
A Characterization of Wreath Products Where
Knapsack Is Decidable
Pascal Bergsträßer
Fachbereich Informatik, Technische Universität Kaiserslautern, Germany

Moses Ganardi
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Georg Zetzsche
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
The knapsack problem for groups was introduced by Miasnikov, Nikolaev, and Ushakov. It is defined
for each finitely generated group G and takes as input group elements g1, . . . , gn, g ∈ G and asks
whether there are x1, . . . , xn ≥ 0 with gx1

1 · · · gxn
n = g. We study the knapsack problem for wreath

products G ≀ H of groups G and H.
Our main result is a characterization of those wreath products G ≀ H for which the knapsack

problem is decidable. The characterization is in terms of decidability properties of the indiviual
factors G and H. To this end, we introduce two decision problems, the intersection knapsack problem
and its restriction, the positive intersection knapsack problem.

Moreover, we apply our main result to H3(Z), the discrete Heisenberg group, and to Baumslag-
Solitar groups BS(1, q) for q ≥ 1. First, we show that the knapsack problem is undecidable for
G ≀ H3(Z) for any G ̸= 1. This implies that for G ≠ 1 and for infinite and virtually nilpotent groups
H, the knapsack problem for G ≀ H is decidable if and only if H is virtually abelian and solvability
of systems of exponent equations is decidable for G. Second, we show that the knapsack problem
is decidable for G ≀ BS(1, q) if and only if solvability of systems of exponent equations is decidable
for G.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Theory and algorithms for application domains

Keywords and phrases knapsack, wreath products, decision problems in group theory, decidability,
discrete Heisenberg group, Baumslag-Solitar groups

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.11

Related Version This paper is based on the following technical report:
Full Version: https://arxiv.org/abs/2101.06132 [5]

1 Introduction

The knapsack problem. The knapsack problem is a decision problem for groups that was
introduced by Myasnikov, Nikolaev, and Ushakov [27]. If G is a finitely generated group, then
the knapsack problem for G, denoted KP(G), takes group elements g1, . . . , gn, g ∈ G as input
(as words over the generators) and it asks whether there are natural numbers x1, . . . , xn ≥ 0
such that gx1

1 · · · gxn
n = g. Since its introduction, a significant amount of attention has been

devoted to understanding for which groups the problem is decidable and what the resulting
complexity is [17, 20, 10, 26, 16, 9, 21, 7]. For matrix semigroups, the knapsack problem has
been studied implicitly by Bell, Halava, Harju, Karhumäki, and Potapov [3], Bell, Potapov,
and Semukhin [4], and for commuting matrices by Babai, Beals, Cai, Ivanyos, and Luks [1].

There are many groups for which knapsack has been shown decidable. For example,
knapsack is decidable for virtually special groups [20, Theorem 3.1], co-context-free groups [16,
Theorem 8.1], hyperbolic groups [27, Theorem 6.1], the discrete Heisenberg group [16,

© Pascal Bergsträßer, Moses Ganardi, and Georg Zetzsche;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4681-2149
https://orcid.org/0000-0002-0775-7781
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.4230/LIPIcs.STACS.2021.11
https://arxiv.org/abs/2101.06132
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 A Characterization of Wreath Products Where Knapsack Is Decidable

Theorem 6.8], and Baumslag-Solitar groups BS(p, q) for co-prime p, q > 1 [6, Theorem 2] and
for p = 1 [21, Theorem 4.1]. Moreover, the class of groups where knapsack is decidable is
closed under free products with amalgamation [19, Theorem 14] and HNN extensions [19,
Theorem 13] over finite identified subgroups. On the other hand, there are nilpotent groups
for which knapsack is undecidable [16, Theorem 6.5].

Wreath products. A prominent construction in group theory and semigroup theory is the
wreath product G ≀H of two groups G and H. Wreath products are important algorithmically,
because the Magnus embedding theorem [22, Lemma] states that for any free group F of rank
r and a normal subgroup N of F , one can find F/[N, N] as a subgroup of Zr ≀ (F/N), where
[N, N] is the commutator subgroup of N . This has been used by several authors to obtain
algorithms for groups of the form F/[N, N], and in particular free solvable groups. Examples
include the word problem (folklore, see [13]), the conjugacy problem [24, 28, 13, 25], the
power problem [13], and the knapsack problem [7, 10].

For groups G and H, their wreath product G ≀ H can be roughly described as follows. An
element of G ≀ H consists of (i) a labeling, which maps each element of H to an element of G

and (ii) an element of H, called the cursor. Here, the labeling has finite support, meaning all
but finitely many elements of H are mapped to the identity of G. Moreover, each element of
G ≀ H can be written as a product of elements from G and from H. Multiplying an element
g ∈ G will multiply g to the label of the current cursor position. Multiplying an element
h ∈ H will move the cursor by multiplying h.

Understanding the knapsack problem for wreath products is challenging for two reasons.
First, the path that the expression gx1

1 · · · gxn
n g−1 takes through the group H can have

complicated interactions with itself: The product can place elements of G at (an a priori
unbounded number of) positions h ∈ H that are later revisited. At the end of the path, each
position of H must carry the identity of G so as to obtain gx1

1 · · · gxk

k g−1 = 1. The second
reason is that the groups G and H play rather different roles: A priori, for each group G the
class of all H with decidable KP(G ≀ H) could be different, resulting in a plethora of cases.

Decidability of the knapsack problem for wreath products has been studied by Ganardi,
König, Lohrey, and Zetzsche [10]. They focus on the case that H is knapsack-semilinear, which
means that the solution sets of equations gx1

1 · · · gxn
n = g are (effectively) semilinear. A set

S ⊆ Nn is semilinear if it is a finite union of linear sets {u0+λ1u1+· · ·+λkuk | λ1, . . . , λk ∈ N}
for some vectors u0, . . . , uk ∈ Nn. Under this assumption, they show that KP(G ≀ H) is
decidable if and only if solvability of systems of exponent equations is decidable for G [10,
Theorem 5.3]. Here, an exponent equation is one of the form gx1

1 · · · gxn
n = g, where variables

xi are allowed to repeat. The problem of solvability of systems of exponent equations is
denoted ExpEq(G). Moreover, it is shown there that for some number ℓ ∈ N, knapsack is
undecidable for G ≀ (H3(Z) × Zℓ), where H3(Z) denotes the discrete Heisenberg group and
G is any non-trivial group [10, Theorem 5.2]. Since KP(H3(Z) × Zℓ) is decidable for any
ℓ ≥ 0 [16, Theorem 6.8], this implies that wreath products do not preserve decidability of
knapsack in general. However, apart from the latter undecidability result, little is known
about wreath products G ≀ H where H is not knapsack-semilinear. As notable examples of
this, knapsack is decidable for solvable Baumslag-Solitar groups BS(1, q) [21, Theorem 4.1]
and for the discrete Heisenberg group H3(Z) [16, Theorem 6.8], but it is not known for which
G the knapsack problem is decidable for G ≀ H3(Z) or for G ≀ BS(1, q).

The only other paper which studies the knapsack problem over wreath products is [7]. It
is concerned with complexity results (for knapsack-semilinear groups) whereas in this paper
we are concerned with decidability results.

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:3

Contribution. Our main result is a characterization of the groups G and H for which
KP(G ≀ H) is decidable. Specifically, we introduce two problems, intersection knapsack
KP±(H) and the variant positive intersection knapsack KP+(H) and show the following. Let
G and H be finitely generated, with G non-trivial and H infinite. Then knapsack for G ≀ H

is decidable if and only if ExpEq(G) is decidable and either (i) G is abelian and KP+(H) is
decidable or (ii) G is not abelian and KP±(H) is decidable. Note that the case of finite H is
not interesting: For |H| = m, KP(G ≀ H) is equivalent to KP(Gm) (see Section 3).

Thus, our result relieves us from considering every pair (G, H) of groups and allows us to
study the factors separately. It is not hard to see that decidability of ExpEq(G) is necessary
for decidability of KP(G ≀ H) if H is infinite. It is surprising that the only other property of
G that is relevant for decidability of KP(G ≀ H) is whether G is abelian or not. This is in
contrast to the effect of other structural properties of G on the complexity of KP(G ≀ Z): If
G ̸= 1 is a finite nilpotent group, then KP(G ≀ Z) is NP-complete [7, Theorem 2], whereas for
finite and non-solvable G, the problem KP(G ≀ Z) is Σp

2-complete [7, Corollary 25].

