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Abstract
A word u is a subsequence of another word w if u can be obtained from w by deleting some of its
letters. In the early 1970s, Imre Simon defined the relation ∼k (called now Simon-Congruence) as
follows: two words having exactly the same set of subsequences of length at most k are ∼k-congruent.
This relation was central in defining and analysing piecewise testable languages, but has found
many applications in areas such as algorithmic learning theory, databases theory, or computational
linguistics. Recently, it was shown that testing whether two words are ∼k-congruent can be done
in optimal linear time. Thus, it is a natural next step to ask, for two words w and u which are
not ∼k-equivalent, what is the minimal number of edit operations that we need to perform on w in
order to obtain a word which is ∼k-equivalent to u.

In this paper, we consider this problem in a setting which seems interesting: when u is a
k-subsequence universal word. A word u with alph(u) = Σ is called k-subsequence universal if the
set of subsequences of length k of u contains all possible words of length k over Σ. As such, our
results are a series of efficient algorithms computing the edit distance from w to the language of
k-subsequence universal words.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Design and analysis of algorithms

Keywords and phrases Subsequence, Scattered factor, Subword, Universality, k-subsequence univer-
sality, Edit distance, Efficient algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.25

Related Version Full Version: https://arxiv.org/abs/2007.09192

Funding The work of the four authors from Göttingen was supported by the DFG-grant 389613931.

1 Introduction

A word v is a subsequence (also called scattered factor or subword) of a word w if there
exist (possibly empty) words x1, . . . , xℓ+1 and v1, . . . , vℓ such that v = v1 . . . vℓ and w =
x1v1 . . . xℓvℓxℓ+1. That is, v is obtained from w by removing some of its letters.

The study of the relationship between words and their subsequences is a central topic in
combinatorics on words and string algorithms, as well as in language and automata theory (see,
e.g., the chapter Subwords by J. Sakarovitch and I. Simon in [55, Chapter 6] for an overview
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of the fundamental aspects of this topic). The concept of subsequences and its generalisations
play an important role in various areas of theoretical computer science. For instance, in logic
of automata theory, subsequences are used in the context of piecewise testability [60, 61], in
particular to the height of piecewise testable languages [39, 40, 41], subword order [31, 44, 43],
or downward closures [66]. In combinatorics on words, many concepts were developed
around the idea of counting the occurrences of particular subsequences of a word, such as
the k-binomial equivalence [54, 25, 46, 45], subword histories [59], and Parikh matrices
[49, 56]. In the area of algorithms, subsequences appear, e.g., in classical problems such as
the longest common subsequence [5, 10, 12], the shortest common supersequence [47], or the
string-to-string correction [65]. From a practical point of view, subsequences are useful in
scenarios related to bioinformatics, as well as in other areas where they model corrupted or
lossy representations of an original string, see [57].

A major area of research related to subsequences is the study of the set of all subsequences
of bounded length of a word, initiated by Simon in his PhD thesis [60]. In particular, Simon
defined and studied (see [61, 55]) the relation ∼k (now called the Simon-Congruence) between
words having exactly the same set of subsequences of length at most k, and used it in the
study of piecewise testable languages, a class of regular languages with applications in learning
theory, databases theory, or linguistics (see, e.g., [41] and the references therein). The surveys
[51, 52] overview some of the extensions of Simon’s seminal work from 1972 in various areas
related to automata theory. Moreover, ∼k is a well-studied relation in the area of string
algorithms, too. The problems of deciding whether two given words are ∼k-equivalent, for a
given k, and to find the largest k such that two given words are ∼k-equivalent (and their
applications) were heavily investigated in the literature, see, e.g., [34, 27, 62, 63, 18, 24] and
the references therein. This year, optimal solutions were given for both these problems [6, 28].
In [6] it was shown how to compute the shortlex normal form of a given word in linear time,
i.e., the minimum representative of a ∼k-equivalence class w.r.t. shortlex ordering. This
can be directly applied to test whether two words are ∼k-equivalent: they need to have
the same shortlex normal form. In [28], a data structure, called the Simon-Tree, was used
to represent the equivalence classes induced by ∼k on the set of suffixes of a word, for all
possible values of k, and then, given two words, a correspondence between their Simon-Trees
was constructed to compute in linear time the largest k for which they are ∼k-equivalent.

Motivation. As described above, asymptotically optimal algorithms are known for deciding
whether two words w and u are ∼k-equivalent. Thus, similarly to the case of other relations on
strings (e.g., [4, 9]), it is natural to ask, for two words w and u, which are not ∼k-equivalent,
what is the minimal number of edit operations (edits, for short) that we need to perform
on them in order to obtain two ∼k-equivalent words. The edits we consider are the usual
letter-insertion, -deletion, -substitution, and the scenario we assume is the following: we edit
one word only (say w) and attempt to reach, with a minimal number of edits, an intermediate
word which has the same subsequences of length k as the second input word (namely u).

This formulation is essentially an instance of a word-to-language edit distance problem,
in which we wish to compute the distance between w and the language Lu,k of words which
are ∼k-equivalent to u. It is well documented that word-to-language edit distance problems,
alongside the classical word-to-word and also the language-to-language variants, are well
motivated and have consequently been well studied (see, e.g., [64, 50, 33, 11, 38, 15, 16]).
For instance, the authors of [13] write: “the edit distance provides a quantitative measure of
“how far apart” are two words, or a word from a language, or two languages, and it forms
the basis for quantitatively comparing sequences, a problem that arises in many different
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areas, such as error-correcting codes, natural language processing, and computational biology;
similarly, the edit distance between languages forms the foundations of a quantitative approach
to verification”.

In our case, the languages Lu,k are regular. In particular, for a given subsequence v of
length k of u, we can easily construct a DFA recognising the language of all words containing
v as a subsequence. Consequently, a finite automaton accepting Lu,k can be obtained as a
boolean combination of these DFAs. In fact, for a positive integer k, the set of all languages
which can be written as the union of several languages Lu,k, where u are words of a finite
set, is the class of k-piecewise testable languages [60, 61, 55], an important class of regular
languages, with deep connections to logic and semigroup theory. Therefore, if we take as
input the word w and the language Lu,k given as an automaton Au,k with q states, we can
solve our distance problem in time O(|w|q2) [64, 3]. However, this is not necessarily efficient,
since even when Au,k is a minimal NFAs accepting Lu,k, the number q of states can be
exponential in the size of the alphabet (and hence in the length of u; see [19]). Consequently,
if we consider the input to be (w, u, k) rather than (w, Au,k), the exact complexity remains
unclear. We can, however, guarantee inclusion in NP as we can trivially rewrite w into the
shortest word u ∈ Lu,k using at most |w| + |u| edits.

It is also worth pointing out that the order of w and u in the input matters: the number
of edits necessarily applied to w order to reach a word w′ such that w′ ∼k u holds, is not
generally equal to the number of edits needed to apply on u in order to reach a word u′ such
that u′ ∼k w. Consider, for example, the words w = aba, u = aaabbbaaa, and k = 2. We need
one insertion to transform w into abab, which is ∼2-equivalent to u, but we need two deletions
to transform u into aaabaaa, which is ∼2-equivalent to w. An intuitive explanation for this
is that w is closer w.r.t. the edit distance to the set Lu,k of words which are ∼k-equivalent to
u than u is to the set Lw,k of words which are ∼k-equivalent to w, and we only need to edit
each of our words until it reaches the word which is closest to them from the respective sets.

