
Efficiently Computing All Delaunay Triangles
Occurring over All Contiguous Subsequences
Stefan Funke
Universität Stuttgart, Germany
funke@fmi.uni-stuttgart.de

Felix Weitbrecht
Universität Stuttgart, Germany
weitbrecht@fmi.uni-stuttgart.de

Abstract
Given an ordered sequence of points P = {p1, p2, . . . , pn}, we are interested in computing T , the set
of distinct triangles occurring over all Delaunay triangulations of contiguous subsequences within P .
We present a deterministic algorithm for this purpose with near-optimal time complexity O(|T | logn).
Additionally, we prove that for an arbitrary point set in random order, the expected number of
Delaunay triangles occurring over all contiguous subsequences is Θ(n logn).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational Geometry, Delaunay Triangulation, Randomized Analysis

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.28

1 Introduction

For an ordered sequence of points P = {p1, p2, . . . , pn}, we consider for 1 ≤ i < j ≤ n

the contiguous subsequences Pi,j := {pi, pi+1, . . . , pj} and their Delaunay triangulations
Ti,j := DT (Pi,j). We are interested in the set T :=

⋃
i<j{t | t ∈ Ti,j} of distinct Delaunay

triangles occurring over all contiguous subsequences. Figure 1 shows a sequence of points
p1, . . . , pn where |T | = Ω(n2) (collinearities could be perturbed away). For j > n

2 , any
point pj will be connected to all points {p1, . . . , pn

2
} in T1,j , so any such T1,j contains Θ(n)

Delaunay triangles not contained in any T1,j′ with j′ < j, hence |T | = Ω(n2). Note that for
this argument we only used linearly many contiguous subsequences. It is conceivable that the
quadratically many contiguous subsequences create even a superquadratic number of distinct
Delaunay triangles. We will show, though, that if P is in random order, E[|T |] = Θ(n logn),
and |T | = O(n2) for any order. Then we design a deterministic algorithm to compute T with
asymptotically near-optimal time complexity O(|T | logn).

1.1 Motivation and Related Work
Subcomplexes of the Delaunay triangulation have proven to be very useful for representing
the shape of objects from a discrete sample in many contexts, see for example α-shapes [4],
the β-skeleton [10], or the crust [2]. If the samples are acquired over time, a subcomplex of
the Delaunay triangulation of the samples within a contiguous time interval might allow for
interesting insights into the data, see for example [3], where the authors use α-shapes to
visualize the regions of storm event data within the United States between 1991 and 2000.

While samples do not occur in truly random order in real world scenarios, it has been
observed in [3] that the potentially huge size of T seems more like a pathological setting. Our
first result provides some sort of theoretical explanation for this observation. Our second
result shows that T can also be computed in time Õ(|T |). This suggests the possibility of
precomputing all Delaunay triangles of all contiguous subsequences and indexing them with

© Stefan Funke and Felix Weitbrecht;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 28; pp. 28:1–28:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:funke@fmi.uni-stuttgart.de
mailto:weitbrecht@fmi.uni-stuttgart.de
https://doi.org/10.4230/LIPIcs.ISAAC.2020.28
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Delaunay Triangles in Contiguous Subsequences

p1p2p3 pn/2

pn
2+1pn pn

2+2

Figure 1 A sequence of points with |T | = Θ(n2), as in [7].

respect to time and possibly some other parameter (e.g., the α value for α-shapes, or the
β value for the β-skeleton). Then a time interval query, possibly with an α/β parameter,
could be answered in an output sensitive manner, which might be considerably faster than
computing the structures from scratch for the interval of interest.

The incremental construction of the Delaunay triangulation seems like a promising starting
point for construction of T . Here the Delaunay triangulation of a point set is computed
by inserting the points one-by-one, always updating an accompanying point location data
structure and the triangulation itself via a sequence of flip operations. With the analysis
in [7], one can show in expectation for random point orderings that only O(1) new Delaunay
triangles are created upon a point insertion, and hence there are O(n) Delaunay triangles
alive during the process. The expected location costs are O(n logn) overall, but for arbitrary
orderings the running time might be quadratic in the number of created Delaunay triangles
due to the point location costs. Furthermore, while this algorithm on the way constructs
T1,1, T1,2, . . . , T1,n, triangulations T>1,j are not considered at all.

Other approaches for constructing Delaunay triangulations or Voronoi diagrams like
sweepline [5], or divide and conquer [6] – at least at first sight – do not appear to be
promising starting points for enumerating T .

Along the lines of our work, Kaplan et al. in [9] have investigated the complexity of
the overlay of the features (including transient ones) constructed during the randomized
incremental construction of minimization diagrams. While the incremental construction of
Delaunay triangles can indeed be expressed as a suitable minimization diagram, Kaplan et al.
only consider prefixes in contrast to contiguous subsequences in our case.

1.2 Contribution
This paper has two main contributions. First, we show that for arbitrary point sets in
random order, the expected size of T is Θ(n logn) and in the worst case O(n2). Secondly,
we present an output sensitive algorithm to compute T in time O(|T | logn). Our results
lay the theoretical foundation for faster algorithms that make use of subcomplexes of the
Delaunay triangulation for time series data. In Section 2 we analyze the worst case as well
as the expected size of T , Section 3 develops a deterministic output sensitive algorithm for
computing T . Section 4 presents some preliminary results of a prototypical implementation
which support our theoretical findings. We conclude with an outlook and directions for
future research.

