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Abstract
We introduce and study the complexity of Path Packing. Given a graph G and a list of paths, the
task is to embed the paths edge-disjoint in G. This generalizes the well known Hamiltonian-Path
problem.

Since Hamiltonian Path is efficiently solvable for graphs of small treewidth, we study how
this result translates to the much more general Path Packing. On the positive side, we give an
FPT-algorithm on trees for the number of paths as parameter. Further, we give an XP-algorithm
with the combined parameters maximal degree, number of connected components and number of
nodes of degree at least three. Surprisingly the latter is an almost tight result by runtime and
parameterization. We show an ETH lower bound almost matching our runtime. Moreover, if two of
the three values are constant and one is unbounded the problem becomes NP-hard.

Further, we study restrictions to the given list of paths. On the positive side, we present an
FPT-algorithm parameterized by the sum of the lengths of the paths. Packing paths of length two is
polynomial time solvable, while packing paths of length three is NP-hard. Finally, even the spacial
case Exact Path Packing where the paths have to cover every edge in G exactly once is already
NP-hard for two paths on 4-regular graphs.
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10:2 The Complexity of Packing Edge-Disjoint Paths

1 Introduction

Packing, covering and partitioning are well researched fields in graph theory. In general, the
task is to cover a given graph G = (V, E) with or partition it into smaller substructures, or
to pack given structures into the graph. Besides that these terms are often used, they are
not well defined throughout the literature. Thus, it is important to define problems in this
field carefully and in detail.

For example, the path partition problem is a well studied problem [2, 4, 6, 12, 18, 21, 26]
which is also known as path cover problem. The task is to cover all vertices of a graph with
vertex-disjoint paths. This is equivalent to partitioning the graph into vertex-disjoint paths.
The smallest number of paths to achieve this is called the path partition number or path
cover number. Observe that G has a Hamiltonian path iff the path-partition number is one,
thus the problem is NP-complete.

An NP-complete variant of this problem is the k-path partition problem [22, 27, 19].
Here the task is to partition a graph G into paths, such that none of the path lengths exceeds
k. Observe that the 1-path-partition problem corresponds to finding a maximum matching.

Another related problem is the recognition of path-perfect graphs [5, 11, 13, 23, 29],
which we denote in this work as Path-Perfect Packing. Instead of partitioning the graph
into vertex-disjoint paths, the complete edge set must be partitioned into edge-disjoint paths
of ascending length, starting by one. This can also be understood as packing k paths of
length 1 to k into G without using an edge twice or leaving one edge uncovered.

This approach of packing smaller subgraphs into a given graph is also well researched
[28]. For example, packing edge-disjoint trees into a clique is considered [24]. Since packing
edge-disjoint and vertex-disjoint triangles is NP-hard for planar graphs, the parameterized
complexity is studied [7].

We generalize the path-perfect graph problem and ask for a given graph G and a list
of k paths P = {p1, . . . , pk} if they can be embedded into G without using the same edge
twice. Note that we define the length of a path equals its number of edges. This problem
arises naturally when restricting the path partition problem to edge-disjoint paths instead of
vertex-disjoint paths. We denote this problem as Path Packing. Let us formalize what we
mean by embedding. An embedding of a graph H into a graph G is an injective mapping
f : V (H)→ V (G) such that for every original edge (u, v) ∈ E(H) also (f(u), f(v)) ∈ E(G).
An embedding of a list of graphs H into G is an embedding of each graph H into G. Note,
that we do not ask to embed the graphs pairwise vertex-disjointly. The embeddings we
consider in this work are pairwise edge-disjoint embeddings of paths.

Path Packing
Input: A list of paths P = {p1, . . . , pk} of length l1, . . . , lk. A graph G = (V, E).

Question: Is there an edge-disjoint embedding of P into G?

The Exact Path Packing problem additionally requires that every edge is covered
exactly once.

Exact Path Packing
Input: A list of paths P = {p1, . . . , pk} of length l1, . . . , lk. A graph G = (V, E).

Question: Is there an edge-disjoint embedding of P into G such that each edge e ∈ E is
covered exactly once?

Path Packing is clearly more general than Exact Path Packing, since one can reduce
from one to the other by additionally requiring the sum of the path lengths to be equal to the
number of edges in the graph. Most of our hardness results are for Exact Path Packing,
and therefore translate to Path Packing. Our upper bounds are always regarding more the
general Path Packing.
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Our Results

The Hamiltonian path problem is a special case of Path Packing. An even though the
Hamiltonian path problem is tractable on graphs of bounded treewidth, Path Packing
is already NP-complete on subdivided stars. Therefore, we focus on the parameterized
complexity to classify this problem on a finer scale. We will analyze the impact of various
parameters.

In Section 3, we analyze the parameterized complexity of our packing problems with
respect to the number of paths (denoted by k). On the one hand, we give an FPT algorithm
for Path Packing that solves the problem in time 2knO(1) on subcubic (i.e. degree at most
three) forests (Theorem 3). On the other hand, we show that Exact Path Packing on
graphs with treewidth two is W [1]-hard and cannot be solved in time f(k)no(k/ log k) under
ETH (Theorem 11).