Essentially, we are considering the word-to-language edit distance problem for regular
languages (in fact, piecewise testable languages) which admit a particularly succinct repres-
entation: a single word u. One way to generalise this is to consider the edit distance from
a word to the closure of a given language under ∼k. The problem remains decidable when
considering the closures of regular or context-free languages (the regular case can be solved
in nondeterministic polynomial time when k is a constant, see [19]). On the other hand,
we have already mentioned how taking the closure under ∼k can result in an exponential
blow-up in the size of the representation of the language. Going in the other direction, one
of the most natural restrictions is to consider only words u over an alphabet Σ for which
all length-k subsequences over Σ occur, called k-subsequence universal words (called, for
short, k-universal words) w.r.t. the alphabet Σ. This case is also among the ones for which
the corresponding automata for Lu,k may be exponentially large (see [19]), remaining thus
non-trivial. This restriction forms the focus of our paper.

The focus of our paper. In some cases, the edit distance problem we introduced above
admits an input-specification where the target language is defined in a way which is both
easier-to-use and more succinct. One of these cases is the already mentioned language of
k-subsequence universal words w.r.t. an alphabet Σ = {1, . . . , σ}. While this language can
be defined by a word (1 · 2 · · · σ)k of length kσ or by an NFA with Θ(2σ) states, it can also be
simply specified by the number k and the alphabet Σ (or even only the size of this alphabet).

The main contribution of our paper, described below, is the study of the following problem:
given a word w and a number k, compute the minimum number of edits we need to apply
to w in order to obtain a k-universal word w.r.t. alph(w) (see [19] for a discussion on why
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the alphabet Σ used in the definition of universality is chosen here to be the set alph(w) of
letters occurring in the input word w). As such, we are interested in the edit distance from
the input word w to the set of k-universal words w.r.t. alph(w). We give a series of efficient
algorithms showing how to solve this problem.

This investigation seems interesting to us as, on the one hand, the language of k-universal
words plays an interesting role in the picture described in the Motivation section above. On
the other hand, the class of languages of k-universal words occurs prominently in the study
of the combinatorial and language theoretic properties of subsequences and piecewise testable
languages. Indeed, in [39, 40, 41] the authors define and use the notion of k-rich words in
relation to the study of the height of piecewise testable languages. The class of k-rich words
coincides with that of k-subsequence universal words, which were further investigated, from a
combinatorial point of view, in [20, 6]. Moreover, the idea of universality is quite important
in formal languages and automata theory. The classical universality problem (see, e.g., [36])
is whether a given language L (over an alphabet Σ, specified by an automaton or grammar)
is equal to Σ∗. The works [53, 42, 29] and the references therein discuss many variants of and
results on the universality problem for various language generating and accepting formalisms.
The universality problem was considered for words [48, 21] and partial words [14, 30] w.r.t.
their factors. More precisely, one is interested in finding, for a given ℓ, a word w over an
alphabet Σ, such that each word of length ℓ over Σ occurs exactly once as a contiguous factor
of w. De Bruijn sequences [21] fulfil this property and have many applications in computer
science or combinatorics, see [14, 30] and the references therein. It is worth noting that
in the case of factor-universality it makes sense to ask for words where each factor occurs
exactly once, but in the case of subsequence universality this is a trivial restriction, as in
each long-enough word there will be subsequences occurring more than once [6].

As such, investigating k-subsequence universality from an algorithmic perspective is
motivated by, fits in, and even enriches this well-developed and classical line of research.

Our results. The maximum k for which a word w is k-universal is called the universality
index of w, and denoted ι(w). Firstly, we note that when we want to increase the universality
index of a word by edits, it is enough to use only insertions. Similarly, when we want to
decrease the universality index of a word, it is enough to consider deletions. So, to measure
the edit distance to the class of k-subsequence universal words, for a given k, it is enough
to consider either insertions or deletions. However, changing the universality of a word by
substitutions (both increasing and decreasing it) is interesting in itself as one can see the
minimal number of substitutions needed to transform a word w into a k-universal word as
the Hamming distance [32] between w and the set of k-universal words. Thus, we consider
all these operations independently and propose efficient algorithms computing the minimal
number of insertions, deletions, and substitutions, respectively, needed to apply to a given
word w in order to reach the class of k-universal words (w.r.t. the alphabet of w), for a
given k. The time needed to compute these numbers is O(nk) in the case of deletions and
substitutions, as well as in the case of insertions when k ≤ n (for larger values of k it is
just the time complexity of computing kσ − n, which is the value of the distance in that
case). These algorithms are presented in the Section 4, and work in optimal linear time for
constant k.

These algorithms are based, like most edit distance algorithms, on a dynamic programming
approach. However, implementing such an approach within the time complexities stated
above does not seem to follow directly from the known results on the word-to-word or
word-to-language edit distance. In particular, we do not explicitly construct any k-universal
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word nor any representation (e.g., automaton or grammar) of the set of k-universal words,
when computing the distance from the input word w to this set. Rather, we obtain the
k-universal word which is closest w.r.t. edit distance to w as a byproduct of our algorithms.
In our approach, we first develop (Section 3) several efficient data structures (most notably
Lemma 3.5). Then (Section 4), for each of the considered operations, we make several
combinatorial observations, allowing us to restrict the search space of our algorithms, and
creating a framework where our data structures can be used efficiently.

Finally (in Section 5), we give algorithms running in (n logO(1) σ)-time computing the
minimum number of insertions (respectively, substitutions) we need to apply to w in order
to obtain a k-universal word, with k > ι(w). These algorithms rely heavily on the fact that
computing the edit distance to k-universality can be reformulated, in this case, as computing
the path of length k of minimum weight in a weighted DAG with the Monge property. In
particular, these algorithms provide optimal linear-time solutions for our problem in the case
of increasing the universality-index of words over constant-size alphabets.

For space reasons, some proofs, examples, and pseudocode for the algorithms are given in
the full version of this paper [19]. A discussion on lower bounds is also given in [19].

2 Preliminaries

Let N be the set of natural numbers and N0 = N ∪ {0}. Define for i, j ∈ N0 with i < j the
interval [i : j] as {i, i + 1, . . . , j − 1, j}. An alphabet Σ is a nonempty finite set of symbols
called letters. A word is a finite sequence of letters from Σ, thus an element of the free
monoid Σ∗. Let Σ+ = Σ∗\{ε}, where ε is the empty word. The length of a word w ∈ Σ∗ is
denoted by |w|. Let Σk be the set of all words from Σ∗ of length exactly k. A word u ∈ Σ∗

is a factor of w ∈ Σ∗ if w = xuy for some x, y ∈ Σ∗. If x = ε (resp. y = ε), u is called a
prefix (resp. suffix) of w. The ith letter of w ∈ Σ∗ is denoted by w[i] for i ∈ [1 : |w|]. Set
w[i : j] = w[i]w[i + 1] · · · w[j] for 1 ≤ i ≤ j ≤ |w|, |w|a = |{i ∈ [1 : |w|]| w[i] = a}|, and
alph(w) = {a ∈ Σ||w|a > 0} for w ∈ Σ∗. We can now introduce the notion of subsequence.