S. Funke and F. Weitbrecht 28:3

2 Counting Delaunay Edges and Triangles

Our proof will proceed in two steps. We first show that the expected number of Delaunay
edges encountered when considering all contiguous subsequences in a randomly ordered
sequence of points is Θ(n logn). Then we show that, for an arbitrary order, there is a linear
dependence between the number of Delaunay triangles and Delaunay edges.

Assuming non-degeneracy of P , i.e., absence of four co-circular or three co-linear points,
we define the set of edges used in triangles of T as:

ET := {e | ∃ t ∈ T : e edge of t}

We first bound the expected size of ET . The following lemma is a simple observation that
helps to focus on a smaller subsequence when considering a potential edge {pi, pj}.

I Lemma 1. For any order of P , if an edge e = {pi, pj} ∈ ET (i < j), then e also appears
in Ti,j.

Proof. For suitable a ≤ i, b ≥ j, e is a Delaunay edge in Ta,b, i.e. there exists a disk with
pi, pj on its boundary and its interior free of points from Pa,b. As Pi,j ⊆ Pa,b this disk is also
free of points from Pi,j , hence e ∈ Ti,j . J

Lemma 1 states that we only need to consider the minimal contiguous subsequence containing
pi and pj to argue about the probability of an edge e = {pi, pj} being present in ET . We
bound the probability that e is a Delaunay edge in Ti,j :

I Lemma 2. For a potential edge e = {pi, pj}, i < j, we have Pr[e ∈ Ti,j] < 6
j−i .

Proof. The claim holds trivially for j = i + 1. For point sets Pi,j with j > i + 1, observe
that clearly Ti,j will be the same regardless of how the points in Pi,j are ordered. All points
in Pi,j are equally likely to be pi, or pj . The triangulation Ti,j is a planar graph with more
than 2 nodes, and hence per Euler’s formula contains at most 3(j − i + 1) − 6 edges. So
Pr[e ∈ Ti,j] is bounded by the probability of two randomly chosen nodes in a graph with
j − i+ 1 nodes and ≤ 3(j − i+ 1) − 6 edges to be connected with an edge. By randomly
choosing two nodes, we randomly choose one edge among all potential

(
j−i+1

2
)
edges. The

probability of that edge to be one of the ≤ 3(j − i+ 1)− 6 edges of Ti,j is < 6
j−i . J

Due to Lemma 1 we have that Pr[e ∈ ET] = Pr[e ∈ Ti,j], hence:

I Lemma 3. The expected size of ET is Θ(n logn).

Proof. Linearity of expectation allows us to sum all potential edges’ probability of existence,
bounded using Lemma 2, to upper bound the expected size of ET .

E[|ET |] =
n−1∑
i=1

n∑
j=i+1

Pr[{pi, pj} ∈ ET] =
n−1∑
i=1

n∑
j=i+1

Pr[{pi, pj} ∈ Ti,j]

≤
n−1∑
i=1

n∑
j=i+1

6
j − i

= 6
n−1∑
i=1

n−i∑
j=1

1
j
≤ 6

n−1∑
i=1

Hn = O(n logn)

For the lower bound, consider the nearest neighbor of point p1 in P2,i as i grows from 2
to n. It is well known that for random order of P , the nearest neighbor changes Θ(logn)
times in expectation. It is also well known that the nearest neighbor graph of a point set is a
subgraph of its Delaunay triangulation, so p1 in expectation is involved in the creation of
Ω(logn) distinct Delaunay edges. The same argument applies to all other points, yielding a
Ω(n logn) bound. J

ISAAC 2020

28:4 Delaunay Triangles in Contiguous Subsequences

p1

p2

p3

p4

p5 pn−4

pn−3

pn−2

pn−1

pn

Figure 2 A sequence of points with |T | = O(n).

In general, an edge might be used by up to Ω(n) different Delaunay triangles, so a linear
dependence between the number of Delaunay edges and triangles is not immediately obvious.
Yet, the following lemma shows why this is the case.

I Lemma 4. For any order of P , |T | ∈ Θ(|ET |).

Proof. Consider some Delaunay triangle t = papbpc ∈ T (w.l.o.g. a < b < c). Due to
Lemma 1, we have t ∈ Ta,c. Apart from t, there can exist at most one other triangle t′ ∈ Ta,c

which uses the edge {pa, pc}. This way, we can charge every Delaunay triangle of T to some
Delaunay edge of ET , charging at most 2 Delaunay triangles to any Delaunay edge. So the
overall number of Delaunay triangles is at most twice the overall number of Delaunay edges,
hence |T | ∈ O(|ET |). Any triangle creates at most 3 edges, so |ET | ∈ O(|T |). J

As a corollary, Lemma 4 implies that O(n2) is also an upper bound for |T | for arbitrary
orderings of n points, as there are only O(n2) possible edges.

Finally we can state our main theorem which follows from Lemmas 3 and 4.

I Theorem 5. The expected number of different Delaunay triangles occurring over all
contiguous subsequences of a (uniformly) randomly ordered point set of size n is Θ(n logn).

