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Abstract

Parametric timed automata (PTA) have been introduced by Alur, Henzinger, and Vardi as an
extension of timed automata in which clocks can be compared against parameters. The reachability
problem asks for the existence of an assignment of the parameters to the non-negative integers such
that reachability holds in the underlying timed automaton. The reachability problem for PTA is
long known to be undecidable, already over three parametric clocks.

A few years ago, Bundala and Ouaknine proved that for PTA over two parametric clocks and one
parameter the reachability problem is decidable and also showed a lower bound for the complexity
class PSPACENEXP. Our main result is that the reachability problem for parametric timed automata
over two parametric clocks and one parameter is EXPSPACE-complete.

For the EXPSPACE lower bound we make use of deep results from complexity theory, namely
a serializability characterization of EXPSPACE (in turn based on Barrington’s Theorem) and a
logspace translation of numbers in Chinese Remainder Representation to binary representation due
to Chiu, Davida, and Litow. It is shown that with small PTA over two parametric clocks and one
parameter one can simulate serializability computations.

For the EXPSPACE upper bound, we first give a careful exponential time reduction from PTA
over two parametric clocks and one parameter to a (slight subclass of) parametric one-counter
automata over one parameter based on a minor adjustment of a construction due to Bundala and
Ouaknine. For solving the reachability problem for parametric one-counter automata with one
parameter, we provide a series of techniques to partition a fictitious run into several carefully chosen
subruns that allow us to prove that it is sufficient to consider a parameter value of exponential
magnitude only. This allows us to show a doubly-exponential upper bound on the value of the only
parameter of a PTA over two parametric clocks and one parameter. We hope that extensions of our
techniques lead to finally establishing decidability of the long-standing open problem of reachability
in parametric timed automata with two parametric clocks (and arbitrarily many parameters) and, if
decidability holds, determining its precise computational complexity.
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1 Introduction

Background. In the 1990’s timed automata have been introduced by Alur and Dill [2].
They extend finite automata by clocks that can be compared against integer constants and
provide a popular formalism to reason about the behavior of real-time systems with desirable
algorithmic properties; for instance the reachability/emptiness problem is decidable and in
fact PSPACE-complete [1].

For a more general means to specify the behavior of under-specified systems, such
as embedded systems, Alur, Henzinger and Vardi [3] have introduced parametric timed
automata (PTA) only a few years later. Here, the clocks can additionally be compared
against parameters that can take unspecified non-negative integer values. Towards the
verification of safety properties, or loosely speaking ruling out the existence of an execution to
a bad state, the reachability problem for PTA in turn asks for the existence of an assignment
of the parameters to the non-negative integers such that reachability holds in the resulting
timed automaton.

A clock of a PTA that is being compared to at least one parameter is called parametric.
On the negative side, it has been shown in [3] that already for PTA that contain three
parametric clocks reachability is undecidable – even in the presence of one parameter [8]. On
the positive side however, Alur, Henzinger and Vardi have shown in [3] that reachability
is decidable for PTA that contain only one parametric clock, yet by an algorithm whose
running time is non-elementary.

Reachability in PTA with two or less parametric clocks has not attracted much attention
for many years, up until recently.

For PTA over one parametric clock, Bundala and Ouaknine have shown a first elementary
complexity upper bound for the reachability problem; it is shown to be NEXP-hard and in
2NEXP [10]. The matching NEXP upper bound has been proven by Beneš et al. in [8] (also
in the continuous time setting), we refer to [9] for an alternative proof by Bollig, Quaas and
Sangnier using alternating two-way automata.

Bundala and Ouaknine [10] have recently advanced the decidability and complexity status
of the reachability problem for PTA over two parametric clocks [10]: it is shown that in
presence of one parameter the reachability problem is decidable and hard for the complexity
class PSPACENEXP. To the best of our knowledge, this is in fact the largest subclass of
PTA for which reachability is known to be decidable. For showing the above-mentioned
decidability result [10] provides a reduction from PTA over two parametric clocks to a
suitable formalism of parametric one-counter automata. Such an approach via parametric
one-counter automata has already successfully been applied to model checking freeze-LTL as
shown by Demri and Sangnier [12] and Lechner et al. [21], yet notably over a weaker model of
parametric one-counter automata than the one introduced in [10]. On this note, it is worth
mentioning that inter-reductions between the reachability problem of (non-parametric) timed
automata involving two clocks and one-counter automata have already been established by
Haase et al. [16, 17].