▶ Definition 2.1. A word v = v1 · · · vℓ ∈ Σ∗ is a subsequence of w ∈ Σ∗ if there exist
x1, . . . , xℓ+1 ∈ Σ∗ with w = x1v1 · · · xℓvℓxℓ+1. Let Subseq(w) be the set of all subsequences
of w and define Subseqk(w) = Subseq(w) ∩ Σk, the set of subsequences of w of length k ∈ N.

For k ∈ N0, Subseqk(w) is called the k-spectrum of w. Simon [61] defined the congruence
∼k in which u, v ∈ Σ∗ are congruent if they have the same k-spectrum. As introduced in [6]
the notion of k-universality of a word over Σ denotes its property of having Σk as k-spectrum.

▶ Definition 2.2. A word w ∈ Σ∗ is called k-subsequence universal (w.r.t. Σ, for short
k-universal), for k ∈ N, if Subseqk(w) = Σk. We abbreviate 1-universal by universal. The
universality-index ι(w) of w ∈ Σ∗ is the largest k such that w is k-universal.

If ι(w) = k then w is ℓ-universal for all ℓ ≤ k. Notice that k-universality is always w.r.t.
a given alphabet Σ: the word abcba is universal for Σ = {a, b, c} but it is not universal
for Σ ∪ {d}. In each algorithm presented in this paper, whenever we discuss about the
universality index of some word (factor of the input word, or obtained from the input word
via edit operations), we compute it with respect to the alphabet of the input word w.

The notion of ℓ-universality coincides to that of ℓ-richness introduced in [40, 41]. We use
the name ℓ-universality rather than ℓ-richness, as richness of words is also used with other
meanings, see, e.g., [23, 22]. We recall the arch factorisation, introduced by Hebrard [34].

STACS 2021



25:6 The Edit Distance to k-Subsequence Universality

▶ Definition 2.3 ([34]). For w ∈ Σ∗ the arch factorisation of w is w = arw(1) · · · arw(k)r(w)
for some k ∈ N0 where arw(i) is universal, the last letter of arw(i), namely arw(i)[| arw(i)|],
does not occur in arw(i)[1 : | arw(i)| − 1] for all i ∈ [1 : k], and alph(r(w)) ⊂ Σ. The words
arw(i) are called arches of w, r(w) is called the rest.

If the arch factorisation of w contains k ∈ N0 arches, then ι(w) = k. The following
immediate theorem based on the work of Simon [61] completely characterises the set of
k-subsequence universal words, based on Hebrard’s arch factorisation.

▶ Theorem 2.4. The word w ∈ Σ∗ is k-universal if and only if there exist the words vi, with
i ∈ [1 : k], such that v1 · · · vk = w and alph(vi) = Σ for all i ∈ [1 : k].

General algorithmic framework. The further preliminaries regard algorithms. The com-
putational model we use is the standard unit-cost RAM with logarithmic word size: for an
input of size n, each memory-word can hold log n bits. In all the problems, we assume that
we are given a word w, with |w| = n, over an alphabet Σ = {1, 2, . . . , σ}, with |Σ| = σ ≤ n.
This is a common assumption in string algorithms: the input alphabet is said to be an
integer alphabet. For a more detailed general discussion on this model see, e.g., [17] or the
full version of our paper [19]. We also assume that our input words contain at least two
distinct letters, otherwise all the problems we consider become trivial.

The following theorem was proven in [6] and shows that the universality index and the
arches can be obtained in linear time w.r.t. the word length.

▶ Theorem 2.5. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We
can compute in linear time O(n) the arch factorisation of w, and, as such, ι(w).

More precisely, one can compute greedily, in linear time, the following decomposition of
w into arches w = u1 · · · uk as follows:

u1 is the shortest prefix of w with alph(u1) = Σ, or u1 = w if there is no such prefix;
if u1 · · · ui = w[1 : t], for some i ∈ [1 : k] and t ∈ [1 : n], we compute ui+1 as the shortest
prefix of w[t + 1 : n] with alph(ui+1) = Σ, or ui+1 = w[t + 1 : n] if there is no such prefix.

In our results, we will use two well-known efficient data structures.
First, the interval union-find data structure [26, 37].

▶ Definition 2.6 (Interval union-find). Let V = [1 : n] and S a set with S ⊆ V . The elements
of S = {s1, . . . , sp} are called borders and are ordered 0 = s0 < s1 < . . . < sp < sp+1 = n + 1
where s0 and sp+1 are generic borders. For each border si, we define V (si) = [si−1 + 1 : si]
as an induced interval. Now, P (S) := {V (si) | si ∈ S} gives an ordered partition of the set
V . The interval union-find structure maintains the partition P (S) under the operations:

For u ∈ V , find(u) returns si ∈ S ∪ {n + 1} such that u ∈ V (si).
For u ∈ S, union(u) updates the partition P (S) to P (S \ {u}). That is, if u = si, then
we replace the intervals V (si) and V (si+1) by the single interval [si−1 + 1 : si+1] and
update the partition so that further find and union operations can be performed.

When using the data structure from Definition 2.6, we employ a less technical language: we
describe the intervals stored initially in the structure, and then the unions are made between
adjacent intervals. We can enhance the data structures so that the find operation returns
both borders of the interval containing the searched value, as well as some other satellite
data we decide to associate to that interval. The following lemma was shown in [26, 37].
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▶ Lemma 2.7. One can implement the interval union-find data structure, such that, the
initialisation of the structures followed by a sequence of m ∈ O(n) union and find operations
can be executed in O(n) time and space.

Finally, we recall the Range Minimum Query problem, and the main result on it [8].

▶ Definition 2.8 (RMQ). Let A be an array with n elements from a well-ordered set. We define
range minimum queries RMQA for the array of A: RMQA(i, j) = arg min{A[t] | t ∈ [i : j]},
for i, j ∈ [1 : n]. That is, RMQA(i, j) is the position of the smallest element in the subarray
A[i : j]; if there are multiple positions containing this smallest element, RMQA(i, j) is the
leftmost of them. (When it is clear from the context, we drop the subscript A).

▶ Lemma 2.9. Let A be an array with n integer elements. One can preprocess A in O(n)
time and produce data structures allowing to answer in constant time range minimum queries
RMQA(i, j), for any i, j ∈ [1 : n].

3 Toolbox

In this section we present data structures which will be decisive in obtaining efficient solutions
for the approached problems. Our running example will be the word w = bananaban, on
which we illustrate some of the notions we define here. Full details are given in [19].

For a word w over an alphabet Σ, a position j of w, and a letter a ∈ Σ which occurs
in w[1 : j], let lastj [a] = max{i ≤ j | w[i] = a}, the last position where a occurs before j;
if a does not occur in w[1 : j] or for j = 0, then, by convention, lastj [a] = |w| + 1. Let
Sj = {lastj [a] | a ∈ alph(w[1 : j])}. If i, j are two positions of w, let ∆(i, j) be the number of
distinct letters occurring in w[i : j], i.e., ∆(i, j) = |alph(w[i : j])|; if i > j, then ∆(i, j) = 0.
For a position i of w, and a letter a ∈ Σ, let di[a] = ∆(lasti[a], i).