In Section 4 we introduce path dependent restrictions. We show that Exact Path
Packing is NP-complete even for two paths on 4-regular graphs (Theorem 14). length i is
easy for i = 2 and NP-complete for i = 3 (Theorem 15). If we however parameterize by the
summed length of all paths Path Packing is in FPT (Theorem 16).

After parameterizing by the number of paths and their lengths, we further analyze graph
dependent parameters in Section 5. We introduce the bcd-number of a graph, which is the
maximum of the number of components, the maximal degree, and the number of vertices with
degree larger than two. We show that Path Packing can be solved in time k!k(n + k2)O(k2),
where k is the bcd-number (Theorem 20). This is complemented by showing that the problem
cannot be solved in f(k)no(k2/ log k) under ETH (Theorem 21). We further show that all
three bcd parameters are necessary: If two values are constant and one is unbounded the
problem becomes NP-hard (Theorem 1, Corollary 18, Theorem 19).

Note that, one can embed paths p1, . . . , pk as edge-disjoint subgraphs into a graph G if
and only if one can embed these paths as vertex-disjoint induced subgraphs into the linegraph
of G. Therefore, our results yield new insights for the problem of covering a graph with a
list of vertex-disjoint induced paths [17]. Especially, our hardness results for certain graph
classes transfer to hardness results on the linegraphs of these graph classes. Due to space
limitations, we omit some proofs, and refer to the full version.

2 Preliminaries

All graphs are simple (i.e. without multi-edges or self-loops). The length of a path equals its
number of edges.

3 Path Packing on Forests

Our packing problem is a generalization of the Hamiltonian path problem and therefore
NP-complete. The Hamiltonian path problem is solvable in polynomial time if the treewidth
of the input graph is bounded [9]. We show that (unlike Hamiltonian path) Exact Path
Packing is NP-complete on trees. This is done by reducing it to the following NP-complete
partitioning problem.

Multi-Way Number Partition
Input: A list of weights w1, . . . wn ∈ N encoded in unary, and an integer k ∈ N.

Question: Is there a partition of w1, . . . wn into k multi-sets S1, . . . , Sk such that∑
wi∈Sj

wi = 1
k

∑n

i=1 wi, for every 1 ≤ j ≤ k?

IPEC 2019



10:4 The Complexity of Packing Edge-Disjoint Paths

Figure 1 Packing paths of lengths 10, 8, 7, 5, 5, 3 into a subcubic tree. Although the packing
looks very loose there is no solution if we replace 3 by 4.

We reduce from Multi-Way Number Partition to prove that Exact Path Packing
is NP-hard on very simple trees.

I Theorem 1. Exact Path Packing is NP-complete on subdivided stars.

The previous reduction required a large number of paths. Therefore, in the following, we
analyze the Path Packing problem parameterized by the number of paths.

Fast subset convolution

We develop dynamic programming algorithms on subcubic trees whose running time will
be O∗(2k), where k is the number of paths that we want to pack. First we develop a naive
and not too complicated algorithm with running time O∗(3k), whose longer running time is
due to some very simple operation that occurs when we combine two dynamic programming
tables. Björklund, Husfeldt, Kaski, and Koivisto introduced a technique called fast subset
convolution that was used to speed up the computation of Steiner trees with small integer
weights [3] and also to speed up some algorithms that do dynamic programming on tree
decompositions [25]. We can use this technique to our advantage to significantly speed up
the path packing algorithm on trees. The result that we will be using is:

I Proposition 2. [3] Let N be a set of n natural numbers and f, g : N→ N two functions.
Then we can compute (f ∗ g)(S) for all S ⊆ N in time O(2nn2) if f and g can be evaluated
in constant time and where (f ∗ g)(S) =

∑
T⊂S f(T )g(S − T ). Here f(S) =

∑
i∈S f(i).

I Theorem 3. We can solve Path Packing for k paths in time O∗(2k) on subcubic forests.

Proof. Let us assume that the graph is a subcubic tree T , but the proof easily generalizes to
subcubic forests. Let l1, . . . , lk be length of the paths that we want to pack into T . We can
further assume that T is a rooted tree by designating an arbitrary vertex as its root. If v is
a vertex of T then let T (v) be the subtree rooted at v.

We solve the path packing problem by dynamic programming computing a table for each
vertex in a bottom-up order. Such a table is a mapping L : V × 2[k] → [n] ∪ {−∞}. The size
of this table is O(2kn). We interpret the content of the table as follows:

L(v, P ) = r with r ≥ 0 means that it is possible to pack all paths with indices in P (in
short all P -paths) into the subtree T (v) and additionally a path of length r that ends in v.
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Figure 2 Left side: Packing paths of lengths l1 = 4, l2 = 4, l3 = 2 into T (v). L(u, {1, 2, 3}) = −∞,
but L(u, {1, 2, 3} − {1}) = l1 − 1, so L(v, {1, 2, 3}) = 0.
Right side: Now l1 = 4, l2 = 3, l3 = 2. L(u, {1, 2, 3}) = 1, so L(v, {1, 2, 3}) = 1 + 1 = 2. An
additional path of length 2 can be packed into T (v), because an additional path of length 1 can be
packed into T (u).

The special case L(v, P ) = 0 means that we can pack all P -paths into T (v), but however
we pack them there is no space left to pack another path that ends in v.

