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Abstract
Given a vertex-colored graph, we say a path is a rainbow vertex path if all its internal vertices have
distinct colors. The graph is rainbow vertex-connected if there is a rainbow vertex path between every
pair of its vertices. In the Rainbow Vertex Coloring (RVC) problem we want to decide whether
the vertices of a given graph can be colored with at most k colors so that the graph becomes rainbow
vertex-connected. This problem is known to be NP-complete even in very restricted scenarios, and
very few efficient algorithms are known for it. In this work, we give polynomial-time algorithms for
RVC on permutation graphs, powers of trees and split strongly chordal graphs. The algorithm for
the latter class also works for the strong variant of the problem, where the rainbow vertex paths
between each vertex pair must be shortest paths. We complement the polynomial-time solvability
results for split strongly chordal graphs by showing that, for any fixed p ≥ 3 both variants of the
problem become NP-complete when restricted to split (S3, . . . , Sp)-free graphs, where Sq denotes
the q-sun graph.
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1 Introduction

Graph coloring is a classic problem within the field of structural and algorithmic graph
theory that has been widely studied in many variants. An example is the rainbow coloring
problem, which is an edge coloring problem [2, 11, 13]. One recent variant was defined by
Krivelevich and Yuster [9] and has received significant attention: the rainbow vertex coloring
problem. A vertex-colored graph is said to be rainbow vertex-connected if between any pair
of its vertices, there is a path whose internal vertices are colored with distinct colors. Such a
path is called a rainbow path. Note that this vertex coloring does not need to be a proper
one; for instance, a complete graph is rainbow vertex-connected under the coloring that
assigns the same color to every vertex. The Rainbow Vertex Coloring (RVC) problem
takes as input a graph G and an integer k and asks whether G has a coloring with k colors
under which it is rainbow vertex-connected. The rainbow vertex connection number of a
graph G is the smallest number of colors needed in one such coloring and is denoted rvc(G).
More recently, Li et al. [12] defined a stronger variant of this problem by requiring that the
rainbow paths connecting the pairs of vertices are also shortest paths between those pairs. In
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this case we say the graph is strong rainbow vertex-connected. The analogous computational
problem is called Strong Rainbow Vertex Coloring (SRVC) and the corresponding
parameter is denoted srvc(G).

Both the RVC and the SRVC problems are NP-complete for every k ≥ 2 [4, 3, 5], and
remain NP-complete even on bipartite graphs and split graphs [7]. Both problems are also
NP-hard to approximate within a factor of n1/3−ε for every ε > 0, even when restricted to
bipartite graphs and split graphs [7]. Contrasting these results, it was shown that RVC and
SRVC are linear-time solvable on bipartite permutation graphs and block graphs [7], and on
planar graphs for every fixed k [10]. In fact, if k is fixed, both problems are also solvable
in linear time on graphs of constant treewidth and in cubic time on graphs of constant
clique-width, as they can be expressed in monadic second order logic [5]. Furthermore, they
are also solvable in linear time on graphs of vertex cover at most p, for any fixed p [5]. Finally,
RVC is also known to be linear time solvable on interval graphs [7].

The above mentioned results on bipartite permutation graphs and interval graphs led
Heggernes et al. [7] to formulate the following conjecture concerning diametral path graphs.
A graph G is a diametral path graph if every induced subgraph H has a diametral path P
that is dominating. Recall that a diametral path is a shortest path whose length is equal to
the diameter, and that dominating means that every vertex either is in P , or is adjacent to a
vertex in P .

I Conjecture 1 (Heggernes et al. [7, Conjecture 15]). Let G be a diametral path graph. Then
rvc(G) = diam(G)− 1.

In this context, it is interesting to remark that both bipartite permutation graphs and
interval graphs are diametral path graphs, and that Heggernes et al. [7] showed that the
conjecture is true for these graphs.

We remark that similar bounds were studied for the edge variant of the problem, in which
we want to color the edges of a graph in such a way that every pair of vertices is connected
by a path whose edges received pairwise distict colors (a rainbow path). For instance, it
is known that AT-free graphs (a subclass of diametral path graphs) can be rainbow edge
colored with diam(G) + 3 colors. However, there are examples of such graphs G that need
diam(G) + 2 colors to be rainbow edge colored [16].

Our Results. 1 Our main contribution is to show that the above conjecture is true for
permutation graphs.

I Theorem A (=Theorem 17). If G is a permutation graph on n vertices, then rvc(G) =
diam(G)− 1 and the corresponding rainbow vertex coloring can be found in O(n2) time.

This generalizes the earlier result on bipartite permutation graphs [7]. The proof of our
result follows from a thorough investigation of shortest paths in permutation graphs. We
show that there are two special shortest paths that ensure that a rainbow vertex coloring
with diam(G)− 1 colors can be found.