▶ Lemma 3.1. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We can
compute in O(n) the values ∆(1, ℓ), for all ℓ ∈ [1 : n].

▶ Lemma 3.2. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We can
compute in O(n) the values ∆(i − σ + 1, i), for all i ∈ [σ : n].

▶ Lemma 3.3. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}.
We can compute in O(n) time lastjσ+1[a] and djσ+1[a], for all a ∈ Σ and all integers
1 ≤ j ≤ (n − 1)/σ.

For w = bananaban, we have |w| = 9 and σ = 3. In Lemma 3.1 we compute ∆(1, 1) = 1,
∆(1, 2) = 2, and ∆(1, ℓ) = 3 for ℓ ∈ [3 : 9]. In Lemma 3.2 we compute ∆(1, 3) = 3,
∆(2, 4) = ∆(3, 5) = ∆(4, 6) = 2, ∆(5, 7) = 3, ∆(6, 8) = 2, and ∆(7, 9) = 3. In Lemma 3.3 we
compute the arrays last4[·] and last7[·]. We get: last4[a] = 4, last4[b] = 1, last4[n] = 3, and
last7[a] = 6, last7[b] = 7, last7[n] = 5. Therefore, S4 = {1, 3, 4}, S7 = {5, 6, 7}, and d4[a] = 1,
d4[b] = 3, d4[n] = 2, d7[a] = 2, d7[b] = 1, d7[n] = 3.

For a word w and a position i of w, let univ[i] = max{j | w[j : i] is universal}. That is,
for the position i we compute the shortest universal word ending on that position. If there is
no universal word ending on position i we set univ[i] = 0.

Further, if n = |w|, let Vw = {univ[i] | 1 ≤ i ≤ n}. In Vw we collect the starting positions
of the shortest universal words ending at each position of the word w. Now, for j ∈ Vw, let
Lj = {i | univ[i] = j}; in other words, we group together the positions i of w for which the
shortest universal word ending on i starts on some position j. Note that L0 = {i | w[1 : i] is
not universal}, i.e., the positions of w where no universal word ends.
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Several observations are immediate: for i ∈ Lj , i′ ∈ Lj′ , we have i ≤ i′ if and only
if j ≤ j′. As each position i of w belongs to a set Lj , for some j ∈ Vw, we get that
{Lj | j ∈ Vw} is a partition of [1 : n] into intervals. Furthermore, w[i] ̸= w[j] for all i ∈ Lj

and j ̸= 0: if w[i] would be the same as w[j] then w[j + 1 : i] would also be a universal word,
so i would not be in Lj . Also, if i = max(Lj) for some j > 0 then w[i + 1] = w[j]. Indeed,
there exists j′ ∈ [j + 1 : i] such that w[j′ : i + 1] is universal. But w[j] does not occur in
w[j′ : i], so w[j] = w[i + 1] must hold.

Further, we define for all positions i of w the value freq[i] = |w[1 : i]|w[i], the number of
occurrences of w[i] in w[1 : i]. Also, let T [i] = min{|w[i + 1 : n]|a | a ∈ Σ}, for i ∈ [0, n − 1],
be the least number of occurrences of a letter in w[i + 1 : n]; set T [n] = 0.

▶ Lemma 3.4. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We
can compute in O(n) time the following data structures: 1. the array univ[·]; 2. the set Vw

and the lists Lj, for all j ∈ Vw \ {0}; 3. the array freq[·]; 4. the array T [·]; 5. the values
lastj−1[w[i]], for all j ∈ Vw and all i ∈ Lj; 6. the values lasti−1[w[i]], for all i ∈ [2 : n].

Consider again w = bananaban. In Lemma 3.4 we compute the following values. Firstly,
univ[1] = univ[2] = 0, univ[ℓ] = 1 for ℓ ∈ [3 : 6], univ[7] = univ[8] = 5, univ[9] = 7. Thus,
Vw = {0, 1, 5, 7} and L0 = [1 : 2], L1 = [3 : 6], L5 = [7 : 8], L7 = [9 : 9]. Secondly, freq[1] = 1,
freq[2] = freq[3] = 1, freq[4] = freq[5] = 2, freq[6] = 3, freq[7] = 2, freq[8] = 4, freq[9] = 3.
Moreover, T [0] = 2, T [ℓ] = 1 for ℓ ∈ [1 : 6], and T [ℓ] = 0 for ℓ ∈ [7 : 9]. Then, for j = 1,
we have last0[a] = 0, for a ∈ {a, b, n}; for j = 5, we have last4[b] = 1 and last4[a] = 4; for
j = 7, we have last6[n] = 5. Finally, last0[b] = 10, last1[a] = 10, last2[n] = 10, last3[a] = 2,
last4[n] = 3, last5[a] = 4, last6[b] = 1, last7[a] = 6, last8[n] = 5.

The main idea behind proving Lemmas 3.1, 3.3, and 3.4 is to traverse the word w left to
right (or, respectively, right to left) and maintain the number of occurrences, as well as the
last occurrence, of each letter in the prefix (respectively, suffix) of w that we have visited so
far. For Lemma 3.2, we only consider a sliding window of size σ which traverses the word
left-to-right, while maintaining similar data as before, but only for the content of the window.
In all cases, this requires linear time and enables us to construct the desired data structures.

Together with the string-processing data structures we defined above, we need the following
general technical data structures lemma. This lemma (combined with some combinatorial
observations) will be used to speed up some of our dynamic programming algorithms.

In this lemma we process a list A which initially has σ elements, and in which we insert, in
successive steps, σ new elements, by appending them always at the same end. For simplicity,
we can assume that the list A is a sequence with 2σ elements (denoted A[i], with i ∈ [1 : 2σ]),
out of which the last σ are initially undefined. The ith insertion would, consequently, mean
setting A[σ + i] to the actual value that we want to insert in the list A. In our lemma we
will also repeatedly perform an operation which decrements the values of some elements of
the list A. However, we will not require to be able to explicitly access, after every operation,
all the elements of the list (so we will not need to retrieve the values A[i]). Consequently, we
will not maintain explicitly the value of all the elements of A (that is, we will not update
the elements affected by decrements). We are only interested in being able to retrieve (by
value and position), at each moment, the smallest element and the last element of A. Thus,
throughout the computation, we only maintain a subset of important elements of A, including
the aforementioned two. We can now state our result, whose proof is based on Lemma 2.7.

▶ Lemma 3.5. Let A be a list with σ elements (natural numbers) and let m = σ. We can
execute (in order) the sequence of σ operations o1, . . . , oσ on A in overall O(σ) time, where
oi consists of the following three steps, for i ∈ [1 : m]:
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1. Return e = arg min{A[i] | i ∈ [1 : m]} and A[e].
2. For some ji ∈ [1 : m], decrement all elements A[ji], A[ji + 1], . . . , A[m] by 1.
3. For some natural number xi, append the element xi to A (i.e., set A[m + 1] to xi), and

increment m by 1 (i.e., set m to m + 1).