3 Constructing Delaunay Triangles

Given an arbitrary (but non-degenerate) point set P in arbitrary order, the most naive way
of deterministically constructing all Delaunay triangles is the execution of some O(n logn)
algorithm for each sequence Pi,j , which results in worst-case O(n3 logn) running time.
Unfortunately, this approach also takes at least cubic time if |T | = O(n), like it is the case in
Figure 2 where removing any number of points from either end of the interval of interest
creates no new triangles. Another approach could be to execute the incremental algorithm
(without randomization) from [7] for the sequences P1,n, P2,n, . . . , Pn−2,n, which produces
all Ti,j with j < n as intermediate results. It does not seem obvious, though, how to show
that a single run on Ti,n can be performed in subquadratic time in the worst case; flipping
costs can be charged to |Ti,n|, but point location costs could be quadratic despite a small
|T |. So a runtime better than O(n3) in the worst case seems difficult to achieve even if
|T | = O(n). Our goal in the following will be the development of a deterministic algorithm
for constructing T in time proportional to |T |, up to a logarithmic factor.

The resulting algorithm is similar to the incremental algorithm in that points are inserted
one-by-one. The incremental algorithm maintains one triangulation of the full point set P1,j

which is expanded as points are inserted. Our algorithm computes the same full triangulations
T1,3, . . . , T1,n, but in reverse order. Additionally, our algorithm maintains many partial
triangulations of usually very small subsets of Pi,j . These triangulations are expanded as
points are inserted, but at the same time they are also pruned to avoid doing the same
triangulation work multiple times for different partial triangulations.

S. Funke and F. Weitbrecht 28:5

p4

p5

p1p3 p6p7p2 p8

Figure 3 An edge which requires information of size Ω(n) to encode its lifetime. The edge {p4, p5}
is part of T1,5, T2,6, T3,7, but not T1,6, T2,7, T3,8. Other edges of these triangulations are omitted to
keep the figure comprehensible.

3.1 Preliminary Considerations
In our construction algorithm we will be concerned with the construction of Delaunay
triangles and only indirectly with Delaunay edges, since the former provide a significant
advantage for data structures indexing the result set. We will show that the lifetime of a
Delaunay triangle can be represented compactly via two indices, whereas for a Delaunay
edge this might require additional information of size Ω(n). This is because an edge is
Delaunay if there exists an open disk free of other points through the edge’s two endpoints.
As demonstrated in Figure 3, an edge e could be Delaunay in some Ta,b, not Delaunay in
Ta,b+1, Delaunay in Ta+1,b+1, not Delaunay in Ta+1,b+2, etc. by repeatedly inserting a point
close to e on one side, and then removing the closest point on the other side. During this
process, inserting a close point on one side prevents the existence of such an empty disk on e,
and removing the closest point on the other side allows an empty disk to exist again.

Conceptually, we care about all triangulations Ti,j , i < j, as depicted here:

T1,2 T1,3 T1,j T1,n

T2,3 T2,j T2,n

...
Ti,i+1 . . . Ti,j Ti,n

...
Tn−2,n−1 Tn−2,n

Tn−1,n

This matrix allows us to use terms such as “above” or “row i” to describe the relationship
between triangulations and other data structures with indices corresponding to a triangula-
tion’s first and last points. As ordered point sets exist with |T | = O(n), we cannot construct
all Θ(n2) triangulations in the matrix explicitly. We have to use the fact that Delaunay
triangulations of similar point sets (i.e., a small Manhattan distance in the matrix) tend to
share many edges and triangles, with differences being local to removed and added points’
neighborhoods.

To that end, let us first define an ordering on the triangulations in the matrix.

Ta,b < Tc,d ⇐⇒ b < d ∨ (b = d ∧ a < c)

ISAAC 2020

28:6 Delaunay Triangles in Contiguous Subsequences

That is, “smaller” means all columns to the left, and that part of the column that is above
the current triangulation. The contribution set Ci,j is the set of triangles for which Ti,j is
the smallest triangulation they appear in:

Ci,j = {t ∈ Ti,j | ∀ Ta,b < Ti,j : t /∈ Ta,b}

Since any triangle appears “first” in exactly one triangulation, the number of non-empty
Ci,j is O(|T |), so we can at least afford to consider all cells of the matrix with non-empty
contribution sets. To that end, let us characterize Ci,j in a different way. Inserting a point
pj into Ti,j−1 destroys all triangles that have pj in their circumcircle, and, in their place,
creates a star-shaped set of triangles incident to pj . As Ti,j−1 < Ti,j , we have:

Ci,j ⊆ {t ∈ Ti,j | t incident to pj} (1)

Removing pi−1 from Ti−1,j does the opposite, destroying all triangles incident to pi−1 and
leaving a star-shaped hole in Ti−1,j . Re-triangulating this hole’s interior yields Ti,j without
any further changes. For i > 1 we have Ti−1,j < Ti,j , so:

Ci,j ⊆ {t ∈ Ti,j | pi−1 in t’s circumcircle} (2)

In fact, these two conditions define Ci,j sufficiently:

I Lemma 6. Ci,j = {t ∈ Ti,j | pi−1 in t’s circumcircle ∧ t incident to pj} for i > 1.

Proof. The ⊆ inclusion follows directly from (1) and (2). To prove the reverse inclusion,
consider some triangle t ∈ Ti,j incident to pj which has pi−1 in its circumcircle, and some
Ti′,j′ with t ∈ Ti′,j′ . If i′ < i, t /∈ Ti′,j′ because pi−1 is inside t’s circumcircle. If j′ < j,
t /∈ Ti′,j′ because t requires pj . Thus Ti,j ≤ Ti′,j′ , so Ti,j is the first triangulation containing
t and t ∈ Ci,j . J

pi

pi

pi

pi

Figure 4 Examples of a point’s star shape (top) and populated sector (bottom) for interior points
(left) and points on the convex hull (right).

