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Abstract
We consider the setting of Reeb graphs of piecewise linear functions and study distances between
them that are stable, meaning that functions which are similar in the supremum norm ought to have
similar Reeb graphs. We define an edit distance for Reeb graphs and prove that it is stable and
universal, meaning that it provides an upper bound to any other stable distance. In contrast, via a
specific construction, we show that the interleaving distance and the functional distortion distance
on Reeb graphs are not universal.
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1 Introduction

The concept of a Reeb graph of a Morse function first appeared in [13] and has subsequently
been applied to problems in shape analysis in [14, 10]. The literature on Reeb graphs in
the computational geometry and computational topology is ever growing (see, e.g., [2, 3]
for a discussion and references). The Reeb graph plays a central role in topological data
analysis, not least because of the success of Mapper [15], a data analysis method providing a
discretization of the Reeb graph for a function defined on a point cloud.

A recent line of work has concentrated on questions about identifying suitable notions of
distance between Reeb graphs. These include the so called functional distortion distance [2],
the interleaving distance [6], and various graph edit distances [9, 7, 1]. Naturally, there is a
strong interest in understanding the connection between different existing distances. In this
regard, it has been shown in [3] that the functional distortion and the interleaving distances
are bi-Lipschitz equivalent. The edit distances defined in [9, 7] for Reeb graphs of curves and
surfaces, respectively, are shown to be universal in their respective settings, so the functional
distortion and interleaving distances restricted to the same settings are a lower bound for
those distances. Moreover, an example in [7] shows that the functional distortion distance
can be strictly smaller than the edit distance considered in that paper.
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In this paper, we consider the setting of piecewise linear (PL) functions on compact
triangulable spaces, and in this realm we study the properties of stability and universality
of distances between Reeb graphs. The notion of stability has been introduced by Cohen-
Steiner et al. [4] in the context of persistence diagrams, and is a key property for topological
descriptors [12]. Stability means that two objects at a given distance are assigned descriptors
at no more than that distance. This requires a notion of distance on both the collection of
objects as well as on the collection of descriptors. The practical relevance of stability lies in
the guaranteed robustness of the method with respect to bounded imprecision, caused by
noise, coarse sampling, or other sources of uncertainty. However, the stability of a descriptor
is not sufficient to warrant discriminativeness, i.e., the ability to distinguish different objects:
a construction that assigns to every object the same descriptor is certainly stable, but contains
no information. For that reason, given a fixed distance on the objects and a construction
for a descriptor, it is desirable to assign to the descriptors a distance that is as large as
possible while still satisfying the stability property. In that sense, such a distance is then the
most discriminative stable distance. Following Lesnick [11], we call such a distance universal,
noting that the concept already appears in [5] in the context of topological descriptors.

Inspired by a construction of distance between filtered spaces [12], we first construct
a novel distance δU based on considering joint pullbacks of two given Reeb graphs and
prove that this distance satisfies both stability and universality. Via analyzing a specific
construction we then prove that neither the functional distortion nor the interleaving distances
are universal. Finally, we define two edit-like additional distances between Reeb graphs that
reinterpret those appearing in [9, 7, 1] and prove that both are stable and universal. As a
consequence, both distances agree with δU .

2 Topological aspects of Reeb graphs

We start by exploring some topological ideas behind the definition of Reeb graphs. All maps
and functions considered in this paper will be assumed to be continuous. Otherwise, we call
them set maps and set functions.

2.1 Reeb graphs as quotient spaces
The classical construction of a Reeb graph [13] is given via an equivalence relation as follows:

I Definition 2.1. For f : X → R a Morse function on a compact smooth manifold, the Reeb
graph of f is the quotient space X/∼f , with x ∼f y if and only if x and y belong to the same
connected component of some level set f−1(t) (implying t = f(x) = f(y)).

While this definition was originally considered in the setting of Morse theory, it does not
make explicit use of the smooth structure, and so it can be applied quite broadly. However,
some additional assumptions on the space X and the function f are justified in order to
maintain some of the characteristic properties of Reeb graphs in a generalized setting. With
this motivation in mind, we revisit the definition in terms of quotient maps and functions
with discrete fibers.

A quotient map p : X → Y is a surjection such that a set U is open in Y if and only
if p−1(U) is open in X. In particular, a surjection between compact Hausdorff spaces is a
quotient map by the closed map lemma. A quotient map p : X → Y is characterized by the
universal property that a set map Φ : Y → Z into any topological space Z is continuous if
and only if Φ ◦ p is continuous.
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The motivation for considering quotient maps and functions with discrete fibers is
explained by the following fact.

I Proposition 2.2. Let f : X → R be a function with locally connected fibers, and let
q : X → X/∼f be the canonical quotient map. Then the induced function f̃ : X/∼f → R
with f = f̃ ◦ q has discrete fibers.

Proof. To see that the fibers of f̃ are discrete, we show that any subset S of f̃−1(t) is closed.
Let T = f̃−1(t) \ S. Then q−1(T ) is a disjoint union of connected components of f−1(t).
Since f−1(t) is locally connected, each of its connected components is open in the fiber, and
so q−1(T ) is open in f−1(t), implying that q−1(S) is closed in f−1(t) and hence in X. Since
q is a quotient map, q−1(S) is closed if and only if S is closed, yielding the claim. J

2.2 Reeb quotient maps and Reeb graphs of piecewise linear functions
We now define a class of quotient maps that leave Reeb graphs invariant up to isomorphism.
The main goal is to provide a natural construction for lifting a function f : X → R to a
space Y through a quotient map Y → X in a way that yields isomorphic Reeb graphs. To
this end, we will define a general notion of Reeb quotient maps and Reeb graphs.