If it is not possible to pack all P -paths into T (v) at all then let L(v, P ) = −∞.
It is quite clear that having computed all tables enables us to find out whether (T, P ) is

a yes-instance of the path packing-problem. Simply check whether L(r, {1, . . . , k}) 6= −∞.
To compute the tables for all v we distinguish three cases how to compose trees into

bigger trees: 1 v is a leaf, 2 v has one child, 3 v has at least two children.

Leaf. If v is a leaf then L(v, ∅) = 0 and L(v, P ) = −∞ if P 6= ∅ because we cannot pack
any path into an empty tree (that has no edges).

One child. If v has one child u then it is also quite easy to compute L(v, P ): If L(u, P ) = r

with r ≥ 0, then clearly L(v, P ) = r + 1. The right hand side of Figure 2 shows an example.
The more complicated possibility is L(u, P ) = −∞, which means that it is completely
impossible to pack all P -paths into T (u). It might become possible to pack all P -paths
into T (v) by using the additional edge uv. If this is possible, then one path, say the ith
one with length li, uses the edge uv. Then all paths in P − {i} are packed into T (u) and
one additional path of length li − 1 that ends in u. We can check this by verifying that
L(u, P − {i}) ≥ li − 1 for some 1 ≤ i ≤ k (actually, L(u, P − {i}) ≥ li is impossible, because
then all P -paths could be packed into T (u) and L(u, P ) 6= −∞). If we find such an i, then
all P -paths can be packed into T (v), but only by using the edge uv. This means that no
other path can be packed into T (v) that ends in v and therefore L(v, P ) = 0. See the left
hand side of Figure 2 for an example.

L(v, P ) =


L(u, P ) + 1 if L(u, P ) ≥ 0

0 if L(u, P ) = −∞ and L(u, P − {i}) = li − 1 for some i ∈ P

−∞ otherwise

Two children. Finally, we assume that v has exactly two children u1, u2. In that case we
can construct for each of them a new tree by attaching new roots v1, v2 to T (u1) and T (u2)
and computing the L-tables for both of them. To compute the table of v it is sufficient to
compute a table for a tree that we get by glueing two trees together by identifying their
roots. We just have to glue v1 to v2.

IPEC 2019
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Figure 3 Left side: Packing paths of lengths l1 = 5, l2 = 4, l3 = 3 into T (v). L(v1, {2}) = 1 and
L(v2, {1, 3}) = 0 imply L(v, {1, 2, 3}) ≥ 1.
Right side: Now l1 = 6, l2 = 4, l3 = 3. L(v1, {2}) + L(v2, {3}) = 1 + 5 = l1 implies L(v, {1, 2, 3}) ≥ 0.
This time we partition {1, 2, 3} into three parts. One goes to the left, one to the right, and one path
uses both subtrees.

So we can assume that we have two trees with roots v1 and v2 and a tree with root v that
we get by identifying v1 and v2 and renaming it to v. This is often called a join operation.
We have the tables for v1 and v2 and want to compute the table for v.

Clearly, L(v, P ) = r with r > 0 iff some of the P -paths can be packed into T (v1) and the
others into T (v2) and the additional path with length r that ends in v can be packed into
T (v1) or T (v2). The additional path of length r that ends in v prevents any P -path from
being packed partially into T (v1) and T (v2). That is the case iff there is a bipartition of P

into P1 and P2 such that L(v1, P1), L(v2, P2) ≥ 0 and max{L(v1, P1), L(v2, P2)} = r. There
are 2|P | many subsets of P . To check all bipartitions for all these subsets P ⊆ [k] means
looking at

∑k
i=0
(

k
i

)
2i = 3k many cases. Using fast subset convolution lets us speed up the

computation to 2kkO(1) steps: Let

fi(S) =
{

1 if L(vi, S) ≥ 0
0 otherwise

gi(S) =
{

1 if L(vi, S) ≥ r

0 otherwise.

Then L(v, P ) ≥ r iff (f1 ∗ g2)(P ) + (g1 ∗ f2)(P ) ≥ 1.
The situation is different if L(v, P ) = 0. In that case both edges u1v and u2v have to

be used when packing all P -paths into T (v) because otherwise at least a path of length one
that ends in v could additionally be packed into T (v).

In such a packing one path, say the ith one with length li, uses u1v and u2v. That is
possible iff there is a bipartition of P −{i} into P1 and P2 such that L(v1, P1)+L(v2, P2) ≥ li.
Again, by using fast subset convolution we can check this in 2kkO(1) steps. J

The above proof does not work any more if we glue together two trees whose roots
have degree higher than one. For general trees the dynamic programming is much more
complicated and we will need more complicated tables.

Let T (v) be a rooted tree with root v and no restrictions on the degree of vertices (and
thus on the number of children). Let us again fix length l1, . . . , lk ∈ N of paths that we are
going to pack into a tree. We are going to identify a set of paths by a set P ⊆ [k]. We speak
of P -paths as the paths with length li for every i ∈ P .