S. Funke and F. Weitbrecht 28:7

We define the star shape of point pi (w.r.t. Ti,j) as the area of the plane visible from pi

without edges obstructing the view. We define the populated sector of point pi (w.r.t. Ti,j)
as the smallest circle sector of infinite radius centered on pi which contains triangles incident
to pi. Figure 4 illustrates these concepts.

Maintaining the entire Delaunay triangulation of Pi,j for every row of the matrix is
prohibitively expensive. As noted above, the changes resulting from the removal of pi−1 from
Ti−1,j are local to pi−1. We would like to exploit that fact by maintaining only the difference
between Ti−1,j and Ti,j for all rows i > 1, and we do that using a Hole Triangulation Hi,j ,
which contains the triangles resulting from the removal of pi−1 from Ti−1,j . When speaking
of star shape or populated sector in the context of some hole triangulation Hi,j , we mean
the respective star shape or populated sector of pi−1 w.r.t. Ti−1,j .

Figure 5 shows how a hole triangulation may evolve as points are inserted. The removal
of pi−1 from Ti−1,j replaces pi−1 and all its incident triangles with a new set of triangles.
We call those edges of pi−1’s incident triangles that are opposite pi−1 the boundary, as
they bound the star shape. We say the boundary is complete once it surrounds pi−1, i.e.
once the populated sector is the entire plane. The new set of triangles is also adjacent to
the boundary, but until the boundary is complete, some boundary edges may not have an
adjacent triangle in Hi,j , as is the case in Figure 5, left. We also maintain these boundary
edges in hole triangulations so they’re available once a point is inserted on pi−1’s boundary
that creates triangles against these edges, as in Figure 5, middle right. So, technically, a hole
triangulation is not necessarily a proper triangulation because it can contain edges without
adjacent triangles even when more than two points are present. This is not only because
of the additional boundary edges it maintains, but also because it only maintains triangles
inside the star shape, so concave boundaries are not triangulated behind the boundary – that
area is handled by other triangulations.

pi−1

pj
pj+1

pj+2

pj

pj+2

Ti−1,j+2

Hi,j+2

pi−1

pj
pj+1

pj
pj+1

Ti−1,j+1

Hi,j+1

pi−1

pj

pj

Ti−1,j

Hi,j

pi−1

pj
pj+1

pj+2

pj

pj+2

Ti−1,j+3

Hi,j+3

pj+3

Figure 5 On the bottom, the evolution of a hole triangulation is shown as points are inserted.
Above, the full triangulations depicting the situation before the removal of pi−1 are shown. They
are only shown for reference, the algorithm does not maintain these full triangulations. Boundary
edges, which are present both in the original triangulation and in the hole triangulation, are shown
in green. Left: The point pi−1 is on the convex hull of Ti−1,j , so its boundary is incomplete. The
hole triangulation contains an edge without an adjacent triangle. Middle left: Another point is
inserted, adding a second boundary edge without an adjacent triangle to the hole triangulation.
Middle right: The insertion of pj+2 tightens the boundary around pi−1. The right-most boundary
edge from before is no longer a boundary edge, so it is removed from the hole triangulation, but it is
still a Delaunay edge in Ti−1,j+2 and Ti,j+2. The boundary is now complete and the left-most edge,
which previously did not have an adjacent triangle in the hole triangulation, has formed a triangle
with the newest point. Right: A point is inserted without creating an edge to pi−1, so the hole
triangulation does not change.

ISAAC 2020

28:8 Delaunay Triangles in Contiguous Subsequences

3.2 Main Algorithm Overview
Here we describe the main part of the algorithm that computes all Delaunay triangles. Later
subsections elaborate on data structures and update procedures.

Our algorithm will work through the matrix column-by-column from left to right and
conceptually each column is considered top to bottom. The first row of the matrix is
precomputed in a way similar to an incremental construction as in [7], but with additional
logic to avoid point location operations. As a result, the main part of the algorithm does not
compute anything for the first row, instead it only works with precomputed contribution
sets C1,j . After work for column j is completed, we have for each row i with 1 < i < j a
current hole triangulation Hi,j of the inside of pi−1’s star shape. As Hi,j is a subgraph of
Ti,j which mainly describes the difference between Ti−1,j and Ti,j , we could – in principle –
recover Ti,j by computing T1,j from C1,3, C1,4, . . . , C1,j and then successively applying the
“differences” H2,j , H3,j , . . . , Hi,j to T1,j .

Once all columns up to j − 1 have been computed, we compute all necessary updates for
column j. For the first row, we simply retrieve the precomputed C1,j . For rows i > 1, Ci,j can
be constructed according to Lemma 6 by updating the corresponding Hi,j−1 to Hi,j . If pj is
not adjacent to pi−1 in Ti−1,j , pi−1’s star shape does not change and Hi,j = Hi,j−1, Ci,j = ∅.
Fortunately, if pi−1 is adjacent to pj in Ti−1,j , this is discovered by some triangulation
above row i that was already updated. That is because Lemma 1 guarantees that the edge
{pi−1, pj} exists, at the latest, in Ti−1,j .