I Definition 2.3. A Reeb domain is a connected compact triangulable space. A Reeb quotient
map is a surjective piecewise linear map of Reeb domains with connected fibers.

We remark that connectedness of Reeb domains is assumed only for the sake of simplicity
(see Remark 3.4).

As shown in Corollary 2.8, Reeb domains and Reeb quotient maps constitute a subcategory
of the category of triangulable spaces and piecewise linear maps.

I Definition 2.4. A Reeb graph is a pair (Rf , f̃) where Rf is a Reeb domain endowed with
a PL function f̃ : Rf → R with discrete fibers, called a Reeb function.

In particular, the isomorphisms between Reeb graphs are PL homeomorphisms that preserve
the function values of the associated Reeb functions. While the definition does not assume
this explicitly, a Reeb graph is indeed a finite topological graph (a compact triangulable space
of dimension at most 1).

I Proposition 2.5. For any Reeb graph (Rf , f̃), the space Rf is a finite topological graph.

Proof. By definition, f̃ is (simplexwise) linear for some triangulation of Rf . If there were a
simplex σ of dimension at least 2 in the triangulation of Rf , then for any x in the interior
of σ, the intersection σ ∩ f̃−1(f̃(x)) would have to be of dimension at least 1. But this would
contradict the assumption that f̃ has discrete fibers. J

I Definition 2.6. Generalizing the classical definition (Definition 2.1), we say that a Reeb
graph (Rf , f̃) is a Reeb graph of f : X → R if there is a Reeb quotient map p : X → Rf
such that f = f̃ ◦ p.

We now proceed to prove that Reeb quotient maps are closed under composition. We start
by showing that not only the fibers, but more generally all preimages of closed connected
sets are connected.

I Proposition 2.7. If p : X → Y is a Reeb quotient map, then the preimage p−1(K) of a
closed connected set K ⊆ Y is connected.

SoCG 2020
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Proof. Assume thatK is nonempty; otherwise, the claim holds trivially. Let p−1(K) = U∪V ,
with U, V nonempty and closed in p−1(K). To show that p−1(K) is connected, it suffices to
show that U ∩ V is necessarily nonempty.

Because p−1(K) is closed in X, the sets U and V are also closed in X. The images p(U)
and p(V ) are closed by the closed map lemma, and their union is K. By connectedness of K,
their intersection is nonempty. Let y ∈ p(U) ∩ p(V ). We have

p−1(y) = (p−1(y) ∩ U) ∪ (p−1(y) ∩ V ).

The subspaces (p−1(y) ∩ U) and (p−1(y) ∩ V ) are closed in p−1(y), and by connectedness of
the fiber p−1(y), their intersection must be nonempty. In particular, U ∩ V is nonempty. J

I Corollary 2.8. If p : X → Y and q : Y → Z are Reeb quotient maps, then the composition
q ◦ p : X → Z is a Reeb quotient map too.

As mentioned before, the main purpose of Reeb quotient maps is to lift Reeb functions
to larger domains while maintaining the same Reeb graph. The following property is a
consequence of the above statement:

I Corollary 2.9. Let (Rf , f̃) be a Reeb graph of a function f : X → R, and let q : Y → X

be a Reeb quotient map. Then (Rf , f̃) is also a Reeb graph of f ◦ q : Y → R.

Proof. Let p : X → Rf be the Reeb quotient map factoring f = f̃ ◦ p, as in the following
diagram:

R

Y X Rf
q p

f
f̃

Then by Corollary 2.8, (Rf , f̃) is also a Reeb graph for f ◦ q = f̃ ◦ (p ◦ q) : Y → R via the
Reeb quotient map p ◦ q : Y → Rf . J

The following lemma shows how a transformation g = ξ ◦ f of a function f lifts to a Reeb
quotient map ζ between the corresponding Reeb graphs.

I Lemma 2.10. Consider a commutative diagram

im f im g

Rf Rg

X

χ

f̃

ζ
g̃

pf
pg

f

g

where (Rf , f̃), (Rg, g̃) are Reeb graphs, pf : X → Rf , pg : X → Rg are Reeb quotient maps,
and χ : im f → im g is a PL function such that g = χ ◦ f . Then ζ = pg ◦ p−1

f is a Reeb
quotient map from Rf to Rg.

In particular, if χ is a PL homeomorphism, then so is ζ. Note that the definition of ζ does
not involve the function χ; the existence of χ already ensures that ζ is a Reeb quotient map.
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Proof. Let x ∈ Rf , and let t = f̃(x). Then C = p−1
f (x) is a connected component of f−1(t)

by the assumption that pf is a Reeb quotient map. By commutativity, we have

f−1 ⊆ f−1 ◦ χ−1 ◦ χ = g−1 ◦ χ,

and since C is connected, there must be a single y ∈ Rg with pg(C) = {y}. Hence, ζ = pg◦p−1
f

is a set map. Moreover, since pg is continuous and pf is closed, the map ζ is continuous;
since pg and pf are PL, the map ζ is PL as well.

