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Abstract
Recent empirical evaluations of exact algorithms for Feedback Vertex Set have demonstrated
the efficiency of a highest-degree branching algorithm with a degree-based pruning heuristic. In
this paper, we prove that this empirically fast algorithm runs in O(3.460kn) time, where k is the
solution size. This improves the previous best O(3.619kn)-time deterministic algorithm obtained by
Kociumaka and Pilipczuk (Inf. Process. Lett., 2014).
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1 Introduction

Feedback Vertex Set (FVS) is a problem of finding the minimum-size vertex deletion set
to make the input graph a forest, which is one of the Karp’s 21 NP-complete problems [18]. It
is known that this problem is fixed-parameter tractable (FPT) parameterized by the solution
size k [2, 10]; i.e., we can find a deletion set of size k in O∗(f(k))1 time for some function
f . FVS is one of the most comprehensively studied problems in the field of parameterized
algorithms, and various FPT algorithms using different approaches have been developed,
including short-cycle branching [11], highest-degree branching [4], iterative-compression
branching [5,6,20], LP-guided branching [16,17], cut-and-count dynamic programming [7],
and random sampling [1].

The current fastest deterministic FPT algorithm for FVS is a branching algorithm
combined with the iterative compression technique [20] which runs in O∗(3.619k) time. When
allowing randomization, the current fastest one is a cut-and-count dynamic programming
algorithm [7] which runs in O∗(3k) time. In this paper, we give a faster deterministic algorithm
which runs in O∗(3.460k) time. As explained below, this study is strongly motivated by

1 The O∗(·) notation hides factors polynomial in n. Note that for FVS, any O(f(k)nO(1))-time FPT
algorithms can be improved to O(f(k)kO(1) + kO(1)n) time by applying a linear-time polynomial-size
kernel [15] as a preprocess. We can therefore focus only on the f(k) factor when comparing the running
time.
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Parameterized Algorithms and Computational Experiments (PACE) challenge and its follow-
up empirical evaluation by Kiljan and Pilipczuk [19]. Instead of designing a new theoretically
fast algorithm, we analyze the theoretical worst-case running time of an empirically fast
algorithm that has been developed through the PACE challenge and the empirical evaluation,
and we show that this algorithm is not only empirically fast but also theoretically fast.

PACE challenge is an annual programming challenge started in 2016. Due to the
importance of FVS in the field, FVS was selected as the subject of track B in the first
PACE challenge [9]. Although in theoretical studies, the current fastest algorithm is the
randomized cut-and-count dynamic programming, the result of the challenge suggests that
branching is the best choice in practice. This is not so surprising; because the theoretical
analysis of branching algorithms is difficult, the proved upper bound of the running time is
not so tight, and moreover, the worst-case instances for branching algorithms are usually
very rare in practice.

Among seven submissions to the PACE challenge, top six submissions used branching
algorithms; the first used an LP-guided branching; the second and third used branching
on highest-degree vertices; the fourth and sixth used branching combined with iterative
compression; and the fifth used branching on short cycles. In the branching algorithms, we
recursively solve the problem by picking a vertex v and branching into two cases: deleting v
(the case when v is contained in the solution) or making v undeletable (the case when v is
not contained in the solution). Because a forest has average degree less than one, in order to
obtain a solution of size k, the graph must contain k high-degree deletable vertices. Based
on this observation, in addition to the pruning by the LP lower bound, the first-place solver
by Imanishi and Iwata [14] used the following degree-based pruning heuristic:

I Lemma 1 ([14]). Given a graph G = (V,E) and a set of undeletable vertices F ⊆ V , let
v1, v2, . . . be the vertices of V \ F in the non-decreasing order of the degrees d(vi) in G. If
k ≤ |V \ F | and |E| −

∑k
i=1 d(vi) ≥ |V | − k holds, there is no feedback vertex set S ⊆ V \ F

of size k.

The follow-up empirical evaluation [19] shows that the use of the degree-based pruning is
much more important than the choice of branching rules. By combining with the degree-based
pruning, the performances of the LP-guided branching [16], the highest-degree branching [4],
and the iterative-compression branching [20], are all significantly improved, and among
them, the highest-degree branching slightly outperforms the others. Cao [4] showed that
one can stop the highest-degree branching at depth 3k by using a degree-based argument,
and therefore the running time is O(8k). On the other hand, the theoretically proved
running time of other branching algorithms (without the degree-based pruning) are O∗(4k)
for the LP-guided branching [16] and O∗(3.619k) for the iterative-compression branching [20].
These affairs motivated us to refine the analysis of the highest-degree branching with the
degree-based pruning.