Proof. Firstly, we will run a preprocessing of A.
We begin by defining recursively a finite sequence of positions as follows:
a1 is the rightmost position of A on which min{A[i] | i ∈ [1 : σ]} occurs;
for i ≥ 2, if ai−1 < σ, then ai is the rightmost position on which min{A[i] | i ∈ [ai−1 + 1 :
σ]} occurs;
for i ≥ 2, if ai−1 = σ, then we can stop, our sequence will have i − 1 elements.

Let p be the number of elements in the sequence defined above, i.e., our sequence is
a1, . . . , ap. For convenience, let a0 = 0. Then the sequence a1, . . . , ap fulfils the following
properties:

ap = σ and ai > ai−1, for all i ∈ [1 : p];
A[ai] > A[ai−1] for all i ∈ [2 : p];
for all i ∈ [1 : p], we have A[ai] < A[t], for all t ∈ [ai + 1 : σ];
for all i ∈ [1 : p], we have A[ai] ≤ A[t], for all t ∈ [ai−1 + 1 : ai].

By definition, for i ∈ [1 : p] we have A[ai] = min{A[t] | t ∈ [ai−1 + 1 : σ]}, A[ai] < min{A[t] |
t ∈ [ai + 1 : σ]}, and a1 = min{A[i] | i ∈ [1 : σ]}. Clearly, we have ap = σ.

The positions a1, . . . , ap can be computed in linear time O(σ), in reversed order. As we
do not know from the beginning the value of p, we will compute a sequence b1, b2, . . . of
positions as follows. We start with b1 = σ, t = σ − 1, and i = 2. Then, while t ≥ 1 we do the
following case analysis. If A[t] < bi−1, then set bi = t, increment i by 1, and decrement t

by 1. Otherwise, if A[t] ≥ bi−1, just decrement t by 1. It is straightforward that this process
takes O(σ) time, and, when we have finished it, the number i is exactly the number p, and
ai = bp−i+1.

Another observation is that, for a0 = 0, the intervals [ai−1 + 1, ai], for i ∈ [1, p], define a
partition of the interval [1 : σ] into p intervals. Therefore, we can define a partition of the
interval [1 : 2σ] into the intervals [ai−1 + 1 : ai], for i ∈ [1, p], and [t : t], for t ∈ [σ + 1 : 2σ].
Thus, we construct in linear time, according to Lemma 2.6, an interval union-find data
structure for the interval [1 : 2σ], as induced by the intervals [1 : a1], [a1 + 1 : a2], . . .

[ap−1, ap], [σ + 1 : σ + 1], [σ + 2 : σ + 2], . . . [2σ : 2σ].
Let us now take m = σ (and assume the convention A[0] = 0). We associate as satellite

data to each interval [x : y] with y ≤ m from our interval union-find data structure the value
A[y] − A[x − 1].

This entire preprocessing takes clearly O(σ) time.
In order to explain how the operations are implemented, we assume as invariant that the

following properties are fulfilled before oi is executed, for i ∈ [1 : σ]:
A contains m elements;
all intervals [x : y] with y > m from our interval union-find data structure are singletons
(i.e., x = y);
for each interval [x : y] with y ≤ m, we have the associated satellite data A[y] − A[x − 1];
for each interval [x : y] with y ≤ m, we have that A[y] ≤ A[t] for t ∈ [x : m] and
A[y] < A[t] for t ∈ [y + 1 : m];
we have stored in a variable ℓ the value A[m].
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This clearly holds after the preprocessing step, so before executing o1.
Let us now explain how the operation oi is executed.
The first step of oi is to return e = min{A[i] | i ∈ [1 : m]} and ie the rightmost position of

the list A such that A[ie] = e. We execute find(1) to return the first interval [1 : ie] stored
in our interval union-find data structure; A[ie] is the satellite data associated to this interval
(by convention, A[ie] − A[1 − 1] = A[ie] − A[0] = A[ie]). The fact that the invariant property
holds shows that ie is correctly computed.

The second step of oi is to decrement all elements A[ji], A[ji + 1], . . . , A[m] by 1, for some
ji ∈ [1 : m]. We will make no actual change to the elements of the list A, as this would be
too inefficient, but we might have to change the state of the union-find data structure, as
well as the satellite data associated to some intervals of this structure.

So, let [x : y] be the interval containing ji, returned by find(ji), and also assume first
that x ̸= 1.

According to the invariant, A[ji] ≥ A[y] and A[y] > A[x − 1]. After decrementing the
elements A[ji], A[ji + 1], . . . , A[m] by 1, the difference A[t] − A[t′] is exactly the same as
before, for all t, t′ ∈ [ji : m]. In consequence, the relative order between the elements of the
suffix A[ji : m] of the list A is preserved. Also, for all t ∈ [x : ji − 1], we have now A[t] > A[y]
(before decrementing A[y] we had only A[t] ≥ A[y]). However, the difference A[y] − A[x − 1]
is now decreased by 1. If it stays strictly positive, we just update the satellite data of the
respective interval (by decrementing it accordingly by 1). If A[y] − A[x − 1] = 0, then we
make the union of the interval [z : x − 1] (returned by find(x − 1)) and [x : y] to obtain the
new interval [z : y]. Its satellite data is A[y] − A[z − 1] = A[x − 1] − A[z − 1], so the same as
the satellite data that was before associated to [z : x − 1]. The invariant is clearly preserved,
as, even after decrementing it, A[y] (which is now equal to A[x − 1]) is strictly greater than
A[z − 1], strictly smaller than A[t], for t ∈ [y + 1 : m], and smaller than or equal to A[t], for
t ∈ [z : y].

If the interval containing ji is [1 : y], then we just update the satellite data of the
respective interval by decrementing it by 1.

The third step of oi is to append the element xi to A (i.e., set A[m + 1] = xi), for some
natural number xi, and increment m by 1.

We implement this as follows. Let t = m and q = A[m] (this value is stored and
maintained using the variable ℓ). While t ≥ 1 do the following. Let [z, t] be the interval
returned by find(t); we have q = A[t]. If q ≥ xi, make the union of [z : t] and [t + 1 : m + 1];
update q = q − (A[t] − A[z − 1]) = A[z − 1] (using the satellite data A[t] − A[z − 1] associated
to [z, t]), update t = z − 1, and reiterate the loop. If q < xi, exit the loop. After this, we set
m to m + 1 and ℓ = xi.

It is not hard to see that after running this third step, so before executing operation oi+1,
the invariant is preserved.

Performing operation oi takes an amount of time proportional to the sum of the number
of union and the number of find operations executed during its three steps. By Lemma 2.7,
this means that executing all operations o1, . . . , oσ takes in total at most O(σ) time. ◀

4 Edit Distance

We are interested in computing the minimal number of edits we need to apply to a word
w, with |w| = n, alph(w) = Σ, with universality index ι(w), so that it is transformed into
a word with universality index k, w.r.t. the same alphabet Σ. The edits considered are
insertion, deletion, substitution, and the number we want to compute can be seen as the edit
distance between w and the set of k-universal words over Σ.
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However, if we want to obtain a k-universal word with k > ι(w), then it is enough to
consider only insertions. Indeed, deleting a letter of a word can only restrict the set of
subsequences of the respective word, while in this case we are interested in enriching it.
Substituting a letter might make sense, but it can be simulated by an insertion: assume one
wants to substitute the letter a on position i of a word w by a b. It is enough to insert a
b next to position i, and the set of subsequences of w is enriched with all the words that
could have appeared as subsequences of the word where a was actually replaced by b. We
might have some extra words in the set of subsequences, which would have been eliminated
through the substitution, but it does not affect our goal of reaching k-universality.