We also investigate the rainbow vertex connection number of chordal graphs further. As
the problem is NP-hard and hard to approximate on split graphs [7], the hope for polynomial-
time solvability rests either within subclasses of split graphs or other chordal graphs that are
not inclusion-wise related to split graphs (such as the previously studied interval graphs and
block graphs [7]). We make progress in both directions. First, we show that the problem is
polynomial-time solvable on split strongly chordal graphs.

1 Statements marked with ♠ had their proofs omitted due to space constraints.
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I Theorem B (=Theorem 20). If G is a split strongly chordal graph with ` cut vertices, then
rvc(G) = srvc(G) = max{diam(G)− 1, `}.

In order to obtain the above result, we exploit an interesting structural property of split
strongly chordal graphs. Namely, if G is a split strongly chordal graph with clique K and
independent set S, there exists a spanning tree of G[K] such that the neighborhood of each
vertex of S induces a subtree of this tree.

Second, we show that RVC remains polynomial-time solvable on powers of trees. This
proof is based on a case analysis, depending on whether the diameter of the tree is a multiple
of the power and how many long branches the tree has. In some cases diam(G)− 1 many
colors are enough to rainbow vertex color these graphs, but surprisingly this is not always
true. There are graphs in this graph class that actually require diam(G) colors in order to
be rainbow vertex colored. We provide a complete characterization of such graphs, as well as
a polynomial time algorithm to optimally rainbow vertex color any power of tree.

I Theorem C (=Theorem 26). If G is a power of a tree, then rvc(G) ∈ {diam(G) −
1,diam(G)}, and the corresponding optimal rainbow vertex coloring can be found in time that
is linear in the size of G.

2 Preliminaries

Whenever we write graph, we will mean a finite undirected simple graph. We assume
throughout that all graphs are connected and have at least four vertices.

Let G = (V,E) be a graph. For two vertices u, v ∈ V , we use u ∼ v to denote that u and
v are adjacent. For a vertex v ∈ V , we write dG(v) for its degree. For a subgraph H of G,
we write VH for the set of vertices of H. Specifically, for a path P in G, we write VP for the
vertices of P . If X ⊆ V , then by G[X] we denote the subgraph of G induced by X, that is,
G[X] = (X,E ∩ (X ×X)). We use N(v) = {u ∈ V | u ∼ v} and N [v] = N(v) ∪ {v}.

The length of a path P equals the number of edges of P . The distance dG(u, v) is the
length of a shortest u, v-path in G. If the graph G is clear from the context, we simply write
d(u, v). The diameter diam(G) of G is the length of the longest shortest path between two
vertices in G, that is, diam(G) = max{dG(u, v) | u, v ∈ V }. A center of a graph G is a vertex
c such that max{dG(c, v) | v ∈ V } is minimum among all vertices of G. Note that a graph
can have multiple centers and that a tree can have at most two.

A graph G is a permutation graph if it is an intersection graph of line segments between
two parallel lines (see Figure 1). The set of line segments that induce the permutation graph
is called an intersection model. Alternatively, if G has n vertices, then there is a permutation
σ of {1, . . . , n} such that vertex i and vertex j with i < j are adjacent in G if and only if j
comes before i in σ.

A graph G is a chordal graph if every cycle C = {c1, . . . , c`} on ` ≥ 4 vertices has a chord,
meaning an edge between two non-consecutive vertices of the cycle.

A graph G is a split graph if VG can be split into two sets, K and S, such that K induces
a clique in G and S induces an independent set in G.

For any k ≥ 3, we denote by Sk the k-sun on 2k vertices, that is, a graph with a clique
c1, . . . , ck on k vertices and an independent set v1, . . . , vk of k vertices such that vi is adjacent
to ci and ci+1 for every 1 ≤ i < k and vk is adjacent to ck and c1. A graph G is a strongly
chordal graph if it is chordal and every even cycle C has a chord uv such that the distance
in C between u and v is odd. The strongly chordal graphs are exactly the chordal graphs
which have no induced subgraphs isomorphic to a k-sun for any k ≥ 3.

MFCS 2020
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Figure 1 An intersection model and the corresponding permutation graph.

The k-th power of a graph G for k ≥ 1, denoted by Gk, is the graph on the same vertex
set of G where u ∼ v in Gk if and only if there is a path of length at most k from u to v in
G. In particular, G1 = G. If G is a tree, then Gk is a chordal graph for any k ≥ 1.

Finally we make the following observation about diameter two graphs, which follows from
the fact that we can color all the vertices of G with the same color.

I Observation 1. If diam(G) ≤ 2, then srvc(G) = rvc(G) = 1.

3 Permutation graphs

In this section, we consider rainbow colorings on permutation graphs. Let G be a permutation
graph. Let L1 and L2 be two parallel lines in the plane and for each v ∈ VG, let sv be the
segment associated to v in the intersection model (see Figure 1). We denote by t(v) the
extreme of sv in L1, that is t(v) = sv ∩L1, and we refer to t(v) as the top end point of sv. By
b(v) we denote the extreme of sv in L2, the bottom end point of sv. Throughout, we assume
that an intersection model is given; otherwise, one can be computed in linear time [14].