So the necessary updates of Hi,j can always be triggered from above, allowing us to
avoid inspecting hole triangulations that do not change. In fact, any newly found Delaunay
edge {pa, pb}, a < b, triggers exactly one hole triangulation update, namely the update from
Ha+1,b−1 to Ha+1,b. These update triggers actually form a partial order over the updated
hole triangulations, potentially leading to a computation order that deviates from the order
defined in subsection 3.1. However, the definition of hole triangulations does not depend on
update order, so the Ci,j are still computed correctly.

I Lemma 7. We have
∑

i<j |Ci,j | = |T | and
∑

i<j |Hi,j \Hi,j−1| = O(|T |).

Proof. Any triangle appears in exactly one contribution set, which yields the first part of
the statement. For the second part, observe that all triangles of Hi,j \Hi,j−1 appear in Ci,j .
The boundary edges in Hi,j \Hi,j−1 may not be used in triangles of Ci,j , but there are at
most two of them. They can be charged to the edge triggering the hole triangulation update,
and any of the O(|T |) edges triggers exactly one update. J

In the following we fill in the details of how to update the hole triangulations, and in
particular how to perform the point location operations necessary in hole triangulations and
how to avoid them in the incremental construction.

3.3 Treatment of the first row of the matrix
The first row of the matrix is precomputed to avoid complicated or expensive point location
logic in the main part of the algorithm. We first construct T1,n and then transform it into
T1,n−1, then into T1,n−2,, . . . , then into T1,2. Essentially, we perform the steps of an incre-
mental construction of T1,n in reverse order. The triangles destroyed by the transformation
of T1,i into T1,i−1 are thus exactly C1,i. We store these contribution sets on a stack so that
the main part of the algorithm can access them efficiently as it works its way through the
matrix column-by-column.

S. Funke and F. Weitbrecht 28:9

p1

p2

p5 p4

p3

p1

p6

p2

p5 p4

p3

p2

p5 p4

p3

p6

p2 p3

T1,5

H2,5

Boundary: [p3, p4, p5, p2]

p6

p6

p5

T1,6

H2,6

Boundary: [p3, p6, p5, p2]

ecw

einsert
enew

Figure 6 The sorted sequence representing the boundary of p1 is updated as p6 is inserted, T1,5

and T1,6 are shown for reference. The point p6 is of course not part of T1,5 or H2,5, its position
within these triangulations is only shown for reference.

I Lemma 8. In time O(n logn+ |T |) we can precompute all C1,i.

Proof. T1,n can be computed in time O(n logn) using one of many O(n logn) algorithms for
computing Delaunay triangulations or Voronoi diagrams, for example [5]. We then transform
T1,n step-by-step to obtain T1,n−1, T1,n−2,, . . . , T1,2. Transforming T1,i into T1,i−1 means
removing pi with its incident edges and retriangulating the possibly emerging hole with
Delaunay triangles. Retriangulation can be accomplished in time linear in the number of
points on pi’s boundary using [1] or [11]. That number is linear in |C1,i|, so per Lemma 7,
overall costs for retriangulation are O(|T |). Immediately before pi is removed, we store its
incident triangles as C1,i. J

3.4 Updating Hole Triangulations
During the course of our algorithm we have to update Hi,j−1 to Hi,j . To that end we
maintain a hole triangulation’s boundary in counter-clockwise order in a sorted sequence, as
seen in Figure 6 where the sorted sequence representing the boundary of p1 is updated upon
insertion of p6. The sorted sequence provides sufficient information to reconstruct pi−1’s
boundary, and thus also its incident triangles in Ti−1,j as well as its star shape and populated
sector. By using a (2, 4)-tree [8] to maintain the sorted sequence, we achieve logarithmic
update and lookup times with space linear in the size of the boundary.

To update the sorted sequence, we find between which two points of the old boundary pj

is visible to pi−1 using a lookup in the sorted sequence. We call the boundary edge connecting
these points einsert. From there, we explore the sorted sequence in both directions to find
the two points of the old boundary to which pj will connect to form the new boundary. The
two new boundary edges extend from pj as far as the corresponding triangles of Ti−1,j−1
around pi−1 contain pj in their circumcircle. So starting at pj ’s insertion point in the sorted
sequence, we explore boundary points in both directions as long as the respective triangles of
pi−1’s star shape contain pj in their circumcircle. Of the corresponding explored boundary

ISAAC 2020

28:10 Delaunay Triangles in Contiguous Subsequences

pi−1
pj′

pj′′′

pj′′

pa

pb

pc

pd

pe

pj′′′′

Figure 7 Potential positions of pj in Hi,j−1, populated sector in red. The point pi−1 is not
actually part of Hi,j , its position is only shown for reference.

edges, which will no longer be boundary edges after the insertion of pj , we remember the
clockwise-most one as ecw. In Figure 6, only the two right-most shown circumcircles contain
p6, so the new boundary edges extend to p5 on the left and to p3 on the right.

We now know the two new boundary edges, but we do not immediately insert them
into the hole triangulation because existing edges might be in the way. Knowledge of the
new boundary edges will be useful in the remaining steps of the hole triangulation update,
during which the new boundary edges and all other new edges will be created in a systematic
way. Note that while the boundary is incomplete, we may only get one new boundary edge
when the insertion point corresponds to an end of the sorted sequence rather than some
edge einsert. The remaining steps necessary to actually update the hole triangulation to
match the new boundary are to locate pj within Hi,j−1, and to insert pj while keeping the
hole triangulation Delaunay and restricted to the star shape. The following subsubsections
describe these steps.