I Definition 4. Let us fix l1, . . . , lk ∈ N, P ⊆ [k], and T be a rooted tree. T (v) is the
subtree of T with root v.
1. Let M, M ′ ⊆ N be two multisets. We say that M ′ < M if we can construct M ′ from M

by adding numbers and increasing numbers that are already in M ′.
Let M ′ �M iff M ′ 6= M and M ′ < M .
Example: {3, 3, 5, 5, 7} < {2, 3, 4, 6}, but {3, 3, 5, 5, 7} 6< {2, 3, 4, 8}.
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Figure 4 In this tree there are nodes with more than two children and paths can “cross.” We
pack paths with lengths 13, 9, 9, 9, 7, 6. There is no solution if we replace 6 by 7.

2. Let S be a set of multisets of natural numbers. Then

K(S) = {M ∈ S | there is no M ′ ∈ S with M ′ �M }.

3. Then we define L(v, P ) as a set of multisets of natural numbers as follows:
Let M ⊆ N be a multiset of natural numbers. Then M ∈ L(v, P ) iff it is possible to
pack all P -paths into T (v) such that we can pack additionally all non-empty paths into
T (v) that start at v and have lengths given in M and if there is no M ′ ∈ L(v, P ) with
M ′ < M .
Particularly, L(v, P ) = ∅ iff it is impossible to pack all P -paths into T (v) and L(v, P ) =
{∅} iff it is possible to pack all P -paths into T (v), but there is no possibility to additionally
pack a non-empty path that starts at v.

4. If M ⊆ N then maxq(M) is the multiset that consists of the q biggest elements in M or
of all of them if M contains less than q numbers, e.g., max3({5, 5, 4, 4, 3, 2, 1}) = {5, 5, 4}.

In the following let l1, . . . , lk be fixed.

I Lemma 5. Let T (v) be a rooted tree with root v such that v has one child u.
1. Assume that L(u, P ) = {M1, . . . , Mm} with m ≥ 1. Define Lmax(u, P ) = max(M1 ∪ · · · ∪

Mm) (where max ∅ = 0).
Then L(v, P ) = {{Lmax(u, P ) + 1}}.

2. Assume that L(u, P ) = ∅ and there is an i ∈ {1, . . . , k} with Lmax(u, P − {i}) = li − 1.
Then L(v, P ) = {∅}.

3. Otherwise L(v, P ) = ∅.

Proof. We have to consider exactly two cases. The first case is that it is possible to pack all
P -paths into T (u). If this is the case, then an additional path of length r + 1 can be packed
into T (v) starting at v iff an additional path of length r can be packed into T (u) starting
at u. The latter is the case iff Lmax(u, P ) = r.

The second case is that it is impossible to pack all P -paths into T (u) alone. It might still
be possible to pack them into T (v), but only if the edge uv is used. This means that there is
only space for an additional path of length zero that starts at v.

In fact, exactly one path, say the ith one, uses the edge uv. This is possible iff we can
pack all (P − {i})-paths into T (u) and being able to additionally pack a path of length at
least li − 1 into T (u) starting at u. Actually, this path cannot be longer than li − 1 because
then we would be able to pack all P -paths, which is a contradiction. J

IPEC 2019
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I Lemma 6. Let T (v1) and T (v2) be two rooted trees with no common vertices, such that v2
has exactly one child. Let T (v) be the tree that we get by identifying v1 with v2 and renaming
it to v. Then L(v, P ) = K(L1 ∪ L2) where

L1 =
⋃

P1⊆P
P2=P−P1

⋃
M1∈L(v1,P1)
M2∈L(v2,P2)

{
M1 ∪M2

}
L2 =

⋃
P1⊆P

P2=P−P1

⋃
i∈P

⋃
M1∈L(v1,P1−{i})
M2∈L(v2,P2−{i})

⋃
r1∈M1
r2∈M2

r1+r2≥li

{
(M1 − {r1}) ∪ (M2 − {r2})

}

Proof. “L(v, P ) ⊇ K(L1 ∪ L2)”: If M ∈ L1 ∪ L2 then M ∈ L1 or M ∈ L2. Let us first
consider the case M ∈ L1. By the definition of L1 there are P1 ⊆ P , P2 = P − P1,
M1 ∈ L(v1, P1), and M2 ∈ L(v2, P2) such that M = M1∪M2. By induction we know that P1
can be packed into T (v1) as well as additional paths of lengths M1 starting at v1. The same
holds for P2, v2, and M2. Using this packing we actually packed P into T (v) and additional
paths of lengths M1 ∪M2 = M starting at v. By definition then M ∈ L(v, P ).

The other possibility is M ∈ L2, which is a bit more complicated. If M ∈ L2, then
M = (M1−{r1})∪ (M2−{r2}), where r1 ∈M1, r2 ∈M2, r1 + r2 ≥ li, M1 ∈ L(v1, P1−{i}),
M2 ∈ L(v2, P2 − {i}), P1 ⊆ P , P2 = P − P1, and i ∈ P .