Applications. We also obtain two applications. First, we deduce that KP(G ≀ H3(Z)) is
undecidable for every G ̸= 1. This implies that if G ̸= 1 and H is virtually nilpotent and
infinite, then KP(G ≀ H) is decidable if and only if H is virtually abelian and ExpEq(G) is
decidable. Moreover, we show that KP(G ≀ BS(1, q)) is decidable if and only if ExpEq(G) is.

Ingredients. For the “if” direction of our main result, we reduce KP(G ≀H) to ExpEq(G) and
KP±(H) (respectively KP+(H)) using extensions of techniques used by Figelius, Ganardi,
Lohrey, and Zetzsche [7]. Roughly speaking, the problem KP±(H) takes as input an
expression h0gx1

1 h1 · · · gxn
n hn and looks for numbers x1, . . . , xn ≥ 0 such that the walk defined

by the product h0gx1
1 h1 · · · gxn

n hn meets specified constraints about self-intersections. Such a
constraint can be either (i) a loop constraint, meaning the walk visits the same point after two
specified factors or (ii) a disjointness constraint saying that the (xi + 1)-many points visited
when multiplying gxi

i do not intersect the (xj + 1)-many points visited while multiplying g
xj

j .
The “only if” reductions in our main result involve substantially new ideas. The challenge

is to guarantee that the constructed instances of KP(G ≀ H) will leave an element ̸= 1
somewhere, as soon as any constraint is violated. In particular, the loop constraints have to
be checked independently of the disjointness constraints. Moreover, if several constraints
are violated, the resulting elements ̸= 1 should not cancel each other. Furthermore, this has
to be achieved despite almost no information on the structure of G and H. This requires
an intricate construction that uses various patterns in the Cayley graph of H for which we
show that only very specific arrangements permit cancellation. To this end, we introduce the
notion of periodic complexity, which measures how many periodic sequences are needed to
cancel out a sequence of elements of a group. Roughly speaking, for the loop constraints
we use patterns of high periodic complexity, whereas for the disjointness constraints we use
patterns with low periodic complexity but many large gaps. This ensures that the disjointness
patterns cannot cancel the loop patterns or vice versa.

2 Preliminaries

Knapsack problems. For a group G and a subset S ⊆ G we write S∗ for the submonoid
generated by S, i.e. the set of products of elements from S. Let G be a group with a finite
(monoid) generating set Σ ⊆ G, i.e. G = Σ∗. Such groups are called finitely generated. An
exponent expression over G is an expression E = e1 . . . en consisting of atoms ei where each

STACS 2021

11:4 A Characterization of Wreath Products Where Knapsack Is Decidable

atom ei is either a constant ei = gi ∈ G or a power ei = gxi
i for some gi ∈ G and variable xi.

Here the group elements gi are given as words over Σ. We write γ(ei) = gi for the constant
or the base of the power. Furthermore let PE ⊆ [1, n] be the set of indices of the powers in E

and QE = [1, n] \ PE be the set of indices of the constants in E. If ν ∈ NX is a valuation of
the variables X that occur in E, then for each i ∈ [1, n], we define ν(ei) = γ(ei)ν(xi) if i ∈ PE ;
and ν(ei) = ei if i ∈ QE . Moreover, ν(E) := ν(e1) · · · ν(en) and the set of G-solutions of E

as solG(E) := {ν ∈ NX | ν(E) = 1}.
For a group G, the problem of solvability of exponent equations ExpEq(G) is defined as:

Given a finite list of exponent expression E1, . . . , Ek over G.
Question Is

⋂k
i=1 solG(Ei) non-empty?

An exponent expression is called a knapsack expression if all variables occur at most once.
The knapsack problem KP(G) over G is defined as follows:
Given a knapsack expression E over G.
Question Is there a valuation ν such that ν(E) = 1?
The definition from [27] asks whether gx1

1 · · · gxn
n = g has a solution for given g1, . . . , gn, g ∈ G.

The two versions are inter-reducible in polynomial time [16, Proposition 7.1].

Wreath products. Let G and H be groups. Consider the direct sum K =
⊕

h∈H Gh,
where Gh is a copy of G. We view K as the set G(H) of all mappings f : H → G such that
supp(f) := {h ∈ H | f(h) ̸= 1} is finite, together with pointwise multiplication as the group
operation. The set supp(f) ⊆ H is called the support of f . The group H has a natural left
action on G(H) given by fh (a) = f(h−1a), where f ∈ G(H) and h, a ∈ H. The corresponding
semidirect product G(H) ⋊ H is the (restricted) wreath product G ≀ H. In other words:

Elements of G ≀ H are pairs (f, h), where h ∈ H and f ∈ G(H).
The multiplication in G ≀ H is defined as follows: Let (f1, h1), (f2, h2) ∈ G ≀ H. Then
(f1, h1)(f2, h2) = (f, h1h2), where f(a) = f1(a)f2(h−1

1 a).
There are canonical mappings σ : G ≀ H → H with σ(f, h) = h and τ : G ≀ H → G(H) with
τ(f, h) = f for f ∈ G(H), h ∈ H. In other words: g = (τ(g), σ(g)) for g ∈ G ≀ H. Note that
σ is a homomorphism whereas τ is in general not a homomorphism. Throughout this paper,
the letters σ and τ will have the above meaning (the groups G, H will be always clear from
the context). We also define supp(g) = supp(τ(g)) for all g ∈ G ≀ H.

The following intuition might be helpful: An element (f, h) ∈ G ≀ H can be thought of
as a finite multiset of elements of G \ {1G} that are sitting at certain elements of H (the
mapping f) together with the distinguished element h ∈ H, which can be thought of as a
cursor moving in H. We can compute the product (f1, h1)(f2, h2) as follows: First, we shift
the finite collection of G-elements that corresponds to the mapping f2 by h1: If the element
g ∈ G \ {1G} is sitting at a ∈ H (i.e., f2(a) = g), then we remove g from a and put it to the
new location h1a ∈ H. This new collection corresponds to the mapping f ′

2 : a 7→ f2(h−1
1 a).

After this shift, we multiply the two collections of G-elements pointwise: If g1 ∈ G and
g2 ∈ G are sitting at a ∈ H (i.e., f1(a) = g1 and f ′

2(a) = g2), then we put g1g2 into the
location a. The new distinguished H-element (the new cursor position) becomes h1h2.

Clearly, H is a subgroup of G ≀ H. We also regard G as a subgroup of G ≀ H by identifying
G with the set of all f ∈ G(H) with supp(f) ⊆ {1}. This copy of G together with H generates
G ≀ H. In particular, if G = ⟨Σ⟩ and H = ⟨Γ⟩ with Σ ∩ Γ = ∅ then G ≀ H is generated by Σ ∪ Γ.
With these embeddings, GH is the set of (f, h) ∈ G ≀ H with supp(f) ⊆ {1} and h ∈ H.

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:5

Groups. Our applications will involve two well-known types of groups: the discrete Heisen-
berg group H3(Z), which consists of the matrices

(1 a c
0 1 b
0 0 1

)
with a, b, c ∈ Z, and the Baumslag-

Solitar groups [2] BS(p, q) for p, q ∈ N, where BS(p, q) = ⟨a, t | tapt−1 = aq⟩.
A subgroup H of G is called finite-index if there are finitely many cosets gH. If ab = ba

for every a, b ∈ G, then G is abelian. A group has a property virtually if it has a finite-index
subgroup H with that property. For example, a group is virtually abelian if it has a finite-
index abelian subgroup. For two elements a, b ∈ G, we write [a, b] = aba−1b−1 and call this
the commutator of a, b. If A, B are subgroups of G, then [A, B] is the subgroup generated by
all [a, b] with a ∈ A and b ∈ B. For g, h ∈ G, we write gh = hgh−1. In particular, if g ∈ G

and h ∈ H, then gh is the element (f, 1) ∈ G ≀ H with f(h) = g and f(h′) = 1 for h′ ̸= h.

3 Main results

We first introduce the new (positive) intersection knapsack problem. A solution to a knapsack
expression E describes a walk in the Cayley graph that starts and ends in the group identity.
Whereas the ordinary knapsack problem only asks for the expression to yield the identity,
our extended version can impose constraints on how this walk intersects itself.

