the set of diverging well-typed
expressions: an expression whose type contains ⊥ is an expression that may diverge. Actually,
the type system we propose performs a rather gross approximation. We derive “terminating
types” (i.e., subtypes of ¬⊥) only for expressions that are already results and cannot be
reduced: constants, functions, or pairs. Applications and projections, instead, are always
typed by assuming that they might diverge. The typing rules are written to handle and
propagate the ⊥ type. For example, we type applications using the following rule.

Γ ` e1 : (t′ → t) ∨ ⊥ Γ ` e2 : t′

Γ ` e1 e2 : t ∨ ⊥

This rule allows the expression e1 to be possibly diverging: we require it to have the type
(t′ → t)∨⊥ instead of the usual t′ → t (but an expression with the latter type can always be
subsumed to have the former type). We type the whole application as t∨⊥ to signify that it
can diverge even if the codomain t does not include ⊥, since e1 can diverge.

This system avoids the problems we have seen with semantic subtyping: no expression
can be assigned the empty type, which was the type on which subtyping had incorrect
behaviour. The new type ⊥ does not cause the same problems because J⊥K is non-empty.
For example, the type of expressions like (ē, 3) – where ē is diverging – is now ⊥× Int. This
type is not equivalent to ⊥× Bool: indeed, the two interpretations are different because the
interpretation of types includes an element (J⊥K) to represent divergence.

Typing all applications as possibly diverging – even very simple ones like (λx. 3) e – is a
very coarse approximation which can seem unsatisfactory. We could try to amend the rule
to say that if e1 has type t′ → t, then e1 e2 has type t instead of t ∨ ⊥. However, we prefer
to keep the simpler rules since they achieve our goal of giving a sound type system that still
enjoys most benefits of semantic subtyping.

An advantage of the simpler system is that it allows us to treat ⊥ as an internal type
that does not need to be written explicitly by programmers. Since the language is explicitly
typed, if ⊥ were to be treated more precisely, programmers would presumably need to
include it or exclude it explicitly from function signatures. This would make the type system
significantly different from conventional ones where divergence is not explicitly expressed
in the types. In the present system, instead, we can assume that programmers annotate
programs using standard set-theoretic types and ⊥ is introduced only behind the scenes and,
thus, is transparent to programmers.

We define this type system for a call-by-need variant of the language studied in [20], and
we prove its soundness in terms of progress and subject reduction.

The choice of call-by-need rather than call-by-name stems from the behaviour of semantic
subtyping on intersections of arrow types. Our type system would actually be unsound for call-
by-name if the language were extended with constructs that can reduce non-deterministically
to different answers. For example, the expression rnd(t) of [20] that returns a random value
of type t could not be added while keeping soundness. This is because in call-by-name,
if such an expression is duplicated, each occurrence could reduce differently; in call-by-
need, instead, its evaluation would be shared. Intersection and union types make the type
system precise enough to expose this difference. In the absence of such non-deterministic
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constructs, call-by-name and call-by-need can be shown to be observationally equivalent, so
that soundness should hold for both; however, call-by-need also simplifies the technical work
to prove soundness.

We show an example of this, though we will return on this point later. Consider the
following derivation, where ē is an expression of type Int ∨ Bool.

[≤]

x : Int ` (x, x) : Int× Int x : Bool ` (x, x) : Bool× Bool
` λx. (x, x) : (Int→ Int× Int) ∧ (Bool→ Bool× Bool)
` λx. (x, x) : Int ∨ Bool→ (Int× Int) ∨ (Bool× Bool) ` ē : Int ∨ Bool

` (λx. (x, x)) ē : (Int× Int) ∨ (Bool× Bool)

In a system with intersection types, the function λx. (x, x) can be given the type (Int →
Int× Int) ∧ (Bool→ Bool× Bool) because it has both arrow types (in practice, the function
will have to be annotated with the intersection). Then, the step marked with [≤] is allowed
because, in semantic subtyping, (Int → Int × Int) ∧ (Bool → Bool × Bool) is a subtype of
(Int∨Bool)→ ((Int× Int)∨(Bool×Bool)) (in general, (t1 → t′1)∧(t2 → t′2) ≤ t1∨t2 → t′1∨t′2).
Therefore, the application (λx. (x, x)) ē is well-typed with type (Int× Int) ∨ (Bool× Bool).
In call-by-name, it reduces to (ē, ē): therefore, for the system to satisfy subject reduction,
we must be able to type (ē, ē) with the type (Int× Int) ∨ (Bool× Bool) too. But this type
is intuitively unsound for (ē, ē) if each occurrence of ē could reduce independently and
non-deterministically either to an integer or to a boolean. Using a typecase we can actually
exhibit a term that breaks subject reduction.

There are several ways to approach this problem. We could change the type system or
the subtyping relation so that λx. (x, x) cannot be given the type (Int ∨ Bool) → ((Int ×
Int) ∨ (Bool× Bool)). However, this would curtail the expressive power of intersection types
as used in the semantic subtyping approach. We could instead assume explicitly that the
semantics is deterministic. In this case, the typing would not be unsound intuitively, but a
proof of subject reduction would be difficult: we should give a complex union disjunction
rule to type (ē, ē). We choose instead to consider a call-by-need semantics because it solves
both problems. With call-by-need, non-determinism poses no difficulty because of sharing.
We still need a union disjunction rule, but it is simpler to state since we only need it to type
the let bindings which represent shared computations.

1.4 Contributions

The main contribution of this work is the development of a type system for non-strict
languages based on semantic subtyping; to our knowledge, this had not been studied before.

Although the idea of our solution is simple – to track divergence – its technical development
is far from trivial. Our work highlights how a type system featuring union and intersection
types is sensitive to the difference between strict and non-strict semantics and also, in the
presence of non-determinism, to that between call-by-name and call-by-need. This shows
once more how union and intersection types can express very fine properties of programs.
Our main technical contribution is the description of sound typing for let bindings – a
construct peculiar to most of the formalizations of call-by-need semantics – in the presence
of union types. Finally, our work shows how to integrate the ⊥ type, which is an explicit
representation for divergence, in a semantic subtyping system. It can thus also be seen as a
first step towards the definition of a type system based on semantic subtyping that performs
a non-trivial form of termination analysis.
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1.5 Related work
Previous work on semantic subtyping does not discuss non-strict semantics. Castagna and
Frisch [8] describe how to add a type constructor lazy(t) to semantic subtyping systems, but
this is meant just to have lazily constructed expressions within a call-by-value language.

Many type systems for functional languages – like the simply-typed λ-calculus or Hindley-
Milner typing – are sound for both strict and non-strict semantics. However, difficulties
similar to ours are found in work on refinement types. Vazou et al. [23] study how to adapt
refinement types for Haskell. Their types contain logical predicates as refinements: e.g., the
type of positive integers is { v : Int | v > 0 }. They observe that the standard approach to
typechecking in these systems – checking implication between predicates with an SMT solver
– is unsound for non-strict semantics. In their system, a type like { v : Int | false } is analogous
to 0 in our system insofar as it is not inhabited by any value. These types can be given to
diverging expressions, and their introduction into the environment causes unsoundness. To
avoid this problem, they stratify types, with types divided in diverging and non-diverging
ones. This corresponds in a way to our use of a type ⊥ in types of possibly diverging
expressions. As for ours, their type system can track termination to a certain extent. Partial
correctness properties can be verified even without precise termination analysis. However,
with their kind of analysis (which goes beyond what is expressible with set-theoretic types)
there is a significant practical benefit to tracking termination more precisely. Hence, they
also study how to check termination of recursive functions.

The notion of a stratification of types to keep track of divergence can also be found in
work of a more theoretical strain. For instance, in [15] it is used to model partial functions in
constructive type theory. This stratification can be understood as a monad for partiality, as
it is treated in [7]. Our type system can also be seen, intuitively, as following this monadic
structure. Notably, the rule for applications in a sense lifts the usual rule for application in
this partiality monad. Injection in this monad is performed implicitly by subtyping via the
judgment t ≤ t ∨ ⊥. However, we have not developed this intuition formally.

The fact that a type system with union and intersection types can require changes to
account for non-strict semantics is also remarked in work on refinement types. Dunfield
and Pfenning [19, p. 8, footnote 3] notice how a union elimination rule cannot be used to
eliminate unions in function arguments if arguments are passed by name: this is analogous
to the aforementioned difficulties which led to our choice of call-by-need (their system uses a
dedicated typing rule for what our system handles by subtyping). Dunfield [18, Section 8.1.5]
proposes as future work to adapt a subset of the type system he considers (of refinement
types for a call-by-value effectful language) to call-by-name. He notes some of the difficulties
and advocates studying call-by-need as a possible way to face them. In our work we show,
indeed, that a call-by-need semantics can be used to have the type system handle union and
intersection types expressively without requiring complex rules.

Finally, Vouillon [24] – drawing on earlier work with Melliès [25] on interpreting types as
sets of terms – studies the subtyping relation induced by such an interpretation for systems
with union types. Many concerns raised in his work parallel ours. He remarks that some
subtyping rules are only sound for specific calculi (e.g., only for call-by-value or only for
deterministic semantics), while others are sound for large classes of calculi. He defines
subtyping avoiding the rules of the first kind to have a relation which is more robust to
language extensions or modifications than semantic subtyping as we use it (though, in doing
so, he does not capture fully the set-theoretic intuition for strict languages). He also remarks
how union elimination is problematic for non-deterministic call-by-name semantics. His
interpretation of types as sets of terms is more adapted to describing non-strict semantics than
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the semantic-subtyping approach of interpreting types as sets of values. However, his system
does not account for negation types, that we include and interpret as set complementation:
this would probably be challenging to integrate into his theory.

1.6 Outline
Our presentation proceeds as follows. In Section 2, we define the types and the subtyping
relation which we use in our type system. In Section 3, we define the language we study, its
syntax, and its operational semantics. In Section 4, we present the type system; we state the
result of soundness for it and outline the main lemmas required to prove it; we also complete
the discussion about why we chose a call-by-need semantics. In Section 5, we study the
relation between the interpretation of types used to define subtyping and the expressions
that are definable in the language; we show how we can look for a more precise interpretation.
In Section 6 we conclude and point out more directions for future work.

For space reasons, some auxiliary definitions and results, as well as the proofs of the
results we state, are omitted and can all be found in the extended version available online [22].

2 Types and subtyping

We begin by describing in more detail the types and the subtyping relation of our system.
In order to define types, we first fix two countable sets: a set C of language constants

(ranged over by c) and a set B of basic types (ranged over by b). For example, we can take
constants to be booleans and integers: C = {true, false, 0, 1, -1, . . .}. B might then contain
Bool and Int; however, we also assume that, for every constant c, there is a “singleton” basic
type which corresponds to that constant alone (for example, a type for true, which will be a
subtype of Bool). We assume that a function B : B → P(C) assigns to each basic type the
set of constants of that type and that a function b(·) : C → B assigns to each constant c a
basic type bc such that B(bc) = {c}.

I Definition 2.1 (Types). The set T of types is the set of terms t coinductively produced by
the following grammar

t ::= ⊥ | b | t× t | t→ t | t ∨ t | ¬t | 0

and which satisfy two additional constraints: (1) regularity: the term must have a finite
number of different sub-terms; (2) contractivity: every infinite branch must contain an
infinite number of occurrences of the product or arrow type constructors.

We introduce the abbreviations t1 ∧ t2
def= ¬(¬t1 ∨ ¬t2), t1 \ t2

def= t1 ∧ (¬t2), and 1
def= ¬0.

We refer to b, ×, and → as type constructors, and to ∨, ¬, ∧, and \ as type connectives.
The regularity condition is necessary only to ensure the decidability of the subtyping

relation. Contractivity, instead, is crucial because it excludes terms which do not have a
meaningful interpretation as types or sets of values: for instance, the trees satisfying the
equations t = t ∨ t (which gives no information on which values are in it) or t = ¬t (which
cannot represent any set of values). Contractivity also ensures that the binary relation . ⊆ T 2

defined by t1 ∨ t2 . ti and ¬t . t is Noetherian (that is, strongly normalizing). This gives an
induction principle on T that we will use without further reference to the relation (e.g., in
Definition 2.3). This induction principle allows us to apply the induction hypothesis below
type connectives (union and negation), but not below type constructors (product and arrow).
As a consequence of contractivity, types cannot contain infinite unions or intersections.
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In the semantic subtyping approach we give an interpretation of types as sets; this
interpretation is used to define the subtyping relation in terms of set containment. We want
to see a type as the set of the values of the language that have that type. However, this
set of values cannot be used directly to define the interpretation, because of a problem of
circularity. Indeed, in a higher-order language, values include well-typed λ-abstractions;
hence to know which values inhabit a type we need to have already defined the type system
(to type λ-abstractions), which depends on the subtyping relation, which in turn depends on
the interpretation of types. To break this circularity, types are actually interpreted as subsets
of a set D, an interpretation domain, which is not the set of values, though it corresponds to
it intuitively (in [20], a correspondence is also shown formally: we return to this in Section 5).
We use the following domain which includes an explicit representation for divergence.

I Definition 2.2 (Interpretation domain). The interpretation domain D is the set of finite
terms d produced inductively by the following grammar

d ::= ⊥ | c | (d, d) | {(d, dΩ), . . . , (d, dΩ)} dΩ ::= d | Ω

where c ranges over the set C of constants and where Ω is such that Ω /∈ D.

The elements of D correspond, intuitively, to the results of the evaluation of expressions.
The element ⊥ stands for divergence. Expressions can produce as results constants or pairs
of results, so we include both in D. For example, a result can be a pair of a terminating
computation returning true and a diverging computation: we represent this by (true,⊥).
Finally, in a higher-order language, the result of a computation can be a function. Functions
are represented in this model by finite relations of the form {(d1, d1

Ω), . . . , (dn, dn
Ω)}, where

Ω (which is not in D) can appear in second components to signify that the function fails
(i.e., evaluation is stuck) on the corresponding input. This constant Ω is used to ensure
that 1→ 1 is not a supertype of all function types: if we used d instead of dΩ, then every
well-typed function could be subsumed to 1→ 1 and, therefore, every application could be
given the type 1, indenpendently from the type of its argument (see Section 4.2 of [20] for
details). The restriction to finite relations is standard in semantic subtyping [20]; we say
more about it in Section 5.

We define the interpretation JtK of a type t so that it satisfies the following equalities,
where DΩ = D ∪ {Ω} and where Pfin denotes the restriction of the powerset to finite subsets:

J⊥K = {⊥} JbK = B(b) Jt1 × t2K = Jt1K× Jt2K

Jt1 → t2K =
{
R ∈ Pfin(D ×DΩ)

∣∣∣ ∀(d, d′) ∈ R. d ∈ Jt1K =⇒ d′ ∈ Jt2K
}

Jt1 ∨ t2K = Jt1K ∪ Jt2K J¬tK = D \ JtK J0K = ∅

We cannot take the equations above directly as an inductive definition of J · K because
types are not defined inductively but coinductively. Therefore we give the following definition,
which validates these equalities and which uses the aforementioned induction principle on
types and structural induction on D.

I Definition 2.3 (Set-theoretic interpretation of types). We define a binary predicate (dΩ : t)
(“the element dΩ belongs to the type t”), where dΩ ∈ D ∪ {Ω} and t ∈ T , by induction on the
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pair (dΩ, t) ordered lexicographically. The predicate is defined as follows:

(⊥ : ⊥) = true
(c : b) = c ∈ B(b)

((d1, d2) : t1 × t2) = (d1 : t1) and (d2 : t2)
({(d1, d1

Ω), . . . , (dn, dn
Ω)} : t1 → t2) = ∀i ∈ {1, . . . , n}. if (di : t1) then (di

Ω : t2)
(d : t1 ∨ t2) = (d : t1) or (d : t2)

(d : ¬t) = not (d : t)
(dΩ : t) = false otherwise

We define the set-theoretic interpretation J · K : T → P(D) as JtK = { d ∈ D | (d : t) }.
Finally, we define the subtyping preorder and its associated equivalence relation as follows.

I Definition 2.4 (Subtyping relation). We define the subtyping relation ≤ and the subtyping
equivalence relation ' as t1 ≤ t2

def⇐⇒ Jt1K ⊆ Jt2K and t1 ' t2
def⇐⇒ (t1 ≤ t2) and (t2 ≤ t1) .

3 Language syntax and semantics

We consider a language based on that studied in [20]: a λ-calculus with recursive explicitly
annotated functions, pair constructors and destructors, and a typecase construct. This is the
source language in which programs are written. We define the semantics on a slightly different
internal language and show how to compile source programs to this internal language. The
main reason for introducing the internal language is that, to describe call-by-need semantics
in a small-step operational style, we need to add to the source language a let construct, a
form of explicit substitution which models sharing of computations (following a standard
approach [2,3,21]). The internal language is not an extension of the source language, however,
because we also restrict the allowed syntax of typecases to simplify the semantics.

First, we give some auxiliary definitions on types. We introduce the abbreviations:
〈t〉 def= t ∨ ⊥; t1 _ t2

def= 〈t1〉 → 〈t2〉; and t1 ⊗ t2
def= 〈t1〉 × 〈t2〉 . These are compact notations

for types including ⊥. The first, 〈t〉, is an abbreviated way to write the type of possibly
diverging expressions whose result has type t. The latter two are used in type annotations.
The intent is that programmers never write ⊥ explicitly. Rather, they use the _ and ⊗
constructors instead of→ and × so that ⊥ is introduced implicitly. The→ and × constructors
are never written directly in program. We define the following restricted grammars of types

T ::= b | T ⊗ T | T _ T | T ∨ T | ¬T | 0 τ ::= b | τ ⊗ τ | 0→ 1 | τ ∨ τ | ¬τ | 0

both of which are interpreted coinductively, with the same restrictions of regularity and
contractivity as in the definition of types. The types defined by these grammars are the only
ones which appear in programs: neither includes ⊥ explicitly.

In particular, functions are annotated with T types, where the ⊗ and _ forms are used
to ensure that every type below a constructor is of the form t ∨ ⊥.

Typecases, instead, check τ types. The only arrow type that can appear in them is 0→ 1,
which is the top type of functions (every well-typed function has this type). This restriction
means that typecases will not be able to test the types of functions, but only, at most,
whether a value is a function or not. This restriction is not imposed in [20], and actually it
could be lifted here without difficulty. We include it because the purpose of typecases in our
language is, to some extent, the modelling of pattern matching, which cannot test the type
of functions. Restricting typecases on arrow types also facilitates the extension of the system
with polymorphism and type inference.
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3.1 Source language

The source language expressions are the terms e produced inductively by the grammar

e ::= x | c | µf : I. λx. e | e e | (e, e) | πi e | (x = e) ∈ τ ? e : e
I ::=

∧
i∈I T

′
i _ Ti |I| > 0

where f and x range over a set X of expression variables, c over the set C of constants, i in
πi e over {1, 2}, and where τ in (x = e) ∈ τ ? e : e is such that τ 6' 0 and τ 6' 1.

Source language expressions include variables, constants, λ-abstractions, applications,
pairs constructors (e, e) and destructors π1 e and π2 e, plus the typecase (x = e) ∈ τ ? e : e.

A λ-abstraction µf : I. λx. e is a possibly recursive function, with recursion parameter f
and argument x, both of which are bound in the body; the function is explicitly annotated
with its type I, which is a finite intersection of types of the form T ′ _ T .

A typecase expression (x = e0) ∈ τ ? e1 : e2 has the following intended semantics: e0 is
evaluated until it can be determined whether it has type τ or not, then the selected branch
(e1 if the result of e0 has type τ , e2 if it has type ¬τ : one of the two cases always occurs) is
evaluated in an environment where x is bound to the result of e0. Actually, to simplify the
presentation, we will give a non-deterministic semantics in which we allow to evaluate e0
more than what is needed to ascertain whether it has type τ .

In the syntax definition above we have restricted the types τ in typecases asking both
τ 6' 1 and τ 6' 0. A typecase checking the type 1 is useless: since all expressions have type 1,
it immediately reduces to its first branch. Likewise, a typecase checking the type 0 reduces
directly to the second branch. Therefore, the two cases are uninteresting to consider. We
forbid them because this allows us to give a simpler typing rule for typecases. Allowing them
is just a matter of adding two (trivial) typing rules specific to these cases, as we show later.

As customary, we consider expressions up to renaming of bound variables. In µf : I. λx. e,
f and x are bound in e. In (x = e0) ∈ τ ? e1 : e2, x is bound in e1 and e2.

We do not provide mechanisms to define cyclic data structures. For example, we do not
have a direct syntactic construct to define the infinitely nested pair (1, (1, . . . )). We can
define it by writing a fixpoint operator (which can be typed in our system since types can
be recursive) or by defining and applying a recursive function which constructs the pair.
A general letrec construct as in [2] might be useful in practice (for efficiency or to provide
greater sharing) but we omit it here since we are only concerned with typing.

3.2 Internal language

The internal language expressions are the terms e produced inductively by the grammar

e ::= x | c | µf : I. λx. e | e e | (e, e) | πi e | (x = ε) ∈ τ ? e : e | let x = e in e
ε ::= x | c | µf : I. λx. e | (ε, ε)

where metavariables and conventions are as in the source language. There are two differences
with respect to the source language. One is the introduction of the construct let x = e1 in e2,
which is a binder used to model sharing of computations in call-by-need semantics (in
let x = e1 in e2, x is bound in e2). The other difference is that typecases cannot check
arbitrary expressions, but only expressions of the restricted form given by ε. This restriction
simplifies the semantics of typecases.
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A source language expression e can be compiled to an internal language expression dee
as follows. Compilation is straightforward for all expressions apart from typecases:

dxe = x dce = c dµf : I. λx. ee = µf : I. λx. dee
de1 e2e = de1e de2e d(e1, e2)e = (de1e, de2e) dπi ee = πi dee

and for typecases it introduces a let binder to ensure that the checked expression is a variable:

d(x = e0) ∈ τ ? e1 : e2e = let y = de0e in (x = y) ∈ τ ? de1e : de2e

where y is chosen not free in e1 and e2. (The other forms for ε appear during reduction.)

3.3 Semantics
We define the operational semantics of the internal language as a small-step reduction relation
using call-by-need. The semantics of the source language is then given indirectly through the
translation. The choice of call-by-need rather than call-by-name was briefly motivated in the
Introduction and will be discussed more extensively in Section 4.

We first define the sets of answers (ranged over by a) and of values (ranged over by v) as
the subsets of expressions produced by the following grammars:

a ::= c | µf : I. λx. e | (e, e) | let x = e in a v ::= c | µf : I. λx. e

Answers are the results of evaluation. They correspond to expressions which are fully
evaluated up to their top-level constructor (constant, function, or pair) but which may
include arbitrary expressions below that constructor (so we have (e, e) rather than (a, a)).
Since they also include let bindings, they represent closures in which variables can be bound
to arbitrary expressions. Values are a subset of answers treated specially in a reduction rule.

The semantics uses evaluation contexts to direct the order of evaluation. A context C is
an expression with a hole (written [ ]) in it. We write C[e] for the expression obtained by
replacing the hole in C with e. We write Cpxeqy for C[e] when the free variables of e are not
bound by C: for example, let x = e1 in x is of the form C[x] – with C ≡ (let x = e1 in [ ]) –
but not of the form Cpxxqy; conversely, let x = e1 in y is both of the form C[y] and Cpxyqy.

Evaluation contexts E are the subset of contexts generated by the following grammar:

E ::= [ ] | E e | πi E | (x = F ) ∈ τ ? e : e | let x = e in E | let x = E in Epxxqy
F ::= [ ] | (F, ε) | (ε, F )

Evaluation contexts allow reduction to occur on the left of applications and below projections,
but not on the right of applications and below pairs. For typecases alone, the contexts allow
reduction also below pairs, since this reduction might be necessary to be able to determine
whether the expression has type τ or not. This is analogous to the behaviour of pattern
matching in lazy languages, which can force evaluation below constructors. The contexts for
let are from standard presentations of call-by-need [2, 21]. They allow reduction of the body
of the let, while they only allow reductions of the bound expression when it is required to
continue evaluating the body: this is enforced by requiring the body to have the form Epxxqy.