If we want to obtain a word with universality index k, for k < ι(w), then it is enough
to consider only deletions. Assume that we have a sequence of edits that transforms the
word w into a word w′ with universality index k. Now, remove all the insertions of letters
from that sequence. The word w′′ we obtain by executing this new sequence of operations
clearly fulfils ι(w′′) ≤ ι(w′). Further, in the new sequence, replace all substitutions with
deletions. We obtain a word w′′′ with a set of subsequences strictly included in the one of
w′′, so with ι(w′′′) ≤ ι(w′′). As each deletion changes the universality index by at most 1, it
is clear that (a prefix of) this new sequence of deletions witnesses a shorter sequence of edits
which transforms w into a word of universality index k.

So, to increase the universality index of a word it is enough to use insertions and to
decrease the universality index of a word it is enough to use deletions. Nevertheless, one might
be interested in what happens if we only use substitutions. In this way, we can both decrease
and increase the universality index of a word. Moreover, one can see the minimal number
of substitutions needed to transform w into a k-universal word as the Hamming distance
between w and the set of k-universal words. We will discuss each of these cases separately.

4.1 Insertions
▶ Theorem 4.1. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let
k ≥ ι(w) be an integer. We can compute the minimal number of insertions needed to apply to
w in order to obtain a k-universal word (w.r.t. Σ) in O(nk) time if k ≤ n and O(T (n, σ, k))
time otherwise, where T (n, σ, k) is the time needed to compute kσ − n.

Proof.
Case 1. Let us assume first that k ≤ n. We structured our proof in such a way that the
idea of the solution, as well as the actual computation steps, and the arguments supporting
their correctness are clearly marked. Pseudocode for this algorithm is given in the full version
of the paper [19].

§ General approach. We want to transform the word w into a k-universal word with a minimal
number of insertions. Assume that the word we obtain this way is w′, and |w′| = m. Thus,
w′ has a prefix w′[1 : m′] which is k-universal, but w′[1 : m′ − 1] is not k-universal. Moreover,
w′[1 : m′] is obtained from a prefix w[1 : ℓ] of w, and w′[m′ +1 : m] = w[ℓ+1 : n]. Indeed, any
insertion done to obtain w′[m′ + 1 : m] can be simply omitted and still obtain a k-universal
word from w, with a lower number of insertions.

Consequently, it is natural to compute the minimal number of insertions needed to
transform w[1 : ℓ] into a t-universal word, for all ℓ ≤ n and t ≤ k. Let M [ℓ][t] denote this
number. By the same reasoning as above, transforming (with insertions) w[1 : ℓ] into a
t-universal word means that there exists a prefix w[1 : ℓ′] of w[1 : ℓ] which is transformed into
a (t − 1)-universal word and w[ℓ′ + 1 : ℓ] is transformed into a 1-universal word. Clearly, the
number of insertions needed to transform w[ℓ′ +1 : ℓ] into a 1-universal word is σ−∆(ℓ′ +1, ℓ),
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i.e., the number of distinct letters not occurring in w[ℓ′ + 1 : ℓ]. As we are interested in the
minimal number of insertions needed to transform w[1 : ℓ] into a t-universal word, we need
to find a position ℓ′ such that the total number of insertions needed to transform w[1 : ℓ′]
into a (t − 1)-universal word and w[ℓ′ + 1 : ℓ] into a 1-universal word is minimal.

§ Algorithm – initial idea. So, for ℓ ∈ [1 : n] and t ∈ [1 : k], M [ℓ][t] is the minimal number
of insertions needed to make w[1 : ℓ] t-universal. By the explanations above, we get the
following recurrence M [ℓ][t] = min{M [ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) | ℓ′ ≤ ℓ}. Clearly,
M [ℓ][1] = σ − ∆(1, ℓ). Also, it is immediate to note that M [ℓ][t] ≥ M [ℓ′′][t] for all ℓ ≤ ℓ′′.
Indeed, transforming a word into a t-universal word can always be done with at most as
many insertions as those used in transforming any of its prefixes into a t-universal word.

w 1 . . . ℓ′ ℓ′ + 1 . . . ℓ . . .

(t − 1)-universal ⇒ M [ℓ′, t − 1] universal ⇒ σ − ∆(ℓ′ + 1, ℓ)

Figure 1 Illustration of the formula developed for the computation of M [ℓ][t].

We now want to compute the elements of matrix M . Before this, we produce the data
structures of Lemma 3.3 (and we use the notations from its framework). That is, we compute
in O(n) time lastjσ+1[a] and djσ+1[a] = ∆(lastjσ+1[a], jσ +1), for all a ∈ Σ and all j ≤ (n−1)

σ .
By Lemma 3.1, we can compute the values M [ℓ][1], for all ℓ ∈ [1 : n] in O(n) time.

However, a direct computation of the values M [ℓ][t], for t > 1, according to the recurrence
above is not efficient. Implemented directly, it requires O(n2k) time; using an efficient
structure (e.g., interval trees) for computing the various minima leads to an O(nk log n)-time
solution; exploiting the algebraic properties of M (related to the Monge property [1]) leads
to an O(nk log σ/ log log σ)-time solution. We will describe a more efficient solution.

§ A useful observation. Assume that to transform w[1 : ℓ] into a t-universal word we transform
w[1 : ℓ′] into a (t − 1)-universal word and w[ℓ′ + 1 : ℓ] into a 1-universal word. The number
of insertions needed to do this is M [ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)). If w[ℓ′ + 1] occurs twice
in w[ℓ′ + 1 : ℓ], then M [ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) ≥ M [ℓ′ + 1][t − 1] + (σ − ∆(ℓ′ + 2, ℓ)).
Thus, we can rewrite our recurrence in the following way, using the framework of Lemma 3.3:
M [ℓ][t] = min{M [ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) | ℓ′ + 1 ∈ Sℓ ∪ {ℓ + 1}} (recall the definition of
Sℓ = {lastℓ[a] | a ∈ alph(w[1 : ℓ])} from Section 3).

w . . . . . . . . . . . . . . . ℓ + 1 . . .

Sl ∪ {ℓ + 1}

Figure 2 Only the positions ℓ′ + 1 ∈ {lastℓ[a] | a ∈ alph(w[1 : ℓ])} ∪ {ℓ + 1} = Sℓ ∪ {ℓ + 1} are
needed to compute M [ℓ][t] by dynamic programming. These positions are depicted here in grey.

Once more, a brief analysis can be done. Using directly this observation leads to an
O(nkσ)-time algorithm for our problem; an implementation based on, e.g., interval trees
runs in O(nk log σ)-time. In the following we see that a faster solution exists.