Decidability of reachability in PTA over two parametric clocks (without parameter
restrictions) is still considered to be a challenging open problem to the best of our knowledge.
For instance, as already remarked in [3], there is an easy reduction from the existential
fragment of Presburger Arithmetic with divisibility to reachability in PTA over two parametric
clocks.
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Our contribution. Our main result (Theorem 4) states that reachability in parametric
timed automata over two parametric clocks and one parameter is EXPSPACE-complete. Our
contribution is two-fold.

Inspired by [13, 15], for the EXPSPACE lower bound we make use of deep results from
complexity theory, namely a serializability characterization of EXPSPACE (in turn originally
based on Barrington’s Theorem [7]) and a logspace translation of numbers in Chinese
Remainder Representation to binary representation due to Chiu, Davida, and Litow [11].
It is shown that with small PTA over two parametric clocks and one parameter one can
simulate serializability computations.

For the EXPSPACE upper bound, we first give a careful exponential time reduction from
PTA over two parametric clocks and one parameter to a (slight subclass of) parametric
one-counter automata over one parameter based on a minor adjustment of a construction due
to Bundala and Ouaknine [10]. In solving the reachability problem for parametric one-counter
automata with one parameter, we provide a series of techniques to partition a fictitious run
into several carefully chosen subruns that allow us to prove that it is sufficient to consider
a parameter value of exponential magnitude. This allows us to show a doubly-exponential
upper bound on the value of the only parameter of PTA with two parametric clocks and one
parameter. We hope that extensions of our techniques lead to finally establishing decidability
of the long-standing open problem of reachability in parametric timed automata with two
parametric clocks (and arbitrarily many parameters) and, if decidability holds, determining
its precise computational complexity.

As the results in [2], our results hold for PTA over discrete time. Indeed, for PTA with
closed (i.e., non-strict) clock constraints and parameters ranging over integers, techniques [19,
22] exist that allow to reduce the reachability problem over continuous time to discrete time.
There is a plethora of variants of PTA that have recently been studied, we refer to [4] for an
extensive overview by André.

Overview of this paper. In Section 2 we introduce general notation, in particular PTA.
Our EXPSPACE lower bound can be found in Section 3. Section 4 introduces parametric
one-counter automata and states an exponential time reduction from PTA to this model. In
Section 5 we introduce semiruns of parametric one-counter automata, a central notion of
runs we make modifications on. Our upper bounds are the subject of Section 6. The full
version of this paper is available on arXiv [14].

2 Preliminaries

By N = {0, 1, . . .} we denote the non-negative integers. For every finite alphabet A we
denote by A∗ the set of finite words over A and the empty word by ε. For all a ∈ A and
all w ∈ A∗ let |w|a denote the number of occurrences of the letter a in w. For every finite
set M ⊂ N \ {0} let LCM(M) = min{n ≥ 1 | ∀m ∈ M \ {0} : m|n} denote the least common
multiple of the elements in M . For any j ∈ N let LCM(j) = LCM([1, j]) denote the least
common multiple of the numbers {1, . . . , j}.

A guard over a finite set of clocks Ω and a finite set of parameters P is a comparison of
the form g = ω ▷◁ e, where ω ∈ Ω, e ∈ P ∪ N, and ▷◁∈ {<,≤,=,≥, >}; in case e ∈ P we call
g parametric and non-parametric otherwise. We denote by G(Ω, P ) the set of guards over
the set of clocks Ω and the set of parameters P . The size |g| of a guard g = ω ▷◁ e is defined
as log(e) if e ∈ N and 1 otherwise. A clock valuation is a function from Ω to N; we write 0⃗ to
denote the clock valuation ω 7→ 0. For each clock valuation v and each t ∈ N we denote by
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v + t the clock valuation ω 7→ v(ω) + t. A parameter valuation is a function µ from P to
N. For every guard g = ω ▷◁ p with p ∈ P (resp. g = ω ▷◁ k with k ∈ N) we write v |=µ g if
v(ω) ▷◁ µ(p) (resp. v(ω) ▷◁ k).

Figure 1 An example of a PTA. The automaton consists of three states, the set of clocks is {x, y},
the set of parameters is {p}. The edges are represented by arrows labeled with the corresponding
guard and the set of clocks U to be reset. A parameter valuation µ witnesses that reachability holds
for this PTA if, and only, if µ(p) ∈ 3Z.