Whenever we write “u intersects v” for two vertices u and v, we mean su intersects sv.
For two vertices u and v, with u 6= v, there are several options for u, v in the intersection
model. If

t(u) < t(v) and b(u) > b(v), then u ∼ v,
t(u) > t(v) and b(u) < b(v), then u ∼ v,
t(u) < t(v) and b(u) < b(v), then we say “u is left of v” and write u ≺ v,
t(u) > t(v) and b(u) > b(v), then we say “u is right of v” and write u � v.

We use the notation u � v if t(u) ≤ t(v) and b(u) ≤ b(v). Note that “≺” is a partial
ordering on the vertices of the graph and u � v does not imply u � v.

For each pair u, v ∈ V (G), Mondal et al. [15] define two u-v paths, one of which is shortest.
Define a path Xu,v as follows. If u ∼ v, Xu,v will be u, v. Otherwise, assume without loss of
generality that u ≺ v. Start with x1 = u. Of all vertices x that intersect u with t(x) > t(u),
let x2 be the one with largest t(x2). If there is no vertex x that intersects u with t(x) > t(u),
we say that the path Xu,v does not exist. Otherwise, define xi, with i ≥ 3, as follows. If xi−1
is incident to v, set xi = v and end the path. Otherwise, if i is even (resp. odd), let xi be
the vertex that intersects xi−1 where t(xi) (resp. b(xi)) is largest.

Notice that it cannot be that xi−2 = xi, or G would not be connected.
Analogously, we define the path Yu,v. This path starts with y1 = u. If u intersects v, set

y2 = v and end the path. Otherwise, let y2 be the vertex that intersects u with largest b(y2),
if b(y2) > b(u) (otherwise the path Yu,v does not exist).

If yi−1 intersects v, set yi = v and end the path. Otherwise, the next vertex yi is the
vertex that intersects yi−1 with largest b(yi) (resp. t(yi)) if i is even (resp. odd). Notice that
it cannot be that yi−2 = yi, or G would not be connected.
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pk−1 pku

v

Figure 2 If a vertex v in layer Lk+1 intersect a vertex u in layer Lk, then it also intersects pk.
See Lemma 7.

The paths we just defined satisfy the following property. Let z1, z2, z3, . . . , za be a path.
For all 2 ≤ i ≤ a,

t(zi) > t(zi−1) and b(zi) < b(zi−1) if i is even, (1)
t(zi) < t(zi−1) and b(zi) > b(zi−1) if i is odd, (2)

or, for all 2 ≤ i ≤ a,

t(zi) < t(zi−1) and b(zi) > b(zi−1) if i is even, (3)
t(zi) > t(zi−1) and b(zi) < b(zi−1) if i is odd. (4)

Note that Equations (1) and (2) hold for Xu,v, by definition, and that Equations (3) and (4)
hold for Yu,v, by definition.

I Lemma 2 (♠, Mondal et al. [15]). Xu,v or Yu,v is a shortest u, v-path.

We define two special paths P and Q. For P , let p1 be the vertex such that t(p1) is
smallest among all vertices of G. Perform the same process as in the construction of Xp1,·:
for i ≥ 2, if i is even (resp. odd), let pi be the vertex that intersects pi−1 where t(pi) (resp.
b(pi)) is largest. Let P denote the resulting path and let pd denote the last vertex of P .
Observe that P = Xp1,pd

.
For Q, let q1 be the vertex such that b(q1) is smallest among all vertices of G. Perform

the same process as in the construction of Yq1,·: for i ≥ 2, if i is even (resp. odd), let qi be
the vertex that intersects qi−1 where b(qi) (resp. t(qi)) is largest. Let Q denote the resulting
path and let qd′ denote the last vertex of Q. Observe that Q = Yq1,qd′ .

I Corollary 3 (♠). P is a shortest p1, pd-path and Q is a shortest q1, qd′-path.

We will prove some more useful properties about the paths P and Q.

I Lemma 4 (♠). Let vt, resp. vb, be the segment that has the rightmost top, resp. bottom,
end point. Then pd = vt and pd−1 = vb if d is even, and vice versa if d is odd. Furthermore,
we have qd′ = vb and qd′−1 = vt if d′ is even, and vice versa if d′ is odd.

I Lemma 5 (♠). The sets VP \ {pd} and VQ \ {qd′} are dominating sets of G.

I Lemma 6 (♠). It holds that d = diam(G) or d = diam(G) + 1, and d′ = diam(G) or
d′ = diam(G) + 1.