Figure 1 presents the reduction rules. They rely on the typeof function, which assigns
types to expressions of the form ε. It is defined as follows:

typeof(x) = 1 typeof(µf : I. λx. e) = 0→ 1

typeof(c) = bc typeof((ε1, ε2)) = typeof(ε1)× typeof(ε2)
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[Appl] (µf : I. λx. e) e′  let f = (µf : I. λx. e) in let x = e′ in e
[ApplL] (let x = e in a) e′  let x = e in a e′

[Proj] πi (e1, e2)  ei

[ProjL] πi (let x = e in a)  let x = e in πi a

[LetV] let x = v in Epxxqy  (Epxxqy)[v/x]
[LetP] let x = (e1, e2) in Epxxqy  let x1 = e1 in let x2 = e2 in (Epxxqy)[(x1,x2)/x]
[LetL] let x = (let y = e in a) in Epxxqy  let y = e in let x = a in Epxxqy

[Case1] (x = ε) ∈ τ ? e1 : e2  let x = ε in e1 if typeof(ε) ≤ τ
[Case2] (x = ε) ∈ τ ? e1 : e2  let x = ε in e2 if typeof(ε) ≤ ¬τ

[Ctx] E[e]  E[e′] if e  e′

Figure 1 Operational semantics.

[Appl] is the standard application rule for call-by-need: the application (µf : I. λx. e) e′
reduces to e prefixed by two let bindings that bind the recursion variable f to the function
itself and the parameter x to the argument e′. [ApplL] instead deals with applications with
a let expression in function position: it moves the application below the let. The rule is
necessary to prevent loss of sharing: substituting the binding of x to e in a would duplicate
e. Symmetrically, there are two rules for pair projections, [Proj] and [ProjL].

There are three rules for let expressions. They rewrite expressions of the form let x =
a in Epxxqy: that is, let bindings where the bound expression is an answer and the body is an
expression whose evaluation requires the evaluation of x. If a is a value v, [LetV] applies
and the expression is reduced by just replacing v for x in the body. If a is a pair, [LetP]
applies: the occurrences of x in the body are replaced with a pair of variables (x1, x2) and
each xi is bound to ei by new let bindings (replacing x directly by (e1, e2) would duplicate
expressions). Finally, the [LetL] rule just moves a let binding out of another.

There are two rules for typecases, by which a typecase construct (x = ε) ∈ τ ? e1 : e2 can
be reduced to either branch, introducing a new binding of x to ε. The rules apply only if
either of typeof(ε) ≤ τ or typeof(ε) ≤ ¬τ holds. If neither holds, then the two rules do not
apply, but the [Ctx] rule can be used to continue the evaluation of ε.

Comparison to other presentations of call-by-need. These reduction rules mirror those
from standard presentations of call-by-need [2, 3, 21]. A difference is that, in [LetV] or
[LetP], we replace all occurrences of x in Epxxqy at once, whereas in the cited presentations
only the occurrence in the hole is replaced: for example, in [LetV] they reduce to Epxvqy
instead of (Epxxqy)[v/x]. Our [LetV] rule is mentioned as a variant in [21, p. 38]. We use it
because it simplifies the proof of subject reduction while maintaining an equivalent semantics.

Non-determinism in the rules. The semantics is not deterministic. There are two sources
of non-determinism, both related to typecases. One is that the contexts F include both (F, ε)
and (ε, F ) and thereby impose no constraint on the order with which pairs are examined.

The second source of non-determinism is that the contexts for typecases allow us to
reduce the bindings of variables in the checked expression even when we can already apply
[Case1] or [Case2]. For example, take let x = e in (y = (3, x)) ∈ (Int ⊗ 1) ? e1 : e2.
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[S-Subsum]
Γ ` e : t′

Γ ` e : t
t′ ≤ t [S-Var]

Γ ` x : t
Γ(x) = t [S-Const]

Γ ` c : bc

[S-Abstr]
∀i ∈ I. Γ, f : I, x : 〈T ′i 〉 ` e : 〈Ti〉

Γ ` (µf : I. λx. e) : I
I =

∧
i∈I

T ′
i _ Ti

[S-Appl]
Γ ` e1 : 〈t′ → t〉 Γ ` e2 : t′

Γ ` e1 e2 : 〈t〉

[S-Pair]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1, e2) : t1 × t2
[S-Proj]

Γ ` e : 〈t1 × t2〉
Γ ` πi e : 〈ti〉

[S-Case]
Γ ` e0 : 〈t′〉

(
either t′ ≤ ¬τ or Γ, x : (t′ ∧ τ) ` e1 : t

) (
either t′ ≤ τ or Γ, x : (t′ \ τ) ` e2 : t

)
Γ `

(
(x = e0) ∈ τ ? e1 : e2

)
: 〈t〉

Figure 2 Typing rules for the source language.

It can be immediately reduced to let x = e in let y = (3, x) in e1 by applying [Ctx] and
[Case1], because typeof((3, x)) = b3× 1 ≤ Int⊗ 1. However, we can also use [Ctx] to reduce
e, if it is reducible: we do so by writing the expression as let x = e in Epxxqy, where E is
(y = (3, [ ])) ∈ (Int⊗ 1) ? e1 : e2. To model a lazy implementation more faithfully, we should
forbid this reduction and state that (x = F ) ∈ τ ? e : e is a context only if it cannot be
reduced by [Case1] or [Case2].

In both cases, we have chosen a non-deterministic semantics because it is less restrictive:
as a consequence, the soundness result will also hold for semantics which fix an order.

4 Type system

We define two typing relations for the source language and the internal language.
A type environment Γ is a finite mapping of type variables to types. We write ∅ for the

empty environment. We say that a type environment Γ is well-formed if, for all (x : t) ∈ Γ,
we have t 6' 0. Since we want to ensure that the empty type is never derivable, we will only
consider well-formed type environments in the soundness proof.

4.1 Type system for the source language
Figure 2 presents the typing rules for the source language. The subsumption rule [S-Subsum]
is used to apply subtyping. Notably, it allows expressions with surely converging types (like
a pair with type Int × Bool) to be used where diverging types are expected: t ≤ 〈t〉 holds
for every t (since JtK ⊆ JtK ∪ {⊥} = Jt ∨ ⊥K = J〈t〉K). The rules [S-Var] and [S-Const] for
variables and constants are standard. The [S-Abstr] rule for functions is also straightforward.
Function interfaces have the form

∧
i∈I T

′
i _ Ti, that is,

∧
i∈I〈T ′i 〉 → 〈Ti〉 (expanding the

definition of _). To type a function µf : I. λx. e, we check that it has all the arrow types in
I. Namely, for every arrow T ′i _ Ti (i.e., 〈T ′i 〉 → 〈Ti〉), we assume that x has type 〈T ′i 〉 and
that the recursion variable f has type I, and we check that the body has type 〈Ti〉.

The [S-Appl] rule is the first one that deals with ⊥ in a non-trivial way. In call-by-value
semantic subtyping systems, to type an application e1 e2 with a type t, the standard modus
ponens rule (e.g., the one from the simply-typed λ-calculus) is used: e1 must have type t′ → t
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and e2 must have type t′. Here, instead, we allow the function to have the type 〈t′ → t〉 (i.e.,
(t′ → t) ∨ ⊥) to make application possible also when e1 might diverge. We use 〈t〉 as the
type of the whole application, signifying that it might diverge. As anticipated, we do not
try to predict whether applications will converge. The rule [S-Pair] for pairs is standard;
[S-Proj] handles ⊥ as in applications.

[S-Case] is the most complex rule, but it corresponds closely to that of [20]. Strictly
speaking it is not a single inference rule, but a shorthand way of writing four distinct rules
with partially different premises and side conditions, here abbreviated in the form “either . . .
or . . . ”. To type (x = e0) ∈ τ ? e1 : e2 we first type e0 with some type 〈t′〉. Then, we type
the two branches e1 and e2. We do not always have to type both (because of the “either
. . . or . . . ” conditions) but for now assume that we do. While typing either branch, we
extend the environment with a binding for x. For the first branch, the type for x is t′ ∧ τ , a
subtype of 〈t′〉: this type is sound because the first branch is only evaluated if e0 evaluates
to an answer (meaning we can remove the union with ⊥ in 〈t′〉) and if this answer has type
τ . Conversely, for the second branch, x is given type t′ \ τ , that is, t′ ∧ ¬τ . Finally, if the
branches have type t, the whole typecase is given type 〈t〉 since its evaluation may diverge in
case e0 diverges.

Now let us consider the conditions “either . . . or . . . ”. We need to type the first branch only
when t′ 6≤ ¬τ ; if, conversely, t′ ≤ ¬τ , then we know that the first branch can never be selected
(an expression of type ¬τ cannot reduce to a result of type τ) and thus we do not need to type
it. The reasoning for the second branch is analogous. The two conditions are pivotal to type
overloaded functions defined by typecases. For example, a negation function implemented as
µf : I. λx. (y = x) ∈ btrue ? false : true, with I = (btrue → bfalse) ∧ (bfalse → btrue), could not be
typed without these conditions.

In the syntax we have restricted the type τ in typecases requiring τ 6' 1 and τ 6' 0.
Typecases where these conditions do not hold are uninteresting, since they do not actually
check anything. The rule [S-Case] would be unsound for them because these typecases can
reduce to one branch even if e0 is a diverging expression that does not evaluate to an answer.
For instance, if ē has type ⊥ (that is, 〈0〉), then (x = ē) ∈ Int ? 1 : 2 could be given any
type, including unsound ones like 〈Bool〉. To allow these typecases, we could add the side
condition “τ 6' 1 and τ 6' 0” to [S-Case] and give two specialized rules as follows:

Γ ` e0 : t′ Γ, x : t′ ` e1 : t
Γ `

(
(x = e0) ∈ τ ? e1 : e2

)
: 〈t〉

τ ' 1
Γ ` e0 : t′ Γ, x : t′ ` e2 : t

Γ `
(
(x = e0) ∈ τ ? e1 : e2

)
: 〈t〉

τ ' 0

4.2 Type system for the internal language
Figure 3 presents the typing rules for the internal language. These include a new rule for let
expressions and a modified rule for λ-abstractions; the other rules are the same as those for
the source language (except for the different syntax of typecases).

The [S-Abstr] rule for the source language derived the type I for µf : I. λx. e. The
rule for the internal language, instead, allows us to derive a subtype of I of the form I ∧ t,
where t is an intersection of negations of arrow types. The arrows in t can be chosen
freely providing that the intersection I ∧ t remains non-empty. This rule (directly taken
from [20]) can look surprising. For example, it allows us to type µf : (Int _ Int). λx. x as
(Int _ Int) ∧ ¬(Bool→ Bool) even though, disregarding the interface, the function does map
booleans to booleans. But the language is explicitly typed, and thus we can’t ignore interfaces
(indeed, the function does not have type Bool→ Bool). The purpose of the rule is to ensure
that, given any function and any type t, either the function has type t or it has type ¬t.
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[Subsum]
Γ ` e : t′

Γ ` e : t
t′ ≤ t [Var]

Γ ` x : t
Γ(x) = t [Const]

Γ ` c : bc

[Abstr]
∀i ∈ I. Γ, f : I, x : 〈T ′i 〉 ` e : 〈Ti〉

Γ ` (µf : I. λx. e) : I ∧ t

I =
∧

i∈I
T ′

i _ Ti

t =
∧

j∈J
¬(t′j → tj)

I ∧ t 6' 0

[Appl]
Γ ` e1 : 〈t′ → t〉 Γ ` e2 : t′

Γ ` e1 e2 : 〈t〉

[Pair]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1, e2) : t1 × t2
[Proj]

Γ ` e : 〈t1 × t2〉
Γ ` πi e : 〈ti〉

[Case]
Γ ` ε : 〈t′〉

(
either t′ ≤ ¬τ or Γ, x : (t′ ∧ τ) ` e1 : t

) (
either t′ ≤ τ or Γ, x : (t′ \ τ) ` e2 : t

)
Γ `

(
(x = ε) ∈ τ ? e1 : e2

)
: 〈t〉

[Let]
Γ ` e1 :

∨
i∈I ti ∀i ∈ I. Γ, x : ti ` e2 : t
Γ ` let x = e1 in e2 : t

Figure 3 Typing rules for the internal language.

This property matches the intuitive view of types as sets of values that underpins semantic
subtyping. While in our system we do not really interpret types as sets of values (since ⊥
is non-empty and yet uninhabited by values), the property is still needed to prove subject
reduction. A consequence of this property is that a value (i.e., a constant or a λ-abstraction)
of type t1 ∨ t2 has always either type t1 or type t2. (In the case of constants, this is obtained
directly by reasoning on subtyping, so we don’t need a rule to assign negation types to them.)

The [Let] rule combines a standard rule for (monomorphic) binders with a union
disjunction rule: it lets us decompose the type of e1 as a union and type the body of the
let once for each summand in the union. The purpose of this rule was hinted at in the
Introduction and will be discussed again in Section 4.3, where we show that this rule –
combined with the property on union types above – is central to this work: it is the key
technical feature that ensures the soundness of the system (see in particular Lemma 4.9 later
on). For the time being, just note that the type of e1 can be decomposed in arbitrarily complex
ways by applying subsumption. For example, if e1 is a pair of type (Int∨Bool)× (Int∨Bool),
by applying [Subsum] we can type it as (Int× Int)∨ (Int×Bool)∨ (Bool× Int)∨ (Bool×Bool)
and then type e2 once for each of the four summands.

The [Abstr] and [Let] rules introduce non-determinism in the choice of the negations to
introduce and of how to decompose types as unions. This would not complicate a practical
implementation, since a typechecker would only need to check the source language.

4.3 Properties of the type system
Full results about the type system, including proofs, are available in the extended version [22].
Here we report the main results and describe the technical difficulties we met to obtain them.

First, we can easily show by induction that compilation from the source language to the
internal language preserves typing.

I Proposition 4.1. If Γ ` e : t, then Γ ` dee : t.
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We show the soundness property for our type system (“well-typed programs do not go
wrong”), following the well-known syntactic approach of Wright and Felleisen [26], by proving
the two properties of progress and subject reduction for the internal language.

I Theorem 4.2 (Progress). Let Γ be a well-formed type environment. Let e be an expression
that is well-typed in Γ (that is, Γ ` e : t holds for some t). Then e is an answer, or e is of
the form Epxxqy, or ∃e′. e  e′.

I Theorem 4.3 (Subject reduction). Let Γ be a well-formed type environment. If Γ ` e : t
and e  e′, then Γ ` e′ : t.

The statement of progress is adapted to call-by-need: it applies also to expressions that
are typed in a non-empty Γ and it allows a well-typed expression to have the form Epxxqy.

As a corollary of these results, we obtain the following statement for soundness.

I Corollary 4.4 (Type soundness). Let e be a well-typed, closed expression (that is, ∅ ` e : t
holds for some t). If e ∗ e′ and e′ cannot reduce, then e′ is an answer and ∅ ` e′ : t.

The soundness result for the internal language implies soundness for the source language.

I Corollary 4.5 (Type soundness for the source language). Let e be a well-typed, closed source
language expression (that is, ∅ ` e : t holds for some t). If dee ∗ e′ and e′ cannot reduce,
then e′ is an answer and ∅ ` e′ : t.

We summarize here some of the crucial properties required to derive the results above.
We also resume the discussion of the motivations behind our choice of call-by-need.

We introduced the ⊥ type for diverging expressions because assigning the type 0 to any
expression causes unsoundness. We must hence ensure that no expression can be assigned
the type 0. In well-formed type environments, we can prove this easily by induction.

I Lemma 4.6. Let Γ be a well-formed type environment. If Γ ` e : t, then t 6' 0.

Call-by-name and call-by-need. In the Introduction, we have given two reasons for our
choice of call-by-need rather than call-by-name. One is that the system is only sound for
call-by-name if we make assumptions on the semantics that might not hold in an extended
language: for example, introducing an expression that can reduce non-deterministically
either to an integer or to a boolean would break soundness. The other reason is that, even
when these assumptions hold (and when presumably call-by-name and call-by-need are
observationally equivalent), call-by-need is better suited to the soundness proof.

Let us review the example from the Introduction. Consider the function µf : I. λx. (x, x)
in the source language, where I = (Int _ Int⊗ Int) ∧ (Bool _ Bool⊗ Bool). It is well-typed
with type I. By subsumption, it also has the type (Int ∨ Bool) _ (Int⊗ Int) ∨ (Bool⊗ Bool),
which is a supertype of I: in general we have (t′1 → t1) ∧ (t′2 → t2) ≤ (t′1 ∨ t′2) → (t1 ∨ t2)
and therefore (t′1 _ t1) ∧ (t′2 _ t2) ≤ (t′1 ∨ t′2) _ (t1 ∨ t2).

Therefore, if ē has type Int ∨ Bool ∨ ⊥, the application (µf : I. λx. (x, x)) ē is well-typed
with type (Int⊗ Int) ∨ (Bool⊗ Bool) ∨ ⊥. Assume that ē can reduce either to an integer or
to a boolean: for instance, assume that both ē 3 and ē true can occur.

With call-by-name, (µf : I. λx. (x, x)) ē reduces to (ē, ē); then, the two occurrences of ē
reduce independently. It is intuitively unsound to type it as (Int⊗ Int) ∨ (Bool⊗ Bool) ∨ ⊥:
there is no guarantee that the two components of the pair will be of the same type once they
are reduced. We can find terms that break subject reduction. Assume for example that there
exists a boolean “and” operation; then this typecase is well-typed (as 〈Bool〉) but unsafe:

(y = (µf : I. λx. (x, x)) ē) ∈ (Int⊗ Int) ? true : (π1 y and π2 y) .
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Since the application has type 〈(Int⊗ Int) ∨ (Bool⊗ Bool)〉, to type the second branch of the
typecase we can assume that y has the type ((Int⊗ Int) ∨ (Bool⊗ Bool)) \ (Int⊗ Int), which
is a subtype of Bool⊗ Bool (it is actually equivalent to (Bool⊗ Bool) \ (⊥×⊥)). Therefore,
both π1 y and π2 y have type 〈Bool〉. We deduce then that (π1 y and π2 y) has type 〈Bool〉
as well (we assume that “and” is defined so as to handle arguments of type ⊥ correctly).

A possible reduction in a call-by-name semantics would be the following:

(y = (µf : I. λx. (x, x)) ē) ∈ (Int⊗ Int) ? true : (π1 y and π2 y)
 (y = (ē, ē)) ∈ (Int⊗ Int) ? true : (π1 y and π2 y)

(the typecase must force the evaluation of (ē, ē) to know which branch should be selected)

 ∗ (y = (true, ē)) ∈ (Int⊗ Int) ? true : (π1 y and π2 y)

(now we know that the first branch is impossible, so the second is chosen)

 π1 (true, ē) and π2 (true, ē)  true and ē  ē  3

The integer 3 is not a Bool: this disproves subject reduction for call-by-name if the language
contains expressions like ē. No such expressions exist in our current language, but they could
be introduced if we extended it with non-deterministic constructs like rnd(t) from [20].

Since we use a call-by-need semantics, instead, expressions such as ē do not pose problems
for soundness. With call-by-need, (µf : I. λx. (x, x)) ē reduces to let f = µf : I. λx. (x, x) in
let x = ē in (x, x). The occurrences of x in the pair are only substituted when ē has been
reduced to an answer, so they cannot reduce independently.

To ensure subject reduction, we allow the rule for let bindings to split unions in the type
of the bound term. This means that the following derivation is allowed.

Γ ` ē : Int ∨ Bool Γ, x : Int ` (x, x) : Int⊗ Int Γ, x : Bool ` (x, x) : Bool⊗ Bool
Γ ` let x = ē in (x, x) : (Int⊗ Int) ∨ (Bool⊗ Bool)

Proving subject reduction: main lemmas. While the typing rule for let bindings is simple
to describe, proving subject reduction for the reduction rules [LetV] and [LetP] (those
that actually perform substitutions) is challenging. For the reduction let x = v in Epxxqy  
(Epxxqy)[v/x], we show the following results.

I Lemma 4.7. Let v be a value that is well-typed in Γ (i.e., Γ ` v : t′ holds for some t′).
Then, for every type t, we have either Γ ` v : t or Γ ` v : ¬t.

I Corollary 4.8. If Γ ` v :
∨

i∈I ti, then there exists an i0 ∈ I such that Γ ` v : ti0 .

Consider for example the reduction let x = v in (x, x)  (v, v). If v has type Int ∨ Bool,
then letx = v in (x, x) has type (Int⊗ Int)∨ (Bool⊗Bool) as in the derivation above. Without
this corollary, for (v, v) we could only derive the type (Int∨Bool)× (Int∨Bool), which is not
a subtype of the type deduced for the redex. Applying the corollary, we deduce that v has
either type Int or Bool; in both cases (v, v) can be given the type (Int⊗ Int) ∨ (Bool⊗ Bool).

These results are also needed in semantic subtyping for strict languages to prove subject
reduction for applications. To ensure them, following [20], we have added in the type system
for the internal language the possibility of typing functions with negations of arrow types.

The reduction let x = (e1, e2) in Epxxqy  let x1 = e1 in let x2 = e2 in (Epxxqy)[(x1,x2)/x],
instead, is dealt with by the following lemma.
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I Lemma 4.9. If Γ ` (e1, e2) :
∨

i∈I ti, then there exist two types
∨

j∈J tj and
∨

k∈K tk such
that Γ ` e1 :

∨
j∈J tj, Γ ` e2 :

∨
k∈K tk, and ∀j ∈ J. ∀k ∈ K. ∃i ∈ I. tj × tk ≤ ti.

This is the result we need for the proof: let x = (e1, e2) in Epxxqy is typed by assigning a
union type to (e1, e2) and then typing Epxxqy once for every ti in the union, while the reduct
letx1 = e1 in letx2 = e2 in (Epxxqy)[(x1,x2)/x] must be typed by typing e1 and e2 with two union
types and then typing the substituted expression with every product tj × tk. Showing that
each tj × tk is a subtype of a ti ensures that the substituted expression is well-typed. The
proof consists in recognizing that the union

∨
i∈I ti must be a decomposition into a union of

some type t1× t2 and that therefore t1 and t2 can be decomposed separately into two unions.
These results rely on the distinction between types that contain ⊥ and those that do

not: they would not hold if we assumed that every type implicitly contained ⊥. For
instance, adding ⊥ implicitly to any type would essentially mean interpreting products as
Jt1 × t2K = (Jt1K ∪ {⊥})× (Jt2K ∪ {⊥}) instead of Jt1 × t2K = Jt1K× Jt2K. This would make
Lemma 4.9 fail. Its proof relies on being able to find, given any type t such that t ≤ 1× 1
(that is, a type whose set-theoretic interpretation consists entirely of pairs), a union type∨

i∈I t
1
i × t2i such that t '

∨
i∈I t

1
i × t2i (Lemma A.10 in the extended version [22]). This

would not hold with the modified interpretation: for example, the type (Int× Bool) \ (0× 0)
is a subtype of 1× 1 but cannot be expressed as a union of product types.

Despite some technical difficulties, call-by-need seems quite suited to the soundness proof.
Hence, it would probably be best to use it for the proof even if we assumed explicitly that
the language does not include problematic expressions like rnd(t). Soundness would then
also hold for a call-by-name semantics that it is observationally equivalent to call-by-need.

5 A discussion on the interpretation of types

We have shown in the previous sections that a set-theoretic interpretation of types, adapted
to take into account divergence (Definition 2.3), can be the basis for designing a sound type
system for languages with lazy evaluation. In this section, we analyze the relation between
such an interpretation and the expressions that are actually definable in the language.

Let us first recap some notions from [20]. The initial intuition which guides semantic
subtyping is to see a type as the set of values of that type in the language we consider: for
example, to see Int → Bool as the set of λ-abstractions of type Int → Bool. However, we
cannot directly define the interpretation of a type t as the set { v |∅ ` v : t }, because the
typing relation ∅ ` v : t depends on the definition of subtyping, which depends in turn on
the interpretation of types. Frisch, Castagna and Benzaken [20] avoid this circularity by
giving an interpretation J · K of types as subsets of an interpretation domain where finite
relations replace λ-abstractions.