In fact, in the efficient version of our algorithm we will use a slightly weaker formula,
where the minimum is computed for all elements ℓ′ +1 from a set S′

ℓ ∪{ℓ+1}, instead of the set
Sℓ ∪{ℓ+1}, where S′

ℓ is a superset of size at most 2σ of Sℓ defined as follows. If ℓ = jσ + i, for

some j ≤ (n−1)/σ and i ∈ [1 : σ], then S′
ℓ =

{
Sℓ if i = 1,

Sjσ+1 ∪ {jσ + 2, . . . , jσ + i} if i ∈ [2 : σ].
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§ Algorithm – the efficient variant. Using the observation above, together with Lemma 3.5, we
can compute the elements of the matrix M efficiently using dynamic programming.

So, let us consider a value t ≥ 2. Assume that we have computed the values M [ℓ][t − 1],
for all ℓ ∈ [1 : n]. We now want to compute the values M [ℓ][t], for all ℓ ∈ [1 : n]. The main
idea in doing this efficiently is to split the computation of the elements on column M [·][t] of
the matrix M in phases. In phase j we compute the values M [jσ + 1][t], M [jσ + 2][t], . . . ,

M [(j + 1)σ][t], for j ≤ (n − 1)/σ.
We now consider some j, with 0 ≤ j ≤ (n − 1)/σ. We want to apply Lemma 3.5, so we

need to define the list A of size σ. This is done as follows.
We will maintain an auxiliary array pos[·] with σ elements. Moreover, the element A[i],

for each i, is accompanied by two satellite information: a position of w and the letter found
on that position. For a from 1 to σ, if djσ+1[a] = σ − i for some i < σ then we set
A[i + 1] = M [lastjσ+1[a] − 1][t − 1] + i and pos[a] = i + 1; the satellite data of A[i + 1] is the
pair (lastjσ+1[a], a). If, for some letter a, lastjσ+1[a] = n + 1 and djσ+1[a] = 0 (i.e., a does
not occur in w[1 : jσ + 1]) we set pos[a] = 0.

Intuitively, one can see the elements of A as triples: (A[e], lastjσ+1[a], a) where A[e] =
M [lastjσ+1[a]−1][t−1]+e−1, with e ∈ [1 : σ] and a ∈ Σ. More precisely, let ad, ad−1, . . . , a1
be the letters of Σ that occur in w[1 : jσ + 1], ordered such that lastjσ+1[ae] < lastjσ+1[af ]
if and only if e > f . At this point, we have defined only the last d elements of A and, for
i ∈ [1 : d], the element on position σ − i+1 is A[σ − i+1] = M [lastjσ+1[ai]−1][t−1]+(σ − i)
and has the satellite data (lastjσ+1[ai], ai). Also, pos[ai] = σ − i + 1. The first σ − d elements
of A are set to ∞; as convention, applying arithmetic operations to ∞ leaves it unchanged.

We set m to σ and define (and apply) a sequence of operations o1, . . . , oσ as in Lemma 3.5.
An invariant: We want to ensure that the list A fulfils the following invariant properties

before the execution of each operation oi.
For e ∈ [1 : d], the triple on position σ − e + 1 of A is:
(M [lastjσ+1[ae] − 1][t − 1] + (σ − ∆(lastjσ+1[ae], jσ + i)), lastjσ+1[ae], ae). That is, A[σ −
e + 1] = M [lastjσ+1[ae] − 1][t − 1] + (σ − ∆(lastjσ+1[ae], jσ + i)).
For g ∈ [1 : i − 1], the triple on position σ + g of A is:
(M [jσ + g][t − 1] + (σ − ∆(jσ + g + 1, jσ + i)), jσ + g + 1, w[jσ + g + 1]). That is
A[σ + g] = M [jσ + g][t − 1] + (σ − ∆(jσ + g + 1, jσ + i)).
pos[a] is the position of the rightmost position i storing a triple (A[i], ℓ, a).

That is, the list A contains all the values M [ℓ][t − 1] + (σ − ∆(ℓ + 1, jσ + i)), for ℓ + 1 ∈
Sjσ+1 ∪ {jσ + 2, . . . , jσ + i}, and pos[a] indicates the rightmost position of the list A where
we store a value M [ℓ][t − 1] + (σ − ∆(ℓ + 1, jσ + i)) with w[ℓ + 1] = a. A consequence of this
is that A[pos[a]] = M [lastjσ+i[a] − 1][t − 1] + (σ − ∆(lastjσ+i[a], jσ + i)).

The invariant clearly holds for i = 1.
§ Algorithm – application of Lemma 3.5. In oi, we extract the minimum q of A. Then set
M [jσ + i][t] = min{q, M [jσ + i][t − 1] + σ}. We decrement by 1 all elements of A on the
positions pos[a] + 1, pos[a] + 2, . . . , m, where a = w[jσ + i + 1]. Then, we append to A the
element M [jσ + i][t − 1] + (σ − 1), with the satellite data (jσ + i + 1, a), which implicitly
increments m by 1, and set pos[a] = m.

▷ Claim 4.2. The invariant holds after operation oi.

Proof of Claim 4.2. We now need to show that the invariant is preserved after this step. If
a = w[jσ+i+1] then the number of distinct letters occurring after each position g > lastjσ+i[a]
in w[1 : jσ + i] is exactly one smaller than the number of distinct letters occurring after g in
w[1 : jσ + i + 1]. This means that M [g − 1][t − 1] + (σ − ∆(g, jσ + i + 1)) is one smaller than
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M [g − 1][t − 1] + (σ − ∆(g, jσ + i)). Consequently, all values occurring on positions greater
than pos[a] in the list A, which stored some values M [g −1][t−1]+(σ −∆(g, jσ + i+1)) with
g > lastjσ+i[a], should be decremented by 1. Also, the number of distinct letters occurring
after each position g ≤ lastjσ+i[a] in w[1 : jσ + i] is exactly the same as number of distinct
letters occurring after g in w[1 : jσ + i + 1]. Thus, all values occurring on positions smaller or
equal to pos[a] in the list A, which stored some values M [g − 1][t − 1] + (σ − ∆(g, jσ + i + 1))
with g ≤ lastjσ+i[a], should stay the same. So, the invariant holds for the first σ + i − 1
positions of A. After appending M [jσ + i][t − 1] + (σ − 1) to A and incrementing m, then
the invariant holds for the position σ + i (which is also the last position) of A too, so the
invariant still holds for all positions of A.

Furthermore, the only position of the pos array that needs to be updated after operation
oi is pos[a], and it needs to be set to the new value of m. This is exactly what we do. ◁

▷ Claim 4.3. M [jσ + i][t] is correctly computed, for all i ∈ [1 : σ].

Proof of Claim 4.3. According to the invariant, before executing operation oi, A contains the
values M [ℓ][t − 1] + (σ − ∆(ℓ + 1, jσ + i)), for ℓ + 1 ∈ Sjσ+1, and M [jσ + g][t − 1] + (σ −
∆(jσ + g + 1, jσ + i)), for g ∈ [1 : i − 1]. As S′

jσ+i = Sjσ+1 ∪ {jσ + g + 1 | g ∈ [1 : i − 1]} is
a superset of size at most 2σ of Sjσ+i, we obtain that M [jσ + i][t] is correctly computed as
the minimum between the smallest value in A and M [jσ + i][t − 1] + σ. ◁

§ Algorithm – the result of applying Lemma 3.5. After executing the σ operations o1, . . . , oσ,
we have computed the values M [jσ + 1][t], M [jσ + 2][t], . . . , M [(j + 1)σ][t] correctly. We
can move on to phase j + 1 and repeat this process.