In our analysis, instead of bounding the depth of the search tree as Cao [4] did, we design
a new measure to bound the size of the search tree. The measure is initially at most k and
we show that the measure drops by some amount for each branching. In contrast to the
standard analysis of branching algorithms, our measure has a negative term and thus can
have negative values; however, we show that we can immediately apply the degree-based
pruning for all such cases. A simple analysis already leads to an O∗(4k)-time upper bound
which significantly improves the O∗(8k)-time upper bound obtained by Cao [4]. We then
apply the computer-aided measure-and-conquer analysis [12] and improve the upper bound
to O∗(3.460k).
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Algorithm 1 Highest-degree branching algorithm with a degree-based pruning.

1: if k < 0 then return No.
2: if G is a forest then return Yes.
3: Apply reduction rules 1–6.
4: Apply the degree-based pruning.
5: Apply the highest-degree branching.

1.1 Organization
Section 2 describes the highest-degree branching algorithm with the degree-based pruning.
In Section 3, we analyze the running time of the algorithm. We first give a simple analysis
in Section 3.1 and then give a computer-aided measure-and-conquer analysis in Section 3.2.
While the correctness of the simple analysis can be easily checked, we need to verify thousands
of inequalities to check the correctness of the measure-and-conquer analysis. The source code
of a program to verify the inequalities is available at https://github.com/wata-orz/FVS_
analysis.

2 Algorithm

Because our algorithm may introduce multiple edges connecting the same pair of vertices, we
deal with multi-graphs. Note that a double edge is also considered as a cycle. Let G = (V,E)
be a multi-graph. We define the degree d(u) of vertex u as the total multiplicity of edges
incident to u. For subset U ⊆ V , G[U ] = (U,E[U ]) denotes the induced subgraph, where
E[U ] is the subset of E whose two endpoints are in U . For U ⊆ V , the contraction of U into
a new vertex u is the following operation. We first introduce a new vertex u. For each edge
vw ∈ E with v ∈ U and w 6∈ U , we insert an edge uw of the same multiplicity (if uw has
been already inserted, its multiplicity is increased by the multiplicity of vw). Finally, we
delete U and its incident edges from the graph. Note that the contraction does not change
degrees of vertices in V \ U .

Algorithm 1 describes our algorithm. An input to our branching algorithm is a tuple
(G,F, k) consisting of a multi-graph G = (V,E), a set of undeletable vertices F ⊆ V such
that G[F ] forms a forest, and an integer k. Our task is to find a subset of vertices S ⊆ V \F
such that |S| ≤ k and G[V \ S] contains no cycles. For convenience, we use D to denote
maxv∈V \F d(v) when G and F are clear from the context (when using D, V \ F is ensured
to be non-empty). If k < 0, we return No, and if G is a forest, we return Yes. Otherwise, we
apply reduction rules, the degree-based pruning rule, and the highest-degree branching rule.
In the following, we give details of each rule with proof of correctness.

Our algorithm uses exactly the same set of reduction rules used in the empirical evaluation
by Kiljan and Pilipczuk [19] listed below in the given order (i.e., rule i is applied only when
none of the rules j with j < i are applicable). Recall that D denotes maxv∈V \F d(v).

I Reduction Rule 1. If there exists a vertex u of degree at most one, delete u.

I Reduction Rule 2. If there exists a vertex u 6∈ F such that G[F ∪ {u}] contains a cycle,
delete u and decrease k by one.

I Reduction Rule 3. If there exists a vertex u of degree two, add an edge connecting the
two neighbors of u, and then delete u.
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I Reduction Rule 4. If there exists an edge e of multiplicity more than two, reduce its
multiplicity to two.

I Reduction Rule 5. If there exists a vertex u 6∈ F incident to a double edge uw with
d(w) ≤ 3, delete u and decrease k by one.

I Reduction Rule 6. If D ≤ 3, solve the problem in polynomial time by a reduction to the
linear (co-graphic) matroid parity [5, 20].