This interpretation (like ours except that there is no ⊥) is used to define subtyping and
the typing relation. Then, the following result is shown:

∀t1, t2. Jt1K ⊆ Jt2K ⇐⇒ Jt1KV ⊆ Jt2KV where JtKV
def= { v |∅ ` v : t }

This result states that a type t1 is a subtype of a type t2 (t1 ≤ t2, which is defined as
Jt1K ⊆ Jt2K) if and only if every value v that can be assigned the type t1 can also be assigned
the type t2. Showing the result above implies that, once the type system is defined, we can
indeed reason on subtyping by reasoning on inclusion between sets of values.1

1 The circularity is avoided since the typing relation in { v |∅ ` v : t } is defined using J · K and not J · KV .
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This result is useful in practice, since, when typechecking fails because a subtyping
judgment t1 ≤ t2 does not hold, we know that there exists a value v such that ∅ ` v : t1
holds while ∅ ` v : t2 does not. This value v can be shown as a witness to the unsoundness
of the program while reporting the error.2 Moreover, at a more foundational level, the result
nicely formalizes the intuition that types statically approximate computations, in the sense
that a type t corresponds to the set of all possible values of expressions of type t.

In the following we discuss how an analogous result could hold with a non-strict semantics.
First of all, clearly the correspondence cannot be between interpretations of types and sets
of values as in [20], since then we would identify ⊥ with 0. Hence we should consider, rather
than values, sets of “results” of some kind, including (a representation of) divergence.

However, whichever notion of result we consider, it is hard to define an interpretation
domain of types such that the desired correspondence holds, that is, such that a type t
corresponds to the set of all possible results of expressions of type t. As the reader can expect,
the key challenge is to provide an interpretation where an arrow type t1 → t2 corresponds, as
it seems sensible, to the set of λ-abstractions { (µf : I. λx. e) |∅ ` (µf : I. λx. e) : t1 → t2 }.
For instance, our proposed definition of J · K is sound with respect to this correspondence, but
not complete, that is, not precise enough. We devote the rest of this section to explain why
and to discuss the possibility of obtaining a complete definition. Consider the type Int→ 0.
By Definition 2.3, we have

JInt→ 0K = {R ∈ Pfin(D ×DΩ) | ∀(d, d′) ∈ R. d ∈ JIntK =⇒ d′ ∈ J0K }
= {R ∈ Pfin(D ×DΩ) | ∀(d, d′) ∈ R. d /∈ JIntK }

(since J0K = ∅, the implication can only be satisfied if d /∈ JIntK). This type is not empty,
therefore, if a result similar to that of [20] held, we would expect to be able to find a function
µf : I. λx. e such that ∅ ` (µf : I. λx. e) : Int→ 0. Alas, no such function can be defined in
our language. This is easy to check: interfaces must include ⊥ in the codomain of every
arrow (since they use the _ form), so no interface can be a subtype of Int→ 0. Lifting this
syntactic restriction to allow any arrow type in interfaces would not solve the problem: for a
function to have type Int→ 0, its body must have type 0, which is impossible, and indeed
must be impossible for the system to be sound. It is therefore to be expected that Int→ 0
is uninhabited in the language. This means that our current definition of JInt → 0K as a
non-empty type is imprecise.

Changing J · K to make the types of the form t→ 0 empty is easy, but it does not solve
the problem in general. Using intersection types we can build more challenging examples: for
instance, consider the type (Int∨Bool→ Int) ∧ (Int∨String→ Bool). While neither codomain
is empty, and neither arrow should be empty, the whole intersection should: no function,
when given an Int as argument, can return a result which is both an Int and a Bool.

In the call-by-value case, it makes sense to have Int→ 0 and the intersection type above
be non-empty, because they are inhabited by functions that diverge on integers. This is
because divergence is not represented in the types (or, to put it differently, because it is
represented by the type 0). A type like t1 → t2 is interpreted as a specification of partial
correctness: a function of this type, when given an argument in t1, either diverges or returns
a result in t2. In our system, we have introduced a separate non-empty type for divergence.
Hence, we should see a type as specifying total correctness, where divergence is allowed only
for functions whose codomain includes ⊥.

2 In case of a type error, the CDuce compiler shows to the programmer a default value for the type t1 \ t2.
Some heuristics are used to build a value in which only the part relevant to the error is detailed.
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Let us look again at the current interpretation of arrow types.

Jt1 → t2K = {R ∈ Pfin(D ×DΩ) | ∀(d, d′) ∈ R. d ∈ Jt1K =⇒ d′ ∈ Jt2K }

An arrow type is seen as a set of finite relations: we represent functions extensionally and
approximate them with all their finite subsets. We use relations instead of functions to
account for non-determinism. Within a relation, a pair (d, d′) means that the function returns
the output d′ on the input d; a pair (d,Ω) that the function crashes on d; divergence is
represented simply by the absence of a pair. In this way, as said above, a function diverging
on some element of Jt1K could erroneously belong to the set even if Jt2K does not contain ⊥.

To formalize the requirement of totality on the domain, we could modify the definition in
this way:

Jt1 → t2K = {R ∈ Pfin(D×DΩ) | dom(R) ⊇ Jt1K and ∀(d, d′) ∈ R. d ∈ Jt1K =⇒ d′ ∈ Jt2K }

(where dom(R) = { d | ∃d′∈D. (d, d′) ∈ R }).
However, if we consider only finite relations as above, the definition makes no sense,

since Jt1K ⊆ dom(R) can hold only when Jt1K is finite, whereas types can have infinite
interpretations. On the contrary, if we allowed relations to be infinite, then the set D would
have to satisfy the equality D = C ] (D ×D) ] P(D ×DΩ) (where ] denotes disjoint union),
but no such set exists: the cardinality of P(D×DΩ) is always strictly greater than that of D.

Frisch, Castagna and Benzaken [20] point out this problem and use finite relations in
the domain to avoid it. They motivate this choice with the observation that, while finite
relations are not really appropriate to describe functions in a language (since these might
have an infinite domain), they are suitable to describe types as far as subtyping is concerned.
Indeed, we do not really care what the elements in the interpretation of a type are, but only
how they are related to those in the interpretations of other types. It can be shown that

∀t1, t′1, t2, t′2. Jt′1 → t1K ⊆ Jt′2 → t2K ⇐⇒ (Jt′1K ⇀ Jt1K) ⊆ (Jt′2K ⇀ Jt2K)

where X ⇀ Y
def= {R ∈ P(D × DΩ) | ∀(d, d′) ∈ R. d ∈ X =⇒ d′ ∈ Y } builds the set of

possibly infinite relations. This can be generalized to more complex types:
q∧

i∈P t
′
i → ti

y
⊆

q∨
i∈N t′i → ti

y
⇐⇒

⋂
i∈P

(
Jt′iK ⇀ JtiK

)
⊆
⋃

i∈N

(
Jt′iK ⇀ JtiK

)
.

In [20], the authors argue that the restriction to finite relations does not compromise the
precision of subtyping. For reasons of space we do not elaborate further on this, and we
direct the interested reader to their work and the notions of extensional interpretation and
of model therein.

Let us try to proceed analogously in our case: that is, find a new interpretation of types
that matches the behaviour of possibly infinite relations that are total on their domain, while
introducing an approximation to ensure that the domain is definable. The latter point means,
notably, that functions must be represented as finite objects. The following definition of a
model specifies the properties that such an interpretation should satisfy.

I Definition 5.1 (Model). A function L · M : T → P(D) is a model if the following hold:
the set D satisfies D = {⊥} ] C ] (D ×D) ] Dfun for some set Dfun;
for all b, t, t1, and t2,

L⊥M = {⊥} LbM = B(b) Lt1 × t2M = Lt1M× Lt2M Lt1 → t2M ⊆ L0→ 1M = Dfun

Lt1 ∨ t2M = Lt1M ∪ Lt2M L¬tM = D \ LtM L0M = ∅
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for every finite, non-empty intersection
∧

i∈P t
′
i → ti and every finite union

∨
i∈N t′i → ti,

L
∧

i∈P t
′
i → tiM ⊆ L

∨
i∈N t′i → tiM ⇐⇒

⋂
i∈P

(
Lt′iM Þ LtiM

)
⊆
⋃

i∈N

(
Lt′iM Þ LtiM

)
where X ÞY

def= {R ∈ P(D ×D) | dom(R) ⊇ X and ∀(d, d′) ∈ R. d ∈ X =⇒ d′ ∈ Y }.

We set three conditions for an interpretation of types L · M : T → P(D) to be a model.
The first constrains D to have the same structure as D, except that we do not fix the subset
Dfun in which arrow types are interpreted. The second condition fixes the definition of L · M
completely except for arrow types. The third condition ensures that subtyping on arrow
types behaves as set containment between the sets of relations that are total on the domains
of the arrow types.3

An interesting result is that, even though we do not know whether an interpretation of
types which is a model can actually be found, we can compare a hypothetical model with the
interpretation J · K defined in Section 2. Indeed J · K turns out to be a sound approximation of
every model; that is, the subtyping relation ≤ defined in Definition 2.4 from J · K is contained
in every subtyping relation ≤L M defined from some model L · M. We have proven that this
holds for non-recursive types:

I Proposition 5.2. Let L · M : T → P(D) be a model. Let t1 and t2 be two finite (i.e.,
non-recursive) types. If Jt1K ⊆ Jt2K, then Lt1M ⊆ Lt2M.

We conjecture that the result holds for recursive types too, but this proof is left for future
work.

Showing that L · M exists would be important to understand the connection between our
types and the semantics. To use L · M to define subtyping for the use of a typechecker, though,
we would also need to show that the resulting definition is decidable. Otherwise, J · K would
remain the definition used in a practical implementation since it is sound and decidable,
though less precise.

6 Conclusion

We have shown how to adapt the framework of semantic subtyping [20] to languages with
non-strict semantics. Our type system uses the subtyping relation from [20] unchanged
(except for the addition of ⊥), while the typing rules are reworked to avoid the pathological
behaviour of semantic subtyping on empty types. Notably, typing rules for constructs like
application and projection must handle ⊥ explicitly. This ensures soundness for call-by-need.

This approach ensures that the subtyping relation still behaves set-theoretically: we can
still see union, intersection, and negation in types as the corresponding operations on sets.
We can still use intersection types to express overloading.

The type ⊥ we introduce has no analogue in well-known type systems like the simply
typed λ-calculus or Hindley-Milner typing. However, ⊥ never appears explicitly in programs
(it does not appear in types of the forms T and τ given at the beginning of Section 3). Hence,
programmers do not need to use it and to consider the difference between terminating and
non-terminating types while writing function interfaces or typecases. Still, sub-expressions
of a program can have types with explicit ⊥ (e.g., the type Int ∨ ⊥). Such types are not
expressible in the grammar of types visible to the programmer. Accordingly, error reporting

3 We do not use the error element Ω in the definition of X ÞY , because the totality requirement makes
it unnecessary: errors on a given input can be represented in a relation by the absence of a pair.
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is required to be more elaborated, to avoid mentioning internal types that are unknown to
the programmer.

A different approach to use semantic subtyping with non-strict languages would be to
change the interpretation of types (and, as a result, the definition of subtyping) to avoid the
pathological behaviour on 0, and then to use standard typing rules.

We have explored this alternative approach, but we have not found it promising. A modi-
fied subtyping relation loses important properties – especially results on the decomposition
of product types – that we need to prove soundness via subject reduction. The approach
we have adopted here is more suited to this technical work. However, a modified subtyping
relation could yield an alternative type system for the source language, provided that we can
relate it to the current system for the internal language.

We also plan to study more expressive typing rules that can track termination with
some precision. For example, we could change the application rule so that it does not
always introduce ⊥. In function interfaces, some arrows could include ⊥ and some could
not: then, overloaded function types would express that a function behaves differently on
terminating or diverging arguments. For example, the function λx. x+ 1 could have type
(Int→ Int) ∧ (⊥ → ⊥), while λx. 3 could have type 1→ Int: the first diverges on diverging
arguments, the other always terminates. It would be interesting for future work to explore
forms of termination analysis to obtain greater precision. The difficulty is to ensure that the
type 0 remains uninhabited and that all diverging expressions still have types that include
⊥. This is trivial in the current system, but it is no longer straightforward with more refined
typing rules.

A further direction for future work is to extend the language and the type system we
have considered with more features. Notably, polymorphism, gradual typing, and record
types are needed to be able to type effectively the Nix Expression Language, which was the
starting inspiration for our work.
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Abstract
Classical logics are explosive, meaning that everything follows from a contradiction. Paraconsistent
logics are logics that are not explosive. This paper presents the meta-theory of a paraconsistent
infinite-valued logic, in particular new results showing that while the question of validity for a given
formula can be reduced to a consideration of only finitely many truth values, this does not mean
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1 Introduction

Classical logics are by design explosive – everything follows from a contradiction. This is mostly
uncontroversial, but it seems problematic for certain kinds of reasoning. In paraconsistent
logics, everything does not follow from a contradiction. Non-classical logics should also
enjoy the benefits of formalization, and therefore this paper presents a formalization of a
paraconsistent infinite-valued propositional logic.

The entry on paraconsistent logic in the Stanford Encyclopedia of Philosophy [13]
thoroughly motivates paraconsistent logics by arguing that some domains do contain incon-
sistencies, but this should not make meaningful reasoning impossible. An example from
computer science is that in large knowledge bases an inconsistency can easily occur if just
one data point is entered wrong. A reasoning system based on such a database needs a
meaningful way to deal with the inconsistency. Many other examples are mentioned from
philosophy, linguistics, automated reasoning and mathematics. A recent book [1] looks at
paraconsistency in the domain of engineering. There is no one paraconsistent logic to rule
them all – there are many logics which can be used in different contexts. The encyclopedia
gives a taxonomy of paraconsistent logics consisting of discussive logics, non-adjunctive
systems, preservationism, adaptive logics, logics of formal inconsistency, relevant logics and
many-valued logics.
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5:2 New Formalized Results on the Meta-Theory of a Paraconsistent Logic

Table 1 This table shows where the results of this paper have been conjectured and where their
formal and informal proofs have previously been presented.

Results in Conjecture Formal proof Informal proof
Section 4 Jensen and Villadsen [10] Villadsen and me [23, 24] the present paper
Section 5 Jensen and Villadsen [10] the present paper the present paper
Section 6 Villadsen and me [23, 24] the present paper the present paper

The logic considered here is the propositional fragment of a paraconsistent infinite-valued
higher-order logic by Villadsen [19, 21, 20, 22] and more recently Jensen and Villadsen in an
extended abstract [10]. The propositional logic, here called V, has a semantics with the two
classical truth values and countably infinitely many non-classical truth values. When U is a
subset of the non-classical truth values, VU is the logic defined the same as V except for the
restriction that its non-classical truth values are only those in U . This does not require any
change of the semantics of V’s logical operators because they are defined in a way such that
when their domain is restricted then their range is similarly restricted. In VU with a finite
U , one can find out whether a formula p is valid by enumerating enough interpretations that
they cover all possible assignments of the propositional symbols in p. This approach does
not work in V since there are infinitely many such interpretations. This paper shows that it
is enough to consider the models in VU for a finite U , but that the size of U depends on the
formula considered.

The contents of this paper are as follows:
Section 2 defines and formalizes V. It gives an example of paraconsistency in the logic.
Section 3 defines and formalizes VU .
Section 4 proves and formalizes that for any formula p there is a finite U such that if p is
valid in VU , it is also valid in V. This allows the question of validity in V to be solved by
a finite enumeration of interpretations.
Section 5 proves and formalizes the new result that if |U | = |W |, then VU and VW

consider the same formulas valid.
Section 6 shows the new result that, to answer the question of validity in V, one cannot
fix a finite valued VU once and for all because there exists a formula π|U | that is valid in
this logic but not in V. In other words, despite the result in Section 4, V is a different
logic than any finite valued VU .

The formalization in Sections 2 and 3 was previously presented in a book chapter [23] and
a paper [24] by Villadsen and myself. The result in Section 4 had already been conjectured by
Jensen and Villadsen [10], but was, to the best of my knowledge, first proved and formalized
in the mentioned book chapter [23] and paper [24]. The results in Section 5 were also
conjectured by Jensen and Villadsen [10], but the results are, to the best of my knowledge,
proved and formalized in the present paper for the first time. The result in Section 6 was
conjectured by Villadsen and myself [24] and is, to the best of my knowledge, proved and
formalized in the present paper for the first time except for a brief mention in the abstract of
a talk by me [14]. For a summary of the appearances of the results see Table 1. Thus, there
are no previous informal proofs to refer to for these results, and this paper will therefore both
present the formalization of these results and their informal proofs. The full formalization
is available online – 1500 lines of code are already in an Archive of Formal Proofs entry by
Villadsen and myself [17], and the 800 lines corresponding to Sections 5 and 6 [16] will be
added later. To make the paper easier to read, its notation is slightly different from the
formalization.
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2 A Paraconsistent Infinite-Valued Logic

The paraconsistent infinite-valued propositional logic V has two classical truth values, namely
true (•) and false (◦). These are called the determinate truth values. True (•) is the only
designated value. The logic also has countably many different non-classical truth values (p,
pp, ppp, . . . ) [10]. These are called the indeterminate truth values. This is represented as a
datatype tv.

datatype tv = Det bool | Indet nat

Det True and Det False represent • and ◦ respectively, and constructor Indet maps each
natural number (0, 1, 2, . . . ) to the corresponding indeterminate truth value (p, pp, ppp, . . . ).

The propositional symbols of V are strings of a finite alphabet. Here, the symbols are
denoted as p, q, r, . . . . Interpretations are functions from propositional symbols into truth
values. The formulas of the logic are built from the propositional symbols and operators
¬, ∧, ⇔ and ↔ as well as a symbol for truth >. To make them distinguishable, the
logical operators in the paraconsistent logic are bold, while Isabelle/HOL’s logical operators
are not (e.g. ¬, ∧, ∨, ←→). ⇔ represents equality whereas ¬, ∧ and ↔ are designed to
be generalizations of their classical counterparts. In the Isabelle/HOL formalization, the
formulas are defined by a datatype fm, with a constructor for atomic formulas consisting
of propositional symbols and with constructors for each of the operators. Additionally, a
number of derived operators are defined:

⊥ ≡ ¬ >
p ∨ q ≡ ¬ (¬ p ∧ ¬ q)
p ⇒ q ≡ p ⇔ (p ∧ q)
p → q ≡ p ↔ (p ∧ q)
� p ≡ p ⇔ >

¬¬ p ≡ � (¬ p)
p ∧∧ q ≡ � (p ∧ q)
p ∨∨ q ≡ � (p ∨ q)
∆ p ≡ (� p) ∨∨ (p ⇔ ⊥)
∇ p ≡ ¬¬ (∆ p)

In the semantics, Villadsen motivated the different cases by equalities of classical logic
that also hold in V [19]. These motivating equalities are shown to the right of their case:

eval i x = i x if x is a propositional symbol
eval i > = •

eval i (¬ p) =


• if eval i p = ◦ > ⇔ ¬ ⊥

◦ if eval i p = • ⊥ ⇔ ¬ >

eval i p otherwise

eval i (p ∧ q) =



eval i p if eval i p = eval i q p ⇔ p ∧ p

eval i q if eval i p = • q ⇔ > ∧ q

eval i p if eval i q = • p ⇔ p ∧ >

◦ otherwise

TYPES 2018
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eval i (p ⇔ q) =

 • if eval i p = eval i q

◦ otherwise

eval i (p ↔ q) =



• if eval i p = eval i q > ⇔ p ↔ p

eval i q if eval i p = • q ⇔ > ↔ q

eval i p if eval i q = • p ⇔ p ↔ >

eval i (¬ q) if eval i p = ◦ ¬q ⇔ ⊥ ↔ q

eval i (¬ p) if eval i q = ◦ ¬ p ⇔ p ↔ ⊥

◦ otherwise

Among the derived operators �, ∆ and ∇ are of special interest. � maps • to • and any
other value to ◦. In other words � p states “p is true”. Similarly ∆ p states “p is determinate”
and ∇ p states “p is indeterminate”.

The other operators can be divided in two groups – general operators (¬, ∧, ∨ and ↔)
and purely determinate operators (¬¬, ∧∧, ∨∨ and ⇔). The general operators behave as
expected on determinate values, and this behavior is generalized to indeterminate values.
Consider for example the truth table in V{p,pp} for ∨:

∨ • ◦ p pp

• • • • •
◦ • ◦ p pp
p • p p •
pp • pp • pp

The purely determinate operators also behave as expected on determinate values, and
their behavior generalizes to indeterminate values – however this time in such a way that
they always return a determinate truth value. Consider for example the truth table in V{p,pp}
for ∨∨:

∨∨ • ◦ p pp

• • • • •
◦ • ◦ ◦ ◦
p • ◦ ◦ •
pp • ◦ • ◦

Validity is defined in the usual way, i.e. a formula is valid if it is true in all interpretations.

definition valid :: “ fm ⇒ bool”
where
“ valid p ≡ ∀ i. eval i p = •”

Weber [25] explains that the literature contains two competing views on paraconsistency.
One states that a logic is paraconsistent iff some formulas p and q exists such that p,¬ p 6` q.
Another view states that a logic is paraconsistent iff some formulas p and q exist such that
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` p, ` ¬ p and 6` q. The logic V is paraconsistent with respect to the first of these views.
Note that with this definition, paraconsistency is a property of entailment. Villadsen [21, 19]
instead encodes this as the non-validity of a formula (p ∧ (¬ p)) ⇒ q. This formula is not
valid in V since it has e.g. the counter-model mapping p to p and q to ◦. If one insists on a
notion of entailment it can, for finite sets of formulas, simply be introduced by defining that
p1, . . . , pn ` q iff p1 ∧ . . .∧ pn⇒ q is valid [21, 20]. With this definition it follows that V is
paraconsistent because then the above non-validity implies that there exist formulas p and q
such that p,¬ p 6` q.

3 Paraconsistent Finite-Valued Logics

For any set U of indeterminate truth values, the logic VU is defined as follows: VU is
defined in the same way as V, except that it has a different notion of interpretations. An
interpretation in VU is a function from propositional symbols to the set {•, ◦} ∪U instead of
to the type of all truth values.

A function domain constructs {•, ◦} ∪ U from a set of natural numbers:

definition domain :: “ nat set ⇒ tv set”
where
“ domain U ≡ {Det True, Det False} ∪ Indet ‘ U”

Here, Indet ‘ U denotes the image of Indet on U . Notice that in the formalization, U is a
set of natural numbers rather than a set of indeterminate values. This is only because it
is less tedious to write {0, 1, 2} than {Indet 0, Indet 1, Indet 2} and because being able to
write domain {Indet 0, •} is rather pointless since • is added by domain anyway. For the
same reasons, I will from now on also write e.g. V{0,1,2} rather than V{Indet 0, Indet 1, Indet 2}.
The function is called domain because in the higher-order version of V one can use the truth
values as the domain of discourse.

The notion of being valid in VU is formalized. The expression range i denotes the function
range of i.

definition valid_in :: “ nat set ⇒ fm ⇒ bool”
where
“ valid_in U p ≡ ∀ i. range i ⊆ domain U −→ eval i p = •”

It is clear that validity in V implies validity in any VU .

theorem valid_valid_in: assumes “ valid p” shows “ valid_in U p”

Proof. If p is valid in V, it is true in all interpretations and thus in particular those with the
desired range. Therefore p is valid in VU . J

The set U can be finite or infinite. The former case in particular will be of interest in the
following sections.

4 A Reduction from Validity in V to Validity in VU

When U is finite, one can find out if a formula is valid by considering all the different
cases of what an interpretation might map the formula’s propositional symbols to. As an
example, consider the formula (p ∧ (¬ p)) → q in the logic V∅, which corresponds to classical
propositional logic.

TYPES 2018
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proposition “ valid_in ∅ ((p ∧ (¬ p)) → q)”
unfolding valid_in_def

proof (rule; rule)
fix i :: “ id ⇒ tv”
assume “ range i ⊆ domain ∅”
then have

“ i p ∈ {•, ◦}”
“ i q ∈ {•, ◦}”

unfolding domain_def
by auto

then show “ eval i ((p ∧ (¬ p)) → q) = •”
by (cases “ i p” ; cases “ i q”) auto

qed

For V this approach does not work, since there are infinitely many truth values. This
section overcomes the problem by showing that there exists a finite subset of the interpret-
ations in VU that it is enough to enumerate. The idea is that looking at the semantics of
V reveals that there is a lot of symmetry between the indeterminate truth values p, pp, ppp, . . .
Specifically, the indeterminate values are all different and can be told apart using ⇔, but
none of them play any special role compared with the others. Intuitively, this means that
one just needs to consider enough interpretations to ensure that one has considered all
different possibilities of interpreting the different pairs of propositional symbols as either
different or equal indeterminate truth values. Therefore it is only necessary to consider
enough truth values to ensure that this is possible and thus, for any formula p, it should be
sufficient to consider all the interpretations in the logic VU , where |U | is at least the number
of propositional symbols in p.