Now we start a breadth-first search from p1. Call the layers L1, L2, . . . , Lr. Since P is a
shortest path, it follows that pi ∈ Li for every i. Thus r ≥ d. Since VP \ {pd} is a dominating
set, we conclude that r = d, thus the layers of the breadth-first search are L1, L2, . . . , Ld. We
also start a breadth-first search in q1, and call the layers M1,M2, . . . ,Md′ . Again, we have
that qi ∈Mi for every i. A nice property of the path P is that every vertex pi is adjacent to
all vertices in the next layer Li+1.

MFCS 2020
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Figure 3 The layers of the BFS, the layers L1, L2, . . . , Ld−1 are all assigned a different color. See
Lemma 8.

I Lemma 7. For every i, it holds that Li+1 ⊆ N(pi) and Mi+1 ⊆ N(qi).

Proof. We will prove a somewhat stronger result by induction, namely that Li+1 ⊆ N(pi)
and if i is even (resp. odd) we have that for every u in Li+1:

t(u) < t(pi) and b(u) > b(pi) (resp. t(u) > t(pi) and b(u) < b(pi)). (5)

We use a proof by induction. The first layer L1 contains only p1. It is clear that every
vertex in the second layer L2 is a neighbour of p1. Moreover, by the definition of p1, we have
that t(u) > t(p1) for all u ∈ L2, and thus b(u) < b(p1).

Suppose that Li+1 ⊆ N(pi) and Equation (5) holds for every i < k. Let v be a vertex in
Lk+1. We know that v does not intersect pk−1, otherwise v would be contained in Lk. So
we know that t(v) > t(pk−1) and b(v) > b(pk−1). Since v is in layer Lk+1, v intersects u for
some u ∈ Lk (see Figure 2). So we either have that t(v) < t(u) and b(v) > b(u) or we have
t(v) > t(u) and b(v) < b(u). If k is even (resp. odd), we have t(v) < t(u) and b(v) > b(u)
(resp. t(v) > t(u) and b(v) < b(u)), otherwise, by the induction hypothesis, v would intersect
pk−1. By the induction hypothesis u intersects pk−1, so by the definition of pk, we have
that t(pk) ≥ t(u) (resp. b(pk) ≥ b(u)). It follows that t(v) < t(pk) (resp. b(v) < b(pk)). We
know that b(pk) < b(pk−1) (resp. t(pk) < t(pk−1)), thus b(v) > b(pk) (resp. t(v) > t(pk)).
We conclude that v intersects pk, and t(v) < t(pk) and b(v) > b(pk) (resp. t(v) > t(pk) and
b(v) < b(pk)). So Lk+1 ⊆ N(pk) for every k. The proof thatMk+1 ⊆ N(qk) is analogous. J

For an illustration of the structure of G, see Figure 3. If d = diam(G) or d′ = diam(G),
we will color G layer by layer to obtain a rainbow coloring.

I Lemma 8. If d = diam(G) or d′ = diam(G), then rvc(G) = diam(G)− 1.

Proof. Assume that d = diam(G). Consider the following coloring (see Figure 3): c(v) = i

if v ∈ Li, 1 ≤ i ≤ d − 1, and c(v) = 1 otherwise. This coloring uses d − 1 = diam(G) − 1
colors. We claim that it is a rainbow coloring. Let u and v be two vertices. Then u ∈ Li,
v ∈ Lj for some i, j. Without loss of generality, assume that i ≤ j. If u = pi, then, by
Lemma 7, the path p1, p2, . . . , pj−1, v is a rainbow path. If i > 1, again by Lemma 7, the
path u, pi−1, pi, . . . , pj−1, v is a rainbow path. We conclude that rvc(G) = diam(G)− 1. The
proof for d′ = diam(G) is analogous. J

Consider the case where d = d′ = diam(G) + 1. In this case, we will still color the layers
of a breadth-first search that starts at p1, but we have to reuse the color of the first layer for
layer Ld−1. We consider the coloring: c(v) = i if v ∈ Li, 1 ≤ i ≤ d− 2, c(v) = 1 if v ∈ Ld−1,
and c(v) = 2 if v ∈ Ld. We will show that this is a rainbow coloring. For almost every u and
v, we readily construct a rainbow path using path P .
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pd−1
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pd = qd−1
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Figure 4 The numbers indicate the colors of the layers. If u ∼ q1 and v ∼ qd−1, the path
u, q1, p2, . . . , qd−2, v is a rainbow path. If u ∼ q2 and v � qd−2, the path u, q2, p3, . . . , qd−1, v is a
rainbow path. See Lemma 14.

I Lemma 9 (♠). For the following u and v, there exists a rainbow path:
1. for u = pi, and v arbitrary,
2. for u ∈ Li with i ≥ 3, and v ∈ Lj with j ≥ 3,
3. for u ∈ L2, and v /∈ Ld,
4. for u ∈ L2, u ∼ p2, and v ∈ Ld.