A walk over G is a nonempty sequence π = (g1, . . . , gn) over G. Its support is supp(π) =
{g1, . . . , gn}. It is a loop if g1 = gn. Two walks are disjoint if their supports are disjoint.
We define a partial concatenation on walks: If π = (g1, . . . , gn) and ρ = (h1, . . . , hm) with
gn = h1 then πρ = (g1, . . . , gn, h2, . . . , hm). A progression with period h ∈ G over G is a
walk of the form π = (g, gh, gh2, . . . , ghℓ) for some g ∈ G and ℓ ≥ 0. We also call the set
supp(π) a progression, whose period may not be unique. If h ̸= 1 we also call π a ray.

A factorized walk is a walk π equipped with a factorization (π1, . . . , πn), i.e. π = π1 . . . πn.
One also defines the concatenation of factorized walks in the straightforward fashion. If
E = e1 . . . en is an exponent expression and ν is a valuation over E we define the factorized
walk πν,E = π1 . . . πn induced by ν on E where

πi =
{

(ν(e1 . . . ei−1) gk
i)0≤k≤ν(xi), if ei = gxi

i

(ν(e1 . . . ei−1), ν(e1 . . . ei−1) gi), if ei = gi.

The intersection knapsack problem KP±(G) over G is defined as follows:
Given a knapsack expression E over G, a set L ⊆ [0, n]2 of loop constraints, and a set

D ⊆ [1, n]2 of disjointness constraints.
Question Is there a valuation ν such that ν(E) = 1 and the factorized walk πν,E = π1 . . . πn

induced by ν on E satisfies the following conditions:
πi+1 . . . πj is a loop for every (i, j) ∈ L

πi and πj are disjoint for every (i, j) ∈ D.
The positive intersection knapsack problem KP+(G) over G is the restriction of KP±(G)
to instances where D = ∅. We denote the set of solutions of a KP±(G)-instance (resp.
KP+(G)-instance) (E, I, D) (resp. (E, I)) as solG(E, I, D) (resp. solG(E, I)). Figure 1 shows
an example for the intersection knapsack problem over Z2.

The following is our main result.

▶ Theorem 3.1. Let G and H be f.g. groups such that G is non-trivial and H is infinite.
Then KP(G ≀ H) is decidable if and only if ExpEq(G) is decidable and either
1. G is abelian and KP+(H) is decidable or
2. G is not abelian and KP±(H) is decidable.

STACS 2021

11:6 A Characterization of Wreath Products Where Knapsack Is Decidable

Figure 1 Consider the knapsack equation gx1
1 gx2

2 gx3
3 gx4

4 = 1 over Z2 written multiplicatively,
where g1 = (0, 2), g2 = (1, 0), g3 = (−2, −2) and g4 = (1, 0) and the disjointness condition
D = {(1, 3)}. The solid dot represents the origin (0, 0). The knapsack equation is satisfied by
(x1, x2, x3, x4) = (2, 2, 2, 2) but it violates D, as illustrated on the left. On the right the solution
(x1, x2, x3, x4) = (2, 1, 2, 3) is depicted, which satisfies D.

Here, we assume H to be infinite, because the case of finite H is not interesting: If |H| = m,
then G ≀ H has Gm as a finite-index subgroup [18, Proposition 1], meaning KP(G ≀ H) is
decidable if and only if KP(Gm) is [16, Theorem 7.3].

If H is knapsack-semilinear, it is easy to see that both KP+(H) and KP±(H) are decidable
via an encoding in Presburger arithmetic. Hence, the main decidability result of [10], saying
that for knapsack-semilinear H, KP(G ≀ H) is decidable if and only if ExpEq(G) is decidable,
is generalized by Theorem 3.1.

Logical version of KP+ and KP±. For our applications of Theorem 3.1, it is often convenient
to use a formulation of KP+(G) and KP±(G) in terms of logics over an extended Cayley
graph of G. The Cayley graph of G is the logical structure C(G) = (G, (g−→)g∈G), with domain
G and with the relation g−→ for each1 g ∈ G, where g1

g−→ g2 if and only if g1g = g2. We define
the extension C+(G) = (G, (g−→)g∈G, (g−→∗)g∈G) where g−→∗ is the reflexive transitive closure
of g−→. Finally, we define a further extension C±(G) = (G, (g−→)g∈G, (g−→∗)g∈G, (⊥g,h)g,h∈G)
with disjointness relations ⊥g,h, which are binary relations on pairs G2: For any g, h ∈ G

and (g1, g2), (h1, h2) ∈ G2 we have that (g1, g2)⊥g,h(h1, h2) if and only if for some k, ℓ ∈ N,
we have g1gk = g2, h1hℓ = h2, and the walks (g1, g1g, . . . , g1gk) and (h1, h1h, . . . , h1hℓ) are
disjoint. We denote by F± the set of positive existential first-order formulas over C±(G), i.e.
formulas ∃y1 . . . ∃ymφ(y1, . . . , ym) where φ(y1, . . . , ym) is a positive Boolean combination of
atomic formulas. Then SAT±(G) is the decision problem that asks if a closed formula in F±

holds in C±(G). The fragment F+ and the problem SAT+(G) are defined similarly. Clearly,
KP±(G) (resp. KP+(G)) reduces to SAT±(G) (resp. SAT+(G)). In the full version [5], we
show:

▶ Theorem 3.2. For any finitely generated group G, the problem SAT±(G) (resp. SAT+(G))
is decidable if and only if KP±(G) (resp. KP+(G)) is decidable.

Virtually nilpotent groups. It was shown by Ganardi, König, Lohrey, and Zetzsche that for
some number ℓ ∈ N and all groups G ̸= 1, KP(G ≀ (H3(Z) ×Zℓ)) is undecidable [10, Theorem
5.2], but essentially nothing is known so far about the groups G for which the problem
KP(G ≀ H3(Z)) is decidable. Using Theorem 3.1, this can be settled.

▶ Theorem 3.3. For every non-trivial G, the problem KP(G ≀ H3(Z)) is undecidable.

1 Customarily, one only includes the edge relations (s−→)s∈S for some finite generating set S of G. We
choose S = G to make the presentation in the following cleaner.

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:7

This is in contrast to decidability of KP(H3(Z)) [16, Theorem 6.8]. We show Theorem 3.3 by
proving in Section 6 that SAT+(H3(Z)) (and thus KP+(H3(Z))) is undecidable.

The interest in the Heisenberg group stems from its special role inside the class of virtually
nilpotent groups. This class, in turn, consists exactly of the finite extensions of groups
of unitriangular integer matrices (see, for example, [14, Theorem 17.2.5]). Furthermore, a
celebrated result of Gromov [12] states that the f.g. virtually nilpotent groups are precisely
the f.g. groups with polynomial growth. In some sense, the discrete Heisenberg group is the
smallest f.g. virtually nilpotent group that is not virtually abelian. Therefore, Theorem 3.3
implies the following characterization of all wreath products G ≀ H with decidable KP(G ≀ H)
where H is infinite and virtually nilpotent. See the full version [5] for details.

▶ Corollary 3.4. Let G, H be f.g. non-trivial groups. If H is virtually nilpotent and infinite,
then KP(G ≀ H) is decidable if and only if H is virtually abelian and ExpEq(G) is decidable.

By undecidability of ExpEq(H3(Z)), this implies: If G ̸= 1 and H are f.g. virtually nilpotent
and H is infinite, then KP(G ≀ H) is decidable if and only if G and H are virtually abelian.

Solvable Baumslag-Solitar groups. Our second application of Theorem 3.1 concerns wreath
products G ≀ BS(1, q). It is known that knapsack is decidable for BS(1, q) [21, Theorem 4.1],
but again, essentially nothing is known about KP(G ≀ BS(1, q)) for any G.

▶ Theorem 3.5. For any f.g. group G and q ≥ 1, the problem KP(G ≀ BS(1, q)) is decidable
if and only if ExpEq(G) is decidable.

Extending methods from Lohrey and Zetzsche [21], we show that KP±(BS(1, q)) is decidable
for any q ≥ 1 and thus obtain Theorem 3.5 in Section 6.