The first step towards proving this is to prove that interpretations that agree on the
propositional symbols occurring in a formula also evaluate the formula to the same result.
The set of propositional symbols occurring is defined recursively by the following equations:

props > = {}
props x = {x} if x is a propositional symbol
props (¬ p) = props p
props (p ∧ q) = props p ∪ props q
props (p ⇔ q) = props p ∪ props q
props (p ↔ q) = props p ∪ props q

Hereafter, the mentioned property is proved:

lemma relevant_props: assumes “ ∀ s ∈ props p. i1 s = i2 s” shows “ eval i1 p = eval i2 p”

Proof. Follows by induction on the formula and the definitions of props and eval. J

The next step is to consider an interpretation i in V and see that it behaves the same as a
corresponding interpretation in VU . The idea is that i can be changed to an interpretation in
VU by applying a function from nat into U to the indeterminate values that the interpretation
returns.

Given a function f of type nat ⇒ nat and an interpretation, its application f x to a
truth value x is defined as

f x =
{
x if x is determinate
Indet (f n) if x = Indet n
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A function can also be applied to an interpretation:

f i = λs. f (i s)

If f is an injection, then applying f to the result or to the interpretation gives the same
result when evaluating a formula.

lemma eval_change: assumes “ inj f” shows “ eval (f i) p = f (eval i p)”

Proof. The proof is by induction on the formula. In each inductive case the formula consists
of one of the (non-derived) logical constructors and a number of immediate subformulas.
Now look at how the semantics for that logical constructor was defined. For each operator,
consider the different cases of what the subformulas could evaluate to under i as specified
in the semantics. Doing this generates all in all 17 different cases. Consider for instance
the semantics’ “otherwise”-case for p ↔ q. Here, it is the case that eval i p 6= eval i q
and that there exists a natural number n such that eval i p = Indet n and some m such
that eval i q = Indet m. Hence Indet n 6= Indet m and therefore n 6= m. Since f is
injective, also f n 6= f m and Indet (f n) 6= Indet (f m). The induction hypotheses are
eval (f i) p = f (eval i p) and eval (f i) q = f (eval i q). Consider the first one. Here it is the
case that eval (f i) p = f (eval i p) = f (Indet n) = Indet (f n). Likewise from the second
it follows that eval (f i) q = f (eval i q) = f (Indet m) = Indet (f m). This implies that
eval (f i) p 6= eval (f i) q. From this and the semantics of ↔ follows eval (f i) (p ↔ q) = ◦.
Likewise, from eval i p 6= eval i q and the semantics of ↔ follows eval i (p ↔ q) = ◦. These
two facts allow us to establish eval (f i) (p ↔ q) = ◦ = f ◦ = f (eval i (p ↔ q)). And this
part of the proof is done. This was just one out of the 17 cases mentioned above. For the
rest I refer to the formalization. J

Writing out all 17 cases mentioned above would be tedious and checking all of them by hand
requires discipline. Therefore, there is always the danger of overlooking a needed argument,
because one case looked similar to another but really was not. Formalization enforces this
discipline.

Now it is time to prove that if there are at least as many indeterminate truth values in U
as the number of propositional symbols in p, then the validity of p in VU implies the validity
of p in V. The lemma is expressed using Isabelle/HOL’s card function, which for finite sets
returns their cardinality and for infinite sets returns 0.

theorem valid_in_valid:
assumes “ card U ≥ card (props p)”
assumes “ valid_in U p”
shows “ valid p”

Proof. p is proved valid by fixing an arbitrary interpretation i: First, obtain an injection f
of type nat ⇒ nat such that f maps any value in i ‘ (props p) to a value in domain U . This
is possible because |domain U | ≥ |props p|.

Now define the following interpretation:

i′ s =
{

(f i) s if s ∈ props p
• otherwise

From the properties of f and definition of i′ it follows that range i′ ⊆ domain U and then by
the validity of p in U it follows that eval i′ p = •. Furthermore, i′ and f i coincide on all
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symbols in p, and therefore, by the lemma relevant_props, it also follows that eval (f i) p = •.
Now from eval_change follows that f (eval i p) = •. By definition of the application of a
nat ⇒ nat to a truth-value it is the case that eval i p = •. Thus any interpretation evaluates
to • and therefore the formula is valid. J

theorem valid_iff_valid_in:
assumes “ card U ≥ card (props p)”
shows “ valid p ←→ valid_in U p”

Proof. Follows from valid_valid_in and valid_in_valid. J

5 Sets of Equal Cardinality Define the Same Logic

Recall that while the indeterminate values are all different and can be told apart using ⇔,
none of them play any special role compared to the others. Therefore one would expect VU

and VW to be the same when U and W have the same cardinality. In the same way, consider
what happens when |U | < |W |. In this case one can think of VU as being VW with some
truth values, and thus interpretations, removed. Removing interpretations only makes it
easier for a formula to be valid and thus any formula that is valid in VW should also be valid
in VU .

Isabelle/HOL defines inj_on such that inj_on f A expresses that f is an injection
from A into the return type of f . In order to be able to talk about one set having smaller
cardinality than another, it is useful to also define the notion of an injection from a set into
another set.

definition inj_from_to :: “ ( ′a ⇒ ′b) ⇒ ′a set ⇒ ′b set ⇒ bool” where
“ inj_from_to f X Y ≡ inj_on f X ∧ f ‘ X ⊆ Y”

The lemma eval_change is generalized from the type nat to sets of nats.

lemma eval_change_inj_on:
assumes “ inj_on f U”
assumes “ range i ⊆ domain U”
shows “ eval (f i) p = f (eval i p)”

Proof. The proof is analogous to that of eval_change. J

This is enough to prove the following lemma:

lemma inj_from_to_valid_in:
assumes “ inj_from_to f W U”
assumes “ valid_in U p”
shows “ valid_in W p”

Proof. The plan is to fix an arbitrary interpretation in VW and prove that it makes p true.
First, realize that range (f i) ⊆ domain U ; this follows from the fact that for any x it is the
case that (f i) x = f (i x) and here the application of i will give an element in domain W

and then the application of f will give an element in domain U . Therefore eval (f i) p = •
by the validity of p in VU . Then use eval_change_inj_on to get that f (eval i p) = • and
then from the definition of the application of f to a truth value that eval i p = •. J

It is now time to prove that if U and W have equal cardinality, they define the same
logic.
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lemma bij_betw_valid_in:
assumes “ bij_betw f U W”
shows “ valid_in U p ←→ valid_in W p”

Proof. f is an injection from U into W . f− is an injection from W into U . The lemma
therefore follows from inj_from_to_valid_in. J

6 The Difference Between V and VU for a Finite U

Section 4 showed that the question of the validity of p in V can be reduced to the question
of its validity in V{0..<|prop p|}, where {n..<m} = {k | n ≤ k < m} for any n and m. This
section shows that this does not mean that V collapses to a finite valued VU . The approach
is to demonstrate a formula that is true in V0..n but false in V. The formula is called the
pigeonhole formula. For n = 3 the pigeonhole formula π3 is

π3 = ∇x0∧∧∇x1∧∧∇x2 ⇒ (x0⇔x1)∨∨(x0⇔x2)∨∨(x0⇔x1).

I.e. it states that, assuming that x0, x1 and x2 refer to indeterminate values, two of them will
be the same. This is of course not true in an interpretation where they map to three different
values, but if one only considers two indeterminate values there are no such interpretations.
Therefore the formula is not valid in general but it is valid in V{p, pp}. Propositions x0 and x1
and x2 can be thought of as pigeons and the values p and pp as pigeonholes.

In order to define the formula for any n, first define the conjunction and disjunction of
any list [p1, . . . , pn] of formulas:

[∧∧][p1, . . . , pn] = p1∧∧ · · ·∧∧pn

[∨∨][p1, . . . , pn] = p1∨∨ · · ·∨∨pn

Extend ∇to a symbol that characterizes lists of indeterminate values:

[∇][p1, . . . , pn] = [∧∧][∇p1, . . . ,∇pn]

Given two sets S1 and S2, the concept of their cartesian product S1 × S2 is well known.
Their off-diagonal product is defined as

S1 ×off-diag S2 = {(s1, s2) ∈ S1 × S2 | s1 6= s2}

Isabelle/HOL offers the function List.product of type ′a list⇒ ′a list⇒ (′a× ′a) list, which
implements the cartesian product on lists representing sets. From this the list off-diagonal
product is defined:

L1 ×off-diag L2 = filter (λ(x, y). x 6= y) (List.product L1L2)

The list off-diagonal product is used to introduce equivalence existence, which given a list of
formulas expresses that two of the formulas in the list are equivalent.

[∃ =][p1, . . . , pn] = [∨∨]([=]((p1, . . . , pn)×off-diag (p1, . . . , pn)))

where

[=][(p11, p12), . . . , (pn1, pn2)] = p11⇔p12, . . . , pn1⇔pn2

Let x0, x1, x2, ... be a sequence of different variables. These will form the pigeonholes.
Implication, ∇, equivalence existence and the pigeonholes are combined to form the pigeonhole
formula:

πn = [∇][x0, · · · , xn−1]⇒[∃ =][x0, · · · , xn−1]
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6.1 πn is not valid in V
In order to prove that the pigeonhole formula is not valid, a counter-model for it is demon-
strated. This counter-model is in V{0..<n} and is thus also a counter-model for the validity of
the pigeonhole formula in V{0..<n}. The counter-model for pigeonhole formula number n is

cn(y) =
{

Indet i if y = xi and i < n

• otherwise

In order to prove that it indeed is a counter-model of the pigeonhole formula, a number
of lemmas are introduced that characterize the semantics of the formula’s components:

lemma cla_false_Imp:
assumes “ eval i a = •”
assumes “ eval i b = ◦”
shows “ eval i (a ⇒ b) = ◦”

Proof. Follows directly from the involved definitions. J

lemma eval_CON :
“ eval i ([∧∧] ps) = Det (∀ p ∈ set ps. eval i p = •)”

Proof. Note that set ps denotes the set of members in the list ps. The lemma follows by
induction on the list ps from the involved definitions. J

lemma eval_DIS :
“ eval i ([∨∨] ps) = Det (∃ p ∈ set ps. eval i p = •)”

Proof. Follows by induction on the list ps from the involved definitions. J

lemma eval_ExiEql:
“ eval i ([∃ =] ps) = Det (∃ (p1, p2)∈(set ps ×off-diag set ps). eval i p1 = eval i p2)”

Proof. Follows from the definition of [∃ =], the definition of ×off-diag and eval_DIS . J

is_indet t is defined to be true iff t is indeterminate. Likewise is_det t is true iff t is
determinate.

lemma eval_Nab: “ eval i (∇ p) = Det (is_indet (eval i p))”

Proof. Follows directly from the involved definitions. J

lemma eval_NAB:
“ eval i ([∇] ps) = Det (∀ p ∈ set ps. is_indet (eval i p))”

Proof. Follows from the definition of [∇], eval_CON and eval_Nab. J

With this one can prove that the pigeonhole formula is false under the cn counter-model.

lemma interp_of_id_pigeonhole_fm_False: “ eval cn πn = ◦”

Proof. The lemma cla_false_Imp states that an implication can be proved false by prov-
ing its antecedent true and conclusion false. Start by proving the antecedent true: The
antecedent is [∇][x0, . . . , xn−1], and this means that all the variables in x0, . . . , xn−1 should
refer to indeterminate values, which indeed they do by the definition of cn. The conclusion
[∃ =][x0, . . . , xn−1] is proved false using eval_ExiEql, which reduces the problem to proving
that no pair of different symbols among x0, . . . , xn−1 evaluate to the same. That follows from
how cn is defined. J
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From this follows that the pigeonhole formula is not valid:

theorem not_valid_pigeonhole_fm: “¬ valid πn”

Proof. Follows from interp_of_id_pigeonhole_fm_False. J

It follows that the pigeonhole formula is not valid in U{0..<n}:

theorem not_valid_in_n_pigeonhole_fm: “¬ valid_in {0 ..<n} πn”

Proof. From cn’s definition follows that range cn ⊆ domain {0..<n}. It follows that πn is
not valid in U{0..<n} by interp_of_id_pigeonhole_fm_False and the definition of validity
in U{0..<n} J

6.2 πn is valid in V{0..<m} for m < n

In order to prove that πn is valid in V{0..<m} for m < n, a new lemma on the semantics of
an implication is needed:

lemma cla_imp_I :
assumes “ is_det (eval i a)”
assumes “ is_det (eval i b)”
assumes “ eval i a = • =⇒ eval i b = •”
shows “ eval i (a ⇒ b) = •”

Proof. Not surprisingly, it follows directly from the involved definitions. J

∇ and [∃ =] returning determinate values is also needed.

lemma is_det_NAB: “ is_det (eval i ([∇] ps))”

Proof. The lemma follows from eval_NAB. J

lemma is_det_ExiEql: “ is_det (eval i ([∃ =] ps))”

Proof. The lemma follows from eval_ExiEql. J

Moreover the pigeonhole principle is needed. This theorem is part of Isabelle/HOL in the
following formulation:

lemma pigeonhole: “ card A > card (f ‘ A) =⇒ ¬ inj_on f A”

It states that if the image of f on A is of smaller cardinality than A, then f cannot be
an injection. From this follows a more specific formulation of the principle, which will be
applied:

lemma pigeon_hole_nat_set:
assumes “ f ‘ {0 ..<n} ⊆ {0 ..<m}”
assumes “m < (n :: nat)”
shows “ ∃ j1∈{0 ..<n}. ∃ j2∈{0 ..<n}. j1 6= j2 ∧ f j1 = f j2”

Proof. From the assumptions follows that card {0..<n} > card {0..<m} ≥ card (f ‘ {0..<n}).
Therefore pigeonhole is applicable and the conclusion follows immediately. J

The pigeonhole formula will evaluate to true in any interpretation with truth values in
V{0..m} where m < n− 1:
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lemma eval_true_in_lt_n_pigeonhole_fm:
assumes “m < n”
assumes “ range i ⊆ domain {0 ..<m}”
shows “ eval i πn = •”

Proof. Apply cla_imp_I to break down the conclusion. The two first assumptions of
cla_imp_I follow from is_det_NAB and is_det_ExiEql, and then what remains is to
prove that the antecedent of πn implies the conclusion of πn. Therefore, assume that the
antecedent, [∇][x0, . . . , xn−1], evaluates to true. From this and eval_NAB follows that
x0, . . . , xn−1 all evaluate to indeterminate values. This, together with the fact that the range
of i is domain {0..<m}, means that i must map any xl where l ∈ {0..<n} to Indet k for
some k ∈ {0..<m}. Therefore, by pigeonhole_nat_set there are j1 < n and j2 < n such that
xj1 and xj2 are different but i evaluates them to the same value. This is by eval_ExiEql
exactly what is required for the conclusion [∃ =][x0, . . . , xn−1] to evaluate to true. J

Therefore the pigeonhole formula must be valid in V{0..<m}.

theorem valid_in_lt_n_pigeonhole_fm:
assumes “m<n”
shows “ valid_in {0 ..<m} (pigeonhole_fm n)”

Proof. Follows immediately from eval_true_in_lt_n_pigeonhole_fm. J

There are many other finite sets than {0..<m}. It is therefore desirable to extend the theorem
to claim that πn is valid in any VU where |U | < n. This can be done using the result from
Section 5:

theorem valid_in_pigeonhole_fm_n_gt_card:
assumes “ finite U”
assumes “ card U < n”
shows “ valid_in U (pigeonhole_fm n)”

Proof. Follows from valid_in_lt_n_pigeonhole_fm and bij_betw_valid_in J

6.3 V is different from VU where U is finite
The previous subsection demonstrated that πn is valid in e.g. VU where |U | = n but not in
V. Therefore the logics are different:

theorem extend: “ valid 6= valid_in U” if “ finite U”

Proof. Follows from valid_in_pigeonhole_fm_n_gt_card and not_valid_pigeonhole_fm.
J

This can be seen as a justification of the infinitely many values in the logic – they cannot
once and for all be replaced by a finite subset. The reduction in Section 4 only worked
because there the size of U depended on the considered formula.

7 Discussion and Related Work

My previous paper with Villadsen [24] contains a thorough discussion of related work giving
an overview of various many-valued logics that have been formalized in Isabelle/HOL. I will
refrain from repeating the section here and mention again only the most pertinent works
namely by Marcos [12] and Steen and Benzmüller [18]. Marcos developed an ML program
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that can generate proof tactics; these tactics implement tableaux that can prove theorems in
various finitely many-valued logics. Steen and Benzmüller defined a shallow embedding of the
many-valued SIXTEEN logic into classical HOL. That the embedding is shallow means that
the authors give formulas in SIXTEEN meaning by translating them to logical expressions of
classical HOL. The authors can then use a theorem prover for HOL to prove these formulas.
Benzmüller and Woltzenlogel Paleo [5] used the same approach to embed several higher-order
modal logics and also showed the approach applied to a sketch of a paraconsistent logic.
Several other logics have been embedded in HOL in this way, including conditional logics by
Benzmüller, Gabbay, Genovese and Rispoli [2], quantified multimodal logics by Benzmüller
and Paulson [3], first-order nominal logic by Steen and Wisniewski [26] and free logic by
Benzmüller and Scott [4]. In contrast, the formalization in this paper is a deep – rather than
shallow – embedding of V i.e. formulas in the logic are expressed as values in HOL and a
semantics is formalized that gives meaning to these formulas. This formalization thus defines
datatypes for formulas and a semantics rather than a tableau or a translation.

Theorems stating that a logic cannot be characterized by finite-valued matrices are
quite common in the literature on non-classical logics. For instance, Gödel [8] proved
that intuitionistic logic cannot be characterized by finite-valued matrices and Dugundji [7]
proved that neither can any of the modal logics S1-S5. Carnielli, Coniglio and Marcos [6]
characterize the logics of formal inconsistency which are paraconsistent logics that have a
so-called consistency operator, such as the ∆ operator of V. The authors also prove that a
number of these logics cannot be characterized by finite-valued matrices.

A noteworthy characteristic of the present formalization is that all proofs were built from
the ground up in the proof assistant – they were not based on any preexisting proofs. Proof
assistants make it very clear when a proof is finished, and one does not have to reread it over
and over to see if everything adds up. Furthermore, in the development I tried out different
definitions of the implication used in the pigeonhole formula and the proof assistant was very
helpful in checking that the changes did not break any proofs. Proof assistants of course
ensure correctness of proofs. Many times I stated lemmas and proved them directly in the
proof assistant. Other times the insurance of correctness was a hindrance in that on the
way to a correct proof it was helpful to state lemmas that were “mostly correct” and whose
expressions “mostly type checked”, i.e. I abstracted away from some of the details. This was
often better done on a piece of paper than in the proof assistant. However, after this process
was done, it was definitely worth returning to the proof assistant to see if the “mostly correct”
proof held up to the challenge of being formalized and thus turned into a correct proof.

The propositional fragment of a paraconsistent infinite-valued higher-order logic has now
been formalized. The formalization only considers the case where the logic has a countably
infinite set of indeterminate truth values. It could also be interesting to prove and formalize
theorems about what happens in case an uncountably infinite type of indeterminate truth
values is allowed. This could be done by replacing nat in the definition of tv with some
uncountably infinite type T . Another way would be to replace nat with a type variable
that could then be instantiated with nat or T . With this in place, I conjecture it would
be possible to prove that the formulas that are valid with respect to nat are the same as
those that are valid with respect to an uncountably infinite type T . My argument in the
one direction is that if the formula is valid in T then it must also be valid in nat since there
is an injection from nat to T , and thus it should be possible to make a generalization of
inj_from_to_valid_in that covers the case of uncountable infinity. In the other direction I
would argue that since the cardinality of T is larger than any props p one should be able to
reuse the proof of valid_in_valid to prove that if p is valid with respect to T then it is also
valid with respect to nat.
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Another obvious next step would be to formalize the whole paraconsistent higher-order
logic. The basis of such an endeavor could be the formalizations of HOL Light in HOL
Light and HOL4 by respectively Harrison [9] and Kumar et al. [11]. The challenge is to
give a semantics to the language. In the formalization in HOL4 this is done by abstractly
specifying set theory in HOL. The same specification could be used for giving a semantics to
the paraconsistent higher-order logic.

8 Conclusion

This paper formalizes Villadsen’s paraconsistent infinite-valued logic V and the |U |-valued
logics VU as well as proves and formalizes several meta-theorems of the logic. One meta-
theorem shows that, for any formula, the question of its validity in V can be reduced to the
question of its validity in VU for a large enough finite U . The other meta-theorems, to my
knowledge not previously proved or formalized, characterize how the number of truth-values
affects truths of the logic. One of them shows that when |U | = |W | then VU has the same
truths as VW . Another shows that for any finite U it is the case that V and VU are different
logics. The theory was developed in parallel with its formalization. This illustrates that
proof assistants can be used as tools, not only for formalizing established results, but also for
developing new results – in this case the meta-theory of a logic.
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Abstract
Weak reduction relations in the λ-calculus are characterized by the rejection of the so-called ξ-rule,
which allows arbitrary reductions under abstractions. A notable instance of weak reduction can be
found in the literature under the name restricted reduction or weak λ-reduction.

In this work, we attack the problem of algorithmically computing normal forms for λwk, the
λ-calculus with weak λ-reduction. We do so by first contrasting it with other weak systems, arguing
that their notion of reduction is not strong enough to compute λwk-normal forms. We observe
that some aspects of weak λ-reduction prevent us from normalizing λwk directly, thus devise a new,
better-behaved weak calculus λex, and reduce the normalization problem for λw to that of λex. We
finally define type systems for both calculi and apply Normalization by Evaluation to λex, obtaining
a normalization proof for λwk as a corollary. We formalize all our results in Agda, a proof-assistant
based on intensional Martin-Löf Type Theory.
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1 Introduction

The weak λ-calculus can be described informally as the λβ-calculus without the ξ rule – the
congruence rule for λ-abstractions – shown below for the simply-typed case. Without any
other modifications, this system is not confluent (or Church-Rosser). The property can be
recovered with the addition of a substitution rule, labeled (σ) below, which gives rise to a
confluent system.

Γ, x : A ` t −→ s : B
Γ ` λx.t −→ λx.s : A→ B

(ξ)
Γ, x : A ` t : B Γ ` a −→ b : A

Γ ` t[a/x] −→ t[b/x] : B
(σ)

This particular notion of weak reduction was originally formulated by Howard [25],
although presented differently, and was later studied by Çağman and Hindley [13] under the
name of weak λ-reduction. On the one hand, the addition of (σ) restores confluence, but on
the other hand it complicates the design of an algorithmic procedure to mechanically compute
terms to normal form: despite the absence of the ξ-rule, conversion under abstractions is still
provable via the σ-rule for a restricted class of redexes, the so called weak redexes. That is,
contrary to the non-confluent weak λ-calculus, contractions can occur under λ-abstractions.
This makes weak λ-reduction crucially different from, and more complicated than other weak
calculi that implement weak-head reduction instead, for which a normalization algorithm
never needs to reduce under binders.
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6:2 Normalization by Evaluation for Typed Weak λ-Reduction

These issues must be faced when attempting to prove the normalization theorem for
a typed version of the weak λ-calculus, a goal that motivated the work presented here.
Indeed, suppose we want to show that every well-typed term t reduces to its normal form,
given by a normalization function JtKρ defined by structural recursion, and in particular
such that Jλx.tKρ = λx.JtKρ[x/x]. In the case of a term Γ ` λx.t : A ⇒ B, we can obtain
Γ, x : A ` t −→ JtKρ[x/x] : B by induction hypothesis, but then it is not clear how to proceed,
since we cannot in general conclude Γ ` λx.t −→ λx.JtKρ[x/x] : A⇒ B without ξ.

Another unpleasant aspect of weak λ-reduction is its relative notion of redex. Consider
the term t ≡ λz.(λx.y) z. Its subterm (λx.y) z is a valid redex under standard β reduction,
leading to the reduction λz.(λx.y) z −→ λz.y, but is not a valid redex of t in the weak
λ-calculus, since there is no way to express this reduction in terms of (β) and (σ). The
same term (λx.y) z, instead, does reduce as a subterm of λw.(λx.y) z, leading to λw.y. This
relative notion of redex complicates the definition of a normalization algorithm, since it is
not clear from the syntactic structure alone whether or not a redex can be justified by the
substitution rule and should be contracted.