Now let y ∈ Rg and let s = g̃(y). Similarly to above, C = p−1
g (y) is a connected

component of g−1(s). We have pf (C) = pf ◦ p−1
g (y) = ζ−1(y) 6= ∅, so ζ is surjective, and the

fiber ζ−1(y) = pf (C) is connected as the image of a connected set. J

I Remark 2.11. By Proposition 2.2 and Lemma 2.10, given a Reeb graph (Rf , f̃) of f : X → R
with Reeb quotient map p : X → Rf , there is a canonical isomorphism Rf ∼= X/∼f . As a
consequence, the Reeb graph (Rf , f̃) together with the Reeb quotient map p is unique up to
a unique isomorphism, defining the Reeb graph as a universal property.

We now show that Reeb quotient maps are stable under pullbacks.

I Proposition 2.12. Consider a pullback diagram of PL maps p1 : X1 → Y , p2 : X2 → Y :

Y

X1 X2

X1 ×Y X2

p1 p2

q1 q2

If the map p1 (resp. p2) is a Reeb quotient map, then so is the map q2 (resp. q1). Hence,
the class of Reeb quotient maps is stable under pullbacks.

Proof. First note that the category of compact triangulable spaces has all pullbacks [16].
For x2 ∈ X2, by surjectivity of p1 there is some x1 ∈ X1 such that p1(x1) = p2(x2). Thus
(x1, x2) ∈ X1×Y X2 and q2(x1, x2) = x2, proving that q2 is surjective. Moreover, for x2 ∈ X2,
we have q−1

2 (x2) = p−1
1 (p2(x2))× {x2}. By assumption, p−1

1 (p2(x2)) is connected as a fiber
of p1, implying that p−1

1 (p2(x2))×{x2} is connected. Finally, applying Proposition 2.7 to q2,
we obtain that the pullback space X1 ×Y X2 is connected. The proof for q1 is analogous. J

3 Stable and universal distances

Throughout this paper, we will use the term distance to describe an extended pseudo-metric
d : X ×X → [0,∞] on some collection X. Our main goal is the introduction of a distance
between Reeb graphs that is stable and universal in the following sense.

I Definition 3.1. We say that a distance dS between Reeb graphs is stable if and only if
given any two Reeb graphs (Rf , f̃) and (Rg, g̃), for any Reeb domain X with Reeb quotient
maps pf : X → Rf and pg : X → Rg we have

dS((Rf , f̃), (Rg, g̃)) ≤ ‖f̃ ◦ pf − g̃ ◦ pg‖∞. (S)

Note that stability implies that isomorphic Reeb graphs have distance 0. Indeed, an isomor-
phism of Reeb graphs γ : Rf → Rg yields dS((Rf , f̃), (Rg, g̃)) ≤ ‖f̃ ◦ id−g̃ ◦ γ‖∞ = 0.

SoCG 2020
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Moreover, we say that a stable distance dU between Reeb graphs is universal if and only
if for any other stable distance dS between Reeb graphs, we have

dS((Rf , f̃), (Rg, g̃)) ≤ dU ((Rf , f̃), (Rg, g̃)), (U)

for all (Rf , f̃) and (Rg, g̃).

I Remark 3.2. By connectedness of Rf and Rg, there is at least one space X with maps
pf , pg as needed to define the stability property: X = Rf × Rg, with pf , pg the canonical
projections. The resulting functions f = f̃ ◦ pf , g = g̃ ◦ pg : Rf × Rg → R then satisfy
‖f − g‖∞ = max(sup f̃ − inf g̃, sup g̃− inf f̃). In particular, by compactness a stable distance
for Reeb graphs is always finite.

The definition of stability yields the following universal distance.

I Definition 3.3. For any two Reeb graphs (Rf , f̃), (Rg, g̃), let

δU ((Rf , f̃), (Rg, g̃)) := inf
pf : Rf←X→Rg : pg

‖f̃ ◦ pf − g̃ ◦ pg‖∞,

where the infimum is taken over all possible Reeb domains X and Reeb quotient maps
pf : X → Rf and pg : X → Rg, as in the following diagram.

R R

Rf Rg

X

f̃ g̃

pf pg

I Remark 3.4. The connectedness assumption for Reeb domains can be dropped by adapting
the definition of the universal distance as follows. If Rf and Rg have a different number
of connected components, then δU (Rf , Rg) := ∞. If both Rf and Rg have n connected
components so that Rf =

∐
i∈[n] Fi and Rg =

∐
i∈[n] Gi with each Fi and Gi connected, then

δU (Rf , Rg) := min
γ

inf
p:Fi←X→Gγ(i):q

‖f̃ ◦ p− g̃ ◦ q‖∞

where γ varies among all permutations on n objects, i ∈ [n], and the infimum is taken over
all possible Reeb domains X and Reeb quotient maps p : X → Fi and q : X → Gi.

I Proposition 3.5. The distance δU is the largest stable distance on Reeb graphs. Hence,
δU is universal.

Proof. To see that δU is a distance, the only non-trivial part is showing the triangle inequality.
To this end, given diagrams pf : Rf ← X → Rg : pg and p′g : Rg ← Y → Rh : ph, we can
form a pullback of the diagram pg : X → Rg ← Y : p′g to obtain the diagram

R R R

Rf Rg Rh

X Y

X ×Rg Y

f̃ g̃ h̃

pf pg p′g
ph

qX qY
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where X ×Rg Y is a Reeb domain and qX , qY are Reeb quotient maps by Proposition 2.12.
Defining f = f̃ ◦ pf ◦ qX , g = g̃ ◦ pg ◦ qX = g̃ ◦ p′g ◦ qY , and h = h̃ ◦ ph ◦ qY , we have

δU ((Rf , f̃), (Rh, h̃)) ≤ ‖f − h‖∞ ≤ ‖f − g‖∞ + ‖g − h‖∞
= ‖f̃ ◦ pf − g̃ ◦ pg‖∞ + ‖g̃ ◦ p′g − h̃ ◦ ph‖∞,

where the last equality holds because qX and qY are surjective. Hence

δU ((Rf , f̃), (Rh, h̃)) ≤ δU ((Rf , f̃), (Rg, g̃)) + δU ((Rg, g̃), (Rh, h̃)).