Magnus embedding. Another corollary concerns groups of the form F/[N, N], where F is
a f.g. free group and N is a normal subgroup. Recall that any f.g. group can be written as
F/N , where F is an f.g. free group and N is a normal subgroup of F . Dividing by [N, N]
instead of N yields F/[N, N], which is subject to the Magnus embedding [22, Lemma] of
F/[N, N] into Zr ≀ (F/N), where r is the rank of F . We show in the full version [5]:

▶ Corollary 3.6. Let F be a finitely generated free group and N be a normal subgroup of F .
If KP+(F/N) is decidable, then so is KP(F/[N, N]).

Knapsack vs. intersection knapsack. Introducing the problems KP+ and KP± raises
the question of whether they are substantially different from the similar problems KP and
ExpEq: Is KP+(G) or KP±(G) perhaps inter-reducible with KP(G) or ExpEq(G)? Our
applications show that this is not the case. Since KP(H3(Z)) is decidable [16, Theorem 6.8],
but KP+(H3(Z)) is not, neither KP+(G) nor KP±(G) can be inter-reducible with KP(G)
in general. Moreover, one can show2 that ExpEq(BS(1, 2)) is undecidable [11], whereas
KP±(BS(1, q)) is decidable for any q ≥ 1. Hence, neither KP+(G) nor KP±(G) can be
inter-reducible with ExpEq(G) in general. However, we leave open whether there is a f.g.
group G for which KP+(G) is decidable, but KP±(G) is undecidable (see Section 7).

2 Since there is no published proof available, we include a proof in the full version [5], with kind permission
of Moses Ganardi and Markus Lohrey.

STACS 2021

11:8 A Characterization of Wreath Products Where Knapsack Is Decidable

4 From wreath products to intersection knapsack

In this section, we prove the “if” direction of Theorem 3.1 by deciding KP(G ≀ H) using
ExpEq(G) and either KP±(H) or KP+(H) (depending on whether G is abelian).

Normalization. We fix a wreath product G ≀ H with G and H finitely generated groups.
Note that we may assume that KP(H) is decidable. In our reduction, we will augment the
KP(G ≀ H)-instance with positive intersection constraints regarding the cursor in H. This
results in instances of the hybrid intersection knapsack problem HKP±(G ≀ H) over G ≀ H:
It is defined as KP±(G ≀ H) but the loop and disjointness constraints consider the σ-image
of elements. Let us make this more precise. If E = α1 · · · αn is a knapsack expression over
G ≀ H, then we define for all i ∈ [1, n] and ν ∈ NX the set

suppν
E(i) := {σ(ν(α1 · · · αi−1)γ(αi)k) | 0 ≤ k ≤ ν(xi) − 1}

if i ∈ PE and

suppν
E(i) := {σ(ν(α1 · · · αi−1))}

if i ∈ QE . For a walk w = (w1, . . . , wk) over G ≀ H we write σ(w) := (σ(w1), . . . , σ(wk)).
Then the hybrid intersection knapsack problem HKP±(G ≀ H) over G ≀ H is defined as follows:
Given a knapsack expression E over G, a set L ⊆ [0, n]2 of loop constraints, and a set

D ⊆ [1, n]2 of disjointness constraints.
Question Is there a valuation ν ∈ NX with factorized walk πν,E = π1 . . . πn induced by ν on

E such that the following conditions are fulfilled:
ν(E) = 1
σ(πi+1 . . . πj) is a loop for all (i, j) ∈ L

suppν
E(i) ∩ suppν

E(j) = ∅ for all (i, j) ∈ D.
Its positive version HKP+(G ≀ H) is again defined by having no disjointness constraints. The
set solG≀H is defined accordingly. Note that to simplify the constructions in the proofs, the
disjointness constraints in an HKP±(G ≀ H)-instance disregard the last point of walks.

In the following, when we write a knapsack expression as E = α1 · · · αnαn+1, we assume
w.l.o.g. that αn+1 is a constant. Two elements g, h ∈ H are called commensurable if gx = hy

for some x, y ∈ Z\{0}. It is known that if g1, g2 have infinite order and are not commensurable,
then there is at most one solution (x1, x2) ∈ Z2 for the equations gx1

1 gx2
2 = g [7, Lemma 9].

Let E = α1 · · · αnαn+1 be a knapsack expression and write gi = γ(αi) for i ∈ [1, n + 1].
The expression (resp. the corresponding HKP±(G ≀ H)-instance) is c-simplified if for any
i, j ∈ PE with gi /∈ H and gj /∈ H, we have that commensurability of σ(gi) and σ(gj) implies
σ(gi) = σ(gj). We call the expression (resp. the corresponding HKP±(G ≀ H)-instance)
normalized if it is c-simplified and each atom αi with i ∈ [1, n] is of one of the following types:
We either have (a) i ∈ QE and gi ∈ H or (b) i ∈ PE and σ(gi) = 1 or (c) i ∈ PE , gi ∈ GH

and σ(gi) has infinite order. Using generalizations of ideas from [10] and [7], we show:

▶ Theorem 4.1. Given an instance of KP(G ≀ H), one can effectively construct an equivalent
finite set of normalized HKP+(G ≀ H)-instances.

Here, a problem instance I is equivalent to a set I of problem instances if I has a solution if
and only if at least one of the instances in I has a solution.

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:9

Non-abelian case. Note that in a normalized knapsack expression, atoms of type (b) and
(c) and the last atom αn+1 may place non-trivial elements of G. Our next step is to transform
the input instance further so that only the atoms of type (c) can place non-trivial elements
of G, which leads to the notion of stacking-freeness.

Let E = α1 · · · αnαn+1 be a knapsack expression over G ≀ H and let gi := γ(αi) for all
i ∈ [1, n + 1]. We call an index i ∈ [1, n + 1] stacking if either i ∈ PE and σ(gi) = 1, or
i = n + 1 and gn+1 /∈ H. We say that E is stacking-free if it has no stacking indices. Thus, a
normalized expression E is stacking-free if each atom is either of type (c) or a constant in H.

▶ Lemma 4.2. Given a normalized HKP±(G ≀ H)-instance, one can effectively construct an
equivalent finite set of stacking-free, normalized HKP±(G ≀ H)-instances.

Let us sketch the proof of Lemma 4.2. We use the notion of an address from [10]. An address
of E is a pair (i, h) with i ∈ [1, n + 1] and h ∈ H such that h ∈ supp(γ(αi)). The set of
addresses AE of E is finite and can be computed. Intuitively, an address represents a position
in a knapsack expression where a point in H can be visited.

Intuitively, instead of placing elements of G by atoms of type (b) and by αn+1, we
introduce loop and disjointness constraints guaranteeing that in points visited by these atoms,
a solution would have placed elements that multiply to 1 ∈ G. To this end, we pick an
address (i, h) ∈ A of a stacking index i and then guess a set C ⊆ A of addresses such that the
point h′ ∈ H visited at (i, h) is visited by exactly the addresses in C. The latter condition
is formulated using loop and disjointness constraints in an HKP±(G ≀ H)-instance IC . In
IC , we do not place elements at C anymore; instead, we construct a set SC of exponent
equations over G that express that indeed the point h′ carries 1 ∈ G in the end. Note that
this eliminates one address with stacking index. We repeat this until we are left with a set of
stacking-free instances of HKP±(G ≀ H), each together with an accumulated set of exponent
equations over G. We then take the subset I of HKP±(G ≀ H)-instances whose associated
ExpEq(G)-instance has a solution. This will be our set for Lemma 4.2.

The last step of the non-abelian case is to construct KP±(H)-instances.

▶ Lemma 4.3. Given a stacking-free, normalized HKP±(G ≀ H)-instance, one can effectively
construct an equivalent finite set of KP±(H)-instances.

We are given an instance (E, L, D) with E = α1 · · · αn and write gi = γ(αi) for i ∈ [1, n].
As (E, L, D) is normalized and stacking-free, only atoms of type (c) with gi /∈ H can place
non-trivial elements of G. Moreover, if αi and αj are such atoms, then the elements σ(gi)
and σ(gj) are either non-commensurable or equal. In the first case, the two rays produced
by αi and αj can intersect in at most one point; in the second case, they intersect along
subrays corresponding to intervals Ii ⊆ [0, ν(xi)] and Ij ⊆ [0, ν(xj)].

Thus, the idea is to split up each ray wherever the intersection with another ray starts
or ends: We guess for each ray as above the number m ≤ 2 · |AE | − 1 of subrays it will be
split into and replace gxi

i with gy1
i · · · gym

i . After the splitting, subrays are either equal or
disjoint. We guess an equivalence relation on the subrays; using loop constraints, we ensure
that subrays in the same class are equal; using disjointness constraints, we ensure disjointness
of subrays in distinct classes. Finally, we have to check that for each equivalence class C, the
element of G produced by the rays in C does indeed multiply to 1 ∈ G. This can be checked
because ExpEq(G) (and thus the word problem for G) is decidable.