Note that, in reduction rules 1 and 3, the vertex u might be in F , and in such a case, the
reductions also delete u from F . The first four reduction rules are standard and have been
used in branching FPT algorithms [4–6,11,20], the random sampling FPT algorithm [1], and
also polynomial kernels [3, 15] for FVS. Reduction rule 5 was used in the Imanishi–Iwata
solver [14] and the empirical evaluation [19], and its correctness can be proved as follows.
Because there is a double edge uw, any feedback vertex set must contain at least one of u and
w. Because w has at most one edge other than the double edge uw, every cycle containing w
also contains u. Therefore, there always exists a minimum feedback vertex set containing
u. Reduction rule 6 was introduced by Cao, Chen, and Liu[5] and then was simplified by
Kociumaka and Pilipczuk [20].

I Lemma 2. After applying the reductions, the following conditions hold.
1. G has minimum degree at least three.
2. No double edges are incident to F .
3. D ≥ 4.
4. For any vertex v 6∈ F , G− v has minimum degree at least two.

Proof. The first three conditions clearly hold. We show the fourth condition. Suppose that
in G− v, a vertex u has degree at most one. Because u has degree at least three in G, the
set of incident edges to u in G must be a double-edge uv and a single-edge uw for another
vertex w. If u 6∈ F , we can apply reduction rule 5, which is a contradiction. If u ∈ F , the
double edge uv is incident to F in G, which is also a contradiction. Therefore, when no
reductions are applicable, G− v contains no such vertex u. J

If none of the reductions are applicable, we apply the following pruning rule.

I Pruning Rule. If kD <
∑
v∈F (d(v)− 2), return NO.

The correctness of the pruning rule follows from the following lemma.

I Lemma 3. If the minimum degree of G is at least two and kD <
∑
v∈F (d(v)− 2) holds,

there is no feedback vertex set S ⊆ V \ F of size at most k.

Proof. Suppose that there is a feedback vertex set S ⊆ V \ F of size at most k. We have

kD −
∑
v∈F

(d(v)− 2) ≥
∑
v∈S

d(v)−
∑

v∈V \S

(d(v)− 2)

=
∑
v∈S

d(v)−
∑

v∈V \S

d(v) + 2|V \ S|

= 2|E[S]| − 2|E[V \ S]|+ 2|V \ S|
≥ −2|E[V \ S]|+ 2|V \ S|.

Because G− S is a forest, this must be non-negative. J
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Note that this pruning is different from the degree-based pruning (Lemma 1) used in the
Imanishi–Iwata solver [14] and the empirical evaluation [19]; however, as the following lemma
shows, this pruning is applicable only if the original degree-based pruning is applicable.
Therefore, we can use the same analysis against the original degree-based pruning. We use
this weaker version because it is sufficient for our analysis. We leave whether the stronger
version helps further improve the analysis as future work.

I Lemma 4. For a subset F ⊆ V , let v1, v2, . . . be the vertices of V \F in the non-increasing
order of the degrees d(vi) in G. If k ≤ |V \ F | and the minimum degree of G is at least two,
kd(v1) <

∑
v∈F (d(v)− 2) implies |E| −

∑k
i=1 d(vi) ≥ |V | − k.

Proof. Let X = {v1, . . . , vk} and assume that kd(v1) <
∑
v∈F (d(v)− 2) holds. We have

2
(
|V | − k − |E|+

∑
v∈X

d(v)
)

=
∑
v∈X

d(v)−
(

2|E| −
∑
v∈X

d(v)− 2(|V | − k)
)

=
∑
v∈X

d(v)−
∑

v∈V \X

(d(v)− 2)

≤ kd(v1)−
∑
v∈F

(d(v)− 2) < 0. J

Finally, when none of the reduction rules nor the pruning rule are applicable, we apply
the highest-degree branching rule.

I Branching Rule. Pick a vertex u ∈ V \ F of the highest degree D. Let U be the set of
neighbors of u that are contained in F and let G′ be the graph obtained by contracting U∪{u}
into a new vertex u′. We branch into two cases: (G− u, F, k − 1) and (G′, F − U + u′, k).

We pick a vertex u ∈ V \ F of the highest degree D and branch into two cases: whether
u is contained in the solution or not. In the former case, we delete u and decrease k by one,
and in the latter case, we make u undeletable by inserting it into F . Because no feedback
vertex set S ⊆ V \ F can delete edges inside F , if u has neighbors U in F , we can safely
contract U ∪ {u}. We use the contraction for simplicity of analysis; instead of using the
number of connected components of G[F ], we can simply use |F |. Note that, by using an
additional reduction rule, we can ensure that F forms an independent set; however, we do
not use it because our analysis do not require such a strong condition.

I Proposition 5. Algorithm 1 correctly solves FVS.