1.1 Contributions
In this paper we study weak λ-reduction, and propose a way to algorithmically reduce terms
to their normal form. We also give a constructive proof of normalization for a simply-typed
λ-calculus with weak λ-reduction. More precisely, we make the following contributions:

We compare the λ-calculus with weak λ-reduction, that we call λwk, with other weak
calculi rejecting the ξ-rule. We precisely characterize λwk normal forms, compare them
with the other systems, and show that the problem of normalizing weak λ-reduction does
not seem to be reducible to normalization of these calculi, identifying what we think is
an unexplored area in the literature;
We define a new calculus of weak reductions, λex, that is inspired by our characterization
of λwk redexes and in particular makes them syntactically explicit (hence the name). This
system recovers a version of the ξ-rule, and admits a standard normalization algorithm.
We then show λwk and λex equivalent, thus reducing the problem of normalization for
the former to normalization for the latter. This provides the first published specification
of a normalization algorithm for λwk in full detail;
We define type systems for λwk and λex, and prove the latter normalizing via the semantic
method of Normalization by Evaluation [11]. Mirroring the untyped case, the two calculi
are shown equivalent. Transporting the normalization proof for λex along this equivalence
yields, as far as we are aware, the first proof of normalization for the simply-typed
λ-calculus with weak λ-reduction;
We include a full formalization of this work in intensional Type Theory, using the Agda
proof-assistant [12] 1.

1.2 Meta-theory and notation
We will use a rather informal and foundation-agnostic notation, that can be understood
both in Type Theory and in constructive set theory. We do however distinguish between
definitional equalities (≡), which are always decidable, and propositional equalities (=), for
which decidability needs to be proved.

1 The formalization can be found at https://github.com/fsestini/nbe-weak-stlc

https://github.com/fsestini/nbe-weak-stlc
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I Remark 1. Readers interested in a proof-checked formalization of this work in Type Theory
are invited to consult the Agda code, keeping in mind the following differences:

The partial functions represented here with the usual function notation cannot be defined
in Agda as standard type-theoretic functions, since these must be total in order to preserve
logical consistency. In the formalization, partial functions are encoded by their graph, i.e.
as inductively-defined functional (left-total, right-unique) relations;
In the Agda code, we use a nameless [20] syntax to represent λ-terms.

2 Weak λ-reduction

The weak λ-calculus is generally defined as a flavor of the λ-calculus whose reduction relation
does not include the weak extensionality principle represented by the ξ-rule [9], also referred
to as the congruence rule for λ-abstractions. One of the simplest forms of weak reduction is
obtained by stripping β-reduction of the ξ-rule.

I Definition 2 (Weak reduction). Weak reduction is inductively defined as follows:

(λx.t)s −→ t[s/x]
(β) t −→ r

t s −→ r s
(ν) s −→ r

t s −→ t r
(µ)

Weak reduction, also known as weak-head reduction, is of interest in the study of pro-
gramming languages, as it captures the fact that evaluation of programs does not generally
proceed under binders [23]. Weak reduction evaluates terms to weak-head normal form
(whnf ):

Whnf 3 d ::= λx.t | xd1d2...dn

Weak reduction never reduces under binders, and as a consequence the body t of a weak-
head normal abstraction may be an arbitrary term, not necessarily a whnf. Unfortunately,
this relation is not confluent, hence only specific weak reduction strategies have been studied
in the literature [36, 4]. A solution to this problem consists of extending weak reduction with
a primitive substitution rule [31], the σ-rule (Section 1).

One of the first uses of this confluent variant of weak reduction dates back to Howard [25],
who calls it restricted reduction. Here we will refer to it as weak λ-reduction after Çağman
and Hindley [13].

I Definition 3 (Weak λ-reduction). The reduction relation −→w is defined as the relation in
Definition 2 plus the σ-rule.

I Theorem 4. −→∗w, the reflexive-transitive closure of −→w, is confluent.

Proof. See [31], Theorem 1. J

In [13], the authors cite an alternative formulation of weak λ-reduction based on the
notion of weak redex, due to Howard:

I Definition 5. Let the redex r be a subterm of a term t. Then, r is a weak redex if and
only if it does not contain free variables that are bound in t. A one-step weak λ-contraction
of t is one that contracts a weak redex inside t.
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6:4 Normalization by Evaluation for Typed Weak λ-Reduction

For example, the term λx.(λy.y)z contains the weak redex (λy.y)z. Conversely, the term
λx.(λy.x)z has no weak redexes, and is therefore in normal form. These two definitions give
rise to equivalent relations [13].

We call λwk the λ-calculus with weak λ-reduction, as given in Definition 3, and refer to
its normal forms as weak normal forms. These are not characterized as easily as whnfs, and
the reason is that being a weak normal form is a relative property, since being a weak redex
is, and normal terms are just terms with no weak redexes. We observe that the essence of
weak redexes can be reduced to the distinction between two roles for variables. Given a term
t, we say that a variable has local role if it is bound somewhere within t, and global otherwise.
Then, a weak redex is just a redex that is closed w.r.t. local variables (cfr. Definition 5.)
More precisely, if t ≡ C[r] for an enclosing context C[_] with a hole and a redex r, then r
is a weak redex iff it is closed w.r.t. the local variables bound by abstractions within C[_].
This suggests a notion of normal form that is indexed by the set V of local variables of the
enclosing context, whatever this is. For convenience, we define normal terms NfV mutually
with neutral terms NeV , both under a set of variables V :

NfV 3 dV ::= eV | λx.dV ∪{x}

NeV 3 eV ::= x | eV dV | (λx.dV ∪{x}1 ) dV2 s.t. FV ((λx.d1)d2) ∩ V 6= ∅
Neutral terms usually correspond to variables and elimination forms whose reduction is

“blocked” by the presence of a neutral term in recursive position. In the standard λβ-calculus,
neutral terms are only variables and “stuck” applications. In our setting, the definition of
neutral term needs to be extended, to account for redexes of the form (λx.t)s that are not
weak, and therefore “stuck” as well. Given a set V of local variables, this is the case whenever
some variables in V are free in the redex, namely FV ((λx.t)s) ∩ V 6= ∅.

We define the set of weak normal forms Nf :≡ Nf ∅. As an example, we can see that
λxy.(λz.x)w ∈ Nf, since (λz.x)w ∈ Ne{x,y}, but λx.(λy.y)z /∈ Nf, since FV ((λy.y)z) ≡
{z} ∩ {x} = ∅.

2.1 Algorithmic weak λ-reduction
Although typed β-reduction is normalizing [24], and we know that weak λ-reduction con-
stitutes a (strict) subset of full β-reduction, these facts alone do not provide us with an
algorithm to actually compute normal forms, or even ensure that such algorithm exists.

Here, we are interested in computational solutions to the problem of algorithmic reduction
for (typed) calculi based on weak λ-reduction. A way to achieve this goal is to seek a
constructive proof of the normalization theorem. When formalized in Intuitionistic Type
Theory, this proof comes by its nature with a normalization algorithm for untyped terms
baked-in. This is quite convenient, but it also means that we cannot hope to proceed any
further without some understanding of how to go by implementing such algorithm. The
presence of the substitution rule (σ) interacts with this goal in unpleasant ways:

Despite the absence of the ξ-rule, some contractions can still happen under binders via
(σ). A normalization algorithm will thus have to proceed, in some way, by recursion
on the structure of terms and thus under λs; but this is at odds with weak λ-reduction
not being a congruence relation, which prevents us from reasoning about these recursive
reductions in an adequate way.
Weak λ-reduction has a relative notion of redex, defined w.r.t. some term t that contains
it as a subterm (Definition 5). What makes a redex weak is therefore not evident from
its syntactic structure alone, so a standard normalization function that just proceeds by
structural recursion does not seem sufficient.
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Perhaps because of these difficulties, or perhaps because of the exotic nature of weak
λ-reduction, we could not find a complete specification of a normalization algorithm for this
notion of reduction anywhere in the literature, nor a proof of normalization for a typed
calculus based on it. A first approach towards filling this gap is to try to reduce the problem
of normalization for λwk to normalization of other weak calculi for which a solution is
well-known. We attempt to do so in the next sections.

2.2 Combinatory logic
There is a correspondence between λwk and combinatory logic (CL) [18], made precise in
[13] by means of two operations _λ and _H respectively translating CL terms to λ-terms
and vice versa. _λ is the obvious translation of combinators to λ-terms, whereas _H is
essentially combinator (or bracket) abstraction ([24], Definition 2.18). We can then show

I Theorem 6. For all combinators c, d and λ-terms t, s:
c .w d =⇒ cλ −→w dλ;
t −→w s =⇒ tH .w sH .

Proof. See [13]. J

Here .w is combinator reduction. Normalization for combinatory logic is well understood,
and in particular Normalization by Evaluation has been successfully applied both to the
typed [16] and the untyped [21] cases. Since our goal is to algorithmically reduce λ-terms to
weak normal form, we may hope to be able to reduce the problem to that of normalizing
combinators, by exploiting the correspondence stated in Theorem 6.

Unfortunately, normal forms are not correctly related by the two translation operations.
A counter-example is given by the λ-term t ≡ λx.(λy.x)(II), which has a weak normal form
λx.(λy.x)I (where I is the identity). The term t translates to tH ≡ SK(K(II)), and its
normal form SK(KI) translates back to the λ-term λw.((λxy.x)w)((λxy.x)Iw). But this
term is neither normal (since (λxy.x)I is a weak redex) nor convertible to λx.(λy.x)I in the
absence of ξ.

This mismatch is also observed in [40], where a version of Martin-Löf Type Theory is
compared to a combinator-based formulation. We are not aware of a way to relate CL-
and λ-terms that makes it possible to rely on combinatory reduction to fully compute weak
λ-reduction.

2.3 Weak explicit substitutions
Explicit substitutions are a way to formulate the syntax and reduction rules of the λ-
calculus that turns substitutions into constructors of the syntax of terms, and integrates
the substitution operation as part of the reduction relation, rather than an implicit meta-
theoretic operation [1]. There have been several attempts at modeling weak reduction with
explicit substitutions [16, 17, 31, 7]. In that setting, the weak character of weak reduction
can be captured by stipulating that substitutions should not be propagated under binders.
We describe some attempts at doing this, starting with the weak λ-calculus by Lévy and
Maranget [31], whose substitution mechanism is a hybrid between implicit and explicit:

Term 3 t, s ::= x | ts | (λx.p)[σ] Prog 3 p, q ::= x | pq | λx.p
Subst 3 σ ::= (x1, t1), (x2, t2), . . . , (xn, tn)
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Here, we use the metavariables p, q for programs, i.e. constant terms, and t, s for ordinary
terms. Explicit substitutions σ are just lists of variable-term pairs. We write σ[t/x] for the
extended substitution that maps x to t and behaves like σ otherwise. Terms are formed
out of variables, application, and closures (λx.p)[σ], i.e. pairs made of a functional program
λx.p and a substitution σ assigning terms to its free variables. However, we do have implicit
substitution 〈_〉 on programs:

x 〈σ〉 :≡ σ(x) (p q)〈σ〉 :≡ p〈σ〉 q〈σ〉 (λx.p)〈σ〉 :≡ (λx.p)[σ]

Here σ(x) just looks up the term associated to the variable x in a substitution. The dynamics
of weak explicit substitutions is defined as follows; closures are used to avoid pushing
substitutions under λ-abstractions, since otherwise we would validate the ξ-rule.

I Definition 7 (Weak explicit substitutions).

(λx.p)[σ] s −→ p〈σ[s/x]〉
(β) σ −→ σ′

(λx.p)[σ] −→ (λx.p)[σ′]
(ξ-subst)

t −→ t′

ts −→ t′s
(ν) s −→ s′

ts −→ ts′
(µ) t −→ s

σ, (xi, t), σ′ −→ σ, (xi, s), σ′

A normal form is thus either a variable applied to normal forms, or a functional program
together with a normal substitution:

Nf 3 d ::= x d1 ... dn | (λx.p)[ρ] Nfs 3 ρ ::= (x1, d1), (x2, d2), . . . , (xn, dn) (1)

A related calculus was defined by Martin-Löf in one of the early formulations of his type
theory [35]. In that system, terms of function type are not constructed by abstraction, but
by introducing a fresh symbol for a combinator. The system includes a primitive substitution
rule like the σ-rule in Definition 3, but since functions are just atomic symbols, substitution
de facto never happens under binders. We do not reproduce Martin-Löf’s system here,
but instead consider an alternative formulation due to Coquand and Dybjer [16], which
is completely equivalent for the purpose of our analysis. The system is based on explicit
substitutions and is very similar to that of Definition 7, although they present it using a
typed nameless syntax [20]:

Term 3 t, s ::= x | ts | (λx.t)[σ] Subst 3 σ ::= (x1, t1), . . . , (xn, tn)

The normal forms can be characterized in the same way as (1), with the only difference
that now λ-abstractions in normal form (λx.t)[ρ] have ordinary terms as their body. A
further generalization is obtained by allowing explicit substitutions on any term instead of
just on functional closures. An example is the weak λσ-calculus of [17], which we will call
λwσ, and that is also considered in its typed nameless version in [16].

Term 3 t, s ::= x | ts | λx.t | t[σ] Subst 3 σ ::= 〈〉 | (x, t), σ | σ1 · σ2

Here Subst includes an empty substitution 〈〉, and a composition constructor σ1 · σ2, which
is used to model terms under multiple substitutions: t[σ1][σ2] −→ t[σ1 · σ2]. Reduction is
essentially that of Definition 7, apart from the β-rule which is now (λx.t)[σ]s −→ t[(x, s), σ],
and the addition of reduction rules for explicit substitutions. Normal forms are characterized
exactly as in Martin-Löf’s weak λ-calculus just described, namely

Nf 3 d ::= x d1 ... dn | (λx.t)[ρ] Nfs 3 ρ ::= (x1, d1), (x2, d2), . . . , (xn, dn)



F. Sestini 6:7

These calculi of weak explicit substitutions are very similar, and in particular they all
implement some form of weak-head reduction, where computation does not occur under
binders. Weak-head normalization is relatively simple and well-understood, and both [35]
and [16] include proofs of normalization for their respective systems. We now compare weak
explicit substitutions to λwk, particularly to see whether these can be used to compute
λwk-normal forms. We consider λwσ as a representative of the calculi of weak explicit
substitutions that we have presented, as it can simulate the others.

Note that terms of the weak λ-calculus can be embedded into λwσ, so a naive approach
would be to just treat weak λ-terms as terms of λwσ, and normalize them under this reduction
relation. λwσ normal forms can be turned back into regular λ-terms by just fully applying
explicit substitutions as they were implicit. That this translation fails to achieve our goal
is already evident by observing the difference in the normal forms of the two calculi. In
particular, every λ-abstraction is a normal form in λwσ, even when its body is not normal,
whereas in the implicit weak calculus, abstractions are only normal if they do not contain
weak redexes, that is, λx.d ∈ Nf ⇐⇒ d ∈ Nf{x}.

This does not necessarily settle the question negatively, because there could be a way to
translate λwk-terms to λwσ-terms in a way that makes this method work. In [31], the authors
consider a translation via maximal free subterms. A subterm t′ of a term t is free whenever
t ≡ C[t′] for some context C[_] that does not bind any free variable in t′. A free subterm
is maximal whenever it is not a subterm of another free subterm. We define a translation
operation T1 from λwk to λwσ:

T1(x) = x T1(ts) = T1(t)T1(s)
T1(λx.t) = (λx.C[x1, . . . , xn])[(x1, T1(t1)), . . . , (xn, T1(tn))]

where t1, . . . , tn are the maximal free subterms of t. We also define T2 as the converse
translation that again just applies all explicit substitutions. We can now show that a reduction
in λwk translates to a reduction in λwσ:

I Proposition 8. If t −→w T2(s), then T1(t) −→ s.

Unfortunately, this result does not generalize to the reflexive-transitive closure of reduction,
so in particular it fails to relate normal forms in the two calculi as we require. In fact,
consider the following reduction of a term t in λwk:

t ≡ (λx.λy.xz)(λw.w) −→w λy.(λw.w)z −→w λy.z

On the other hand, we have

T1(t) ≡ (λx.λy.xk)[z/k](λw.w) −→ (λy.xk)[z/k, (λw.w)/x] ≡ s

The term s is a normal form in λwσ, but translates to the reducible term T2(s) ≡
λy.(λw.w)z in λwk. The problem is that Proposition 8 only holds for terms that are image
of T1, i.e. those terms t such that their explicit substitutions only contain maximal free
subterms in T2(t). Unfortunately, β-contraction destroys this maximality property, since
it can create new weak redexes in T2(t) that do not exist in t. We conjecture that there
exists a different pair of translation functions that makes this work, but leave the rigorous
investigation of this aspect to future work.

3 Two-variable syntax

As anticipated at the end of Section 2, the notion of a weak redex in a term t is essentially
about the distinction between two variable roles: the local variables that may appear bound
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6:8 Normalization by Evaluation for Typed Weak λ-Reduction

within t, and the global variables that may not. Therefore, the only information that is
really needed by a normalization algorithm to reduce t to weak normal form is the role of
all variables in t. We can exploit this fact by choosing a representation of λ-terms where
this variable distinction is made syntactically explicit. Deciding whether a redex in t is weak
then becomes a straightforward syntactic check. This is reminiscent of the locally-nameless
representation of λ-terms [14], where a similar syntactic distinction is made between free
and bound variables. We define two-variable λ-terms Term as follows

Term 3 t, s ::= xG | xL | λx.t | ts

We distinguish between global variables xG and local variables xL. Abstraction and applica-
tion are the usual ones. We define the set of all free variables FV (t) for a term t in the usual
way ([9], Definition 2.1.7), and consider the obvious restrictions FV L, FV G to, respectively,
local and global variables. We say that a term is locally-closed when it contains no free local
variables, and define the set of locally-closed terms as LC ≡ {t ∈ Term | FV L(t) = ∅}.

We consider two substitution operations _[_/_] and _〈_/_〉, dedicated respectively to
local and global variables.

xG〈a/y〉 :≡
{
a, if x = y

xG, otherwise

xL〈a/y〉 :≡ xL

(λx.t)〈a/y〉 :≡ λx.t〈a/y〉
(t s)〈a/x〉 :≡ t〈a/x〉 s〈a/x〉

xG[a/y] :≡ xG

xL[a/y] :≡
{
a, if x = y

xL, otherwise

(λ t)[a/y] :≡ λx.t[a/y]
(t s)[a/y] :≡ t[a/y] s[a/y]

We assume α-conversion is applied when needed to avoid variable capture, as well as the
Barendregt convention ([9], 2.1.13). The two-variable syntax is instrumental in the definition
of an auxiliary reduction relation, given in Definition 10 below, later shown equivalent to
weak λ-reduction (Theorem 13). However, to facilitate the proof of this equivalence, we
restate weak λ-reduction of Definition 3 in terms of the same two-variable syntax, and use
this definition from now on. Since the local vs global variable distinction is irrelevant in this
case, we restrict our definition to locally-closed terms. For this class of terms, the global
(resp. local) variables end up corresponding to free (resp. bound) variables.

I Definition 9 (Two-variable weak λ-reduction). The binary relation
_ −→w _ between locally-closed two-variable terms is inductively defined as follows.

(λx.t) s −→w t[s/x]
(β) a −→w b

t〈a/x〉 −→w t〈b/x〉
(σ)

It can be seen that Definition 9 is just weak λ-reduction of Definition 3, modulo decorated
variables and congruence rules, which are derivable from (σ). From now on, we will consider
λwk to be the system with LC as terms and Definition 9 as reduction relation.

We now take advantage of the two-variable representation to define a normalization
algorithm for the two-variable syntax, that will end up corresponding to normalization
under weak λ-reduction. We specify it as a recursive traversal on arbitrary two-variable
terms, not necessarily locally-closed. In particular, whenever we recursively reduce under a
λ-abstraction, we do not replace the previously bound local variable with some free global
one, but instead we leave it local. As a consequence, when the algorithm is applied to a
locally-closed term t ≡ C[s], recursive calls are able to identify which variables that appear
free in a subterm s of t are bound by C[_], and thus which redexes are weak redexes, without
having to keep track of what C[_] is.
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A normalization function based on these ideas is shown below. We will use parallel
substitutions ρ ∈ Subst to map free local variables to normal terms. These are defined as
either an empty substitution 〈〉, or the extension ρ[t/x] of ρ with the mapping x 7→ t. We
write ρ(x) for the (partial) look-up function for the term associated to a variable, defined
recursively in the obvious way, [t/x] for the singleton parallel substitution, and t[ρ] for the
repeated application of all substitutions in ρ to a term t. Thus, if t is a locally-closed term,
the expression JtK〈〉 gives the normal form of t, if it exists.

JxGK ρ :≡ xG

JxLK ρ :≡ ρ(x)
Jλx.tK ρ :≡ λx.JtK (ρ[xL/x])

Jt sK ρ :≡ JtK ρ • JsK ρ

t • s :≡
{

Jt′K[s/x] if t ≡ λx.t′ and t s ∈ LC
t s otherwise

Note that this normalization function takes untyped λ-terms as arguments, so it is
necessarily partial, since not every untyped term admits a normal form under weak λ-
reduction. As a consequence of this, in the Agda formalization untyped normalization is
not defined as a type-theoretic function, but rather as an inductive functional relation (see
remark in Section 1.2).

We can distill the function above into a reduction relation −→ex, that we call explicit
because it makes use of the explicitly syntactic distinction between variable roles.

I Definition 10 (Explicit two-variable weak λ-reduction). The binary relation
_ −→ex _ between arbitrary two-variable terms is defined as follows.

(λx.t) s ∈ LC
(λx.t) s −→ex t[s/x]

(β) t −→ex s

λx.t −→ex λx.s
(ξ) t −→ex r

t s −→ex r s
(ν) s −→ex r

t s −→ex t r
(µ)

Note that −→ex recovers the ξ-rule. However, the resulting relation is still weak in
the sense of Definition 5 on locally-closed terms, because of the β-rule enforcing that λ-
abstractions only bind local variables, and that only locally-closed (i.e. weak) redexes are
contracted. The two relations are equivalent on locally-closed terms (Theorem 13.) The
proof is adapted from [13] (Proposition 4.6).

I Lemma 11. If t −→ex s, then there exist a term C with free global variable x and
locally-closed terms a, b such that a −→w b and C〈a/x〉 ≡ t, C〈b/x〉 ≡ s.

Proof. By induction on the reduction proof. We consider the two important cases
Case (β). Then both terms are locally-closed, thus the contraction is valid in −→w. We
take them as our a and b, and put C ≡ xG for x fresh;
Case (ξ). Given λy.t −→ex λy.s, by induction hypothesis on t −→ex s we have C ′,
a −→w b and C ′〈a/x〉 ≡ t, C ′〈b/x〉 ≡ s. We put C ≡ λy.C ′ and conclude. J

I Lemma 12. The following substitution rule is admissible

a −→ex b

t〈a/x〉 −→ex t〈b/x〉

Proof. By structural induction on t. J

I Theorem 13. t −→w s ⇐⇒ t −→ex s for any locally-closed terms t and s.

Proof. We consider each implication separately.
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(=⇒) By observing that every rule in −→w is admissible in −→ex.
(⇐=) By Lemma 11, we get a term C and locally-closed terms a, b such that a −→w b

and C〈a/x〉 ≡ t, C〈b/x〉 ≡ s. We conclude by global variable substitution. J

Note that the equivalence in Theorem 13 extends to the reflexive transitive closures –
since reduction does not affect free local variables – thus in particular the two relations give
rise to the same set of normal forms for the same locally-closed term.

This result allows us to use the normalization function defined in this section to compute
λwk normal forms, i.e. −→w-normal terms, provided such function computes −→ex-normal
terms as we intended. We do not formally argue for this last point now. Rather, in the
next sections we will adapt these ideas to the typed case, and define an “explicit” calculus
based on −→ex that is equivalent to the standard, “implicit” one. We will then prove the
explicit calculus normalizing, and transporting along the equivalence will provide us with a
normalization proof for the implicit calculus.