There are some vertices u and v, for which we did not yet construct a rainbow path. The
case that is left, is the following:
5. for u ∈ L2, u � p2, and v ∈ Ld.
The path via P , u, p1, p2, . . . , pd−1, v, does not suffice in this case, since it uses p1 and pd−1,
which are both colored with color 1. So this is not a rainbow path. For some cases we show
that a similar path via Q is a rainbow path. For other cases, we show that Xu,v or Yu,v is a
rainbow path.

I Lemma 10 (♠). If u ∈ L2 and u � p2, then u ∼ q1 or u ∼ q2.

I Lemma 11 (♠). If d = d′ = diam(G) + 1, then pd = qd−1 and pd−1 = qd.

I Corollary 12 (♠). If d = d′ = diam(G) + 1, it holds that qi ∈ Li+1, for every 1 ≤ i < d.

I Lemma 13 (♠). If d = d′ = diam(G) + 1, then for every v ∈ Ld, if v � qd−2, then
v ∼ qd−1.

Now we can prove for even more vertices u and v that there is a rainbow path from u to
v, using path Q, see also Figure 4.

I Lemma 14. For the following vertices u and v, there is a rainbow path:
5a. for u ∈ L2, u � p2, v ∈ Ld, and v ∼ qd−2,
5b. for u ∈ L2, u � p2, v ∈ Ld, and v � qd−2, u ∼ q2.

Proof. 5a. By Lemma 10, we know that u ∼ q1 or u ∼ q2. By Corollary 12, we know that
q1, q2, . . . , qd−2 are in layers L2, L3, . . . , Ld−1, each vertex in a different layer. So, either
u, q1, q2, . . . , qd−2, v or u, q2, q3, . . . , qd−2, v is a rainbow path.

5b. By Lemma 13, we know that v ∼ qd−1. By Corollary 12, we know that q1, q2, . . . , qd−2
are in layers L2, L3, . . . , Ld−1, each vertex in a different layer. The path u, q2, q3, . . . , qd−1, v

is a rainbow path. J

Now there is still one case of vertices u and v for which we did not prove yet that there is
a rainbow path. Namely:

5c. for u ∈ L2, u � p2, v ∈ Ld, and v � qd−2, u � q2.
For this last case we can show that either Xu,v or Yu,v is a rainbow path.

MFCS 2020
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I Lemma 15 (♠). If u ∼ p1, u � p2 and u � q2, then u ≺ p2.

I Lemma 16. For u and v satisfying case 5c, there is a rainbow path.

Proof. We distinguish two cases, based on Lemma 2: either Xu,v is a shortest u, v-path or
Yu,v is a shortest u, v-path.

Suppose that Xu,v is a shortest u, v-path. Notice that Xu,v has at least one vertex in
every layer L2, L3, . . . , Ld. Since Xu,v has length at most d− 1, there is at most one layer
which contains two vertices of Xu,v. It is clear that x1 = u is in layer L2. We will show that
x2 is in layer L2 as well. By definition of x2, we have t(x2) > t(u) and b(x2) < b(u). Since
u ∼ p1 and p1 has the leftmost top end, we know that t(u) > t(p1) and b(u) < b(p1). We
conclude that t(x2) > t(p1) and b(x2) < b(p1), thus x2 ∼ p1. So we see that x1 and x2 are
both in layer L2, so all internal vertices of Xu,v are in different layers. So Xu,v is a rainbow
path.

Suppose that Yu,v is a shortest u, v-path. Write Yu,v = u, y2, y3, . . . , yα−1, v. Then α = d

or α = d− 1; note that α ≤ diam(G) + 1 = d and that d− 1 ≤ α because Yu,v contains a
vertex from every layer. We prove by induction that yi ∈ Li+1 for all 2 ≤ i ≤ α− 1.

Since y2 and p1 both intersect u, by the definition of y2, it follows that b(y2) ≥ b(p1). See
Figure 5. If y2 = p1, then yu,v = u, p1, p2, . . . , pd−1, v. Notice that the length of this path is
d = diam(G) + 1. This yields a contradiction with the fact that Yu,v is a shortest u, v-path.
Hence, y2 6= p1, and b(y2) > b(p1). Since p1 is the vertex with the leftmost top end, we see
that t(p1) < t(y2). Hence y2 � p1. Since y2 does not intersect p1, it follows that y2 /∈ L2.

By the definition of y2, we know that t(y2) < t(u). By Lemma 15, it holds that t(u) < t(p2),
thus t(y2) < t(p2). Moreover, b(y2) > b(p1) > b(p2) (by Equation (1)). Hence, y2 intersects
p2. We conclude that y2 ∈ L3.