3.4.1 Locating a new point
Locating a new point pj typically means finding the triangle that contains pj , or, if pj is
outside the old triangulation, finding an edge visible to pj . However, as hole triangulations
always contain all boundary edges and triangles are never created behind the boundary, there
is a third option in our case. When pj is outside the populated sector and no edge of the old
hole triangulation is visible to pj from a side facing the star shape, like pj′′′′ in Figure 7, we
need to find the point to which pj attaches. The following describes the logic necessary to
distinguish these cases.

If pj is not in the old populated sector, like most examples in Figure 7, it cannot be
contained in any triangle of Hi,j−1. Of the hull edges covering Hi,j−1 on the inside of the
star shape ({pa, pd} and {pd, pe} in Figure 7), we then consider that edge which is incident
to that end of the boundary on whose side pj is being inserted. In Figure 7, pj′′ would be
inserted on the side of the boundary ending at pe, so its covering edge would be {pd, pe}.
The points pj′ and pj′′′′ would be inserted on the side of the boundary ending at pa, so their
covering edge would be {pa, pd}. If that side of the covering edge which faces the star shape
is visible to pj , like it is the case for pj′ and pj′′ , we return it as a visible edge. Otherwise,
like it is the case for pj′′′′ , no edge can be visible from inside of the star shape and the point
simply connects to the outermost point on the boundary, in this case pa.

Things are more complicated if pj falls inside the old populated sector. Then, pj is inside
the old star shape if and only if pj and pi−1 are on the same side of einsert. If pj is outside
the old star shape, i.e. behind the boundary, no triangle of Hi,j−1 can contain pj because
those are inside the old star shape, so einsert is a visible edge for pj . Note that this is the
only case in which a new point creates a triangle against that side of an edge which faces
outside the old star shape.

S. Funke and F. Weitbrecht 28:11

pi−1

pj

ecw px

enew

Figure 8 The search algorithm locating pj in Hi,j−1. The position of pi−1 is only shown for
reference.

Otherwise, pj is inside the old star shape. If the boundary is incomplete, pj might not
be contained in any triangle, as is the case for pj′′′ in Figure 7. Regardless of boundary
completion state, the search algorithm proceeds as follows. By definition, one of the new
boundary edges in Hi,j , enew, will connect pj to one of ecw’s points, say px. In Figure 6, px

is p3. Note that enew is between ecw and pi−1. We search for pj starting from ecw. Figure 8
shows how the search algorithm traverses Hi,j−1. First, we walk along triangles incident
to px until we find the triangle that is intersected by enew. From there, we walk along the
triangles that enew intersects. If pj is contained in some triangle, this process will find it.
Otherwise, the search terminates at an edge visible to pj .

3.4.2 Inserting a new point
Having located pj on the old star shape’s boundary, we need to update the hole triangulation
by inserting pj . This is done in three steps. First, we create initial edges, potentially
extending the area covered by the old hole triangulation such that the area covered by the
new hole triangulation is contained within the extended triangulation. Extending the covered
area is not only necessary when the populated sector grows. Once the boundary is complete,
new points may still effect an additive change in the star shape area, see Figure 9. The
second step, Delaunay Flipping, ensures the Delaunay property of created edges and triangles,
and finally the Pruning step cuts off any leftover triangles and edges caused by star shape
shrinkage and by the first step extending the hole’s area too much.

Create initial edges: If the location algorithm returns a containing triangle, we simply
split it by inserting three edges between its points and pj . If the location algorithm returns a
visible edge evisible and pj is inside the old star shape, more edges may have their side facing
the star shape visible to pj . We explore Hi,j−1’s hull starting at evisible to find all visible
edges inside the old star shape, and create a triangle between pj and each visible edge. We
must stop exploring when we reach the outside of the hole triangulation, i.e. the “backside”
of boundary edges. Otherwise pj might create some triangles that are actually outside the
star shape, see for example pj′ and the edge {pa, pb} in Figure 7.

If pj is behind the boundary, i.e. in the populated sector but outside the star shape, the
location algorithm returns einsert as a visible edge. The points of einsert are not necessarily
those to which pj will connect on the new boundary. Yet it is sufficient to create only two
initial edges between pj and einsert’s points, for the following reason. If a new boundary
edge is not incident to either of einsert’s points, that new boundary edge will be between the

ISAAC 2020

28:12 Delaunay Triangles in Contiguous Subsequences

pj′

pi−1

pj′′

pj′′′

Figure 9 Potential positions of pj with different effects on the area change between Hi,j−1, which
is just one triangle, and Hi,j . The position of pi−1 is only shown for reference. Compared to Hi,j−1,
pj′ would reduce the area (green edges), pj′′ would extend the area (purple edges), and pj′′′ would
extend the area in one direction, but reduce it in another (orange edges).

two initial edges, i.e. inside the extended triangulation area, and the flipping step will create
them. This is the case for the right orange edge of pj′′′ in Figure 9. As the initial edges give
a bound on the new boundary, further edges or triangles created behind the initial two edges
would not be part of Hi,j .