4 Typed weak λ-reduction

4.1 Simply-typed weak λ-calculus: λwk

We now define λwk, a simply-typed λ-calculus with weak λ-conversion judgments, that we
aim to prove normalizing on well-typed terms. We use the same two-variable syntax as the
previous Section. Types Ty and contexts Ctxt are defined as follows

Ty 3 A,B ::= A⇒ B Ctxt 3 Γ ::= · | Γ, x : A

Here we write Γ 3 x : A for the predicate that is true when x : A is included in Γ. We will
assume that variables in contexts have unique names. The type system is shown in Figure 1.
Even though we only care about locally-closed terms, we formulate the typing judgments in a
slightly more general way, that considers arbitrary, not necessarily locally-closed terms. The
judgments are of the form Γ; ∆ ` t : A, with a double context assigning a type to, respectively,
“global” and “local” assumptions. We thus call the two contexts global and local. A well-typed
term Γ ` t : A of λwk is one where there are no free local variables, or equivalently, one that
is typeable under an empty “local” context. That is, Γ ` t : A :≡ Γ; · ` t : A. Typed weak
λ-conversion judgments are given by the inductive relation _ ` _ ∼ _ : _, and essentially
provide a formulation of the relation in Definition 9 with typed equality judgments.

4.2 Explicit weak λ-calculus: λex

We now define a type system for λex, with explicit weak λ-reduction (Definition 10) as
equality judgments. The motivation for this system is the same behind λex in the untyped
case, namely to avoid the issues of λwk in specifying a normalization algorithm and proving
it correct (see Section 2.1.) We will establish the following results:

λwk and λex are equivalent on locally-closed terms;
λex is normalizing on arbitrary (possibly non-locally-closed) well-typed terms.

Since every well-typed λwk-term is locally-closed, these two results imply what we
ultimately seek to prove, namely normalization for λwk (Section 5.4). The advantage is that
the actual normalization proof is carried out on λex, which plays better with already-known
proof methods that assume the ξ-rule, such as Normalization by Evaluation (as used, for
example, in [11, 16].)



F. Sestini 6:11

_;_ ` _ : _

Γ 3 x : A
Γ; ∆ ` xG : A

∆ 3 x : A
Γ; ∆ ` xL : A

Γ; ∆, x : A ` t : B
Γ; ∆ ` λx.t : A⇒ B

Γ; ∆ ` t : A⇒ B
Γ; ∆ ` s : A

Γ; ∆ ` t s : B

_ ` _ ∼ _ : _

Γ;x : A ` t : B Γ ` s : A
Γ ` (λx.t) s ∼ t[s/x] : B

(β) Γ, x : A; · ` t : B Γ ` a ∼ b : A
Γ ` t〈a/x〉 ∼ t〈b/x〉 : A

(σ)

Γ ` t : A
Γ ` t ∼ t : A

Γ ` t ∼ s : A
Γ ` s ∼ t : A

Γ ` t ∼ s : A Γ ` s ∼ r : A
Γ ` t ∼ r : A

Figure 1 Simply-typed λ-calculus with weak λ-reduction.

_;_ ` _ −→ _ : _

Γ;x : A ` t : B Γ; · ` s : A
Γ; ∆ ` (λx.t)s −→ t[s/x] : B

(β) Γ; ∆, x : A ` t −→ s : B
Γ; ∆ ` λx.t −→ λx.s : A⇒ B

(ξ)

Γ; ∆ ` s : A
Γ; ∆ ` t −→ t′ : A⇒ B

Γ; ∆ ` ts −→ t′s : B

Γ; ∆ ` t : A⇒ B
Γ; ∆ ` s −→ s′ : A

Γ; ∆ ` ts −→ ts′ : B

_;_ ` _ ∼ _ : _

Γ; ∆ ` t −→ s : A
Γ; ∆ ` t ∼ s : A

Γ; ∆ ` t : A
Γ; ∆ ` t ∼ t : A

Γ; ∆ ` t ∼ s : A
Γ; ∆ ` s ∼ t : A

Γ; ∆ ` t ∼ s : A
Γ; ∆ ` s ∼ r : A
Γ; ∆ ` t ∼ r : A

Figure 2 Reduction and conversion judgments of λex.

The raw syntax and the typing judgments of λex are the same as λwk, with the difference
that terms can now be well-typed under an arbitrary local context. Figure 2 shows the
definition of typed equality judgments for λex, written Γ; ∆ ` t ∼ s : A, and again formulated
on arbitrary two-variable terms. Note that we do not axiomatize conversion directly, but
define it as the equivalence closure of typed one-step reduction Γ; ∆ ` t −→ s : A, for purely
technical reasons. Similarly to Lemma 12, we prove substitution admissible:

I Lemma 14. If Γ, x : A; ∆ ` t : B and Γ; · ` a ∼ b : A, then Γ; ∆ ` t〈a/x〉 ∼ t〈b/x〉 : B.

Proof. By induction on the derivation of t. J

4.3 Equivalence between λwk and λex

We now show that λwk and λex are equivalent on locally-closed terms. Γ; · ` t : A ⇐⇒ Γ ` t :
A follows by definition, thus we are left to show that Γ ` t ∼ s : A ⇐⇒ Γ; · ` t ∼ s : A. This
is essentially the typed version of Theorem 13, and it relies on an adaptation of Lemma 11
with a proof that the term extraction involved preserves typing.
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I Lemma 15. For all derivations of a typed reduction Γ; ∆ ` t −→ s : A, there exist
terms C, a, b, a type X, and a fresh variable x such that Γ, x : X; ∆ ` C : A is derivable,
Γ ` a ∼ b : X is derivable, and C〈a/x〉 ≡ t, C〈b/x〉 ≡ s.

Proof. By induction on the derivation of t −→ s. J

I Theorem 16. For all Γ, A, t, s, Γ ` t ∼ s : A ⇐⇒ Γ; · ` t ∼ s : A.

Proof. Just an adaptation of the proof of Theorem 13 to the typed case. J

5 Normalization by Evaluation

Normalization by Evaluation (NbE) is a semantic method to prove normalization for typed
λ-calculi. It was originally employed by Martin-Löf, although not under this name, to give a
proof of normalization for a weak, combinatory version of his Intuitionistic Type Theory [35].
The method was later applied to the λβη calculus by Berger and Schwichtenberg [11], as
a model construction where the interpretation function is invertible by an operation called
reification. The composition of interpretation and reification is normalization. An advantage
of NbE is that it can be justified by semantic arguments like logical relations [2] or glueing
[16], rather than cumbersome term rewriting techniques. NbE amounts to establishing the
following properties of a normalization function nf :

Completeness: if Γ ` t ∼ s : A, then nf (t) = nf (s);
Soundness: if Γ ` t : A, then Γ ` t ∼ nf (t) : A.

From these properties we get that convertibility is equivalent to syntactic identity of
normal forms: Γ ` t ∼ s : A ⇐⇒ nf (t) = nf (s). Since syntactic identity of normal forms is
decidable, so is convertibility.

In the rest of this section we give an overview of a proof of untyped NbE for λex. This
variant of NbE was originally detailed in [5], and differs from type-directed NbE like that of
[35] by its reliance on a normalization function that acts on untyped raw syntax alone.

One motivation for using untyped NbE here stems from our formalization work, which
involved several substitution lemmas that we though were easier to carry out on raw syntax.
Another reason has to do with our plan to extend this work to dependent types. Dependent
well-typed syntaxes have been historically difficult to develop inside Type Theory itself [19].
Work on quotient inductive-inductive types [8] seems to offer a viable solution, although it
was too recent to have been considered here.

We employ untyped NbE as described in [2]. Most of the proof replicates [2] quite closely,
so we only highlight the parts that are specific to λex, and direct the reader to the Agda
formalization or the author’s MSc Thesis [37] for the details.

5.1 Semantic domain and interpretation
NbE relies on an interpretation function J_K from the syntax to a semantic domain D,
given an environment ρ assigning meaning to the free variables of the input term. In
the case of weak λ-reduction, we can just use syntactic normal forms as semantic values,
with syntactic identity as equality in the model. Hence we put D ≡ Term, and take the
(partial) normalization function from Section 3 as interpretation J_K. Part of the proof of
normalization will be to show that this function is total on well-typed terms.
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5.2 Completeness of NbE
Completeness of NbE amounts to showing that the interpretation of convertible terms yields
equal semantic values. In our case, we need to show that judgmentally equal terms do have
a normal form, and this is the same. We follow [2] and strengthen our syntactic model by
defining appropriate semantic types A ∈ P(D), that is subsets of normal terms closed under
neutral values: Ne ⊆ A ⊆ Nf. These sets play a similar role to saturated sets, or Tait’s sets
of computable terms [39]. Given semantic types A,B, we can form the semantic function
space A → B of all normal forms f that map elements a ∈ A to elements f • a ∈ B.

We interpret syntactic types as expected, namely JA ⇒ BK = JAK → JBK. Similarly,
we interpret contexts Γ as subsets of substitutions JΓK ∈ P(Subst), namely those that map
assumptions Γ 3 x : A to values in JAK. We write JtKρ ' JsKρ ∈ A whenever t and s evaluate
to the same normal form in A. We then define semantic typing and conversion judgments:

Γ; ∆ |= t : A :≡ ∀(ρ ∈ J∆K), JtKρ ' JtKρ ∈ JT K

Γ; ∆ |= t ∼ s : A :≡ ∀(ρ ∈ J∆K), JtKρ ' JsKρ ∈ JAK

I Theorem 17. For all t, s, A,Γ,∆,
if Γ; ∆ ` t : A, then Γ; ∆ |= t : A;
if Γ; ∆ ` t −→ s : A, then Γ; ∆ |= t ∼ s : A;
if Γ; ∆ ` t ∼ s : A, then Γ; ∆ |= t ∼ s : A.

Proof. By induction on the derivations. J

I Corollary 18 (Completeness of NbE). For all Γ, A, t, s,
1. If Γ; ∆ ` t : A, then t has a normal form, namely JtK;
2. If Γ; ∆ ` t ∼ s : A, then t and s have the same normal form, i.e. JtK = JsK.

Proof. Both points follow from Theorem 17. J

A consequence of completeness of NbE is that J_K is total on well-typed terms. We write
JtK for the interpretation/normalization function applied to the empty substitution.

5.3 Kripke logical relations and soundness of NbE
Soundness of NbE is the statement that well-typed terms are convertible to their normal
form. To prove this, we rely on the definition of a Kripke logical relation. Logical relations
are families of relations defined by induction on (syntactic) types. Kripke logical relations
[28] are additionally indexed by a set of worlds together with an accessibility relation, in the
sense of Kripke semantics. In our case, worlds are represented by contexts and substitutions.
Our logical relation relates well-typed terms with semantic values, i.e. normal forms:

Θ; Γ `M ® N : A⇒ B :≡
M = λx.t ∧ N = λx.d ∧
(for all Θ; ∆ ` σ : Γ and Θ; ∆ ` s ® a : A, then Θ; ∆ ` t[σ[s/x]] ® d[σ[a/x]] : B)

where we write Θ; ∆ ` σ : Γ for substitutions σ mapping assumptions Γ 3 x : A to terms
Θ; ∆ ` t : A. We can show that related objects are convertible.

I Lemma 19. If Γ; ∆ ` t ® a : T then Γ; ∆ ` t ∼ a : T .

Proof. By induction on T and on the logical relation. J
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Note that the proof of Lemma 19 crucially depends on the ξ-rule. We will now prove
that every well-typed term is logically related to its semantics. This result is generally
called fundamental lemma of logical relations, and it is stated below in a generalized version,
where terms are related up to some parallel substitutions assigning logically-related pairs
of terms/values to free variables. We write Γ; ∆ `s σ ® ρ : ∇ for parallel substitutions σ, ρ
mapping assumptions in ∇.

I Lemma 20. If Θ; Γ ` t : T and Θ; ∆ `s σ ® ρ : Γ, then Θ; ∆ ` t[σ] ® JtK ρ : T .

Proof. By induction on the derivation of t. J

I Theorem 21. [Soundness of NbE] If p ∈ Γ; ∆ ` t : A, then Γ; ∆ ` t ∼ JtK : A.

Proof. By completeness of NbE, Lemma 20, and Lemma 19. J

As a consequence of NbE we get the following results (recall the beginning of Section 5):

I Theorem 22 (Normalization of λex). If Γ; ∆ ` t : A, then ∃t′ normal s.t. Γ; ∆ ` t ∼ t′ : A.

I Corollary 23. Given Γ; ∆ ` t : A, Γ; ∆ ` s : A, the judgment Γ; ∆ ` t ∼ s : A is decidable.

5.4 Normalization for λwk

From the equivalence result between λwk and λex and normalization for the latter, we get

I Theorem 24. [Normalization] If Γ ` t : A, then ∃t′ ∈ Nf s.t. Γ ` t ∼ t′ : A.

Proof. By Theorem 22 and Theorem 16. J

I Corollary 25. If Γ ` t : A and Γ ` s : A, then Γ ` t ∼ s : A is decidable.

Proof. By Corollary 23, Theorem 16, and the fact that decidability respects logical equival-
ence. J

6 Conclusions

This article studies the notion of weak reduction originally due to Howard [25], and called here
weak λ-reduction after [13]. In particular, it addresses the problem of defining an algorithmic
procedure to compute normal forms of weak λ-reduction, and constructively proving the
normalization theorem for a simply-typed λ-calculus equipped with this notion of reduction.
The first part of this work includes a comparison of weak λ-reduction with other weak notions
of reduction for the λ-calculus and combinatory logic. This comparison seems to reveal that
these calculi are not, as currently developed, strong enough to compute weak λ-reduction
normal forms. The solution proposed here relies instead on the definition of an “explicit”
version of weak reduction that is equivalent to the original weak λ-reduction, and that
facilitates the definition a normalization algorithm and the reasoning about its correctness.
As far as we are aware, this provides the first detailed specification of a normalization
algorithm for weak λ-reduction, and a proof of its correctness in the typed case. Our work
has been fully formalized in the Agda proof assistant 2.

2 The formalization can be found at https://github.com/fsestini/nbe-weak-stlc

https://github.com/fsestini/nbe-weak-stlc
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6.1 Related work
Weak λ-reduction seems to have received limited attention in the literature, with some
exceptions [25, 13] already mentioned in the previous sections. An early version of Martin-Löf
Type Theory [35] had a primitive substitution rule and no ξ-rule. The author argues in [34]
that a rule like ξ is unacceptable because stronger than what is intuitively and informally
understood as definitional equality.

Weak λ-reduction is also employed in the Minimalist Foundation, a two-level foundation
for constructive mathematics in the style of Martin-Löf Type Theory ideated by Sambin and
Maietti in [33], and completed by Maietti to a formal system in [32]. There, the ξ-rule is
rejected because it makes it easy to give a Kleene realizability interpretation for the theory,
a property of ξ-free systems that was already noted in [34]. The realizability model is then
used to show consistency with the formal Church Thesis and the Axiom of Choice [27].

Kesner et al. [29, 30] study weak-head reduction in the context of intersection types
and call-by-need reduction strategies. Hyland and Ong [26] use weak reduction to construct
a PCA of strongly-normalizing λ-terms as a basis for a general method to prove strong
normalization for various type theories. The notion of equality in the PCA is a weak reduction
relation similar to weak λ-reduction, that only contracts closed redexes. The same kind of
restricted reduction is also employed in [22]. In [6], Akama introduces a translation from
λ-terms to combinators, so that a term is strongly-normalizing under β-reduction if and only
if its translation is strongly-normalizing under the weak conversion of combinatory logic.

The ideas presented in this article are exposed in more detail in the author’s (unpublished)
Master’s Thesis [37], where normalization is proved for System T rather than simple types.
The thesis also contains an analysis of the problem for systems with dependent types, and a
proof of NbE for a version of Martin-Löf Type Theory with one universe and weak explicit
substitutions. The author later discovered that a similar system had also been developed by
Barras et al. [10, 15].

The proofs of normalization shown in this work are based on Normalization by Evaluation.
NbE was first employed by Martin-Löf in [35] for his combinatory theory, although not under
this name. The method was later rediscovered in [11] in the context of the simply-typed
λ-calculus with η equality. Coquand and Dybjer [16] apply NbE for typed combinatory logic
and two weak λ-calculi, using a model construction inspired by the categorical notion of
glueing. Untyped NbE, originally developed in [5], is employed here following [2].

6.2 Future work
We would like to study further the connection between weak λ-reduction, weak explicit substi-
tutions, and combinatory logic. In particular, we conjecture that weak explicit substitutions
can be shown to simulate weak λ-reduction, given suitable translation functions between
terms of the two calculi that we have sketched but not yet proved correct.

Another direction for the future is the extension of this work to weak systems with
dependent types, most notably the intensional level of the Minimalist Foundation. Past
attempts seem to suggest that the method exposed here does not scale well to dependent
types with typed equality judgments. However, it does if the calculus is based on an untyped
conversion relation, like the one considered in [3]. Thus, a solution could be to first prove
that the weak Type Theory of interest, defined with typed equality judgments, is equivalent
to its formulation based on untyped conversion, possibly using results from [38]. A different
approach could be to show that the type theory with weak explicit substitutions in [37] is
equivalent to the one with implicit substitutions.
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1 Introduction

Homotopy type theory [33] is an extension of Martin-Löf’s dependent type theory [29] with
homotopy-theoretic ideas. The most important features are Voevodsky’s univalence axiom
and higher inductive types which provide a novel synthetic way of proving theorems of
abstract homotopy theory and formalizing mathematics in computer proof assistants [4].

Ordinary homotopy type theory [33] uses a cumulative hierarchy of universes

U0 : U1 : U2 : . . . ,

but there is another choice of universes: one impredicative universe in the style of the
Calculus of Constructions [13]. Here we say a universe U is impredicative if it is closed under
dependent products along any type family: for any type A and function B : A → U , the
dependent product

∏
x:AB(x) belongs to U . An interesting use of such an impredicative

universe in homotopy type theory is the impredicative encoding of higher inductive types,
proposed by Shulman [35], as well as ordinary inductive types in polymorphic type theory
[19]. For instance, the unit circle S1 is encoded as

∏
X:U

∏
x:X x = x→ X which has a base

point and a loop on the point and satisfies the recursion principle in the sense of the HoTT
book [33, Chapter 6]. Although the impredicative encoding of a higher inductive type does
not satisfy the induction principle in general, some truncated higher inductive types have
refinements of the encodings satisfying the induction principle [36, 2].

In this paper we construct a model of type theory with a univalent and impredicative
universe to prove the consistency of that type theory. Impredicative universes are modeled
in the category of assemblies or ω-sets [28, 32], while univalent universes are modeled in the
categories of groupoids [21], simplicial sets [26] and cubical sets [5, 6]. Therefore, in order to
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7:2 Cubical Assemblies

construct a univalent and impredicative universe, it is natural to combine them and construct
a model of type theory in the category of internal groupoids, simplicial or cubical objects
in the category of assemblies. There has been an earlier attempt to obtain a univalent and
impredicative universe by Stekelenburg [38] who took a simplicial approach. A difficulty
with this approach is that the category of assemblies does not satisfy the axiom of choice or
law of excluded middle, so it becomes harder to obtain a model structure on the category
of simplicial objects. Another approach is taken by van den Berg [43] using groupoid-like
objects, but his model has a dimension restriction. Our choice is the cubical objects in the
category of assemblies, which we will call cubical assemblies. Since the model in cubical
sets [5, 10] is expressed, informally, in a constructive metalogic, one would expect that their
construction can be translated into the internal language of the category of assemblies. A
similar approach is taken by Awodey, Frey and Hofstra [1, 15].

Instead of a model of homotopy type theory itself, we construct a model of a variant of
cubical type theory [10] in which the univalence axiom is provable. Orton and Pitts [30] gave
a sufficient condition for modeling cubical type theory without universes of fibrant types in
an elementary topos equipped with an interval object I. Although the category of cubical
assemblies is not an elementary topos, most of their proofs work in our setting because they
use a dependent type theory as an internal language of a topos and the category of cubical
assemblies is rich enough to interpret the type theory. For construction of the universe of
fibrant types, we can use the right adjoint to the exponential functor (I→ −) in the same
way as Licata, Orton, Pitts and Spitters [27].

Voevodsky [45] has proposed the propositional resizing axiom [33, Section 3.5] which
implies that every homotopy proposition is equivalent to some homotopy proposition in the
smallest universe. The propositional resizing axiom can be seen as a form of impredicativity
for homotopy propositions. Since the universe in the cubical assembly model is impredicative,
one might expect that the cubical assembly model satisfies the propositional resizing axiom.
Indeed, for a homotopy proposition A, we have an approximation A∗ of A by a homotopy
proposition in U defined as

A∗ :=
∏

X:hProp
(A→ X)→ X,

where hProp is the universe of homotopy propositions in U , and A is equivalent to some
homotopy proposition in U if and only if the function λaXh.ha : A→ A∗ is an equivalence.
However, the propositional resizing axiom fails in the cubical assembly model. We construct
a homotopy proposition A such that the function A→ A∗ is not an equivalence.

We begin Section 2 by formulating the axioms for modeling cubical type theory given by
Orton and Pitts [30, 31] in a weaker setting. In Section 3 we describe how to construct a
model of cubical type theory under those axioms. In Section 4 we give a sufficient condition
for presheaf models to satisfy those axioms. As an example of presheaf model we construct a
model of cubical type theory in cubical assemblies in Section 5, and show that the cubical
assembly model does not satisfy the propositional resizing axiom.

2 The Orton-Pitts Axioms

We will work in a model E of dependent type theory with
dependent product types, dependent sum types, extensional identity types, unit type,
disjoint finite coproducts and propositional truncation;
a constant type ` I, called an interval, with two constants ` 0 : I and ` 1 : I called
end-points and two operators i, j : I ` i u j : I and i, j : I ` i t j : I called connections;
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1. ¬(0 = 1)
2. ∀i:I0 u i = i u 0 = 0 ∧ 1 u i = i u 1 = i

3. ∀i:I0 t i = i t 0 = i ∧ 1 t i = i t 1 = 1
4. i : I ` i = 0 : Cof
5. i : I ` i = 1 : Cof
6. ϕ,ψ : Cof ` ϕ ∨ ψ : Cof
7. ϕ : Cof, ψ : ϕ→ Cof `

∑
u:ϕ ψu : Cof

8. ϕ : I→ Cof ` ∀i:Iϕi : Cof
9. ∀ϕ,ψ:Cof(ϕ↔ ψ)→ (ϕ = ψ)
10. ϕ : Cof, A : ϕ → U , B : U , f :

∏
u:ϕAu

∼= B ` iea(ϕ, f) :
∑
Ā:U{f̄ : Ā ∼= B |

∀u:ϕ(Au, fu) = (Ā, f̄)}

Figure 1 The Orton-Pitts Axioms.

a dependent right adjoint to the exponential functor (I→ −) : E → E ;
a propositional universe ` Cof whose inhabitants are called cofibrations;
an impredicative universe ` U

satisfying the axioms listed in Figure 1. In the rest of the section we explain these conditions
in more detail.

The dependent type theory we use is Martin-Löf’s extensional type theory [29]. The
notion of model of dependent type theory we have in mind is categories with families [14]
equipped with certain algebraic operators corresponding to the type formers. A category
with families E consists of:

a category E of contexts with a terminal object denoted by ·;
a presheaf Γ 7→ E(Γ) : Eop → Set of types;
a presheaf (Γ, A) 7→ E(Γ ` A) : El(E(−))op → Set of terms, where El(P ) is the category
of elements for a presheaf P

such that, for any context Γ ∈ E and type A ∈ E(Γ), the presheaf

(E/Γ)op 3 (σ : ∆→ Γ) 7→ E(∆ ` Aσ) ∈ Set

is representable, where Aσ denotes the element P (σ)(A) ∈ P (∆) for a presheaf P , a morphism
σ : ∆→ Γ and an element A ∈ P (Γ). We assume that any category with families E has a
choice of a representing object for this presheaf denoted by πA : Γ.A → Γ and called the
context extension of A. We also require that, for every context Γ ∈ E , there exist types
C0 ∈ E(·), C1 ∈ E(·.C0), . . . , Cn ∈ E(·.C0. . . . .Cn−1) and an isomorphism ·.C0. . . . .Cn ∼= Γ.
This means that, having dependent sum types, every context Γ can be thought of a closed
type ` Γ. Type formers are modeled by algebraic operators. For example, to model
dependent product types, E has an operator Π that carries triples (Γ, A,B) consisting of a
context Γ and types A ∈ E(Γ) and B ∈ E(Γ.A) to types Π(Γ, A,B) ∈ E(Γ) and a bijection
l(Γ, A,B) : E(Γ ` Π(Γ, A,B)) ∼= E(Γ.A ` B). These operators must be stable under base
changes, that is, for any morphism σ : ∆ → Γ, we have Π(Γ, A,B)σ = Π(∆, Aσ,Bσ) and
l(Γ, A,B)σ = l(∆, Aσ,Bσ). All type-theoretic operations we introduce are required to be
stable under base changes, unless otherwise stated. Note that there are alternative choices of
notions of model of dependent type theory including categories with attributes [9] and split
full comprehension categories [24]. Whichever model is chosen, we proceed entirely in its
internal language.