Abelian case. We now come to the case of abelian G: We show that KP(G ≀ H) is decidable,
but only using instances of KP+(H) instead of KP±(H). Here, the key insight is that we can
use the same reduction, except that we just do not impose the disjointness constraints. In

STACS 2021

11:10 A Characterization of Wreath Products Where Knapsack Is Decidable

the above reduction, we use disjointness constraints to control exactly which positions in our
walk visit the same point in H. Then we can check that in the end, each point in H carries
1 ∈ G. However, if G is abelian, it suffices to make sure that the set of positions in our walk
decomposes into subsets, each of which produces 1 ∈ G: If several of these subsets do visit
the same point in H, the end result will still be 1 ∈ G.

We illustrate this in a slightly simpler setting. Suppose we have a product g = ah1
1 · · · ahn

n

with h1, . . . , hn ∈ H and a1, . . . , an ∈ G. Then g is obtained by placing a1 at h1 ∈ H, then
a2 at h2 ∈ H, etc. For a subset S = {s1, . . . , sk} ⊆ [1, n] with s1 < · · · < sk, we define
gS = a

hs1
s1 · · · a

hsk
sk . Hence, we only multiply those factors from S. An equivalence relation

≡ on [1, n] is called cancelling if gC = 1 for every class C of ≡. Moreover, ≡ is called
equilocal if i ≡ j if and only if hi = hj . It is called weakly equilocal if i ≡ j implies hi = hj .
Now observe that for any G, we have g = 1 if and only if there is an equilocal cancelling
equivalence on [1, n]. However, if G is abelian, then g = 1 if and only if there is a weakly
equilocal equivalence on [1, n]. Since weak equilocality can be expressed using only equalities
(and no disequalities), it suffices to impose loop conditions in our instances.

Comparison to previous approach in [7]. The reduction from KP(G ≀ H) to ExpEq(G) and
KP±(H) (KP+(H) respectively) uses similar ideas as the proof of [7, Theorem 4], where it is
shown ExpEq(K) is in NP if K is an iterated wreath product of Zr for some r ∈ N.

Let us compare our reduction with the proof of [7, Theorem 4]. In [7], one solves ExpEq(K)
by writing K = G ≀H where G is abelian and H is orderable and knapsack-semilinear. In both
proofs, solvability of an instance (of ExpEq(G ≀ H) in [7] and KP(G ≀ H) here) is translated
into a set of conditions by using similar decomposition arguments. Then, the two proofs
differ in how satisfiability of these conditions is checked.

In [7], this set of conditions is expressed in Presburger arithmetic, which is possible
due to knapsack-semilinearity of H. In our reduction, we have to translate the conditions
in ExpEq(G) and KP+(H) (KP±(H)) instances. Here, we use loop constraints where in
Presburger arithmetic, once can compare variables directly. Moreover, our reduction uses
disjointness constraints to express solvability in the case that G is non-abelian. This case
does not occur in [7, Theorem 4]. Finally, we have to check whether the elements from G

written at the same point of H multiply to 1. The reduction of [7] can express this directly
in Presburger arithmetic since G is abelian. Here, we use instances of ExpEq(G).

5 From intersection knapsack to wreath products

In this section, we prove the “only if” direction of Theorem 3.1. Since it is known that for
infinite H, decidability of KP(G ≀ H) implies decidability of ExpEq(G) [10, Proposition. 3.1,
Proposition 5.1], it remains to reduce (i) KP+(H) to KP(G ≀ H) for any group G ̸= 1, and
(ii) KP±(H) to KP(G ≀ H) for any non-abelian group G. In the following, let G be a
non-trivial group and H be any group and suppose KP(G ≀ H) is decidable.

First let us illustrate how to reduce KP+(H) to KP(G ≀ H). Suppose we want to verify
whether a product h1 . . . hm = 1 over H satisfies a set of loop constraints L ⊆ [0, m]2, i.e.
hi+1 . . . hj = 1 for all (i, j) ∈ L. To do so we insert into the product for each (i, j) ∈ L a
function f ∈ G(H) after the element hi and its inverse f−1 after the element hj . We call
these functions loop words since their supports are contained in a cyclic subgroup ⟨t⟩ of H.
We can choose the loop words such that this modified product evaluates to 1 if and only
if the loop constraints are satisfied. For the reduction from KP±(H) we need to make the
construction more robust since we simultaneously need to simulate disjointness constraints.

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:11

If H is a torsion group then KP+(H) and KP±(H) are decidable if the word problem of
H is decidable: For each exponent, we only have to check finitely many candidates. Since
KP(G ≀ H) is decidable, we know that KP(H) is decidable and hence also the word problem.
Thus, we assume H not to be a torsion group and may fix an element t ∈ H of infinite order.

Periodic complexity. Let K be a group. The following definitions will be employed with
K = Z or K = H. For any subset D ⊆ K, let G(D) be the group of all functions u : K → G

whose support supp(u) = {h ∈ K | u(h) ̸= 1} is finite and contained in D. A function
f ∈ G(K) is basic periodic if there exists a progression D in K and c ∈ G such that f(h) = c

for all h ∈ D and f(h) = 1 otherwise. The value of such a function f is the element c; a
period of f is a period of its support. We will identify a word u = c1 . . . cn ∈ G∗ with the
function u ∈ G(Z) where u(i) = ci for i ∈ [1, n] and u(i) = 1 otherwise. Recall that for
u ∈ G(Z) and s ∈ Z, we have us (n) = u(n − s). We extend this to s ∈ Z∞ := Z ∪ {∞} by
setting u∞ (n) = 1 for all n ∈ Z. The periodic complexity of u ∈ G(Z) is the minimal number
pc(u) = k of basic periodic functions u1, . . . , uk such that u =

∏k
i=1 ui. Given a progression

D = {p + qn | n ∈ [0, ℓ]} in Z and a function u ∈ G(Z) we define πD(u)(n) = u(p + qn) for
all n ∈ Z and say that πD(u) is a periodic subsequence of u. Note that periodic subsequences
of basic periodic functions are again basic periodic. Furthermore, since πD : G(Z) → G(Z) is
a homomorphism, taking periodic subsequences does not increase the periodic complexity.

▶ Lemma 5.1. Given n, k ∈ N and a ∈ G \ {1}, one can compute u1, . . . , un ∈ ⟨a⟩(N) such
that

∏n
i=1 upi

i uqi −1
i has periodic complexity ≥ k for all (p1, . . . , pn) ̸= (q1, . . . , qn) ∈ Zn

∞.

Here is a proof sketch for Lemma 5.1. First we construct a word with large periodic
complexity: In the full version [5] we prove that (a)22k

(1)22k

. . . (a)22k

(1)22k

, consisting of 4k

many blocks, has periodic complexity at least k, where (b)n is the sequence consisting of n

many b’s. The case n = 1 can be shown by taking such a sequence v = a1 . . . am ∈ ⟨a⟩(N)

with large periodic complexity and defining u1 = a1(1)m−1a2(1)m−1 . . . am(1)m−1a1 . . . am.
If p, q ∈ Z∞ are distinct then up

1 uq −1
1 always contains v or v−1 as a periodic subsequence

and thus has large periodic complexity. For n > 1 we define ui (i > 1) to be stretched
versions of u1 such that the supports of any two functions up

i, uq
j where i ̸= j intersect in at

most one point. This allows to argue that
∏n

i=1 upi

i uqi −1
i still has large periodic complexity

as soon as pi ̸= qi for some i.

Expressing loop constraints. We now show how to use Lemma 5.1 to encode loop constraints
over a product h1 . . . hm over H in an instance of KP(G ≀ H).