§ The result and complexity. The minimal number of insertions needed to make w k-universal
is, according to the observations we made, correctly computed as M [n][k].

By Lemma 3.5, computing M [jσ + 1][t], M [jσ + 2][t], . . . , M [(j + 1)σ][t] takes O(σ) for
each j. Overall, computing the entire column M [·][t] takes O(n) time. We do this for all
t ≤ k, so we use O(nk) time in total to compute all elements of M . This concludes Case 1.

Case 2. If k > n, we return kσ − n. We need, in all cases, kσ − n insertions to obtain a
word of length kσ from w. This is also sufficient: we first use n(σ − 1) insertions to transform
w into (1 · · · σ)n; then, by (k − n)σ insertions, we further transform it into (1 · · · σ)k. So the
time needed to solve our problem, in this case, is the time needed to compute kσ − n. ◀

Note that, if k is in O(cn) for constant c, then T (n, σ, k) ∈ O(n log σ). Hence, in that case,
our algorithm runs in O(n log σ) time. If k ∈ O(1) our algorithm runs in optimal O(n) time.

4.2 Deletions
▶ Theorem 4.4. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k

be an integer with k ≤ ι(w) ≤ n/σ. We can compute in O(nk) time the minimal number of
deletions needed to obtain a word of universality index k (w.r.t. Σ) from w.

The idea of this proof is the following. Assume that w′ is a word of universality index k

obtained via the sequence of deletions of minimal length from w. Clearly, w′ is a subsequence
of w, and, by the decomposition defined in Theorem 2.5, there exist w′

1, . . . , w′
k, all of

universality index exactly 1, and w′
k+1, of universality index 0, such that w′ = w′

1 · · · w′
kw′

k+1.
It follows that each of the words w′

i is a subsequence of w too. So we will try to identify each
subsequence w′

1 · · · w′
p for p ≤ k and the shortest factor w[1 : i] from which it is obtained.

To this end, we define the matrix N , where N [i][p] is the minimal number of deletions we
need to apply to w[1 : i], without deleting w[i], to obtain a word v from it, with ι(v) = p
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and ι(v[1 : |v| − 1]) = p − 1 (for i ∈ [1 : n] and p ∈ [1 : k]). If ι(w[1 : i]) ≥ 1, then
N [i][1] = |w[1 : i]|w[i] − 1, as we have to delete all occurrences of w[i] from w[1 : i], except
the one on position i. Then, N [i][p] = min{N [j][p − 1] + |w[j + 1 : i]|w[i] − 1 | j < i such that
ι(w[j + 1 : i]) ≥ 1}. This gives a dynamic programming algorithm for computing N . Using
additional data structures extending the standard Range Minimum Queries structures (see
Lemma 2.9), we can compute the elements of N in O(nk) time. To show the statement, we
return min{N [i, k] + T [i] | 1 ≤ i ≤ n}, using the array T of Lemma 3.4.

4.3 Substitutions
▶ Theorem 4.5. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k

be an integer 0 ≤ k ≤ ⌊ n
σ ⌋. We can compute the minimal number of substitutions needed to

apply to w in order to obtain a k-universal word (w.r.t. Σ) in O(nk) time.

The case k > ι(w) is treated similarly to the case of changing the universality of a word
by insertions, described in Theorem 4.1. We define a matrix M , with M [ℓ][t] being the
minimal number of substitutions one needs to apply to w[1 : ℓ] in order to make it t-universal,
for all ℓ ∈ [1 : n] and all t ∈ [1 : k]. Then, we derive the following recurrence: M [ℓ][t] =
min{M [ℓ′][t−1]+(σ−∆(ℓ′+1, ℓ)) | ℓ′+1 ∈ Sℓ}, where Sℓ = (Sℓ∩[(t−1)σ : ℓ−σ])∪{ℓ−σ+1}
(Sℓ is defined in Section 3). The fact that at most σ elements of M [·][t − 1] are used to
compute each of the elements M [ℓ][t] allows us to apply Lemma 3.5 in almost the same way
as we did in the algorithm of Theorem 4.1, and compute all the elements of M in O(nk)
time. The number we want to compute is M [n][k].

For the case k < ι(w), we show that when decreasing the universality index of a word, it
makes no difference whether we use substitutions or deletions. So, it is enough to use the
algorithm of Theorem 4.4 and return the computed result as the answer to our current problem.

Note that, while substitutions and deletions can be used similarly to decrease the
universality index of a word, we always need at least as many substitutions as insertions to
increase it. To see that this inequality can also be strict, note that one insertion is enough to
make aabb 2-universal, but we need two substitutions to achieve the same result.

5 Extensions

In this paper, we presented a series of algorithms computing the minimal number of edits
one needs to apply to a word w in order to reach k-subsequence universality. In fact (see
the proofs in the full version of this paper [19]), one can extend our algorithms and, using
additional O(k|alph(w)|) time, we can effectively construct a k-universal word which is closest
to w, with respect to the edit distance. All our algorithms can be implemented in linear
space (see [19]) using a technique called Hirschberg’s trick [35].

The algorithms we presented work in a general setting: the processed words are over an
integer alphabet. It seems natural to ask whether faster solutions for inputs over an alphabet
of constant size (e.g., binary alphabets) exist. To this end, we state the following result.

▶ Theorem 5.1. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k be
an integer ι(w) < k. We can compute the minimal number of insertions (resp., substitutions)
needed to apply to w in order to obtain a k-universal word (w.r.t. Σ) in (n logO(1) σ)-time.

We describe here the idea used in the case of insertions (as it works with small modifications
for substitutions, too). Full details are given in [19]. We define a weighted directed acyclic
graph G with the nodes 0, 1, . . . , n and directed edges (i, j) with i < j. Let ω(i, j) =
σ − ∆(i + 1, j) (i.e., the number of letter of Σ which do not appear in w[i + 1 : j]) be
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the weight of the edge (i, j). It is not hard to show that the number of edits needed to
transform w into a k-universal word equals the weight of a minimum weight k-link path in
G (see [7, 2, 58]). The graph G will not be explicitly constructed, but we can construct in
(n logO(1) σ)-time an oracle data structure allowing us to retrieve in O(log σ/ log log σ) the
weight of any edge (i, j) of the graph. Further, as G fulfills the concave Monge property
(i.e., ω(i, j) + ω(i + 1, j + 1) < ω(i + 1, j) + ω(i, j + 1) holds for all 0 < i + 1 < j < n),
then the minimum weight k-link path in G can be computed in (n logO(1) σ)-time, using the
algorithms of [7, 2]. If σ ∈ O(1), then the algorithms of Theorem 5.1 run in optimal linear
time O(n).

It is open whether a similar result holds for the case of decreasing the universality index
of a word. However, the main open questions remaining from this work go back to our initial
motivation. Namely, we would be very interested in settling the complexity of the following
problem: Given a word w and a k-piecewise testable language L, succinctly specified, compute
efficiently the edit distance from w to L. In particular, the case when L is defined as the
language of words ∼k-equivalent to a target-word u seems very interesting to us.
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