The stability of δU is immediate from its definition. Moreover, for any stable distance dS
between Reeb graphs, combining the stability of dS and the definition of δU , we obtain
dS ≤ δU , implying that δU is universal. J

I Corollary 3.6. The universal distance δU is a metric on isomorphism classes of Reeb
graphs.

Proof. According to Remark 3.2, by stability, δU is always finite. Moreover, we recall
from [6] that there exists a stable distance dI , the interleaving distance, which is a metric
on isomorphism classes of Reeb graphs; in particular, dI((Rf , f̃), (Rg, g̃)) = 0 if and only if
(Rf , f̃) ∼= (Rg, g̃). By stability of dI and universality of δU , we have dI((Rf , f̃), (Rg, g̃)) ≤
δU ((Rf , f̃), (Rg, g̃)). Thus, δU ((Rf , f̃), (Rg, g̃)) = 0 implies dI(Rf , Rg) = 0 and hence
(Rf , f̃) ∼= (Rg, g̃). J

I Example 3.7. Consider the one point Reeb graph (∗, c) endowed with the function identical
to c ∈ R. Then, for any Reeb graph (Rf , f̃), we have δU ((Rf , f̃), (∗, c)) = ‖f̃ − c‖∞.

We now consider an example where we can explicitly determine the value of the distance
δU ((Rf , f̃), (Rg, g̃)) between two specific simple Reeb graphs Rf = S1 = {(x, y) ∈ R2 :
x2 + y2 = 1} with f̃(x, y) = x and Rg = [−1, 1] with g̃(t) = t. The example demonstrates
the non-universality of certain distances proposed in the literature. We prove:

I Proposition 3.8. δU ((Rf , f̃), (Rg, g̃)) = 1.

The proof of this proposition will be obtained from the two claims below.

B Claim 3.9. δU (Rf , Rg) ≤ 1.

Proof. Consider the cylinder C = {(x, y, z) ∈ R3 : x2 + y2 = 1, |2z − x| ≤ 1} together with
functions f(x, y, z) = x and g(x, y, z) = z defined on C. Then (Rf , f̃) is a Reeb graph of f

via the Reeb quotient map (x, y, z) 7→ (x, y), and (Rg, g̃) is a Reeb graph of g via the Reeb
quotient map (x, y, z) 7→ z. Since we have |f(c)− g(c)| ≤ 1 for all c ∈ C, this implies that
δU ((Rf , f̃), (Rg, g̃)) ≤ 1. C

B Claim 3.10. δU ((Rf , f̃), (Rg, g̃)) ≥ 1.

SoCG 2020
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Proof. Assume for a contradiction that there is a diagram pf : Rf ← Z → Rg : pg of Reeb
quotient maps such that, letting f̂ = f̃ ◦ pf and ĝ = g̃ ◦ pg, we have ‖f̂ − ĝ‖∞ = δ < 1. We
then observe the following:

ĝ−1(0) ⊆ f̂−1([−δ,+δ]).
f̃−1([−δ,+δ]) consists of two circular arcs homeomorphic by f̃ to [−δ,+δ], and thus, by
Proposition 2.7, f̂−1([−δ,+δ]) consists of two connected components C+ and C− as well.
For both components we have f̂(C±) = [−δ, δ], and so ‖f̂ − ĝ‖∞ = δ implies that
0 ∈ ĝ(C±). Thus ĝ−1(0) ∩ C− 6= ∅ and ĝ−1(0) ∩ C+ 6= ∅.

But since ĝ−1(0) ⊆ C− t C+, this would contradict the assumption that the fiber ĝ−1(0)
is connected. C

The current example illustrates that the functional distortion distance introduced in [2]
and the interleaving distance introduced in [6] are both stable but fail to be universal. We
first recall the definition of the former. For any Reeb graph (Rf , f̃), (Rg, g̃), consider the
metric on Rf given by

df (x, y) = inf{b− a | x, y are in the same connected component of f̃−1([a, b])}.

Given maps φ : Rf → Rg and ψ : Rg → Rf , we write

G(φ, ψ) =
{

(p, φ(p)) : p ∈ Rf} ∪ {(ψ(q), q) : q ∈ Rg
}

for the correspondences induced by the two maps, and

D(φ, ψ) = sup
(p,q),(p′,q′)∈G(φ,ψ)

1
2 |df (p, p′)− dg(q, q′)|

for the metric distortion induced by (φ, ψ). The functional distortion distance is then
defined as

dFD(Rf , Rg) = inf
φ,ψ

(max
{
D(φ, ψ), ‖f − g ◦ φ‖∞, ‖f ◦ ψ − g‖∞

}
).

To see that neither the functional distortion distance nor the interleaving distance are
universal, we establish:

I Proposition 3.11. dI((Rf , f̃), (Rg, g̃)) ≤ dFD((Rf , f̃), (Rg, g̃)) ≤ 1
2 .