Recall that a loop constraint (i, j) stipulates that σ(gi+1 . . . gj) = 1. If we only want to
reduce KP+(H), it is not hard to see that it would suffice to guarantee

∏n
i=1 upi

i uqi −1
i ̸= 1

in Lemma 5.1. In that case, we could essentially use the functions ui as loop words. However,
in order to express disjointness constraints in KP±(H), we will construct expressions over
G ≀ H that place additional “disjointness patterns” in the Cayley graph of H. We shall make
sure that the disjointness patterns are tame: Roughly speaking, this means they are basic
periodic and either (i) place elements from a fixed subgroup ⟨a⟩ or (ii) can intersect a loop
word at most once. Here, the high periodic complexity of

∏n
i=1 upi

i uqi −1
i will allow us to

conclude that tame patterns cannot make up for a violated loop constraint.
Let us make this precise. Recall that two elements g, h ∈ H are called commensurable

if gx = hy for some x, y ∈ Z \ {0}. Let a ∈ G \ {1}. Let Pa,t(G ≀ H) be the set of elements
g ∈ G ≀ H such that τ(g) is basic periodic and either, (i) its value belongs to ⟨a⟩, or (ii) its
period is not commensurable to t. In particular, a power (ch)k (where c ∈ G, h ∈ H, k ∈ N)

STACS 2021

11:12 A Characterization of Wreath Products Where Knapsack Is Decidable

belongs to Pa,t(G ≀ H) if c ∈ ⟨a⟩ or h is not commensurable to t. Note that since loop words
are always placed along the direction t, this guarantees tameness: In case (ii), the period of
τ(g) being non-commensurable to t implies that the support of any h′g, h′ ∈ H, can intersect
the support of a loop word in ⟨a⟩(⟨t⟩) at most once. Using Lemma 5.1, we show the following.

▶ Lemma 5.2. Given a ∈ G\{1}, m ∈ N and L ⊆ [0, m]2 we can compute f0, . . . , fm ∈ ⟨a⟩(t∗)

such that:
1. Let h1, . . . , hm ∈ H. Then h1 . . . hm = 1 and hi+1 . . . hj = 1 for all (i, j) ∈ L if and only

if f0h1f1 . . . hmfm = 1.
2. Let g1, . . . , gm ∈ Pa,t(G ≀ H) such that σ(gi+1 . . . gj) ̸= 1 for some (i, j) ∈ L. Then

f0g1f1 . . . gmfm ̸= 1.
Observe that the first constraint says that if we only use the loop words fi, then they allow
us to express loop constraints. The second constraint tells us that a violated loop constraint
cannot be compensated even with perturbations g1, . . . , gm, provided that they are tame.

The abelian case. Lemma 5.2 provides a simple reduction from KP+(H) to KP(G ≀ H).
Given an instance (E = e1 . . . en, L) of KP+(H) we compute f0, . . . , fm ∈ ⟨a⟩(t∗) using
Lemma 5.2. Then ν : X → N satisfies ν(E) = 1 and ν(ei+1 . . . ej) for all (i, j) ∈ L if and only
if ν(f0e1f1 . . . enfn) = 1. Hence (E, L) has a solution if and only if ν(f0e1f1 . . . enfn) = 1
does.

The non-abelian case. Now let G be a non-abelian group. In the following we will reduce
KP±(H) to KP(G≀H). The first step is to construct from an KP±(H)-instance I an equivalent
HKP+(G ≀ H)-instance Î using a nontrivial commutator [a, b] ̸= 1 in G. In a second step
we apply the “loop words”-construction from Lemma 5.2 (point 2) to Î, going to a (pure)
knapsack instance. It guarantees that, if a loop constraint is violated, then the knapsack
instance does not evaluate to 1. Furthermore, if a disjointness constraint is violated then
there exists a large number of pairwise distant points in the Cayley graph of H which are
labeled by a nontrivial element. These points cannot be canceled by the functions fi from
Lemma 5.2. Finally, if all loop and disjointness constraints are satisfied then the induced walk
in the Cayley graph provides enough “empty space” such that the loop words can be shifted
to be disjoint from the original walk induced by Î (encoding the disjointness constraints).

Normalization. Let I = (E = e1 . . . en, L, D) be a KP±(H)-instance where ei is either a
constant ei = hi or a power ei = hxi

i . We will start by establishing the following useful
properties. We call I torsion-free if hi has infinite order for all i ∈ PE . Call I orthogonalized
for all (i, j) ∈ D ∩ P 2

E such that we have ⟨hi⟩ ∩ ⟨hj⟩ = {1}. If I is torsion-free and
orthogonalized then it is called normalized. The orthogonality will be crucial for the tameness
of the disjointness patterns since at most one of the elements hi, hj for (i, j) ∈ D ∩ P 2

E is
commensurable to t. Furthermore, it guarantees that there is at most one intersection point
for any pair (i, j) ∈ D.

▶ Lemma 5.3. One can compute a finite set I of normalized instances of KP±(H) such that
I has a solution if and only if there exists I ′ ∈ I which has a solution.

Here, torsion-freeness is easily achieved: If hi has finite order, then hxi
i can only assume

finitely many values, so we replace hxi
i by one of finitely many constants. Orthogonality

requires an observation: If ⟨hi⟩ ∩ ⟨hj⟩ ̸= {1}, then any two intersecting progressions πi, πj

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:13

with periods hi and hj , respectively, must intersect periodically, meaning there exists an
intersection point that is close to an endpoint of πi or πj . This means, in lieu of (i, j) ∈ D,
we can require disjointness of one power with a constant.

Expressing disjointness constraints. Hence we can assume that I is normalized. To
express disjointness constraints, we must assume that G is non-abelian. Let a, b ∈ G with
aba−1b−1 = [a, b] ̸= 1. Our starting point is the following idea. To express that two
progressions πi and πj , induced by a valuation of E, are disjoint, we construct an expression
over G ≀ H that first places a at each point in πi, then b at each point in πj , then again a−1 at
each point in πi, and finally b−1 at each point in πj , see (2). Here we need loop constraints
that express that the start and endpoints of the two traversals of πi (and πj) coincide. Then,
if πi and πj are disjoint, the effect will be neutral; otherwise any intersection point will carry
aba−1b−1 ̸= 1.

However, this leads to two problems. First, there might be more than one disjointness
constraint: If k disjointness constraints are violated by the same point h′′ ∈ H, then h′′

would carry [a, b]k, which can be the identity (for example, G may be finite). Second, when
we also place loop words (which multiply elements from ⟨a⟩), those could also interfere with
the commutator (for example, instead of aba−1b−1, we might get aba−1(a)b−1(a−1) = 1).

Instead, we do the following. Let t ∈ H be the element of infinite order used for the loop
words. Moreover, let D = {(i1, j1), . . . , (id, jd)}. For each (ik, jk) ∈ D, instead of performing
the above “commutator construction” once, we perform it n + d times, each time shifted by
tNk ∈ H for some large Nk. The numbers N0 < N1 < · · · are chosen so large that for at least
one commutator, there will be no interference from other commutators or from loop words.

Let us make this precise. Since I is orthogonalized, we may assume that for each
(i, j) ∈ D ∩ P 2

E , the elements hj and t are not commensurable; otherwise we swap i and
j. The resulting HKP+(G ≀ H)-instance Î will have length m = n + 4d(n + d)(n + 2). In
preparation, we can compute a number N such that the functions f0, . . . , fm from Lemma 5.2
for any L ⊆ [0, m]2 satisfy supp(fi) ⊆ {tj | j ∈ [0, N − 1]}. For each i ∈ [1, n], c ∈ G, s ∈ N,
we define the knapsack expression Ei,c,s over G ≀ H as

Ei,c,s =
{

e1 . . . ei−1 (ts) (c t−shit
s)xi(ct−s) ei+1 . . . en, if ei = hxi

i ,

e1 . . . ei−1 (ts) (c t−shit
s) (ct−s) ei+1 . . . en, if ei = hi.

(1)

The parentheses indicate the atoms. We define

Ê = E ·
d∏

k=1

∏
s∈Sk

(
Eik,a,s · Ejk,b,s · Eik,a−1,s · Ejk,b−1,s

)
(2)

where Sk = {j(n + d)2kN | j ∈ [1, n + d]} for all k ∈ [1, d], and all occurrences of expressions
of the form Ei,c,s use fresh variables. Note that Eik,a,s · Ejk,b,s · Eik,a−1,s · Ejk,b−1,s performs
the commutator construction for (ik, jk), shifted by ts. Let Ê = ê1 . . . êm be the resulting
expression. Notice that its length is indeed m = n + 4d(n + d)(n + 2) as claimed above.