Delaunay Flipping: The Delaunay Flipping algorithm is used to restore the Delaunay
property of this intermediate triangulation, starting with the edges pj attached to in the first
step. In the first step we extended Hi,j−1 such that the area it now covers has all the edges the
same area in Ti,j−1 would have after initial edge creation using the incremental construction
algorithm. The star shape is not always convex, so we must also show that we never need
to create edges outside the intermediate triangulation. This never happens because the
circumcircles of triangles along the boundary (and, by a circle-shrinking argument, all other
triangles) cannot extend back into the star shape from outside the star shape. But to create
an edge outside the intermediate triangulation, pj would need to lie inside the star shape
(otherwise the necessary edges behind the old boundary would be created during initial edge
creation) and inside the circumcircle of a triangle for which the resulting flipped edge would
lie behind the old boundary.

So the flipping algorithm will have exactly the same effect on the area inside the new
star shape as it would in a full incremental construction of Ti,n. There is actually one small
difference: hole triangulations do not maintain points behind the boundary, so old boundary
edges outside the new star shape cannot be flipped even if they are not Delaunay anymore.
The next step discards that part of the intermediate triangulation, so this is not a real issue.

Pruning: Pruning is necessary to restrict hole triangulations to the new star shape. We
cut off the triangles that are behind the two new boundary edges. Other, i.e. pre-existing,
boundary edges do not have any triangles attached behind them. That is because any
triangle created in previous steps uses one pre-existing and two newly created edges. The
only pre-existing boundary edge pj may have attached to from outside the star shape in the
first step, einsert, is no longer part of the boundary. The flipping algorithm never changes the
area taken up by the triangulation, so it also cannot create triangles behind boundary edges.

Finally, Ci,j are the newly created triangles which were not cut off in the last step. Even if
a hole triangulation is updated, we may still get an empty Ci,j if the boundary is incomplete
and concave. But the following subsection shows that we can afford even these update costs.

S. Funke and F. Weitbrecht 28:13

3.5 Runtime analysis

I Lemma 9. Point location costs in hole triangulations are O(|T | logn).

Proof. Recall how points are located in hole triangulations. We first update the sorted
sequence that represents the boundary, paying O(logn) per insertion and deletion. One
insertion is triggered for all O(|T |) Delaunay edges, and at most one deletion is possible for
each insertion. So per Lemma 4, total costs to maintain the sorted sequences are O(|T | logn).

To actually locate pj in a hole triangulation, we walk along that part of the old boundary
whose points were just deleted from the sorted sequence by the insertion of pj . This causes
total costs linear in the total number of deletions from the sorted sequence, O(|T |). We then
walk along triangles of the old hole triangulation, only visiting triangles that contain pj in
their circumcircle: in the first step, we only visit triangles that lie behind the new boundary,
and in the second step, we only visit triangles that intersect one of the edges created by pj ’s
insertion into the hole triangulation. All these Delaunay triangles are destroyed once pj is
inserted, so any triangle is only ever visited once by this search, hence total costs for hole
triangulation traversal are O(|T |). J

I Lemma 10. Triangle and edge creation costs in hole triangulations are O(|T |).

Proof. During a hole triangulation update, initial triangles are created, each using two initial
edges and one pre-existing edge, so it is sufficient to show that only O(|T |) initial edges are
created.

Any initial edge on the new boundary, i.e. any of the up to two new boundary edges
created during initial edge creation, can be charged to the edge which triggered the hole
triangulation update, and any of the O(|T |) Delaunay edges triggers only one update. Any
initial edge outside the new star shape can be charged to an adjacent pre-existing edge e
with which it formed an initial triangle, so at most two initial edges are charged to e. As
e is at least partially outside the new star shape, it will not be part of the resulting hole
triangulation, so e is only ever charged for one hole triangulation update1. Any initial edge
inside the new star shape is a new Delaunay edge, of which only O(|T |) exist. Note that
while the boundary edges are also Delaunay edges, they may already have appeared in many
triangulations above, so we had to use a charging argument for them.

Lastly, the Delaunay Flipping algorithm causes costs linear in the number of initial
triangles plus costs linear in the number of destroyed pre-existing (Delaunay) triangles. No
triangle can be destroyed twice, so these costs are also O(|T |). J

Finally, we can combine the previous lemmas to get a O(|T | logn) total runtime.

I Theorem 11. The runtime of this algorithm to compute all Delaunay triangles occurring
over all contiguous subsequences is O(|T | logn).

Proof. For the first row of the matrix, the claim follows from Lemma 8 and |T | ∈ Ω(n). For
all other rows, the claim follows from Lemmas 9 and 10. J

1 Strictly speaking, e may also exist in other hole triangulations where it could also be charged. However,
any instance of e in a fixed hole triangulation is only ever charged once like this.

ISAAC 2020

28:14 Delaunay Triangles in Contiguous Subsequences

Table 1 Average runtime and triangle counts for random point sets of size n.

n |T | T construction time | ∪j≤n T1,j | T1,n construction time

16,384 1,294,633 2,439 ms 97,830 103 ms
32,768 2,860,956 6,309 ms 196,168 260 ms
65,536 6,267,247 14,229 ms 392,592 745 ms

131,072 13,622,094 32,817 ms 785,879 1,779 ms
262,144 29,425,885 70,545 ms 1,572,292 4,068 ms
524,288 63,210,634 155,370 ms 3,144,770 9,008 ms

1,048,576 135,134,028 347,186 ms 6,290,562 20,374 ms
2,097,152 287,719,166 771,705 ms 12,581,989 44,082 ms

3.6 Lifetime of Delaunay Triangles for Indexing

As a byproduct of our algorithm run, we can compute the lifetime of Delaunay triangles: for
any triangle t = papbpc, a < b < c, we store the index kright of the smallest index point in t’s
circumcircle with kright > c, and the index kleft of the largest index point in t’s circumcircle
with kleft < a. We then have t ∈ Ti,j ⇐⇒ (kleft < i ≤ a) ∧ (c ≤ j < kright). These indices
are computed as follows. The index kright is always the index of that point which destroys t
upon insertion. If no such point exists, kright is∞. The index kleft is −∞ for triangles found
in the first row of the matrix. For triangles found in rows i > 1, i.e. in a hole triangulation
Hi,j , kleft is i− 1.