Proof. By [3, Lemma 8], the functional distortion distance is an upper bound on the interleav-
ing distance on Reeb graphs [6], and so it is enough to prove that dFD((Rf , f̃), (Rg, g̃)) ≤ 1

2 .

To this end, consider the maps

φ : Rf → Rg, (x, y) 7→ x and ψ : Rg → Rf , t 7→
(
t,
√

1− t2
)
.

For every pair p, p′ ∈ Rf one can verify that

|f̃(p)− f̃(p′)| ≤ df (p, p′) ≤ |f̃(p)− f(p′)|+ 1,

while for every pair q, q′ ∈ Rg, we have

dg(q, q′) = |g̃(q)− g̃(q′)|.

This implies that for any two corresponding pairs (p, q), (p′, q′) ∈ G(φ, ψ), we have

|df (p, p′)− dg(q, q′)| ≤ 1,

and thus D(φ, ψ) ≤ 1
2 . Both maps preserve function values, so dFD(Rf , Rg) ≤ 1

2 . J
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4 Edit distances

Given a pair of Reeb graphs Rf , Rg, consider a diagram of the form

R R R R

Rf = R1 R2 · · · Rn−1 Rn = Rg

X1 X2 Xn−2 Xn−1

f̃1 f̃2 f̃n−1 f̃n

(1)

where for n ∈ N f̃1, . . . , f̃n are Reeb functions with f̃1 = f̃ and f̃n = g̃, and the maps
Xi → Ri, Ri+1 for i = 1, . . . , n − 1, are Reeb quotient maps. We call the diagram a Reeb
zigzag diagram between Rf and Rg. Observe that, by Remark 3.2, between any two Reeb
graphs Rf and Rg there exists a Reeb zigzag diagram.

A Reeb zigzag diagram can be regarded as being composed of the following elementary
diagrams:

R

Ri

Xi−1 Xi

f̃i

R R

Ri Ri+1

Xi

f̃i f̃i+1

This way, we may think of a Reeb zigzag diagram as a sequence of operations transforming
the Rf into Rg. The elementary diagram on the left corresponds to an edit operation: the
space Xi−1, together with a function Xi−1 → R with Reeb graph Ri, is transformed to
another space Xi, with a function Xi → R having the same Reeb graph Ri. The elementary
diagram on the right corresponds to a relabel operation: the function on Xi with Reeb graph
Ri is transformed to another function with Reeb graph Ri+1. The idea of edit and relabel
operations is inspired by previous work on edit distances for Reeb graphs [7, 1].

In order to define an edit distance using Reeb zigzag diagrams, we need to assign a cost
to a given Reeb zigzag diagram between Rf and Rg. To that end, we can consider a cone
from a space V by Reeb quotient maps V → Ri:

R R R R

R1 R2 · · · Rn−1 Rn

X1 X2 · · · Xn−2 Xn−1

V

f̃1 f̃2 f̃n−1 f̃n

(2)

We call this diagram a Reeb cone. Any Reeb zigzag diagram admits such a cone. Indeed,
the limit over the lower part of the diagram (1) can be constructed from iterated pullbacks,
and since Reeb quotient maps are stable under pullbacks, the maps in the resulting limit
diagram are Reeb quotient maps as well. In a Reeb cone, by commutativity, each of the
Reeb functions f̃i induces a unique function fi : V → R. By Corollary 2.9, the Reeb graph
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15:10 The Reeb Graph Edit Distance Is Universal

of fi is isomorphic to Ri. This way, we pull back the individual functions f̃i to functions
fi on a common space with the same Reeb graphs, where they can be compared using the
supremum norm.

Using these ideas, we can now introduce distances on Reeb graphs, and proceed to prove
that they are stable and universal.

I Definition 4.1. Given a Reeb cone from a space V as in (2), we define the spread of the
functions (fi)i=1,...,n : V → R, as the function

sV : V → R, x 7→ max
i=1,...,n

fi(x)− min
j=1,...,n

fj(x).

Moreover, for a Reeb zigzag diagram Z between Rf and Rg as in (1), consider the limit of Z,
denoted by L. The cost of the Reeb zigzag diagram Z is the supremum norm of the spread sL,

cZ := ‖sL‖∞ = sup
x∈L

(
max
i
fi(x)−min

j
fj(x)

)
.

I Definition 4.2. We define the (PL) edit distance δe between Reeb graphs (Rf , f̃) and
(Rg, g̃) as the infimum cost of all Reeb zigzag diagrams Z between Rf and Rg:

δe(Rf , Rg) = inf
Z
cZ .

Moreover, we define the graph edit distance δeGraph between Reeb graphs (Rf , f̃) and (Rg, g̃)
analogously by restricting the infimum to Reeb zigzag diagrams Z where all the spaces Xi

and Ri are finite topological graphs.

Thus, on Reeb graphs we have two edit distances, satisfying

δe ≤ δeGraph . (3)

The Reeb graph edit distance δeGraph is a categorical reformulation of the definition given
in [1]. The main goal is to prove that these distances have the stability and universality
properties (Propositions 4.4 and 4.5, Theorem 5.6, and Corollary 5.7). As a consequence,
whenever applicable, they actually coincide with the canonical universal distance δU defined
in Definition 3.3:

I Corollary 4.3. δU = δe = δeGraph .

The proofs of stability and universality for δe are straightforward and are given next. The
verification of stability and universality for δeGraph follows in Section 5.

I Proposition 4.4. δe is a stable distance.