Finally, in our HKP+(G ≀ H) instance, we also add a set J ⊆ [0, m]2 of loop constraints
stating that for each k ∈ [1, d] and s ∈ Sk, the ik-th atom in Eik,a,s arrives at the same place
in H as the ik-th atom in E (and analogously for Ejk,b,s, Eik,a−1,s, Ejk,b−1,s). See [5] for
details.

Let f0, . . . , fm ∈ ⟨a⟩(t∗) be the loop words from Lemma 5.2 for the set J ⊆ [0, m]2. It is
now straightforward to verify that the elements êi are all tame as explained above. In other
words, for every valuation ν and i ∈ [1, m], we have ν(êi) ∈ Pa,t (see [5] for a proof).

STACS 2021

11:14 A Characterization of Wreath Products Where Knapsack Is Decidable

Shifting loop words. By construction, we now know that if the instance f0ê1f1 · · · êmfm

of KP(G ≀ H) has a solution, then so does our normalized instance I of KP±(H). However,
there is one last obstacle: Even if all loop and disjointness constraints can be met for I, we
cannot guarantee that f0ê1f1 · · · êmfm has a solution: It is possible that some loop words
interfere with some commutator constructions so as to yield an element ̸= 1.

The idea is to shift all the loop words f0, . . . , fm in direction t by replacing fi by
trfit

−r = ftr

i for some r ∈ N. We shall argue that for some r in some bounded interval, this
must result in an interference free expression; even though the elements êi may modify an
unbounded number of points in H. To this end, we use again that the êi are tame: Each of
them either (i) places elements from ⟨a⟩, or (ii) has a period non-commensurable to t. In
the case (i), there can be no interference because the fi also place elements in ⟨a⟩, which is
an abelian subgroup. In the case (ii), êi can intersect the support of each fj at most once.
Hence, there are at most m points each fj has to avoid after shifting. The following simple
lemma states that one can always shift finite sets Fi in parallel to avoid finite sets Ai, by a
bounded shift. Notice that the bound does not depend on the size of the elements in the sets
Fi and Ai.

▶ Lemma 5.4. Let F1, . . . , Fm ⊆ Z with |Fi| ≤ N and A1, . . . , Am ⊆ Z with |Ai| ≤ ℓ. There
exists a shift r ∈ [0, Nmℓ] such that (r + Fi) ∩ Ai = ∅ for each i ∈ [1, m].

Proof. For every a ∈ Z there exist at most |Fi| ≤ N many shifts r ∈ N where a ∈ r + Fi.
Therefore there must be a shift r ∈ [0, Nmℓ] such that (r+Fi)∩Ai = ∅ for each i ∈ [1, m]. ◀

We can thus prove the following lemma, which clearly completes the reduction from
KP±(H) to KP(G ≀ H).

▶ Lemma 5.5. I = (E, L, D) has a solution if and only if ftr

0ê1 ftr

1 . . . êm ftr

m has a solution
for some r ∈ [0, Nm2].

6 Applications

The discrete Heisenberg group. Here, we prove that SAT+(H3(Z)) is undecidable. Together
with Theorem 3.1 and Theorem 3.2, this directly implies Theorem 3.3. Define the matrices
A =

(
1 1 0
0 1 0
0 0 1

)
, B =

(
1 0 0
0 1 1
0 0 1

)
, and C =

(
1 0 1
0 1 0
0 0 1

)
. The group H3(Z) is generated by A and B

and we have AC = CA and BC = CB. It is well-known that (I) AiCj = Ai′
Cj′ iff i = i′

and j = j′; and (II) BiCj = Bi′
Cj′ iff i = i′ and j = j′; and (III) AiBjA−i′

B−j′ = Ck if
and only if i = i′, j = j′, and k = ij. For proofs, see the full version [5].

We show undecidability of SAT+(H3(Z)) by reducing from solvability of Diophantine
equations over natural numbers. Hence, we are given a finite system

∧m
j=1 Ej of equations of

the form x = a, z = x + y, and z = xy. It is well-known that solvability of such equation
systems is undecidable [23]. Given such an equation system over a set of variables X we define
a C+(H3(Z))-formula containing the variables {gx | x ∈ X} ∪ {g0} with the interpretation
that gx = g0Cx. First we state that g0

C−→∗ gx for all x ∈ X. Expressing x = a is done
simply with g0

Ca

−−→ gx. For z = x + y, we use

CxA∗ ∩ Ax′
C∗ ∩ (AC)∗ ̸= ∅ ∧ Ax′

C∗ ∩ CzA∗ ∩ Cy(AC)∗ ̸= ∅.

This can be expressed in C+(H3(Z)) with a fresh variable fx′ for g0Ax′ : For example, the
first conjunct holds iff there exists h ∈ H3(Z) such that g0

A−→∗ fx′ , gx
A−→∗ h, fx′

C−→∗ h,
g0

AC−−→∗ h. By (I) and AC = CA, the first conjunct holds iff x = x′. Similarly, the second
conjunct holds iff z = x′ + y, hence z = x + y. For z = xy, we use:

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:15

CxA∗ ∩Ax′
C∗ ∩(AC)∗ ̸= ∅ ∧ By′

C∗ ∩CyB∗ ∩(BC)∗ ̸= ∅ ∧ Ax′
B∗(A−1)∗ ∩By′

C∗ ∩CzB∗ ̸= ∅.

Like above, the first and second conjunct express x′ = x and y′ = y. The third says that
Ax′

Br(A−1)s = By′
Cz for some r, s ≥ 0, so by (III), it states z = x′y′, hence z = xy.

Solvable Baumslag-Solitar groups. We show that SAT±(BS(1, q)) is decidable for every
q ≥ 1. By Theorem 3.1 and Theorem 3.2, this proves Theorem 3.5. Our proof is based on
the following observation, which is shown in the full version [5].

▶ Proposition 6.1. The first-order theory of C+(BS(1, q)) is decidable.

For Proposition 6.1, we show that given any finite subset F ⊆ BS(1, q), the structure
(BS(1, q), (g−→)g∈F , (g−→∗)g∈F) is effectively an automatic structure, which implies that its
first-order theory is decidable [15, Corollary 4.2]. This uses a straightforward extension of the
methods in [21]. In [21, proof of Theorem 4.1], it is shown that KP(BS(1, q)) can be reduced
to the existential fragment of the structure (Z, +, Vq), where Vq(n) is the largest power of q

that divides n. The structure (Z, +, Vq) is called Büchi arithmetic and is well-known to be
automatic. Here, we show that (BS(1, q), (g−→)g∈F , (g−→∗)g∈F) can be interpreted in a slight
extension of Büchi arithmetic that is still automatic. From Proposition 6.1, we can derive a
stronger statement, which clearly implies decidability of SAT±(BS(1, q)):

▶ Theorem 6.2. The first-order theory of C±(BS(1, q)) is decidable.

Indeed, since BS(1, q) is torsion-free, we can express the predicate ⊥g,h using universal
quantification: We have (g1, g2)⊥g,h(h1, h2) if and only if g1

g−→∗ g2 and h1
h−→∗ h2 and

∀f, f ′ ∈ BS(1, q) :
(

g1
g−→∗ f ∧ f

g−→∗ g2 ∧ h1
h−→∗ f ′ ∧ f ′ h−→∗ h2

)
→ f ̸= f ′.

7 Conclusion

We have shown that for non-trivial groups G and infinite groups H, the problem KP(G ≀ H)
is decidable if and only if ExpEq(G) is decidable and either (i) G is abelian and KP+(H)
is decidable or (ii) G is non-abelian and KP±(H) is decidable. This reduces the study of
decidablity of KP(G ≀ H) to decidability questions about the factors G and H.

Intersection knapsack (KP±) vs positive intersection knapsack (KP+). However, we leave
open whether there is a group H where KP+(H) is decidable, but KP±(H) is undecidable.
It is clear that both are decidable for all groups in the class of knapsack-semilinear groups.
This class contains a large part of the groups for which knapsack has been studied. For
example, it contains graph groups [20, Theorem 3.11] and hyperbolic groups [17, Theorem 8.1].
Moreover, knapsack-semilinearity is preserved by a variety of constructions: This includes
wreath products [10, Theorem 5.4], graph products [8], free products with amalgamation and
HNN-extensions over finite identified subgroups [8], and taking finite-index overgroups [8].
Moreover, the groups H3(Z) and BS(1, q) for q ≥ 2 are also unable to distinguish KP+ and
KP±: We have shown here that KP+ is undecidable in H3(Z) and KP± is decidable in
BS(1, q). To the best of the authors’ knowledge, among the groups for which knapsack is
currently known to be decidable, this only leaves BS(p, q) for p, q coprime, and G ≀ BS(1, q)
(with decidable ExpEq(G)) as candidates to distinguish KP+ and KP±.