In dependent type theory, a type Γ ` ϕ is said to be a proposition, written Γ ` ϕ Prop, if
Γ, u1, u2 : ϕ ` u1 = u2 holds. For a proposition Γ ` ϕ, we say ϕ holds if there exists a (unique)
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inhabitant of ϕ. For a type Γ ` A, its propositional truncation [3] is a proposition Γ ` ‖A‖
equipped with a constructor Γ, a : A ` |a| : ‖A‖ such that, for every proposition Γ ` ϕ, the
function Γ ` λfa.f(|a|) : (‖A‖ → ϕ)→ (A→ ϕ) is an isomorphism. Propositions are closed
under empty type, cartesian products and dependent products along arbitrary types, and
we write ⊥,>, ϕ ∧ ψ,∀x:Aϕ(x) for 0,1, ϕ × ψ,

∏
x:A ϕ(x), respectively, when emphasizing

that they are propositions. Also the identity type Id(A, a0, a1) is a proposition because it
is extensional, and often written a0 = a1. The other logical operators are defined using
propositional truncation as ϕ ∨ ψ := ‖ϕ+ ψ‖ and ∃x:Aϕ(x) := ‖

∑
x:A ψ(x)‖. One can show

that these logical operations satisfy the derivation rules of first-order intuitionistic logic.
Moreover, the type theory admits subset comprehension defined as

Γ ` {x : A | ϕ(x)} :=
∑
x:A

ϕ(x)

for a proposition Γ, x : A ` ϕ(x).
A finite coproduct A + B is said to be disjoint if the inclusions inl : A → A + B and

inr : B → A+B are monic and ∀a:A∀b:B inl(a) 6= inr(b) holds. A proposition Γ ` ϕ is said to
be decidable if Γ ` ϕ ∨ ¬ϕ holds. If the coproduct 2 := 1 + 1 of two copies of the unit type
is disjoint, then it is a decidable subobject classifier : for every decidable proposition Γ ` ϕ,
there exists a unique term Γ ` b : 2 such that Γ ` ϕ ↔ (b = 1) holds. For readability we
identify a boolean value b : 2 with the proposition b = 1.

For a functor H : E → F between the underlying categories of categories with families
E and F , a dependent right adjoint [7] to H consists of, for each context Γ ∈ E and type
A ∈ F(HΓ), a type GΓA ∈ E(Γ) and an isomorphism ϕA : F(HΓ ` A) ∼= E(Γ ` GΓA)
that are stable under reindexing in the sense that, for any morphism σ : ∆→ Γ, we have
(GΓA)σ = G∆(Aσ) and (ϕAa)σ = ϕAσ(aσ) for any a ∈ F(HΓ ` A). One can show that H
preserves all colimits whenever it has a dependent right adjoint. As a consequence, assuming
the exponential functor (I→ −) has a dependent right adjoint, the interval I is connected

∀ϕ:I→2(∀i:Iϕi) ∨ (∀i:I¬ϕi),

which is postulated in [30] as an axiom.
A universe (à la Tarski) is a type ` U equipped with a type U ` elU . We often omit

the subscript U and simply write el for elU if the universe is clear from the context. The
universe U is said to be propositional if U ` elU is a proposition. An impredicative universe
is a universe U equipped with the following operations.

A term A : U,B : el(A)→ U `
∑U (A,B) : U equipped with an isomorphism A : U,B :

el(A)→ U ` e : el(
∑U (A,B)) ∼=

∑
x:el(A) el(Bx).

A term A : U, a0, a1 : el(A) ` IdU (A, a0, a1) : U equipped with an isomorphism A :
U, a0, a1 : el(A) ` e : el(IdU (A, a0, a1)) ∼= (a0 = a1).
For every type Γ ` A, a term Γ, B : el(A) → U `

∏U (A,B) : U equipped with an
isomorphism Γ, B : el(A)→ U ` e : el(

∏U (A,B)) ∼=
∏
x:A el(Bx).

One might want to require that el(
∑U (A,B)) is equal to

∑
x:el(A) el(Bx) on the nose rather

than up to isomorphism, but in the category of assemblies described in Section 5, the
impredicative universe of partial equivalence relations does not satisfy this equation. For
this reason, the distinction between terms A : U and types el(A) is necessary, but for
readability we often identify a term A : U with the type el(A). For example, in Axiom 10
some el’s should be inserted formally. Also Axiom 6 formally means that there exists a term
ϕ,ψ : Cof ` ∨Cof(ϕ,ψ) : Cof such that ϕ,ψ : Cof ` el(∨Cof(ϕ,ψ))↔ (el(ϕ) ∨ el(ψ)) holds.
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Almost all the axioms in Figure 1 are direct translations of those in [30, 31]. Strictly
speaking, Axioms 4 to 8 are part of structures rather than axioms in our setting, because Cof
is no longer a subobject of the subobject classifier. Also Axiom 10, called the isomorphism
extension axiom, is part of structures. As already mentioned, the connectedness of the interval
I follows from the existence of the right adjoint to the exponential functor (I→ −). We need
Axiom 9, which asserts the extensionality of the propositional universe Cof, for fibration
structures on identity types. This axiom trivially holds in case that Cof is a subobject of the
subobject classifier in an elementary topos. We also note that Cof is closed under ⊥, > and
∧ using Axioms 1, 5 and 7.

3 Modeling Cubical Type Theory

We describe how to construct a model of a variant of cubical type theory in our setting
following Orton and Pitts [30]. Throughout the section E will be a model of dependent type
theory satisfying the conditions explained in Section 2. Type-theoretic notations in this
section are understood in the internal language of E .

Cubical type theory is an extension of dependent type theory with an interval object [10,
Section 3], the face lattice [10, Section 4.1], systems [10, Section 4.2], composition operations
[10, Section 4.3] and the gluing operation [10, Section 6]. It also has several type formers
including dependent product types, dependent sum types, path types [10, Section 3] and,
optionally, identity types [10, Section 9.1]. We make some modifications to the original
cubical type theory [10] in the same way as Orton and Pitts [30]. Major differences are as
follows.
1. In [10] the interval object I is a de Morgan algebra, while we only require that I is a path

connection algebra.
2. Due to the lack of de Morgan involution, we need composition operations in both directions

“from 0 to 1” and “from 1 to 0”.
In this section we will construct from E a new model of dependent type theory EF that
supports all operations of cubical type theory.

3.1 The Face Lattice and Systems
The face lattice [10, Section 4.1] is modeled by the propositional universe Cof. Note that
in [10] quantification ∀i:Iϕ is not part of syntax and written as a disjunction of irreducible
elements, and plays a crucial role for defining composition operation for gluing. Since Cof
need not admit quantifier elimination, we explicitly require Axiom 8.

We use the following operation for modeling systems [10, Section 4.2] which allows one to
amalgamate compatible partial functions.
I Proposition 1. One can derive an operation

Γ ` A Γ ` ϕi Prop Γ, ui : ϕi ` ai(ui) : A
Γ, u : ϕi, u′ : ϕj ` ai(u) = aj(u′) (i and j run over {1, . . . , n})

Γ ` [(u1 : ϕ1) 7→ a1(u1), . . . , (un : ϕn) 7→ an(un)] : ϕ1 ∨ · · · ∨ ϕn → A

such that Γ, v : ϕi ` [(u1 : ϕ1) 7→ a1(u1), . . . , (un : ϕn) 7→ an(un)]v = ai(v) for i = 1, . . . , n.
Proof. Let B denote the union of images of ai’s:

Γ ` B := {a : A | (∃u1:ϕ1a1(u1) = a) ∨ · · · ∨ (∃un:ϕnan(un) = a)}.

Then Γ ` B is a proposition because Γ, u : ϕi, u′ : ϕj ` ai(u) = aj(u′) for all i and j. Hence
the function [a1, . . . , an] : ϕ1 + · · ·+ ϕn → B induces a function ‖ϕ1 + · · ·+ ϕn‖ → B. J
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3.2 Fibrations
We regard the type of Boolean values 2 as a subtype of the interval I via the end-point
inclusion [0, 1] : 2 ∼= 1 + 1→ I. We define a term e : 2 ` ē : 2 as 0̄ = 1 and 1̄ = 0.

I Definition 2. For a type Γ, i : I ` A(i), we define a type of composition structures as

Γ ` Compi(A(i)) :=
∏
e:2

∏
ϕ:Cof

∏
f :ϕ→

∏
i:I
A(i)

∏
a:A(e)

(∀u:ϕfue = a)→ {a′ : A(ē) | ∀u:ϕfuē = a′}.

In this notation, the variable i is considered to be bound.

I Definition 3. For a type γ : Γ ` A(γ), we define a type of fibration structures as

` Fib(A) :=
∏
p:I→Γ

Compi(A(pi)).

A fibration is a type Γ ` A equipped with a global section ` α : Fib(A).

For a fibration structure α : Fib(A) on a type γ : Γ ` A(γ) and a morphism σ : ∆→ Γ,
we define a fibration structure ασ : Fib(Aσ) on δ : ∆ ` A(σ(δ)) as

ασ = λp.α(σ ◦ p) :
∏

p:I→∆

Compi(A(σ(pi))).

Thus, for a fibration (A,α) on Γ, we have its base change (Aσ, ασ) along a morphism
σ : ∆→ Γ. With this base change operation we get a model EF of dependent type theory
where

the contexts are those of E ;
the types over Γ are fibrations over Γ;
the terms of a fibration Γ ` A are terms of the underlying type Γ ` A in E

together with a forgetful map EF → E . In the same way as Orton and Pitts [30], one can
show the following.

I Theorem 4. The model of dependent type theory EF supports:
composition operations, path types and identity types; and
dependent product types, dependent sum types, unit type and finite coproducts preserved
by the forgetful map EF → E.

We also introduce a class of objects that automatically carry fibration structures.

I Definition 5. A type ` A is said to be discrete if ∀f :I→A∀i:Ifi = f0 holds.

I Proposition 6. If ` A is a discrete type, then it has a fibration structure.

Proof. Let e : 2, ϕ : Cof, f : ϕ→ I→ A and a : A such that ∀u:ϕfue = a. Then a′ := a : A
satisfies ∀u:ϕfuē = a′ by the discreteness. J

3.3 Path Types and Identity Types
For a type Γ ` A and terms Γ ` a0 : A and Γ ` a1 : A, we define the path type Γ `
Path(A, a0, a1) to be

Γ ` {p : I→ A | p0 = a0 ∧ p1 = a1}.
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We also define the identity type Γ ` Id(A, a0, a1) to be

Γ `
∑

p:Path(A,a0,a1)

{ϕ : Cof | ϕ→ ∀i:Ipi = a0}

which is a variant of Swan’s construction [39]. Theorem 4 says that, if A has a fibration
structure, then so do Path(A, a0, a1) and Id(A, a0, a1).

In the model EF , both path types and identity types admit the following introduction
and elimination operations:

Γ ` a : A
Γ ` refla : P (A, a, a)

P -intro

Γ, x0 : A, x1 : A, z : P (A, x0, x1) ` C(z)
Γ, x : A ` c(x) : C(reflx) Γ ` a0 : A Γ ` a1 : A Γ ` p : P (A, a0, a1)

Γ ` indP (A)(C, c, p) : C(p)
P -elim

where P is either Path or Id. A difference between them is their computation rules. Identity
types admit the judgmental computation rule like Martin-Löf’s identity types:

Γ ` indId(A)(C, c, refla) = c(a)

for a term Γ ` a : A. On the other hand, path types only admit the propositional computation
rule: for a term Γ ` a : A, one can find a term

Γ ` H(C, c, a) : Path(C(a), indPath(A)(C, c, refla), c(a)).

Therefore, when interpreting homotopy type theory, which is based on Martin-Löf’s type
theory, we use Id(A, a0, a1) rather than Path(A, a0, a1). However, it can be shown that
Id(A, a0, a1) and Path(A, a0, a1) are equivalent, and thus we can replace Id(A, a0, a1) by
simpler type Path(A, a0, a1) when analyzing the model EF (see, for instance, the definition
of homotopy proposition in Section 5.1).

3.4 Universes and Gluing
For a type γ : Γ ` A(γ), a fibration structure on A corresponds to a term of the type
p : I → Γ ` C(A)(p) := Compi(A(pi)). We define a type Γ ` FA := C(A)I, using the
dependent right adjoint (−)I to the exponential functor (I→ −). By definition a morphism
σ : ∆→

∑
Γ FA corresponds to a pair (σ0, α) consisting of a morphism σ0 : ∆→ Γ and a

fibration structure ` α :
∏
p:I→∆ Compi(A(σ0(pi))).

Using this construction for the universe U ` elU , we have a new universe UF :=
∑
U F (el)

together with a fibration (A,α) : UF ` elUF (A,α) := elU (A). By definition UF classifies
fibrations whose underlying types belong to U .

I Theorem 7. The universe UF is closed under dependent product types along arbitrary
fibrations, dependent sum types and path types. If Cof belongs to U , then UF is closed under
identity types.

Proof. By Theorem 4, it suffices to show that U is closed under those type constructors, but
this is clear by definition. J
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We describe the gluing operation on the universe UF following Orton and Pitts [30].
For a proposition Γ ` ϕ, types Γ, u : ϕ ` A(u) and Γ ` B and a function Γ, u : ϕ ` f(u) :

A(u)→ B, we define a type Glue(ϕ, f) to be

Γ ` Glue(ϕ, f) :=
∑

a:
∏

u:ϕ
A(u)

{b : B | ∀u:ϕf(u)(au) = b}.

There is a canonical isomorphism Γ, u : ϕ ` e(u) := λ(a, b).au : Glue(ϕ, f) ∼= A(u) with
inverse λa.(λv.a, f(u)a).

I Proposition 8. For γ : Γ ` ϕ(γ) : Cof, γ : Γ, u : ϕ(γ) ` A(u), γ : Γ ` B(γ) and
γ : Γ, u : ϕ(γ) ` f(u) : A(u) → B, if A and B are fibrations and f is an equivalence,
then γ : Γ ` Glue(ϕ(γ), f) has a fibration structure preserved by the canonical isomorphism
Γ, u : ϕ ` e(u) : Glue(ϕ, f) ∼= A(u).

Proof. The construction is similar to the definition of the composition operation for glue
types [10, Section 6.2]. J

Since the universe U is closed under type formers used in the definition of Glue(ϕ, f), we
get a term

ϕ : Cof, A : ϕ→ U , B : U , f :
∏
u:ϕ

A(u)→ B ` Glue(ϕ, f) : U

such that
∏
u:ϕ Glue(ϕ, f) ∼= A(u). However, the gluing operation in cubical type theory [10,

Section 6] requires that, assuming u : ϕ, Glue(ϕ, f) is equal to A(u) on the nose rather than
up to isomorphism. So we use Axiom 10 and get a term

ϕ : Cof, A : ϕ→ U , B : U , f :
∏
u:ϕ

A(u)→ B ` SGlue(ϕ, f) : U

such that SGlue(ϕ, f) ∼= Glue(ϕ, f) and ∀u:ϕSGlue(ϕ, f) = A(u). By Proposition 8 we also
have a term

ϕ : Cof, A : ϕ→ UF , B : UF , f :
∏
u:ϕ

A(u) ' B ` SGlue(ϕ, f) : UF

such that SGlue(ϕ, f) ∼= Glue(ϕ, f) and ∀u:ϕSGlue(ϕ, f) = A(u). Hence the universe UF in
the model EF supports the gluing operation. The composition operation for universes is
defined using the gluing operation [10, Section 7.1], so we have the following proposition.

I Proposition 9. ` UF has a fibration structure.

Since the univalence axiom can be derived from the gluing operation [10, Section 7], we
conclude that UF is a univalent and impredicative universe in the model of cubical type
theory EF .

4 Presheaf Models

In this section we give a sufficient condition for a presheaf category to satisfy the conditions
in Section 2. We will work in a model S of dependent type theory with dependent product
types, dependent sum types, extensional identity types, unit type, disjoint finite coproducts
and propositional truncation.
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A category in S consists of:
a type ` C0 of objects;
a type c0, c1 : C0 ` C1(c0, c1) of morphisms;
a term c : C0 ` idc : C1(c, c) called identity;
a term c0, c1, c2 : C0, g : C1(c1, c2), f : C1(c0, c1) ` gf : C1(c0, c2) called composition

satisfying the standard axioms of category. We will simply write C and C(c0, c1) for C0 and
C1(c0, c1) respectively. The notions of functor and natural transformation in S are defined
in the obvious way. For a category C in S, a presheaf on C consists of:

a type c : C ` A(c);
a term c0, c1 : C, σ : C(c0, c1), a : A(c1) ` aσ : A(c0) called (right) C-action

satisfying aid = a and a(στ) = (aσ)τ . For presheaves A and B, a morphism f : A→ B is a
term c : C, a : A(c) ` f(a) : B(c) satisfying c0, c1 : C, σ : C(c0, c1), a : A(c1) ` f(aσ) = f(a)σ.
For a presheaf A, its category of elements, written El(A), is defined as
` El(A)0 :=

∑
c:C0

A(c);
(c0, a0), (c1, a1) : El(A)0 ` El(A)1((c0, a0), (c1, a1)) := {σ : C1(c0, c1) | a1σ = a0}.

There is a projection functor πA : El(A)→ C.
For a category C in S, we describe the presheaf model PSh(C) of dependent type theory.

Contexts are interpreted as presheaves on C. For a context Γ, types on Γ are interpreted
as presheaves on El(Γ). For a type Γ ` A, terms of A are interpreted as sections of the
projection πA : El(A)→ El(Γ). For a type Γ ` A, the context extension Γ.A is interpreted
as the presheaf c : C `

∑
γ:Γ(c)A(c, γ). This construction is also used for dependent sum

types. The dependent product for a type Γ.A ` B is the presheaf

(c, γ) : El(Γ) ` {f :
∏
c′:C

∏
σ:C(c′,c)

∏
a:A(c′,γσ)

B(c′, a) |

∀c′,c′′:C∀σ:C(c′,c)∀τ :C(c′′,c′)∀a:A(c′,γσ)(fc′σa)τ = fc′′(στ)(aτ)}.

Extensional identity types, unit type, disjoint finite coproducts and propositional truncation
are pointwise.

4.1 Lifting Universes
We describe the Hofmann-Streicher lifting of a universe [20]. Let C be a category in S and U a
universe in S. We define a universe [Cop, U ] in PSh(C) as follows. The universe U can be seen
as a category whose type of objects is U and type of morphisms is A,B : U ` elU (A)→ elU (B).
For an object c : C, we define [Cop, U ](c) to be the type of functors from (C/c)op to U . The
C-action on [Cop, U ] is given by precomposition. The type [Cop, U ] ` el[Cop,U ] in PSh(C) is
defined as (c, A) : El([Cop, U ]) ` el[Cop,U ](c, A) := elU (A(idc)).

It is easy to show that, if U is an impredicative universe, then dependent product types,
dependent sum types and extensional identity types in U can be lifted to those in [Cop, U ]
so that [Cop, U ] is an impredicative universe in PSh(C). If U is a propositional universe in
S, then [Cop, U ] is a propositional universe in PSh(C).

I Proposition 10. Let U be an impredicative universe and Cof a propositional universe in
S. If they satisfy Axioms 6, 7, 9 and 10, then so do [Cop,U ] and [Cop,Cof].

Proof. We only check Axiom 10. The other axioms are easy to verify.
We have to define a term ϕ : [Cop,Cof], A : ϕ → [Cop,U ], B : [Cop,U ], f :

∏
u:ϕAu

∼=
B ` (D(ϕ, f), g(ϕ, f)) :

∑
Ā:[Cop,U ]{f̄ : Ā ∼= B | ∀u:ϕ(Au, fu) = (Ā, f̄)} in PSh(C). It corre-

sponds to a natural transformation that takes an object c : C, functors ϕ : (C/c)op → Cof, A :
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El(ϕ)op → U and B : (C/c)op → U and an isomorphism f : A ∼= Bπϕ of presheaves on El(ϕ)
and returns a pair (D(c, ϕ, f), g(c, ϕ, f)) consisting of a functor D(c, ϕ, f) : (C/c)op → U
and an isomorphism g(c, ϕ, f) : A ∼= B of presheaves on (C/c)op such that D(c, ϕ, f)πϕ = A

and g(c, ϕ, f)πϕ = f . Let σ : C(c′, c) be a morphism. Then we have ϕ(σ) : Cof,
λu.A(σ, u) : ϕ(σ) → U , B(σ) : U and an isomorphism λu.f(σ, u) :

∏
u:ϕ(σ)A(σ, u) ∼= B(σ).

By the isomorphism lifting on U , we have D(c, ϕ, f)(σ) : U and an isomorphism g(c, ϕ, f)(σ) :
D(c, ϕ, f)(σ) ∼= B(σ) such that ∀u:ϕ(σ)(A(σ, u), f(σ, u)) = (D(c, ϕ, f)(σ), g(c, ϕ, f)(σ)). For
the morphism part of the functor D(c, ϕ, f), let τ : C(c′′, c′) be another morphism. Then we
define τ∗ : D(c, ϕ, f)(σ)→ D(c, ϕ, f)(στ) to be the composition

D(c, ϕ, f)(σ) B(σ) B(στ) D(c, ϕ, f)(στ).g(c,ϕ,f)(σ)
∼=

τ∗ g(c,ϕ,f)(στ)−1

∼=

By definition g(c, ϕ, f) becomes a natural isomorphism and (D(c, ϕ, f)πϕ, g(c, ϕ, f)πϕ) =
(A, f). It is easy to see the naturality of (c, ϕ, f) 7→ (D(c, ϕ, f), g(c, ϕ, f)). J

4.2 Intervals

Suppose a category C in S has finite products. A path connection algebra in C consists of an
object I : C, morphisms δ0, δ1 : C(1, I) called end-points and morphisms µ0, µ1 : C(I× I, I)
called connections satisfying µe(δe × I) = µe(I× δe) = δe and µe(δē × I) = µe(I× δē) = id for
e ∈ {0, 1}.

For a path connection algebra I in C, we have a representable presheaf yI on C. Since
the Yoneda embedding is fully faithful and preserves finite products, yI has end-points and
connections satisfying Axioms 2 and 3. The interval yI satisfies Axiom 1 if and only if
∀c:Cδ0!c 6= δ1!c holds, where !c : C(c, 1) is the unique morphism into the terminal object.

I Proposition 11. Let Cof be a propositional universe in S and suppose that, for every pair
of objects c, c′ : C, the equality predicate on C(c, c′) belongs to Cof. Then, for every object
c : C, the equality predicate on yc belongs to [Cop,Cof]. In particular, yI and [Cop,Cof] in
PSh(C) satisfy Axioms 4 and 5.

Proof. Because equality on a presheaf is pointwise. J

I Proposition 12. For a functor f : C → D between categories in S, the precomposition
functor f∗ : PSh(D)→ PSh(C) has a dependent right adjoint f∗.

Proof. For a context Γ in PSh(D) and a type f∗Γ ` A in PSh(C), the type Γ ` f∗A is
given by the presheaf (d, γ) : El(Γ) ` lim(c,σ):(f↓d)A(c, γσ). J

I Proposition 13. Suppose that a category C in S has finite products. For an object c : C,
the exponential functor (yc→ −) : PSh(C)→ PSh(C) is isomorphic to (−× c)∗.