Proof. Let (Rf , f̃), (Rg, g̃) be Reeb graphs. For any space X such that there exist two Reeb
quotient maps pf : X → Rf and pg : X → Rg, the diagram

R R

Rf Rg

X

f̃ g̃

pf

f

pg

g

is a Reeb zigzag diagram with limit object X. The cost of this Reeb zigzag diagram is exactly
‖f − g‖∞. Hence, δe((Rf , f̃), (Rg, g̃)) ≤ ‖f − g‖∞. J
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Our proof of universality of the edit distance is similar to previous universality proofs for
the bottleneck distance [5] and for the interleaving distance [11].

I Proposition 4.5. δe is a universal distance.

Proof. Let (Rf , f̃), (Rg, g̃) be Reeb graphs with δe((Rf , f̃), (Rg, g̃)) = d. Hence, for any
ε > 0, there is a Reeb zigzag diagram Z between Rf = R1 and Rg = Rn, with limit L and
functions fi as in Definition 4.1, having cost

cZ = ‖sL‖∞ = ‖max
i
fi −min

j
fj‖∞ ≤ d+ ε.

Let pf : L → Rf and pg : L → Rg be the induced Reeb quotient maps. If dS is any other
stable distance (cf. Definition 3.1) between Rf and Rg, we have

dS((Rf , f̃), (Rg, g̃)) ≤ ‖f̃ ◦ pf − g̃ ◦ pg‖∞ ≤ ‖max
i
fi −min

j
fj‖∞ ≤ d+ ε.

Since the above holds for all ε > 0, we have dS((Rf , f̃), (Rg, g̃)) ≤ d = δe((Rf , f̃), (Rg, g̃)). J

5 Stability and universality of the Reeb graph edit distance

We now turn to the proof of stability and universality for the Reeb graph edit distance.
Recall that, in the case of δeGraph, the admissible Reeb zigzag diagrams are PL zigzags of
finite topological graphs. As mentioned above, the distance δeGraph is applicable to Reeb
graphs of compact triangulable spaces.

I Lemma 5.1. Let X be a compact triangulable space, with PL functions f, g : X → R,
simplexwise linear on a triangulation |K| ∼= X of X by some simplicial complex K. Let
χ : im f → im g be a weakly monotonic PL surjection such that χ ◦ f(v) = g(v) for every
vertex v ∈ V of K. Then there is a Reeb quotient map X/∼f → X/∼g.

Proof. Without loss of generality, assume X = |K|. For simplicity, we write Rf = X/∼f ,
Rg = X/∼g, and Rh = X/∼h, where h = χ◦f . Applying Proposition 2.2, f can be factorized
as f = f̃ ◦ qf , where qf : X → Rf is the canonical projection and f̃ : Rf → R is a Reeb
function. Analogously, we obtain g = g̃ ◦ qg and h = h̃ ◦ qh. We show that there is a Reeb
quotient map k : X → Rh making the following diagram commute:

im f im g

Rf Rh Rg

X X

χ

f̃
h̃

g̃

qf qh k
qg

The claim then follows by applying Lemma 2.10 to obtain Reeb quotient maps Rf → Rh
and Rh → Rg, which compose to the desired map Rf → Rg.

In order to prove the existence of such a Reeb quotient map k, we define the relation

k = qh ◦ ((h−1 ◦ g) ∩ stK)

on X ×Rh. Here stK denotes the open star on X = |K|, defined as

stK(x) = {y ∈ X | σ ∈ K, y ∈ σ◦, x ∈ σ},
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15:12 The Reeb Graph Edit Distance Is Universal

where σ◦ is the interior of the simplex σ. Note that the converse relation to the open star is
the (closed) carrier, st−1

K = carrK , where carrK(A) is the underlying space of the smallest
subcomplex of K containing A ⊆ X. We will also use the open carrier relation carr◦K , where
carr◦K(A) is the smallest union of open simplices of K covering A. Note that the open carrier
relation is symmetric, i.e., (carr◦K)−1 = carr◦K . Moreover, we have carr◦K ⊆ stK .

The remainder of the proof is split into several lemmas. Lemma 5.2 describes the behaviour
of the functions h and g on the simplices of K. Lemma 5.3 shows that k is a continuous
surjection, and Lemma 5.4 shows that k has connected fibers. Since h̃ ◦ k = g, we conclude
that k is PL. Thus, k is a Reeb quotient map, and the claim follows from Lemma 2.10. J

I Lemma 5.2. For every simplex σ in K, g(σ) = h(σ) and g(σ◦) ⊆ h(σ◦).

Proof. We have h(σ) = g(σ) because h is equal to g on the vertices of K, and h = χ ◦ f
with f linear on σ and χ a weakly monotonic surjection.

To show that g(σ◦) ⊆ h(σ◦), note that since g is linear on σ, either g is constant on σ
and so g(σ◦) = g(σ) = h(σ), or g(σ◦) = (g(v), g(w)) for some vertices v, w of σ. In the latter
case, since h and g coincide on the vertices, we have g(σ◦) = g(σ)◦ = h(σ)◦. Finally, since
h(σ◦) ⊆ h(σ) ⊆ h(σ◦) are nested intervals, we have h(σ)◦ ⊆ h(σ◦) and the claim follows. J

I Lemma 5.3. k is a continuous surjection.

Proof. Recall that the relation k ⊆ X × Rh is a partial set map if for any x ∈ X and
y, y′ ∈ k(x), we have y = y′. Moreover, a partial set map k is a (total) set map if for every
x ∈ X, k(x) 6= ∅. Finally, a set map k is a surjection if for every y ∈ Rh, there is some
x ∈ k−1(y).