Suppose that for all i < k, for some k > 2, it holds that yi � pi−1 and yi ∈ Li+1. Now
consider yk. Suppose that k is even. By the induction hypothesis and Lemma 7, we know that
yk−1 ∼ pk−1, since yk−1 ∈ Lk. By definition of yk, it follows that b(yk) ≥ b(pk−1). And by
Equation (1), we know that b(pk−1) > b(pk), thus b(yk) > b(pk). Similarly, by the definition
of pk, we know that t(pk) ≥ t(yk−1). And by Equation (3), we know that t(yk) < t(yk−1),
hence t(pk) > t(yk). We conclude that pk intersects yk. It follows that yk is in layer k − 1, k
or k + 1.

Notice that if yk ∈ Lk−1, then the length of Yu,v is at least d = diam(G) + 1. This yields
a contradiction with the fact that Yu,v is a shortest u, v-path. Thus yk /∈ Lk−1. Suppose that
yk ∈ Lk. Then yk intersects pk−1. We have seen that b(yk) ≥ b(pk−1), thus t(yk) < t(pk−1).
By Equation (2), we have b(pk−1) > b(pk−2), Thus b(yk) > b(pk−2). By Equation (2), we
also have that t(pk−1) < t(pk−2), thus t(yk) < t(pk−2). It follows that yk ∼ pk−2. This yields
a contradiction with the assumption that yk ∈ Lk. We conclude that yk ∈ Lk+1.

The case for k odd is analogous. Since yi ∈ Li+1 for all internal vertices yi of Yu,v, we
conclude that Yu,v is a rainbow path. J

I Theorem 17 (=Theorem A). For every n-vertex permutation graph G, it holds that
rvc(G) = diam(G) − 1. Moreover, we can compute an optimal rainbow vertex coloring in
O(n2) time.

Proof. By Lemma 6 we know that either d = diam(G) or d = diam(G) + 1, and either
d′ = diam(G) or d′ = diam(G) + 1. If d = diam(G) or if d′ = diam(G), we have seen a
rainbow coloring of G with diam(G)−1 colors in Lemma 8. If both d and d′ equal diam(G)+1,
then we have seen a coloring of G with diam(G)− 1 colors. Lemmas 9, 14 and 16 show that
this coloring is indeed a rainbow coloring. We conclude that rvc(G) = diam(G)− 1.
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Figure 5 Vertex y2 is in layer L3. See Lemma 16.

Assume that we are given a permutation model of the graph and thus know the values
t(v) and b(v) for each vertex v ∈ V (G). Otherwise, a permutation model can be computed
in linear time [14]. First, compute d and d′. Following the description of P and Q, this takes
linear time. Computing the diameter of G takes O(n2) time using the algorithm of Mondal
et al. [15]. The colorings given by Lemma 8 and before Lemma 9 can each be computed in
linear time through a breadth-first search. By the preceding arguments, an optimal rainbow
vertex coloring can be computed in O(n2) time. J

4 Split strongly chordal graphs

In this section, we show that RVC and SRVC are polynomial-time solvable on split strongly
chordal graphs. We show this result is tight in the sense that both problems are NP-complete
on split graphs if we forbid any finite family of suns.

In order to prove our next theorem we will use the following property of dually chordal
graphs, a graph class that contains that of strongly chordal graphs [1].

I Lemma 18. (Brandstädt et al. [1]) A graph G is dually chordal if and only if G has a
spanning tree T such that all maximal cliques of G induce a subtree of T .

We show a tree with a stronger property exists in split strongly chordal graphs.

I Lemma 19 (♠). Let G = (V,E) be a connected split strongly chordal graph, with V = K∪S,
where K is a clique and S is an independent set. Then G has a spanning tree T such that
every maximal clique of G induces a subtree of T and every vertex of S is a leaf of T .

I Theorem 20 (=Theorem B). If G is a split strongly chordal graph with ` cut vertices, then
rvc(G) = srvc(G) = max{diam(G)− 1, `}.

Proof. Let G = (V,E) be a split strongly chordal graph, with V = K ∪ S, where K is a
clique and S is an independent set. Note that if diam(G) ≤ 2, we can (strong) rainbow
color G by assigning the same color to all the vertices. Notice that in this case ` ≤ 1, thus
rvc(G) = srvc(G) = max{diam(G)− 1, `}.

Assume then that diam(G) = 3 (recall that if G is a split graph, then diam(G) ≤ 3). By
Lemma 19, G has a spanning tree T such that every maximal clique of G induces a subtree
of T and every vertex of S is a leaf of T . Let T denote the subtree of T induced by the
vertices of K, that is, the subtree of T obtained by the deletion of the leaves corresponding
to vertices of S. Note that T is a tree with VT = K. We will now use the tree T to provide
a (strong) rainbow coloring of G.

B Claim 1 (♠). For every x ∈ S, N(x) induces a subtree of T .