We have to show that it is possible to pack P into T (v) and additionally paths with
lengths from M starting at v. By induction we know that we can pack all (P1 − {i})-paths
into T (v1) and all (P2 −{i})-paths into T (v2). Simultaneously, we can pack additional paths
with lengths from M1 into T (v1) starting at v1 and paths with lengths from M2 into T (v2)
starting at v2. Hence, we can pack paths with lengths M = (M1 − {r1}) ∪ (M2 − {r2}) into
T (v) leaving space for a path of length r1 in T (v1) and a path of length r2 in T (v2). We can
combine these two paths into one path of length r1 + r2 ≥ li and pack one additional path of
length li into T (v). Altogether we packed P1, P2, {i} and therefore all P -paths into T (v).

“L(v, P ) ⊆ K(L1 ∪ L2)”: Let M ∈ L(v, P ). Then P can be packed into T (v). There are
two possibilities:

1. No path corresponding to i ∈ P lies partially in T (v1) and partially in T (v2). Then
we can split P = P1 ∪ P2 such that P1-paths are packed into T (v1) and P2-paths into T (v2).
The additional path with lengths from M are also packed into T (v1) and T (v2). Let us say
M = M1 ∪M2, where M1 is in T (v1) and M2 in T (v2). Then it is easy to see that M ∈ L1.

2. There is an i ∈ P such that all (P − {i})-paths are packed into T (v1) and T (v2), but
exactly one path with length li is packed into T (v) using edges from both T (v1) and T (v2).
Note that there can be at most one such path because v2 has only one child in T (v2). Then
all additional paths with lengths in M that start at v have to be packed into T (v1) alone
because the edge in T (v2) is not available any more. Let r1 be the length of the part of the
bridging path of length li that lies in T (v1) and r2 the length of the part in T (v2). Clearly,
r1 + r2 = li. With all these facts we can again easily verify that M ∈ L2. J

The following lemma shows that the size of the tables is bounded by a function in k and
the maximal degree. The estimate is quite pessimistic, but we are not trying to optimize
the runtime of the dynamic programming algorithm at the moment and are content with
proving fixed parameter tractability.

I Lemma 7. Let T (v) be a rooted tree and assume that vertex v has d children. Then

|L(v, P )| ≤ d2kd.
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Proof. If v has only one child, then |L(v, P )| = 1 and the statement is true. Assume next
that T (v) has d children. Each subtree can receive at most 2k different sets of packed paths
yielding at most 2k different length of the longest path that can be additionally packed.
Therefore a set M ∈ L(v, P ) can have size at most d and contain up to d numbers each chosen
from a set of size at most 2k. In total that are at most d2kd possibilities for a set M . J

I Theorem 8. Let T be a rooted tree and P a multiset of paths. In polynomial time a rooted
tree T ′ can be computed that has the following properties:
(1) P can be packed into T iff it can be packed into T ′,
(2) each node in T ′ has at most 3|P | children, and (3) T ′ is a subtree of T .

Proof. Let l1(u) be the length of the longest path in T (u) that starts in u and l2(u) be
the length of the longest path in T (u). Assume that P can be packed into T and v be an
arbitrary vertex in T . Let us fix an edge-disjoint packing of P .

Let v be an arbitrary node in T and v1, . . . , vm the children of v. Let us further assume
that v1, . . . , v3|P | contain the |P | children with biggest l1(vi) and 2|P | children with biggest
l2(vi). Ties can be arbitrarily ordered.

If m ≤ 3|P | we do nothing. Otherwise assume that P is packed into T and some path
p ∈ P uses T (vi) with i > 3|P |. There are two possibilities:

(i) p contains vi. Then p is possibly packed partially inside T (vi) and partially outside.
Let p′ be the part of p inside T (vi). Clearly, p′ starts at vi. By the pigeonhole principle
there must be some T (vk) that has not been used in the packing of P , l1(vk) ≥ l1(vi), and
k ≤ 3|P |. Then we can repack p such that it uses T (vk) instead of T (vi).

(ii) p does not contain vi and is therefore completely packed into T (vi). Again by the
pigeonhole principle we can find an appropriate T (vk) with k ≤ 3|P | and l2(vk) ≥ l2(vi). We
can repack p from T (vi) into T (vk).

Repeated repacking in these two ways leads to a packing that uses only the subtrees
T (v1), . . . , T (v3|P |). We can therefore remove all other subtrees without changing a yes-
instance into a no-instance. Applying this pruning to all vertices in T leads to a new tree T ′

that has all properties stated in the theorem. It is also clear that T ′ can be computed in
polynomial time as it is easy to find longest paths in trees. J

Combining the above results (with the base case for a leaf v: L(v, P ) = {{0}} if P

contains only empty paths and L(v, P ) = ∅ otherwise) we can prove the following:

I Theorem 9. Path Packing into forests parameterized by the number of paths is in FPT.

Proof. Given a tree T compute a rooted tree T ′ where each node has at most 3k children
and every P (with |P | = k) can be packed into T iff it can be packed into T ′ (Theorem 8).
Then use dynamic programming to find out whether the paths can be packed into T ′. By
Lemma 7 and 6 this only takes time f(k)|T |O(1) for some function f . J

Lower bound

While Path Packing on graphs with treewidth one is in FPT when parameterized by the
number of paths, we now show that the problem becomes hard on graphs with treewidth
two. As an intermediate step, we reduce from Unary Bin Packing [15] to show hardness
of Multi-Way Number Partition. This then leads to hardness results for Exact Path
Packing. Remember that for Multi-Way Number Partition the numbers are unary
encoded.
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I Lemma 10. Multi-Way Number Partition parameterized by the number of sets k

is W [1]-hard. Moreover, unless ETH fails there is no algorithm that solves the problem in
f(k)No(k/ log k) time for some function f where N is the input size.