3 Analysis

For parameters 0 ≤ α ≤ 1 and (βd)∞d=0 satisfying 0 = β0 = β1 = β2 ≤ β3 ≤ β4 ≤ · · · , we
define

µ(G,F, k) := k − α

D

∑
v∈F

(d(v)− 2) +
∑
v∈F

βd(v).

Initially, the algorithm is called with F = ∅, and we have µ(G, ∅, k) = k.

I Lemma 6. If none of the reduction rules 1–6 nor the pruning rule are applicable for an
input (G,F, k), then µ(G,F, k) ≥ 0 holds.

IPEC 2019
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Proof. If the pruning is not applicable, we have kD ≥
∑
v∈F (d(v)− 2). Hence we have

µ(G,F, k) = (1− α)k + α

D

(
kD −

∑
v∈F

(d(v)− 2)
)

+
∑
v∈F

βd(v) ≥ 0. J

We now show that applying the reduction rules does not increase µ. We can easily see
that D never increases by the reduction but may decrease; however, because such decrease
leads to a smaller µ, we can analyze as if D is not changed by the reduction.

From condition 4 in Lemma 2 and the fact that contraction does not change degrees,
the graph immediately after branching has minimum degree at least two. Hence, we apply
reduction rule 1 only after applying reduction rules 2 or 5 (or against the initial instance, in
which case, µ does not increase because F remains empty).

I Lemma 7. Reduction rules 2 or 5, together with the subsequent applications of reduction
rule 1, do not increase µ.

Proof. For convenience of analysis, when a vertex of degree one is generated, we immediately
put it into F . This does not affect the behavior of the algorithm because all such vertices
will be deleted by reduction rule 1.

We first show that applying reduction rule 1 does not increase µ. When d(u) = 0, we
have µ(G − u, F − u, k) = µ(G,F, k) − α

D . When d(u) = 1, let v be the neighbor of u. If
v ∈ F , we have µ(G− u, F − u, k) = µ(G,F, k) + βd(v)−1 − βd(v) ≤ µ(G,F, k). If v 6∈ F and
d(v) ≥ 3, we have µ(G − u, F − u, k) = µ(G,F, k) − α

D . If v 6∈ F and d(v) = 2, deleting u
puts v into F , and hence we have µ(G− u, F − u+ v, k) = µ(G,F, k).

We next show that applying reduction rules 2 or 5 does not increase µ. Let P be the set
of vertices in V \ (F ∪ {u}) whose degree in G− u is one. Let q be the number (i.e., the total
multiplicity) of edges between u and F . Because P is a subset of neighbors of u, we have
|P |+ q ≤ d(u) ≤ D. Then, we have µ(G− u, F ∪ P, k − 1) ≤ µ(G,F, k)− 1 + α

D (|P |+ q) ≤
µ(G,F, k)− 1 + α ≤ µ(G,F, k). J

Because reduction rule 3 deletes a vertex of degree two and does not change the degrees of
other vertices, it does not change µ. Because reduction rule 4 is applied only when reduction
rule 2 cannot be applied, it does not change the degrees of vertices in F , and therefore it
does not change µ.

Finally, we analyze the branching rule. Because contraction does not change degrees
of other vertices, D never increases by the branching but may decrease. As we did in the
analysis of the reduction rules, we analyze as if D does not change by the branching. Recall
that U is the set of neighbors of u that are contained in F . Let f := |U | and d := {d1, . . . , df}
be the multiset of degrees of vertices in U . The degree of u′ is d′ := D +

∑f
i=1(di − 2). In

the former case of the branching, we have

∆1(D,d) := µ(G,F, k)− µ(G− u, F, k − 1)

= 1− f α
D

+
f∑
i=1

(βdi
− βdi−1).



Y. Iwata and Y. Kobayashi 22:7

In the latter case, we have

∆2(D,d) := µ(G,F, k)− µ(G′, F − U + u′, k)

= − α
D

(
f∑
i=1

(di − 2)− (d′ − 2)
)

+
f∑
i=1

βdi
− βd′

= α− 2 α
D

+
f∑
i=1

βdi
− βd′ .

Now, we can prove the running time of the algorithm by induction on the height of the
search tree as follows. Suppose that the number of leaves in the search tree is bounded by
cµ(G,F,k) for some c > 1 when the height is at most h. After the branching, we can bound
the total number of leaves by cµ(G,F,k)−∆1(D,d) + cµ(G,F,k)−∆2(D,d). Hence, in the induction
step for h+ 1, we need to show the inequality

cµ(G,F,k)−∆1(D,d) + cµ(G,F,k)−∆2(D,d) ≤ cµ(G,F,k),

which is equivalent to

c−∆1(D,d) + c−∆2(D,d) ≤ 1.