B Claim 2. If G is 2-connected, then srvc(G) = rvc(G) = diam(G)− 1.
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Proof. Note that diam(G)− 1 = 2. Color the vertices of K according to a proper 2-coloring
of the vertices of T , and give arbitrary colors to the vertices of S. Let φ be the coloring of G
obtained in this way. Note that φ is indeed a (strong) rainbow coloring of G. To see this, let
u, v ∈ V be such that dG(u, v) = 3. Since G is a split graph, we have that u, v ∈ S. Since G
is 2-connected, |N(u)| ≥ 2 and |N(v)| ≥ 2. Moreover, since N(u) and N(v) induce subtrees
of T , we know that these two sets are not monochromatic under φ. Thus, there are x ∈ N(u)
and y ∈ N(v) s.t. φ(x) 6= φ(y), which shows uxyv is a rainbow (shortest) path between u
and v. C

We now consider the case in which G has cut vertices. Let C ⊂ V be the set of cut vertices
of G. Consider a proper 2-coloring φ of T . If there exist c1, c2 ∈ C such that φ(c1) 6= φ(c2),
then we can obtain a (strong) rainbow coloring for G with ` colors by assigning distinct
colors in the set {3, . . . , `} to the remaining cut vertices of G. Note that with this coloring
of T , it holds that for every w ∈ S, if |N(w)| > 1, then N(w) is not monochromatic under φ.
Since all the cut vertices were assigned distinct colors, by the same argument used in the
2-connected case, this is indeed a (strong) rainbow coloring of G. Note that this reasoning
also applies if |C| = 1, so from now on we may assume |C| ≥ 2.

If all the vertices of C were assigned the same color, since φ was a proper 2-coloring of T ,
we have that for every x, y ∈ C, dT (x, y) ≥ 2. Let c1, c2 ∈ C be two cut vertices such that
the unique path connecting c1 and c2 in T contains no other vertex of C. Let z be the vertex
adjacent to c1 in this path. Note that z /∈ C. We will consider the following coloring φ′ of T .
Let φ′(c1) = φ′(z) = 1. Now we extend φ′ by considering a proper 2-coloring of the subtree
of T rooted in c1 (resp. z) that assigns color 1 to the vertex c1 (resp. z). Note that now we
have φ′(c2) = 2. Finally, assign distinct colors from {3, . . . , `} to the vertices of C \ {c1, c2}.
To obtain a (strong) rainbow coloring of G, we color the vertices of K according to φ′ and
give arbitrary colors to the vertices of S.

B Claim 3 (♠). φ′ is a (strong) rainbow coloring of G.

Since φ′ uses ` colors, this concludes the proof. J

We now show that both RVC and SRVC are NP-complete if we only forbid a finite
number of suns. In what follows, we make use of the same reduction of Heggernes et al. [7]
for split graphs. Their reduction is from Hypergraph Coloring. In our case, we start
with an instance of Graph Coloring restricted to (C3, . . . , Cp)-free graphs, a problem that
was shown to be NP-complete by Král’ et al [8] (see also [6]) for every fixed k ≥ 3. We can
see an input G = (V,E) of Graph Coloring as a hypergraph in which every hyperedge
has size two. We perform the same construction as Heggernes et al. [7], starting with an
(C3, . . . , Cp)-free instance of Graph Coloring.

I Theorem 21 (♠). For any fixed p ≥ 3, RVC and SRVC are NP-complete on split
(S3, . . . , Sp)-free graphs for any fixed p ≥ 3.

5 Powers of trees

In this section we study powers of trees. Let T be a tree, and z in the center of T . Let
e = zv be an edge that is incident to z, with v not in the center. When e is removed from
the tree, the tree will fall apart in two parts, a branch is the part that does not contain z. If
the center of T contains only one vertex, the number of branches equals the degree of z. We
distinguish between squares and higher powers of trees. We first consider squares of trees.
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Figure 6 A graph T for which T 2 needs diam(T 2) colours, see Lemma 22.

Two trivial lower bounds for the rainbow coloring number of a graph G are the number
of cut vertices in G and diam(G)− 1. In squares of trees we found graphs that need more
than diam(T 2)− 1 colors. Notice that squares of trees are 2-connected, so there are no cut
vertices.

I Lemma 22. Let T be a tree such that the center of T consist of a single vertex z, T has
diameter at least 6, and there are at least three branches from the center with maximum
length. Then srvc(T 2) ≥ rvc(T 2) ≥ diam(T 2).

Proof. Let v1, v2, and v3 be three vertices with maximum distance to z in three different
branches. We consider the case that diam(T 2) is odd. There is a unique shortest path
P = v1, p1, p2, . . . , pk, v2 from v1 to v2 in T 2. Analogously, there is a unique shortest path
Q = v1, q1, q2, . . . , qk, v3 from v1 to v3 in T 2. Notice that q1 = p1, q2 = p2, . . ., qj = pj ,
where j = bdiam(T 2)

2 c. That is, P and Q use the same vertices in the branch of v1. The
unique shortest path R in T 2 from v2 to v3 is v2, pk, . . . , pj+1, qj+1, . . . , qk, v3. See Figure 6.