I Theorem 11. The Exact Path Packing problem parameterized by the number of paths
on graphs with treewidth two is W [1]-hard. Moreover, unless ETH fails there is no algorithm
that solves the problem in f(k) no(k/ log k) time for some function f where k is the number of
paths and n the number of vertices in the input graph.

4 Path Packing Parametrized by Path Dependent Attributes

In the previous section we solved Path Packing on forests. Since Path Packing is NP-hard
even for graphs with treewidth 2, we try to find some path dependent parameters to cope
with its difficulty. At first, we will restrict the number of paths, then we will bound the
length of each path and finally we consider the sum of the lengths of all paths.

Number of Paths

We denote the number of paths of an instance by k. We start with k = 1. Consider an
instance where the length of the single path corresponds to the number of vertices in a
complete graph G.

I Observation 12. Since Hamiltonian Path is NP-hard, also path packing for k = 1 is
NP-hard

On the other side, for k = 1 the special case of Exact Path Packing becomes easy.

I Observation 13. Exact Path Packing is solvable in polynomial time for k = 1 by
deciding if the input graph is a path of length l1.

Unfortunately, for fixed k ≥ 2 restricting the number of paths is not enough to gain a
polynomial time algorithm. This holds for Exact Path Packing and therefore also for
Path Packing.

I Theorem 14. Let k ≥ 2. Exact Path Packing with k paths is NP-complete on 4-regular
graphs.

Paths with bounded length

Observe that all hardness proofs that we have seen so far somehow involve paths of a certain
length. Thus, we analyze the complexity of Path Packing based on the length of the paths
we want to pack.

Length-i Exact Edge Packing
Input: A set of paths P = {p1, . . . , pk} of length l1 = . . . = lk = i, a graph G = (V, E).

Question: Is there an edge-disjoint embedding of P into G such that each edge e ∈ E is
covered exactly once?

Length-2 Exact Edge Packing is solvable in polynomial time by reformulating it as
a matching problem on the line graph. We show that Length-3 Exact Edge Packing is
already NP-hard via a reduction from the 3-dimensional matching problem, one of Karp’s
original 21 NP-complete problems. The 3-dimensional matching problem takes as input sets
X, Y, Z of size n and T ⊆ X × Y × Z. The question is whether there exists a set M ⊆ T of
size n such that for all (x1, y1, z1), (x2, y2, z2) ∈M , x1 6= x2, y1 6= y2, z1 6= z2. The reduction
is similar to the P2-packing reduction in [20].
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I Theorem 15. Length-3 Exact Edge Packing is NP-hard.

Bounded sum of path lengths

The two previous results show that Path Packing is NP-hard even if the number of paths
or the maximal length of the paths is bounded by a constant. At last, we the problem is in
FPT when parameterized by the number of paths and their length. We give a randomized
FPT algorithm using color coding [8, 1] that can easily be derandomized using perfect hash
families [8].

I Theorem 16. Path Packing parameterized by the summed length of all paths is in FPT.

For packing vertex-disjoint paths similar results are known: The P2-packing problem
takes a graph G and an integer k and asks if there is a set of k vertex-disjoint P2 in G. This
problem is NP-complete [16, 20]. Fernau and Raible given FPT algorithm parameterized by
the number of paths [10].

5 Path Packing Parametrized by Graph Dependent Attributes

Earlier (Theorem 1), we showed that Exact Path Packing is NP-hard even on a single
subdivided star. So even for trees where there is only one node of degree higher than two
the problem becomes NP-hard. In this section we study further restrictions to forests and
finally identify a polynomial time solvable case. We do so by considering restrictions to
the following three parameters: number of vertices of degree at least three, the maximal
degree, and the number of connected components. For an easier notation we define this
combined parameter as the “bcd” of graph G. It is a bound on branching nodes, connected
components and maximum degree.

I Definition 17. Let G be a graph. Then bcd(G) is the minimal k ∈ N such that G has at
most k nodes of degree larger than two, at most k connected components, and a maximal
degree of at most k.

The above mentioned reduction showing NP-hardness for a subdivided star constructs a
graph with unbounded degree. What is the complexity if we limit the vertex degree to a
constant, but in turn allow multiple components? Unfortunately even for a forest of paths,
thus a maximum degree of two, the problem remains NP-hard. NP-hardness follows by
an easy adaption of the proof of Theorem 1. The constructed subdivided star has an even
number 2m of legs of length `. Instead one could also use m disjoint paths of length 2`. Thus
we can follow NP-hardness of Exact Path Packing even for forests of paths.

I Corollary 18. Exact Path Packing is NP-hard even on forests of paths.

Thus, if we drop either the degree or the number of components as parameters, the problem
becomes NP-complete, even if the remaining parameters are bounded by a constant. Thus the
remaining question is: What is the complexity if we limit the vertex degree to a constant, limit
the number of connected components to a constant, but in turn allow arbitrary many vertices
of degree at least three? We show hardness in this scenario even for the more restricted
problem of packing paths of ascending length, denoted by Path-Perfect Packing.