We first show that k is a partial set map, i.e., for any x ∈ X and y, y′ ∈ k(x), we have
y = y′. To see this, let t = g(x) and note that h̃(y) = h̃(y′) = t. Let σ ∈ K be such that
x ∈ σ◦. By Lemma 5.2 there is a point ζ ∈ σ◦ with h(ζ) = g(x) = t; in particular,

ζ ∈ h−1(t) ∩ stK(x).

Furthermore, there are points ξ, ξ′ ∈ h−1(t) ∩ stK(x) with ξ ∈ q−1
h (y) and ξ′ ∈ q−1

h (y′).
But since h−1(t) ∩ τ is necessarily connected for every simplex τ , we know that ζ lies
in the same connected component of h−1(t) ∩ stK(x) as both ξ and ξ′, and so we have
y = qh(ξ) = qh(ξ′) = y′ as claimed.

To show that k is a set map, we need to show that for every x ∈ X, k(x) 6= ∅. It
suffices to show that for every x ∈ X, stK(x) contains a point x′ with h(x′) = g(x). This
follows by considering the simplex σ ∈ K with x ∈ σ◦. Now by Lemma 5.2, there is a point
x′ ∈ σ◦ ⊆ stK(x) with h(x′) = g(x) as claimed.

To show that k is surjective, we show that for every y ∈ Rh, there is some

x ∈ k−1(y) = (carrK ◦ q−1
h )(y) ∩ (g−1 ◦ h̃)(y),

or equivalently, there is some x ∈ carrK ◦ q−1
h (y) such that g(x) = h̃(y). If q−1

h (y) contains
some vertex v of K, choose x = v. Otherwise, let ξ ∈ q−1

h (y), and let σ ∈ K be such that
ξ ∈ σ◦. Now by Lemma 5.2 there is a point x ∈ σ ⊆ carrK ◦ q−1

h (y) with g(x) = h(ξ) = h̃(y).
Finally, to show that k is continuous, we show that for every closed subset L of Rh, the

preimage k−1(L) is closed. Since k−1 = (carrK ◦ q−1
h )∩ (g−1 ◦ h̃), it is sufficient to show that

both carrK ◦ q−1
h (L) and g−1 ◦ h̃(L) are closed in X. First note that carrK ◦ q−1

h (L) is closed
as a subcomplex of K. Furthermore, the image h̃(L) is closed by the closed map lemma. By
continuity of g it follows that g−1 ◦ h̃(L) is closed in X. J
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I Lemma 5.4. The fibers of k are connected.

Proof. Let y ∈ Rh be a point in the Reeb graph with value t = h̃(y), and C = q−1
h (y) ⊆ h−1(t)

the corresponding component of the level set of h. Let U = carrK(C), and let L be the
corresponding subcomplex of K. Writing D = k−1(y), we have C = U ∩ h−1(t) and
D = U ∩ g−1(t). To prove that D is connected, it is sufficient to show that C and D have
finite closed covers with isomorphic nerves; since C is connected, both nerves and hence also
D are then connected too.

The cover of C is given by {σ∩C | σ ∈ L}, and similarly the cover of D is {σ∩D | σ ∈ L}.
Observe that any two cover elements of C, say σ∩C and τ ∩C, have a nonempty intersection
(σ ∩ C) ∩ (τ ∩ C) = (σ ∩ τ) ∩ C if and only if t ∈ h(σ ∩ τ). Similarly, σ ∩D and τ ∩D have
nonempty intersection if and only if t ∈ g(σ ∩ τ). But g(σ ∩ τ) = h(σ ∩ τ) by Lemma 5.2,
and so the nerves of both covers are isomorphic as claimed. J

We thus have shown the existence of the Reeb quotient map k. This completes the proof
of Lemma 5.1. We will now apply Lemma 5.1 to construct Reeb graph edit zigzags from
straight line homotopies.

I Lemma 5.5. Let X be a compact triangulable space, with PL functions f, g : X → R,
simplexwise linear on a triangulation |K| ∼= X. Consider the straight line homotopy fλ =
(1 − λ)f + λg, with 0 ≤ λ ≤ 1. Then there exists a partition 0 = λ1 < · · · < λn = 1 such
that for every 1 ≤ i < n and ρ ∈ (λi, λi+1), there exist weakly monotonic PL surjections
χi : im fρ → im fλi and ξi+1 : im fρ → im fλi+1 with

χi ◦ fρ(v) = fλi(v) and ξi+1 ◦ fρ(v) = fλi+1(v)

for every vertex v of K.

Proof. Consider the set of values 0 < λ < 1 such that there exist vertices v, w ∈ K with

fλ(v) = fλ(w), but fρ(v) 6= fρ(w) for every ρ 6= λ.

This set is finite because the function λ 7→ fλ(v)− fλ(w) is linear and K has a finite number
of vertices. Let {λi}1≤i≤n be this set together with 0 and 1, indexed in ascending order. By
the linearity of fλ with respect to the parameter λ, we also see that the order induced by
fρ on the vertices is the same for every ρ ∈ (λi, λi+1). Indeed, if there exist two distinct
vertices v, w of K such that fρ(v) = fρ(w) for some ρ ∈ (λi, λi+1), then fλ(v) = fλ(w) for
every λ ∈ [0, 1]. By continuity, the order is still weakly preserved along [λi, λi+1].