We give a proof by contradiction. Let c be a rainbow vertex coloring that uses at most
diam(T 2)− 1 colors. Notice that the paths P , Q, and R have length diam(T 2). Therefore,
for each of these paths, all internal vertices are assigned different colors and all colors appear
in the path. Since the first j vertices of the paths P and Q are equal, we see that the colors
used for pj+1, . . . , pk are the same as the colors used for qj+1, . . . , qk. Since diam(T ) ≥ 6,
{pj+1, . . . , pk} and {qj+1, . . . , qk} are non-empty. Hence, there is a color that appears twice
in R, which yields a contradiction. We conclude that rvc(T 2) ≥ diam(T 2).

The case that diam(T 2) is even is analogous. J

The class of graphs described in the statement of Lemma 22 needs exactly diam(T 2) colors.
We define layer i as the set of all vertices with distance bdiam(T )/2c − i to the center of T .
For a vertex v, we write l(v) for the layer that it is contained in, so l(v) = bdiam(T )/2c − d,
where d is the distance of v to the center of T . Our upper bounds all use a coloring by layer.

I Lemma 23 (♠). Let T be a tree such that the center of T consist of a single vertex, T
has diameter at least 6, and there are at least three branches from the center with maximum
length. Then rvc(T 2) = diam(T 2).

In squares of trees this is the only example that needs more than diam(T 2)− 1 colors. If
tree T has diam(T ) ≤ 4, then diam(T 2) ≤ 2 and thus rvc(T 2) = 1 by Observation 1. We
distinguish two cases for the remaining trees.

MFCS 2020
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I Lemma 24. Let T be a tree such that the center of T consist of a single vertex, T has
diameter at least 6, and there are exactly two branches from the center with maximum length.
Then rvc(T 2) = diam(T 2)− 1.

Proof sketch (♠). Let B1 be one of the branches with maximum length. Let B2 be all
other branches, together with the center vertex. Suppose that diam(T 2) is odd. Consider
the following coloring c. We color B2 per layer, using the color of layer 1 for the center as
well. And we color B1 similar, but with the colors of layer 1 and 2 swapped, and the colors
of layers 3 and 4 swapped, etc. So, the colors used in the even layers of B1 are exactly the
colors of the odd layers of B2 and vice versa. The number of colors used in this coloring
equals diam(T 2)− 1.

Let u and v be two vertices of T . Suppose that u and v are both in Bi, for i = 1, 2, and
assume that l(u) ≤ l(v). Use the even layer to go from u to the lowest common ancestor w
and the odd layers to go from w to v. This is a rainbow path since every layer has a unique
color, except for the center vertex. And if the center vertex is contained in this path, no
vertex of layer 1 is an internal vertex.

If u ∈ Bi and v ∈ Bj , with i 6= j, consider the following path. Use the even layers to go
from u to the center and even layers to go from the center to v, but exclude the center itself
from this path.

Suppose that diam(T 2) is even. We slightly modify the coloring c: we color B2 per layer,
and use the color of layer 1 for the center as well. And we color B1 similar, but with the
colors of layer 2 and 3 swapped, and the colors of layers 4 and 5 swapped, etc. The paths
constructed above are rainbow paths in this coloring as well. J

I Lemma 25 (♠). Let T be a tree such that the center of T consist of two vertices and T
has diameter at least 5. Then rvc(T 2) = diam(T 2)− 1.

We further consider higher powers of trees and generalize the above results for T k for
k ≥ 3. Even though the corresponding statements are similar, we have to distinguish more
cases in order to prove them. The proofs are deferred to the appendix. We then obtain the
following theorem on all powers of trees.

I Theorem 26 (=Theorem C, ♠). If G is a power of a tree, then rvc(G) ∈ {diam(G) −
1,diam(G)}, and the corresponding optimal rainbow vertex coloring can be found in time that
is linear in the size of G.

6 Conclusion and open problems

We provided polynomial-time algorithms to rainbow vertex color permutation graphs, powers
of trees, and split strongly chordal graphs. The algorithm provided for the latter class also
works for the strong variant of the problem.

An interesting question to be answered towards solving Conjecture 1 is whether RVC can
be solved in polynomial time on AT-free graphs, i.e. graphs that do not contain an asteroidal
triple. Conjecture 1 has been proved true for interval graphs [7] and, in this work, for
permutation graphs, both of which are important subclasses of AT-free graphs.

Another direction of research within graph classes lies in determining the complexity of
RVC and SRVC on strongly chordal graphs. Note that both powers of trees and split strongly
chordal graphs form subclasses of strongly chordal graphs for which RVC is polynomial-time
solvable, as we show in this work. Finally, note that every strongly chordal graph is also a
chordal graph, and the problems are known to be NP-hard when restricted to chordal graphs.
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