Path-Perfect Packing
Input: A graph G = (V, E) where |E(G)| = 1 + 2 + · · ·+ n for some n ∈ N.

Question: Does there exist an edge-disjoint embedding of paths p1, . . . , pn with lengths
`1 = 1, . . . , `n = n into G such that each edge e ∈ E is covered exactly once?
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We show NP-hardness of this restricted problem on subdivisions of a caterpillar with
vertex degree at most eight. We reduce from the following unary version of 3-partition. This
version is slightly non-standard since we require that no numbers occur twice and relax the
condition to put exactly three elements into each partition.

Unary 3-Partition
Input: A set of integers A = {a1, . . . , a3s} ⊆ N in unary encoding.

Question: Is there a partition of A into s sets of equal sum?

Hulett et al. show that the above problem is NP-hard if we require each of the s partitions
to contain exactly three elements [14]. We get NP-hardness without the extra condition by
increasing each number in A by adding a big number (for example

∑3s
i= ai).

We sketch how to reduce from Path-Perfect Packing on caterpillars with vertex degree
at most eight to Unary 3-Partition. Note that, each partition of a Unary 3-Partition
instance must have size m = 1

s

∑3s
i=1 ai. Consider the paths {pi | 1 ≤ i ≤ m, i ∈ A} whose

length occurs in A. We translate a partition of A into an exact packing of these paths.
However, we have to account for the paths {pi | 1 ≤ i ≤ m, i /∈ A} whose length occurs not
as an integer in set A. For each of these we introduce a path where it fits in precisely, and
by an exchange argument we may assume it is packed there. Now, roughly what remains to
do is to construct a large caterpillar of low maximum degree where all these paths can be
packed in.

I Theorem 19. Path-Perfect Packing is NP-hard even for subdivided caterpillars with
vertex degree at most eight.

The maximum degree eight in the theorem above was chosen to simplify the proof. One
can show NP-hardness even for smaller maximum vertex degree.

XP-algorithm for parameter bcd(G)

We saw that if two bcd-parameters are constant and one bcd-parameter is unbounded then
Exact Path Packing is NP-complete. We further study the complexity when parameterized
by all three parameters. We give an XP-algorithm for Path Packing parametrized by
bcd(G). This means for every fixed k, there is a polynomial time algorithm for graphs with
bcd(G) ≤ k.

I Theorem 20. There is a k!k(n + k2)O(k2)-time algorithm for Path Packing with k =
bcd(G).

Proof. We give an algorithm, that given a graph G and a list P of paths p1, . . . , pk, decides
if there is an edge-disjoint embedding of p1, . . . , pk into G. To do so, we guess a partition of
G into eventually a set of vertex-disjoint paths X . Then it suffices to find an embedding of P

into such a set of vertex-disjoint paths X . The remaining problem then is just a generalized
bin-packing problem with O(k2) bins, but encoded in unary; thus solvable in time nO(k2).
Most technicality lies in guessing the vertex-disjoint paths X . First we guess a partition
into a bounded number of walks W. Later we need to partition W further resulting in
vertex-disjoint paths X .

Let V1 be the set of vertices of degree two. Let V ?
2 consist of a vertex of every connected

component that is a circle. Let V2 be the set of vertices of degree two that are not in V ?
2 , and

let V≥3 be the vertices of degree at least three including V ?
2 . This seemingly odd definition

allows us to work with walks starting and ending in V1 ∪ V≥3 that cover every edge, in
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particular those in a circle. Because there are at most k connected components, |V ?
2 | ≤ k.

Then since there are at most k vertices of degree at least three, we have |V≥3| ≤ 2k.
Assuming a yes-instance, there is an edge-disjoint embedding of paths P into graph G.

At every vertex v ∈ V≥3 every path of P contains at most two of the incident edges of v.
Thus at every vertex v ∈ V≥3 there is a maximal matching Mv of v’s incident edges such
that no path in P contains two unmatched edges.

We consider “direct” walks between “neighboring” vertices V1 ∪ V≥3: Let Q be the set
of walks between u, v ∈ V1 ∪ V≥3 with inner vertices from V2, and further where no vertex
among V2 is repeated (though possibly u = v). We join these walks Q to a set of walks W
according to matchings Mv for v ∈ V (G). Whenever two walks w1, w2 end at some edges
uv respectively u′v, and uv is matched to u′v by Mv, then join walks w1 and w2 at edges
uv, vu′. This procedure terminates and yields a well defined set of walks W.

Note that every edge is covered by a walk Q and thus also every edge is covered by a
walk W. We further claim that every path p of P is a subsequence of edges of some walk
w ∈ W. Assuming otherwise, there are walks w1, w2 ending at edges uv and u′v. Then v is
not a leaf, and thus v ∈ V≥3. Then matching Mv matches edges uv and u′v, and thus w1, w2
had to be joined to a single walk.

Thus for a yes-instance there is at least one set of matchings Mv, v ∈ V≥3 which determines
walks W such that P may be embedded into W . An algorithm may try the possible partition
of edges into such a set of walks W as follows. Guess for each vertex v ∈ V≥3 a maximal
matching Mv of its incident edges. There are at most k high degree vertices V≥3 \ V ?