Therefore, if c−∆1(D,d) + c−∆2(D,d) ≤ 1 holds for any (D,d) for some c > 1, the running
time of the algorithm is bounded by O∗(ck). We now optimize the parameters to minimize c.

The design of our measure

We have reached to our measure by the following three steps.

Step 1. Let gap := kD−
∑
v∈F (d(v)−2), i.e., the distance to the application of the pruning

rule. By analyzing the branching rule, we observe that deleting u decreases k but may not
decrease gap, while making u undeletable does not change k but decreases gap. Hence, by
taking the convex combination (1−α) · k+α · 1

Dgap, we can ensure that the measure always
decreases. The coefficient 1

D is for bounding the measure by k.

Step 2. We observe that deleting u decreases gap if u has neighbors not in F . When u has
more than two neighbors in F , making u undeletable decreases the size |F |. Because |F |
cannot be negative, the worst-case (when all the neighbors of u are contained in F ) cannot
occur frequently. Hence, by taking |F | into the measure, we can improve the analysis. This
corresponds to the simple analysis presented in Section 3.1.

Step 3. We observe that applying reduction rule 3 against a vertex in F does not change
gap but decreases |F |. Deleting u in the branching rule decreases the degree of its neighbors,
and if a neighbor is in F , such a decrease leads to a future application of reduction rule 3.
Hence, by using the sum of weights

∑
v∈F βd(v) depending on the degree instead of the size

|F | =
∑
v∈F 1, we can improve the analysis. This corresponds to the computer-aided analysis

presented in Section 3.2.

IPEC 2019
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3.1 Simple Analysis
As a simple analysis whose correctness can be easily checked, we use α = log4

8
3 ≈ 0.7075,

βd = 1
2 log4

3
2 ≈ 0.1462 for all d ≥ 3, and c = 4. Note that, when applying the branching

rule, D ≥ 4 holds from Lemma 2. For these parameters, we have

c−∆1(D,d) ≤ 4−1+ f
D log4

8
3 = 1

4 ·
(

8
3

) f
D

≤ 1
4 min

(
8
3 ,
(

8
3

) f
4
)
,

c−∆2(D,d) = 4( 2
D−1) log4

8
3 +(1−f) 1

2 log4
3
2 ≤

(
3
8

) 1
2

·
(

3
2

) 1−f
2

.

We now show that c−∆1(D,d) + c−∆2(D,d) ≤ 1 holds by the following case analysis.

c−∆1(D,d) + c−∆2(D,d) ≤



1
4 +

(
3
8

) 1
2

·
(

3
2

) 1
2

= 1 (f = 0),

1
4 ·
(

8
3

) 1
4

+
(

3
8

) 1
2

< 0.932 (f = 1),

1
4 ·
(

8
3

) 2
4

+
(

3
8

) 1
2

·
(

2
3

) 1
2

< 0.909 (f = 2),

1
4 ·
(

8
3

) 3
4

+
(

3
8

) 1
2

· 2
3 < 0.930 (f = 3),

1
4 ·

8
3 +

(
3
8

) 1
2

·
(

2
3

) 3
2

= 1 (f ≥ 4).

I Theorem 8. Algorithm 1 solves FVS in O∗(4k) time.

3.2 Measure-and-Conquer Analysis
We use the parameters α = 0.922863, β shown in Table 1, and c = 3.460. These values are
obtained by solving a convex optimization problem to minimize c under the constraints of
c−∆1(D,d) +c−∆2(D,d) ≤ 1 for any (D,d). For details of computer-aided measure-and-conquer
analysis and how to solve it as a convex optimization problem, see [13, Chapter 2]. For
d ≥ dmax := 30, we fix βd = βdmax . This is for bounding the number of vectors d we need
to consider. The running time for solving the convex optimization problem depends on the
choice of dmax, and we chose dmax := 30 because increasing it to 50 did not improve the
analysis, and when increasing it to 60, the optimization did not finish within an hour.

I Lemma 9. c−∆1(D,d) + c−∆2(D,d) ≤ 1 holds for any (D,d) with D ≥ 4.