Therefore, the function fρ(v) 7→ fλi(v) is well-defined and can be extended to a piecewise
linear function χi satisfying the claim. The function ξi+1 can be defined similarly. J

I Theorem 5.6. δeGraph is a stable distance.

Proof. Let X ∼= |K| be a compact triangulable space with f, g : X → R be PL functions,
simplexwise linear on K; without loss of generality, assume X = |K|. Consider the straight
line homotopy fλ = (1− λ)f + λg, with 0 ≤ λ ≤ 1, and take values λi ∈ [0, 1], 1 ≤ i ≤ n, as
in Lemma 5.5. Set ρi = (λi + λi+1)/2.

We first define a Reeb cone of the form (2), with V = X, Ri = X/∼fλi , i = 1, . . . , n, and
Xi = X/∼fρi , i = 1, . . . , n− 1. The canonical projections qρi : X → Xi and qλi : X → Ri are
Reeb quotient maps, and the Reeb functions Ri → R are induced by fλi as in Proposition 2.2.
To complete the construction, we show that there are Reeb quotient maps pi : X/∼fρi →
X/∼fλi and oi+1 : X/∼fρi → X/∼fλi+1

that make the following diagram commute:
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Ri = X/∼fλi Ri+1 = X/∼fλi+1

Xi = X/∼fρi

X

pi oi+1

qρi
qλi qλi+1

We prove the existence of pi, that of oi+1 being analogous. By Lemma 5.5, there is a weakly
monotonic PL surjection χi : im fρi → im fλi such that χi ◦ fρi = fλi . Hence, Lemma 5.1
provides the desired Reeb quotient map pi : X/∼fρi → X/∼fλi .

Now consider the limit L over the resulting Reeb zigzag diagram Z consisting of the maps
pi and oi, with maps ri : L → Xi and si : L → Ri. Since the maps from X in the above
Reeb cone factor through a unique map m : X → L by the universal property of the limit,
we obtain the commutative diagram

R R

· · · Ri Ri+1 · · ·

Xi−1 Xi Xi+1

L

X

f̃λi f̃λi+1

oi pi oi+1 pi+1

ri−1
ri

ri+1

si si+1

qρi−1

qρi

qρi+1
m

We have fλi = fLλi ◦m for 1 ≤ i ≤ n, with fLλi = f̃λi ◦ si. Hence, for every ` ∈ L,

sL(`) = max
j
fLλj (`)−min

k
fLλk(`) ≤

n−1∑
i=1
|fLλi+1

(`)− fLλi(`)|.

By the surjectivity of qρi , for every i there is x`,i ∈ X such that qρi(x`,i) = ri(`). Thus,

|fLλi+1
(`)− fLλi(`)| = |fλi+1(x`,i)− fλi(x`,i)| ≤ (λi+1 − λi) · ‖f − g‖∞.

Together, for every ` ∈ L we have

sL(`) ≤
n−1∑
i=1

(λi+1 − λi) · ‖f − g‖∞ = ‖f − g‖∞.

We conclude that

δe(Rf , Rg) ≤ cZ = ‖sL‖∞ ≤ ‖f − g‖∞,

showing that δe is a stable distance. J

I Corollary 5.7. δeGraph = δU is the universal distance.

Proof. The claim is a direct consequence of inequality (3) together with Theorem 5.6
and Propositions 4.4 and 4.5. J



U. Bauer, C. Landi, and F. Mémoli 15:15

6 Discussion

We believe that the following questions are of interest and could motivate further research:
Do minimizers in the definition of the universal distance always exist? This would have
algorithmic implications. See below.
Is the interleaving distance [6] bi-Lipschitz equivalent to the universal distance? If the
answer to this question is affirmative, then by results of [3], one would obtain the bi-
Lipschitz equivalence between the universal distance and the functional distortion distance
from [2].
What is the computational complexity of the universal distance? This problem is at least
graph-isomorphism hard, which can be seen as follows. First note that bipartite graphs
form a graph-isomorphism complete class of graphs. Any bipartite simple graph can be
interpreted as a Reeb graph with function values in {0, 1} corresponding to the partition
of the vertex set. Using Corollary 3.6, these Reeb graphs are at universal distance 0 if
and only if the bipartite graphs are isomorphic, so both of these decision problems are
graph-isomorphism complete. A similar observation has been made for the interleaving
distance [6].
These considerations motivate the following two ancillary questions:

Is the universal distance a minimum over a certain finite set, possibly of cardinality
polynomial in the size of the input Reeb graphs?
More generally, are the possible values of the universal distance always contained in
some canonical set of values, constructed from the sets of vertex function values of the
two Reeb graphs? Related results in the context of manifolds endowed with Morse
functions are in the work of Donatini and Frosini [8]. This work carries over to the
setting of Reeb graphs by the results of [7].

How do the theoretical properties of the universal distance extend to more genreal settings?
The definition of the universal distance also makes sense in a more general topological
setting, where we consider locally compact Hausdorff spaces as Reeb domains and
proper quotient maps with connected fibers as Reeb quotient maps. The distance one
obtains in this larger category can still be applied to finite Reeb graphs, in which case
it will be smaller or equal to the PL universal distance that we described in this paper.
However, we conjecture that in this case the two distances actually coincide.
Reeb spaces: Generalizing our definitions and results up to Section 5 to Reeb spaces
of piecewise linear maps X → Rn is straightforward. Do our results of Section 5
generalize as well?
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