2 , each
with at most k incident edges. (Also we have a matching for V ?

2 , though since there are only
two incident edges, there is only one possible matching.) Thus the algorithm tries at most
k!k possibilities. Then combine the paths Q to walks W according to the matchings, which
is possible in polynomial time.

We claim that W has at most k2 walks. Every walk in W has two endpoints, and the
endpoints are among V1 ∪ V≥3. Clearly, at every leaf v ∈ V1 at most one path ends. Further,
there are at most k2 leaves in the input graph of ≤ k vertices of degree ≥ 3 and maximal
degree of k. If at a vertex v ∈ V≥3 two walks w1, w2 end, there are edges uv of w1 and u′v

of w2 unmatched by Mv, in contradiction to a maximal matching Mv. Thus also at every
vertex v ∈ V≥3 at most one walk ends. Then there are at most k2 + 2k endpoints of walks,
and thus there are at most b(k2 + 2k)/2c ≤ k2 walks in W.

Consider a walk w ∈ W where a vertex v occurs more than once. Recall that the
embedding of a path p ∈ P of a yes-instance is injective, thus no vertex v ∈ V (G) occurs
twice in the same path. A naive approach would be to now solve the bin-packing problem
of “weights” P and “bins” W. Then, however, a solution to the bin-packing would may
potentially translate to an embedding of a path where a vertex occurs twice. Therefore let
us guess a partition into paths without multiple occurrence of vertices, as follows.

Between two occurrences of v on walk w there must be vertex u (possibly an occurrence
of v itself) which is the endpoint of two different paths. Therefore there is a partition of
the walks W into vertex-disjoint paths X , where still paths P have an embedding into X .
We may describe this partition by “cuts” of W specified by a vertex v in the union of walks
from W. Note, that in the union of walks W, each high degree vertex v ∈ V≥3 \ V ?

2 occurs
deg(v) ≤ k times. Thus there are to up to n + k2 potential cut vertices.

We claim that at most k2 cuts C are necessary to cut the walks W into vertex-disjoint
paths X . Assume, that there is a cut vertex v ∈ C which is on an inner vertex of a path
between V1 and V≥3. Then joining its incident vertex-disjoint paths results in a vertex-disjoint
path. Thus we may assume that the cuts C are at vertices from walks of Q between vertices
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among V≥3. Let Q≥3 be the set of paths Q with endpoints in V≥3. Consider the multi-graph
with loops on vertex set V≥3 with an edge between u, v ∈ V≥3 for every path Q≥3 with
endpoints u and v. Since |Q≥3| ≤ k and the degree of every vertex v ∈ Q≥3 is at most k,
this multi-graph has at most k2 edges. Then also there are at most k2 paths Q≥3. Consider
a set of more than k2 vertices C ⊆ V that cut Q into vertex-disjoint paths X . Then there is
a path of Q≥3 containing distinct cut vertices u, v ∈ C. Let x ∈ X be the path between u

and v. Joining them with the incident path at, say u, results in a vertex-disjoint path. Thus
cutting W at vertices C \ {u} still results in a set of vertex-disjoint paths. Therefore at most
k2 cuts of walks W are necessary to yield vertex-disjoint paths X .

Let us utilize this observation in the design of our algorithm. Guess up to k2 cuts C from
the n + k2 potential cuts. Cut the previously guessed walks W into subpaths according to
cuts C. We may force exactly k2 cut vertices by allowing C to be a multi-set containing also
leaves, whose cut has no effect. This way, we try another (n+k2)k2 possibilities of cut vertices
C. Then cut the previously guessed ≤ k2 walks X at the k2 cut positions. If the resulting set
of walks is not vertex-disjoint, discard this guess. Otherwise we obtain ≤ 2k2 vertex disjoint
paths X , since every cut increases the number of paths by one. This resembles a bin-packing
problem in unary encoding with k2 bins of different sizes and total capacity n. We may
apply standard dynamic programming technique to test in nO(k2) time whether the sizes of
the paths P fit into the bins in the sizes of X . If the paths P fit in some guessed paths X ,
then corresponding partition of the edges in G yields paths P . Thus there is an edge-disjoint
embedding of P into G. For the other direction, if the edges of G can be partitioned into paths
P , then as argued before there is a set X according to this partition and the there is a solution
to the dynamic problem. The runtime is k!k(n + k2)O(k2) · poly(n) = k!knO(k2) · poly(n)
where poly is a polynomial. J

Can we achieve a better runtime than k!knk2+O(1), in particular decrease the dependence
on k in the exponent of n? Not significantly unless ETH fails, as the following reduction
from Multi-Way Number Partition shows.

I Theorem 21. There is no algorithm that decides Path Packing in time no(k2/log k) with
k = bcd(G) unless ETH fails.

6 Conclusion

We showed that edge-disjoint packing of paths into a graph is a very hard problem. Even if
the input graph is a subdivided star or a linear forest the problem is hard. If we parameterize
the problem by the number of paths, the problem remains hard even for input graphs with
treewidth two. However, it becomes fixed parameter tractable on forests. A natural open
problem is to not embed paths, but more general graphs such as trees or cycles.
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