Proof. Suppose that dj ≥ 32 holds for some j. Because βd = β30 for all d ≥ 30 and because
d′ = D +

∑
i(di − 2) ≥ D + (dj − 2) ≥ 31 holds, decreasing dj by one does not change

∆1(D,d) nor ∆2(D,d). Therefore, we can focus on the case of di ≤ 31 for all i. We now
show that the inequality holds by induction on D. When D = 4, we can verify that

c−∆1(4,d) + c−∆2(4,d) ≤ 1 (∀d) (1)

holds by naively enumerating all the possible configurations of d. Assume that, for a fixed
D, the inequality holds for any (D − 1,d). We show that the inequality also holds for any
(D,d).
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Table 1 The values of β.

d βd

1 0.000000
2 0.000000
3 0.114038
4 0.186479
5 0.238143
6 0.277239
7 0.308030
8 0.332974
9 0.353536
10 0.370540

d βd

11 0.384771
12 0.396884
13 0.408715
14 0.418855
15 0.427643
16 0.435333
17 0.442118
18 0.448149
19 0.453544
20 0.458401

d βd

21 0.462794
22 0.466788
23 0.470435
24 0.473778
25 0.476853
26 0.479691
27 0.482320
28 0.484760
29 0.487032
≥ 30 0.489153

When f < D, we have

∆1(D,d) ≥ ∆1(D − 1,d)

and

∆2(D,d) = ∆2(D − 1,d)− 2 α
D
− βd′ + 2 α

D − 1 + βd′−1,

where d′ = D+
∑f
i=1(di−2). When d′ > 31, we have ∆2(D,d) = ∆2(D−1,d)−2 αD+2 α

D−1 ≥
∆2(D − 1,d). When d′ ≤ 31, we can verify that our parameters satisfy

−2 α
D
− βd′ + 2 α

D − 1 + βd′−1 ≥ 0 (∀(D, d′) with 5 ≤ D ≤ d′ ≤ 31). (2)

Therefore, we have ∆2(D,d) ≥ ∆2(D − 1,d). This shows that

c−∆1(D,d) + c−∆2(D,d) ≤ c−∆1(D−1,d) + c−∆2(D−1,d) ≤ 1.

When f = D, let d′ := {d1, . . . , df−1}. We have

∆1(D,d) = ∆1(D − 1,d′) + βdf
− βdf−1 ≥ ∆1(D − 1,d′)

and

∆2(D,d) = ∆2(D − 1,d′)− 2 α
D

+ 2 α

D − 1 + βdf
− βd′ + βd′−df +2

≥ ∆2(D − 1,d′) + βdf
− βd′ + βd′−df +2,

where d′ = D +
∑f
i=1(di − 2). When d′ > 31, we have βdf

− βd′ + βd′−df +2 ≥ βdf
− β31 +

β31−df +2, and hence such a case can be reduced to the case when d′ = 31. Because we can
verify that our parameters satisfy

βdf
− βd′ + βd′−df +2 ≥ 0 (∀(d′, df ) with 3 ≤ df < d′ ≤ 31), (3)

we have ∆2(D,d) ≥ ∆2(D − 1,d′). This shows that

c−∆1(D,d) + c−∆2(D,d) ≤ c−∆1(D−1,d′) + c−∆2(D−1,d′) ≤ 1. J

I Theorem 10. Algorithm 1 solves FVS in O∗(3.460k) time.
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4 Conclusion

In this paper, we give the theoretical analysis to the empirically fast branching algorithm for
FVS. The proved running time is the current fastest among deterministic algorithms. We
conclude the paper by giving two open problems.

First, we do not think that our analysis is tight. Can we significantly improve the
analysis? Especially, we are interested in whether we can achieve O∗(4k) time without
using the reduction to the linear matroid parity to solve subcubic instances. When allowing
randomization, a simple random sampling algorithm runs in O∗(4k) time [1]. This random
sampling algorithm also uses a degree-based argument but does not use the subcubic solver.
Without the subcubic solver (i.e., D ≥ 3 instead of D ≥ 4), our analysis gives only O∗(4.59k).
If this can be improved to O∗(4k), using the subcubic solver will further improve the running
time.

Second, the proved running time is still far from actual running time against real-world
instances. In this paper, we used the standard parameter of the solution size. Can we prove
that the algorithm runs in FPT time for some parameter that is smaller in real-world instances.
For example, Vertex Cover and Multiway Cut are known to be FPT parameterized by
the gap between the solution size and LP lower bounds [8, 21].
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