Proof. (yc→ A)(c′) ∼= PSh(C)(yc′ × yc, A) ∼= PSh(C)(y(c′ × c), A) ∼= A(c′ × c). J

Hence the exponential functor (yI→ −) has a dependent right adjoint. Proposition 13
also implies Axiom 8 for the propositional universe [Cop,Cof]. Explicitly, ∀yI : (− ×
yI)∗[Cop,Cof] → [Cop,Cof] is a natural transformation that carries a functor ϕ : (C/c ×
I)op → Cof to λσ.ϕ(σ × I) : (C/c)op → Cof.
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In summary, we have:

I Theorem 14. Suppose:
S is a model of dependent type theory with dependent product types, dependent sum
types, extensional identity types, unit type, disjoint finite coproducts and propositional
truncation;
Cof is a propositional universe and U is an impredicative universe satisfying Axioms 6, 7,
9 and 10;
C is a category in S with finite products and the equality on C(c, c′) belongs to Cof for
every pair of objects c, c′ : C;
I is a path connection algebra in C;
yI satisfies Axiom 1.

Then the presheaf model PSh(C) together with propositional universe [Cop,Cof], impredicative
universe [Cop,U ] and interval yI satisfies all the axioms in Figure 1.

4.3 Decidable Subobject Classifier
An example of the propositional universe Cof in Theorem 14 is the decidable subobject
classifier 2 which always satisfies Axioms 6, 7 and 9.

I Proposition 15. In a model of dependent type theory with dependent product types, de-
pendent sum types, extensional identity types, unit type, disjoint finite coproducts and
propositional truncation, any universe U satisfies Axiom 10 with Cof = 2.

Proof. Let ϕ : 2, A : ϕ → U , B : U , f :
∏
u:ϕAu

∼= B. We define iea(ϕ, f) by case analysis
on ϕ : 2 as iea(0, f) := (B, id) and iea(1, f) := (A∗, f∗) where ∗ is the unique element of a
singleton type. J

4.4 Categories of Cubes
We present examples of internal categories C with a path connection algebra I satisfying
the hypotheses of Theorem 14 with Cof = 2. Obvious choices of C are the category of
free de Morgan algebras [10] and various syntactic categories of the language {0, 1,u,t} [8],
but some inductive types and quotient types are required to construct these categories in
dependent type theory. Although the motivating example of S, the category of assemblies
described in Section 5, has inductive types and finite colimits, quotients are not well-behaved
in general and we need to be careful in using quotients. Instead, we give examples definable
only using natural numbers.

Suppose S is a model of dependent type theory with dependent product types, dependent
sum types, extensional identity types, unit type, disjoint finite coproducts, propositional
truncation and natural numbers. We define a type of finite types n : N ` Finn to be
Finn = {k : N | k < n}. We define a category B as follows. Its object of objects is N. The
morphisms m→ n are functions (Finm → 2)→ (Finn → 2). In the category B, the terminal
object is 0 : N and the product of m and n is m + n. One can show, by induction, that
every B(m,n) has decidable equality. B has a path connection algebra 1 : N together with
end-points 0, 1 : (Fin0 → 2)→ (Fin1 → 2) and connections min,max : (Fin1 → 2)× (Fin1 →
2)→ (Fin1 → 2). One can show that the category B satisfies the hypotheses of Theorem 14.
Moreover, any subcategory of B that has the same finite products and contains the path
connection algebra 1 satisfies the same condition. An example is the wide subcategory Bord
of B where the morphisms are order-preserving functions (Finm → 2)→ (Finn → 2).
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7:12 Cubical Assemblies

4.5 Constant and Codiscrete Presheaves

We show some properties of constant and codiscrete presheaves which will be used in Section 5.
Let S be a model of dependent type theory satisfying the hypotheses of Theorem 14. For
an object A ∈ S, we define the constant presheaf ∆A to be ∆A(c) := A with the trivial
C-action.

I Proposition 16. Every constant presheaf ∆A is discrete.

Proof. For every c : C, we have (yI→ ∆A)(c) ∼= ∆A(c× I) = A by Proposition 13. J

For a type Γ ` A in S, we define the codiscrete presheaf ∆Γ ` ∇A to be ∇A(c, γ) :=
C(1, c)→ A(γ) with composition as the C-action.

I Proposition 17. Suppose that Cof = 2. Then for every type Γ ` A in S, the type ∆Γ ` ∇A
has a fibration structure.

Proof. Since ∆Γ is discrete, it suffices to show that ∇A(γ) has a fibration structure for every
γ : Γ. Thus we may assume that Γ is the empty context. We construct a term

α :
∏
e:2

∏
ϕ:[Cop,2]

∏
f :ϕ→I→∇A

∏
a:∇A

(∀u:ϕfue = a)→ {ā : ∇A | ∀u:ϕfuē = ā}

in PSh(C). It corresponds to a natural transformation that takes an object c : C, an element
e : 2, a functor ϕ : (C/c)op → 2, a natural transformation f :

∫
c′∈C(

∑
σ:C(c′,c) ϕ(σ)) ×

C(c′, I) → ∇A(c′) and an element a : ∇A(c) such that ∀c′:C∀σ:C(c′,c)∀u:ϕ(σ)f(σ, u, e) = aσ

and returns an element α(e, ϕ, f, a) : ∇A(c) such that ∀c′:C∀σ:C(c′,c)∀u:ϕ(σ)f(σ, u, ē) =
α(e, ϕ, f, a)σ. We define α(e, ϕ, f, a) : C(1, c)→ A as

α(e, ϕ, f, a)(σ) :=
{
f(σ, u, ē)(id1) if u : ϕ(σ) is found
a(σ) otherwise

for σ : C(1, c). Then by definition ∀c′:C∀σ:C(c′,c)∀u:ϕ(σ)f(σ, u, ē) = α(e, ϕ, f, a)σ. J

I Proposition 18. Suppose that C(1, I) only contains 0 and 1, namely ∀σ:C(1,I)σ = 0∨σ = 1.
Then for every type Γ ` A in S, there exists a term

∆Γ ` p :
∏

a0,a1:∇A
Path(∇A, a0, a1)

in PSh(C).

Proof. We may assume that Γ is the empty context. The term p corresponds to a natural
transformation that takes an object c : C, elements a0, a1 : ∇A(c) and a morphism i : C(c, I)
and returns an element p(a0, a1, i) : ∇A(c) such that p(a0, a1, 0) = a0 and p(a0, a1, 1) = a1.
We define p(a0, a1, i) : C(1, c)→ A as

p(a0, a1, i)(σ) :=
{
a0(σ) if iσ = 0
a1(σ) if iσ = 1

for σ : C(1, c). Then by definition p(a0, a1, 0) = a0 and p(a0, a1, 1) = a1. J
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5 A Failure of Propositional Resizing in Cubical Assemblies

An assembly, also called an ω-set, is a set A equipped with a non-empty set EA(a) of natural
numbers for every a ∈ A. When n ∈ EA(a), we say n is a realizer for a or n realizes a. A
morphism f : A→ B of assemblies is a function f : A→ B between the underlying sets such
that there exists a partial recursive function e such that, for any a ∈ A and n ∈ EA(a), the
application en is defined and belongs to EB(f(a)). In that case we say f is tracked by e or
e is a tracker of f . We shall denote by Asm the category of assemblies and morphisms of
assemblies. Note that assemblies can be defined in terms of partial combinatory algebras
instead of natural numbers and partial recursive functions [44], and that the rest of this
section works for assemblies on any non-trivial partial combinatory algebra.

The category Asm is a model of dependent type theory. Contexts are interpreted as
assemblies. Types Γ ` A are interpreted as families of assemblies (A(γ) ∈ Asm)γ∈Γ indexed
over the underlying set of Γ. Terms Γ ` a : A are interpreted as sections a ∈

∏
γ∈ΓA(γ) such

that there exists a partial recursive function e such that, for any γ ∈ Γ and n ∈ EΓ(γ), the
application en is defined and belongs to EA(γ)(a(γ)). For a type Γ ` A, the context extension
Γ.A is interpreted as an assembly (

∑
γ∈ΓA(γ), (γ, a) 7→ {〈n,m〉 | n ∈ EΓ(γ),m ∈ EA(γ)(a)})

where 〈n,m〉 is a fixed effective encoding of tuples of natural numbers. It is known that
Asm supports dependent product types, dependent sum types, extensional identity types,
unit type, disjoint finite coproducts and natural numbers. See, for example, [44, 28, 25]. For
a family of assemblies A over Γ, the propositional truncation ‖A‖ is the family

‖A‖(γ) =
{
{∗} if A(γ) 6= ∅
∅ if A(γ) = ∅

with realizers E‖A‖(γ)(∗) =
⋃
a∈A(γ)EA(γ)(a).

It is also well-known that Asm has an impredicative universe PER. It is an assembly
whose underlying set is the set of partial equivalence relations, namely symmetric and
transitive relations, on N and the set of realizers of R is EPER(R) = {0}. The type PER `
elPER is defined as elPER(R) = N/R, the set of R-equivalence classes on {n ∈ N | R(n, n)}
with realizers EN/R(ξ) = ξ. The universe PER classifies modest families. An assembly A is
said to be modest if EA(a) and EA(a′) are disjoint for distinct a, a′ ∈ A. By definition N/R
is modest for every R ∈ PER. Conversely, for a modest assembly A, one can define a partial
equivalence relation R such that A ∼= N/R. For the impredicativity of PER, see [23, 28, 25].

The category Asm satisfies the hypotheses of Theorem 14 with impredicative universe
PER, propositional universe 2 and the internal category Bord defined in Section 4.4. We
will refer to the presheaf model of cubical type theory generated by these structures as the
cubical assembly model.

5.1 Propositional Resizing
In cubical type theory, a type Γ ` A is a homotopy proposition if the type Γ, a0, a1 : A `
Path(A, a0, a1) has an inhabitant. For a universe U , we define the universe of homotopy
propositions as

hPropU :=
∑
A:U

∏
a0,a1:A

Path(A, a0, a1).

Following the HoTT book [33], we regard hPropU as a subtype of U .
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The propositional resizing axiom [33, Section 3.5] asserts that, for nested universes U : U ′,
the inclusion hPropU → hPropU ′ is an equivalence. When U is an impredicative universe, we
define

A : hPropU ′ ` A∗ :=
∏

X:hPropU

(A→ X)→ X : hPropU

A : hPropU ′ ` ηA := λa.λXf.fa : A→ A∗.

If ηA is an equivalence for any A : hPropU ′ , then the inclusion hPropU → hPropU ′ is an
equivalence by univalence. Conversely, if the inclusion hPropU → hPropU ′ is an equivalence,
then one can find A′ : hPropU and e : A ' A′ from A : hPropU ′ . Then we have a function
λα.e−1(αA′e) : A∗ → A, and thus ηA is an equivalence because both A and A∗ are homotopy
propositions. Note that the construction A 7→ (A∗, ηA) works for any homotopy proposition
A and is independent of the choice of the upper universe U ′. Therefore, we can formulate the
propositional resizing axiom in cubical type theory with an impredicative universe as follows.

I Axiom 19. For every homotopy proposition Γ ` A, the function Γ ` ηA : A→ A∗ is an
equivalence.

We will show that the cubical assembly model does not satisfy Axiom 19.
I Remark 20. We focus on resizing propositions into the impredicative universe. The cubical
assembly model also has predicative universes, assuming the existence of Grothendieck
universes in the metatheory. It remains an open question whether the predicative universes
in the cubical assembly model satisfy the propositional resizing axiom.

5.2 Uniform Objects
The key idea to a counterexample to propositional resizing is the orthogonality of modest and
uniform assemblies [44]: if X is modest and A is uniform and well-supported, then the map
λxa.x : X → (A→ X) is an isomorphism. Since the impredicative universe PER classifies
modest assemblies,

∏
X:PER(A→ X)→ X is always inhabited for a uniform, well-supported

assembly A. We extend the notion of uniformity for internal presheaves in Asm.
An assembly A is said to be uniform if

⋂
a∈AEA(a) is non-empty. We say an internal

presheaf A on an internal category C is uniform if every A(c) is uniform. An internal presheaf
A on C is said to be well-supported if the unique morphism into the terminal presheaf is
regular epi. For an internal presheaf A, the following are equivalent:

A is well-supported;
‖A‖ is the terminal presheaf;
there exists a partial recursive function e such that, for any c ∈ C0 and n ∈ EC0(c), there
exists an a ∈ A(c) such that en is defined and belongs to EA(a).

By definition a modest assembly cannot distinguish elements with a common realizer,
while elements of a uniform assembly have a common realizer. Thus a modest assembly
“believes a uniform assembly has at most one element”. Formally, the following proposition
holds.

I Proposition 21. Let C be a category in Asm. For a uniform internal presheaf A on C
and an internal functor X : Cop → PER, the precomposition function

i∗ : (‖A‖ → X)→ (A→ X)

is an isomorphism, where i : A → ‖A‖ is the constructor for propositional truncation. In
particular, if, in addition, A is well-supported, then the function λxa.x : X → (A→ X) is
an isomorphism.
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Proof. Since i is regular epi, i∗ is a monomorphism. Hence it suffices to show that i∗ is
regular epi. Let kc denote a common realizer of A(c), namely kc ∈

⋂
a∈A(c)E(a). Let c ∈ C0

be an object and x : yc × A → X a morphism of presheaves tracked by e. We have to
show that there exists a morphism x̂ : yc× ‖A‖ → X such that x̂ ◦ (yc× i) = x and that
a tracker of x̂ is computable from the code of e. For any σ : c′ → c and a, a′ ∈ A(c′), we
have enkc′ ∈ E(x(σ, a)) ∩ E(x(σ, a′)) for some n ∈ E(σ). Since X(c′) is modest, we have
x(σ, a) = x(σ, a′). Hence x induces a morphism of presheaves x̂ : yc× ‖A‖ → X tracked by
e such that x̂ ◦ (yc× i) = x. J

I Theorem 22. Let Γ ` A be a type in the cubical assembly model. Suppose that A is
uniform and well-supported as an internal presheaf on El(Γ) and does not have a section.
Then the function Γ ` η : A→ A∗ is not an equivalence.

Proof. By Proposition 21, we see that A∗ =
∏
X:hProp(A→ X)→ X has an inhabitant while

A does not have an inhabitant by assumption. J

I Theorem 23. Let Γ ` A be a type in Asm. Suppose that A is uniform and well-supported
but does not have a section. Then the function ∆Γ ` η : ∇A→ (∇A)∗ is not an equivalence.

Proof. By Theorem 22, it suffices to show that the type ∆Γ ` ∇A is uniform and well-
supported but does not have a section. For the uniformity, let kγ be a common realizer of
A(γ) for γ ∈ Γ. For any object c ∈ C and element γ ∈ Γ, the code of the constant function
n 7→ kγ is a common realizer of ∇A(c, γ) = C(1, c)→ A(γ).

For the well-supportedness, let e be a partial recursive function such that, for any γ
and n ∈ EΓ(γ), there exists an a ∈ A(γ) such that en is defined and belongs to EA(γ)(a).
Then the function f mapping (n, x) to the code of the function y 7→ ex realizes that ∇A
is well-supported. Indeed, for any c ∈ C, n ∈ EC(c), γ ∈ Γ and x ∈ EΓ(γ), the code
f(n, x) realizes the constant function C(1, c) 3 σ 7→ a ∈ A(γ) for some a ∈ A(γ) such that
ex ∈ EA(γ)(a).

Finally ∇A does not have a section because ∇A(1) ∼= A and A does not have a section. J

5.3 The Counterexample
We define an assembly Γ to be (N, n 7→ {m ∈ N | m > n}) and a family of assemblies A on
Γ as A(n) = ({m ∈ N | m > n},m 7→ {n,m}). Then A is uniform because every A(n) has
a common realizer n. The identity function realizes that A is well-supported. To see that
A does not have a section, suppose that a section f ∈

∏
n∈ΓA(n) is tracked by a partial

recursive function e. Then for any m > n, we have em ∈ {n, f(n)}. This implies that
m ≤ e(m+ 1) ≤ f(0) for any m, a contradiction. Note that this construction of Γ ` A works
for any non-trivial partial combinatory algebra C because natural numbers can be effectively
encoded in C.

Since Bord(1, I) ∼= 2 only contains end-points, the type ∆Γ ` ∇A in the cubical assembly
model is a fibration and homotopy proposition by Propositions 17 and 18, while by Theorem 23
the function ∆Γ ` η : ∇A→ (∇A)∗ is not an equivalence. Hence the propositional resizing
axiom fails in the cubical assembly model.

6 Conclusion and Future Work

We have formulated the axioms for modeling cubical type theory in an elementary topos
given by Orton and Pitts [30] in a weaker setting and explained how to construct a model of
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cubical type theory in a category satisfying those axioms. As a striking example, we have
constructed a model of cubical type theory with an impredicative and univalent universe in
the category of cubical assemblies which is not an elementary topos. It has turned out that
this impredicative universe in the cubical assembly model does not satisfy the propositional
resizing axiom.

There is a natural question: can we construct a model of type theory with a univalent and
impredicative universe satisfying the propositional resizing axiom? One possible approach to
this question is to consider a full subcategory of the category of cubical assemblies in which
every homotopy proposition is equivalent to some modest family. Benno van den Berg [43]
constructed a model of a variant of homotopy type theory with a univalent and impredicative
universe of 0-types that satisfies the propositional resizing axiom. Roughly speaking he uses
a category of degenerate trigroupoids in the category of partitioned assemblies [44], and
thus the category of cubical partitioned assemblies is a candidate for such a full subcategory.
However, the model given in [43] only supports weaker forms of identity types and dependent
product types, and it is unclear whether it can be seen as a model of ordinary homotopy
type theory.

Higher inductive types are another important feature of homotopy type theory. One
can construct some higher inductive types including propositional truncation in the cubical
assembly model [42], internalizing the construction of higher inductive types in cubical sets
[12] using W -types with reductions [41]. An open question, raised by Steve Awodey, is
whether these higher inductive types are equivalent to their impredicative encodings.

The cubical assembly model is a realizability-based model of type theory with higher
dimensional structures, but it does not seem to be what should be called a realizability
∞-topos, a higher dimensional analogue of a realizability topos [44]. One problem is that, in
the cubical assembly model, realizers seem to play no role in its internal cubical type theory,
because the existence of a realizer of a homotopy proposition does not imply the existence
of a section of it. Indeed, the cubical assembly model does not satisfy Church’s Thesis [42]
which holds in the effective topos [22]. One can nevertheless find a left exact localization of
the cubical assembly model in which Church’s Thesis holds [42].

Our construction of models of cubical type theory is a syntactic one following Orton
and Pitts [30]. The original idea of using the internal language of a topos to construct
models of cubical type theory was proposed by Coquand [11]. There are also semantic
and categorical approaches. Frumin and van den Berg [16] presented a way of constructing
a model structure on a full subcategory of an elementary topos with a path connection
algebra, which is essentially same as the model structure on the category of fibrant cubical
sets described by Spitters [37]. Since they make no essential use of subobject classifiers,
we conjecture that one can construct a model structure on a full subcategory of a suitable
locally cartesian closed category with a path connection algebra. Sattler [34], based on his
earlier work with Gambino [17], gave a construction of a right proper combinatorial model
structure on a suitable category with an interval object. Although Gambino and Sattler
use Garner’s small object argument [18] which requires the cocompleteness of underlying
categories, their construction is expected to work for non-cocomplete categories such as the
category of cubical assemblies using Swan’s small object argument over codomain fibrations
[40, 41].
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A Details of Composition for Gluing and Universe

We give explicit definitions of composition operations for gluing and universes described in
Section 3.4.

Before that, we introduce some notations. for a fibration Γ, i : I ` A(i), one can derive
the composition operation

Γ ` e : 2
Γ ` ϕ : Cof Γ, i : I ` f(i) : ϕ→ A(i) Γ ` a : A(e) Γ, u : ϕ ` f(e)u = a

Γ ` compie(A(i), f(i), a) : A(ē)

such that Γ, u : ϕ ` f(ē)u = compie(A(i), f(i), a). Concretely, for a fibration structure
α : Fib(A), we define

γ : Γ ` compie(A(i), f(i), a) := α(λi.(γ, i), e, ϕ, λui.f(i)u, a).

In the notation compie(A(i), f(i), a), the variable i is considered to be bound. Usually we use
the composition operation in the form of

compie(A(i), [(u1 : ϕ1) 7→ g1(u1, i), . . . , (un : ϕn) 7→ gn(un, i)], a)

with a system [(u1 : ϕ1) 7→ g1(u1, i), . . . , (un : ϕn) 7→ gn(un, i)] : ϕ1 ∨ · · · ∨ ϕn → A(i).

A.1 Some Derived Notions and Operations
We recall some notions and operations derivable in cubical type theory without gluing and
universes.

Composition operations are preserved by function application [10, Section 5.2]: one can
derive an operation

Γ, i : I ` h(i) : A(i)→ B(i) Γ ` e : 2
Γ ` ϕ : Cof Γ, i : I ` f(i) : ϕ→ A(i) Γ ` a : A(e) Γ, u : ϕ ` f(e)u = a

Γ ` presie(h(i), f(i), a) : Path(B(ē), c1, c2)

such that Γ, u : ϕ, j : I ` h(ē)(f(ē)u) = presie(h(i), f(i), a)j, where c1 = compie(B(i), h(i) ◦
f(i), h(e)a) and c2 = h(ē)(compie(A(i), f(i), a)).
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Equivalences are characterized by a kind of extension property [10, Section 5.3]: for
fibrations Γ ` A and Γ ` B, one can derive an operation

Γ ` f : A ' B
Γ ` e : 2 Γ ` ϕ : Cof Γ ` b : B Γ ` p : ϕ→

∑
a:A

Path(B, b, fa)

Γ ` equiv(f, p, b) :
∑
a:A

Path(B, b, fa)

such that Γ, u : ϕ ` pu = equiv(f, p, b).
For a fibration Γ, i : I ` A(i), we define a function called transport Γ, e : 2 ` tpie(A(i)) :

A(e)→ A(ē) to be tpie(A(i))a = compie(A(i), [], a). This function tpie(A(i)) is an equivalence
[10, Section 7.1].

A.2 Gluing
Proof of Proposition 8. Let p : I → Γ, e : 2, ψ : Cof, g : ψ →

∏
i:I
∏
u:ϕ(pi)A(u), h : ψ →∏

i:IB(pi), a :
∏
u:ϕ(pe)A(u) and b : B(pe), and suppose ∀v:ψ∀i:I∀u:ϕ(pi)f(u)(gviu) = hvi,

∀u:ϕ(pe)f(u)(au) = b and ∀v:ψgve = a ∧ hve = b. We have to find elements ā :
∏
u:ϕ(pē)A(u)

and b̄ : B(pē) such that ∀u:ϕ(pē)f(u)(āu) = b̄ and ∀v:ψgvē = ā ∧ hvē = b̄. We define

b̄1 := compie(B(pi), [(v : ψ) 7→ hvi], b) : B(pē)
δ := ∀i:Iϕ(pi) : Cof

ā1 := λw.compie(A(wi), [(v : ψ) 7→ gvi(wi)], a(we)) :
∏
w:δ

A(wē)

q :
∏
w:δ

Path(b̄1, f(wē)(ā1w))

qw := presie(f(wi), [(v : ψ) 7→ gvi(wi)], a(we))

ā :
∏

u:ϕ(pē)

A(u)

q2 :
∏

u:ϕ(pē)

Path(b̄1, f(u)(āu))

(āu, q2u) := equiv(f(u), [(w : δ) 7→ (ā1w, qw), (v : ψ) 7→ (gvēu, λi.b̄1)], b̄1)
b̄ := compi0(B(pē), [(u : ϕ(pē)) 7→ q2ui, (v : ψ) 7→ hvē], b̄1) : B(pē)

Then one can derive that b̄ = q2u1 = f(u)(āu) for u : ϕ(pē) and that ā = gvē and b̄ = hvē

for v : ψ. Moreover, for every w :
∏
i:I ϕ(pi), we have ā(wē) = ā1w = compie(A(wi), [(v :

ψ) 7→ gvi(wi)], a(we)) which means the preservation of fibration structure by the function
Γ, u : ϕ ` λ(a, b).au : Glue(ϕ, f)→ A(u). J

A.3 Universes
Proof of Proposition 9. Let e : 2, ϕ : Cof, f : ϕ → I → UF and B : UF such that
∀u:ϕfue = B. We have to find a B̄ : UF such that ∀u:ϕfuē = B̄. Let A := λu.fuē : ϕ→ UF .
We have an equivalence g := λu.tpiē(fui) :

∏
u:ϕAu ' B. Let B̄ := SGlue(ϕ, g) : UF , then

∀u:ϕfuē = Au = B̄. J
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