In applications where we have time series data as in [3], we could precompute T and store
it in a suitable index structure for fast retrieval with respect to time.

4 Experimental Results

We benchmarked a simplified prototypical implementation of our construction algorithm
(e.g., no precomputation for the first row of the matrix) implemented in Java. Points were
sampled uniformly at random from the unit square. The results, averaged over 20 runs, can
be found in Table 1. For example, for 219 points, our implementation of the incremental
algorithm from [7] took about 9 seconds to construct roughly 3 million triangles during the
construction of T1,n; our algorithm for constructing all Delaunay triangles over all contiguous
subsequences took about 155 seconds to construct the roughly 63 million triangles of T .
The table indicates that our algorithm is slightly faster per triangle than the randomized
incremental algorithm. Looking at the ratio between |T | and the construction time for T ,
we observe near-linear behavior. The measurements show that our algorithm works well in
practice.

5 Outlook

Delaunay subcomplexes are not only of interest in R2 but maybe even more so in R3. So
the generalization of both our complexity result as well as the enumeration algorithm are
of interest. Another challenge could be to improve the running time of our algorithm,
possibly shaving off the logarithmic factor to achieve O(|T |) running time. This does not
seem hopeless, as we could exploit the relationship between edges that appear in multiple
triangulations.

S. Funke and F. Weitbrecht 28:15

References
1 Alok Aggarwal, Leonidas J. Guibas, James Saxe, and Peter W. Shor. A linear-time algorithm

for computing the voronoi diagram of a convex polygon. Discrete & Computational Geometry,
4(6):591–604, December 1989. doi:10.1007/BF02187749.

2 Nina Amenta, Marshall W. Bern, and David Eppstein. The crust and the beta-skeleton:
Combinatorial curve reconstruction. Graphical Models and Image Processing, 60(2):125–135,
1998. doi:10.1006/gmip.1998.0465.

3 Annika Bonerath, Benjamin Niedermann, and Jan-Henrik Haunert. Retrieving α-shapes and
schematic polygonal approximations for sets of points within queried temporal ranges. In
SIGSPATIAL/GIS, pages 249–258. ACM, 2019. doi:10.1145/3347146.3359087.

4 Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of a
set of points in the plane. IEEE Trans. Information Theory, 29(4):551–558, 1983. doi:
10.1109/TIT.1983.1056714.

5 Steven Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica, 2(1-4):153, 1987.
doi:10.1007/BF01840357.

6 Leonidas Guibas and Jorge Stolfi. Primitives for the manipulation of general subdivisions and
the computation of voronoi diagrams. ACM Transactions On Graphics (TOG), 4(2):74–123,
1985. doi:10.1145/282918.282923.

7 Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental con-
struction of delaunay and voronoi diagrams. Algorithmica, 7(1):381–413, 1992. doi:
10.1007/BF01758770.

8 Scott Huddleston and Kurt Mehlhorn. A new data structure for representing sorted lists. Acta
Informatica, 17:157–184, 1982. doi:10.1007/BF00288968.

9 Haim Kaplan, Edgar Ramos, and Micha Sharir. The overlay of minimization diagrams in a
randomized incremental construction. Discrete & Computational Geometry, 45(3):371–382,
2011. doi:10.1007/s00454-010-9324-6.

10 David G. Kirkpatrick and John D. Radke. A framework for computational morphology. In
Godfried Toussaint, editor, Computational Geometry, volume 2 of Machine Intelligence and
Pattern Recognition, pages 217–248. North-Holland, 1985. doi:10.1016/B978-0-444-87806-9.
50013-X.

11 Cao An Wang and Francis Chin. Finding the constrained delaunay triangulation and con-
strained voronoi diagram of a simple polygon in linear-time. In Paul Spirakis, editor, Algorithms
– ESA ’95, pages 280–294. Springer, 1995. doi:10.1007/3-540-60313-1_150.

ISAAC 2020

https://doi.org/10.1007/BF02187749
https://doi.org/10.1006/gmip.1998.0465
https://doi.org/10.1145/3347146.3359087
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1007/BF01840357
https://doi.org/10.1145/282918.282923
https://doi.org/10.1007/BF01758770
https://doi.org/10.1007/BF01758770
https://doi.org/10.1007/BF00288968
https://doi.org/10.1007/s00454-010-9324-6
https://doi.org/10.1016/B978-0-444-87806-9.50013-X
https://doi.org/10.1016/B978-0-444-87806-9.50013-X
https://doi.org/10.1007/3-540-60313-1_150

	Introduction
	Motivation and Related Work
	Contribution

	Counting Delaunay Edges and Triangles
	Constructing Delaunay Triangles
	Preliminary Considerations
	Main Algorithm Overview
	Treatment of the first row of the matrix
	Updating Hole Triangulations
	Locating a new point
	Inserting a new point

	Runtime analysis
	Lifetime of Delaunay Triangles for Indexing

	Experimental Results
	Outlook