STACS 2021

11:16 A Characterization of Wreath Products Where Knapsack Is Decidable

Complexity. Another aspect that our work does not settle is the complexity of KP(G ≀ H)
for each G and H. We refer to [7] for a current overview on this.

The reductions presented here have high complexity. For example, our reduction from
KP(G ≀ H) involves several transformations of instances of KP(G ≀ H), HKP(G ≀ H), KP±(H),
KP(H), or ExpEq(G). In multiple of these transformations, as an auxiliary step, we take
an instance I, extract from it a set of knapsack equations axby = c with a, b, c ∈ H, find
minimal solutions, and use them to compute a new instance I ′. Thus, the complexity of our
reduction depends on the size of minimal solutions to (two-variable) knapsack equations in H.
Moreover, even if one assumes a polynomial bound on such solution sizes (which is known
to hold, for example, in graph groups defined by transitive forests [20, Theorem 4.10] and
in hyperbolic groups [27] (see also [17, Theorem 8.1])), our reduction still involves multiple
steps that incur an exponential blow-up.

Furthermore, our reduction from KP±(H) (or KP+(H)) to KP(G ≀ H) produces double-
exponentially many instances of KP(G ≀ H), each of which is doubly exponential in size.

References
1 L. Babai, R. Beals, J. Cai, G. Ivanyos, and E. M. Luks. Multiplicative equations over

commuting matrices. In Proceedings of SODA 1996, pages 498–507. ACM/SIAM, 1996.
2 G. Baumslag and D. Solitar. Some two-generator one-relator non-Hopfian groups.

Bulletin of the American Mathematical Society, 68(3):199–201, 1962. doi:10.1090/
S0002-9904-1962-10745-9.

3 P. Bell, V. Halava, T. Harju, J. Karhumäki, and I. Potapov. Matrix equations and hilbert’s
tenth problem. International Journal of Algebra and Computation, 18(8):1231–1241, 2008.
doi:10.1142/S0218196708004925.

4 P. Bell, I. Potapov, and P. Semukhin. On the mortality problem: From multiplicative matrix
equations to linear recurrence sequences and beyond. In Proceedings of MFCS 2019, pages
83:1–83:15, 2019. doi:10.4230/LIPIcs.MFCS.2019.83.

5 P. Bergsträßer, M. Ganardi, and G. Zetzsche. A characterization of wreath products where
knapsack is decidable, 2021. arXiv:2101.06132.

6 F. A. Dudkin and A. V. Treyer. Knapsack problem for baumslag–solitar groups. Siberian
Journal of Pure and Applied Mathematics, 18(4):43–55, 2018.

7 M. Figelius, M. Ganardi, M. Lohrey, and G. Zetzsche. The complexity of knapsack problems
in wreath products. In Proceedings of ICALP 2020, pages 126:1–126:18, 2020. doi:10.4230/
LIPIcs.ICALP.2020.126.

8 M. Figelius, M. Lohrey, and G. Zetzsche. Closure properties of knapsack semilinear groups,
2019. arXiv:1911.12857.

9 E. Frenkel, A. Nikolaev, and A. Ushakov. Knapsack problems in products of groups. Journal
of Symbolic Computation, 74:96–108, 2016. doi:10.1016/j.jsc.2015.05.006.

10 M. Ganardi, D. König, M. Lohrey, and G. Zetzsche. Knapsack problems for wreath products.
In Proceedings of STACS 2018, volume 96 of LIPIcs, pages 32:1–32:13. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.32.

11 M. Ganardi and M. Lohrey, 2020. Personal communication.
12 M. Gromov. Groups of polynomial growth and expanding maps. Publications Mathématiques

de l’Institut des Hautes Études Scientifiques, 53(1):53–78, 1981.
13 F. Gul, M. Sohrabi, and A. Ushakov. Magnus embedding and algorithmic properties of groups

f/n(d). Transactions of the American Mathematical Society, 369(9):6189–6206, 2017.
14 M. I. Kargapolov and J. I. Merzljakov. Fundamentals of the Theory of Groups. Springer-Verlag,

New York, 1979. Translated from the second Russian edition.
15 B. Khoussainov and A. Nerode. Automatic presentations of structures. In International

Workshop on Logic and Computational Complexity, pages 367–392. Springer, 1994.

https://doi.org/10.1090/S0002-9904-1962-10745-9
https://doi.org/10.1090/S0002-9904-1962-10745-9
https://doi.org/10.1142/S0218196708004925
https://doi.org/10.4230/LIPIcs.MFCS.2019.83
http://arxiv.org/abs/2101.06132
https://doi.org/10.4230/LIPIcs.ICALP.2020.126
https://doi.org/10.4230/LIPIcs.ICALP.2020.126
http://arxiv.org/abs/1911.12857
https://doi.org/10.1016/j.jsc.2015.05.006
https://doi.org/10.4230/LIPIcs.STACS.2018.32

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:17

16 D. König, M. Lohrey, and G. Zetzsche. Knapsack and subset sum problems in nilpotent,
polycyclic, and co-context-free groups. In Algebra and Computer Science, volume 677 of
Contemporary Mathematics, pages 138–153. American Mathematical Society, 2016. doi:
10.1090/conm/677.

17 M. Lohrey. Knapsack in hyperbolic groups. Journal of Algebra, 545:390–415, 2020. doi:
10.1016/j.jalgebra.2019.04.008.

18 M. Lohrey, B. Steinberg, and G. Zetzsche. Rational subsets and submonoids of wreath products.
Information and Computation, 243:191–204, 2015. doi:10.1016/j.ic.2014.12.014.

19 M. Lohrey and G. Zetzsche. Knapsack in graph groups, HNN-extensions and amalgamated
products. In Proceedings of STACS 2016, volume 47 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 50:1–50:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2016.50.

20 M. Lohrey and G. Zetzsche. Knapsack in graph groups. Theory of Computing Systems,
62(1):192–246, 2018. doi:10.1007/s00224-017-9808-3.

21 M. Lohrey and G. Zetzsche. Knapsack and the power word problem in solvable baumslag-solitar
groups. In Proceedings of MFCS 2020, pages 67:1–67:15, 2020. doi:10.4230/LIPIcs.MFCS.
2020.67.

22 W. Magnus. On a theorem of Marshall Hall. Annals of Mathematics. Second Series, 40:764–768,
1939.

23 Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Massachusetts, 1993.
24 J. Matthews. The conjugacy problem in wreath products and free metabelian groups. Trans-

actions of the American Mathematical Society, 121(2):329–339, 1966.
25 A. Miasnikov, S. Vassileva, and A. Weiß. The conjugacy problem in free solvable groups and

wreath products of abelian groups is in TC0. Theory of Computing Systems, 63(4):809–832,
2019.

26 A. Mishchenko and A. Treier. Knapsack problem for nilpotent groups. Groups Complexity
Cryptology, 9(1):87–98, 2017.

27 A. Myasnikov, A. Nikolaev, and A. Ushakov. Knapsack problems in groups. Mathematics of
Computation, 84:987–1016, 2015. doi:10.1090/S0025-5718-2014-02880-9.

28 V. Remeslennikov and V. Sokolov. Some properties of a magnus embedding. Algebra and
Logic, 9(5):342–349, 1970.

STACS 2021

https://doi.org/10.1090/conm/677
https://doi.org/10.1090/conm/677
https://doi.org/10.1016/j.jalgebra.2019.04.008
https://doi.org/10.1016/j.jalgebra.2019.04.008
https://doi.org/10.1016/j.ic.2014.12.014
https://doi.org/10.4230/LIPIcs.STACS.2016.50
https://doi.org/10.1007/s00224-017-9808-3
https://doi.org/10.4230/LIPIcs.MFCS.2020.67
https://doi.org/10.4230/LIPIcs.MFCS.2020.67
https://doi.org/10.1090/S0025-5718-2014-02880-9

	1 Introduction
	2 Preliminaries
	3 Main results
	4 From wreath products to intersection knapsack
	5 From intersection knapsack to wreath products
	6 Applications
	7 Conclusion