A parametric timed automaton as introduced in [3] is a finite automaton extended with
a finite set of parameters P and a finite set of clocks Ω that all progress at the same rate
and that can be individually reset to zero. Moreover, every transition is labeled by a guard
over Ω and P and by a set of clocks to be reset. Formally, a parametric timed automaton
(PTA for short) is a tuple A = (Q,Ω, P,R, qinit, F ), where

Q is a non-empty finite set of control states,
Ω is a non-empty finite set of clocks,
P is a finite set of parameters,
R ⊆ Q× G(Ω, P ) × P(Ω) ×Q is a finite set of rules,
qinit ∈ Q is an initial control state, and
F ⊆ Q is a set of final control states.

A clock ω ∈ Ω is called parametric if there exists some (q, g, U, q′) ∈ R such that the guard
g is parametric. We also refer to A as an (m,n)-PTA if m = |{ω ∈ Ω | ω is parametric}| is
the number of parametric clocks and n = |P | is the number of parameters of A – sometimes
we also just write (m, ∗)-PTA (resp. (∗, n)-PTA) when n (resp. m) is a priori not fixed.

The size of A is defined as |A| = |Q| + |Ω| + |P | + |R| +
∑

(q,g,U,q′)∈R |g|. Let Consts(A)
denote the set of constants that appear in the guards of the rules of A. By Conf(A) = Q×NΩ

we denote the set of configurations of A. We prefer however to denote a configuration by
q(v) instead of (q, v).

For each parameter valuation µ : P → N and each (δ, t) ∈ R × N with δ = (q, g, U, q′),
let δ,t,µ−−−→ denote the binary relation on Conf(A), where q(v) δ,t,µ−−−→ q′(v′) if v + t |=µ g,
v′(ω) = 0 for all ω ∈ U and v′(ω) = v(ω) + t for all ω ∈ Ω \ U . A µ-run from q0(v0) to
qn(vn) is a sequence q0(v0) δ1,t1,µ−−−−→ q1(v1) · · · δn,tn,µ−−−−−→ qn(vn). In case P = {p} is a singleton
and µ(p) = N we prefer to say N-run instead of µ-run and write q(v) N−→ q′(v′) to denote
q(v) µ−→ q′(v′). We say reachability holds for A if there is a µ-run from qinit(⃗0) to some
configuration q(v) for some q ∈ F , some v ∈ NΩ, and some µ ∈ NP . We refer to Figure 1 for
an instance of a PTA for which reachability holds.

It is worth mentioning that there are further modes of time valuations and guards which
exist in the literature, we refer to [5] for a recent overview.

We are interested in the following decision problem.
(m,n)-PTA-Reachability
INPUT: A (m,n)-PTA A.
QUESTION: Does reachability hold for A?
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Alur et al. have already shown in their seminal paper that PTA-Reachability is in
general undecidable, already in the presence of only three parametric clocks [3], Beneš et al.
strengthened this when only one parameter is present [8].

▶ Theorem 1 ([8]). (3, 1)-PTA-Reachability is undecidable.

To the contrary, (1, ∗)-PTA-Reachability has recently been shown to be complete for
NEXP, where a non-elementary upper bound was initially given by Alur et al. [3].

▶ Theorem 2 ([10, 8, 9]). (1, ∗)-PTA-Reachability is NEXP-complete.

On the other end, decidability of (2, ∗)-PTA-Reachability is still open to the best of
our knowledge. In presence of precisely one parameter the following is known.

▶ Theorem 3 ([10]). (2, 1)-PTA-Reachability is decidable and PSPACENEXP-hard.

The following theorem states our main result.

▶ Theorem 4. (2, 1)-PTA-Reachability is EXPSPACE-complete.

3 An EXPSPACE lower bound via serializability

In this section we show an EXPSPACE lower bound for (2, 1)-PTA-Reachability. We
show that on small PTA with two parametric clocks x and y and one parameter p one can
perform both (i) PSPACE computations and (ii) compute x− y mod p modulo numbers that
are dynamically given in binary. Building upon these auxiliary gadgets we show how to
implement bottleneck computations in a leaf language characterization of EXPSPACE [13].
We assume the reader is familiar with Turing machines and standard complexity classes
such as LOGSPACE, PSPACE and EXPSPACE. We refer to [23, 6] for further details on
complexity. We also assume the reader is familiar with (deterministic) finite automata and
regular languages, we refer to [18] for more details on this.

For each a, b ∈ Z we define [a, b] = {k ∈ Z | a ≤ k ≤ b}. For each i, n ∈ N let Biti(n)
denote the i-th least significant bit of the binary presentation of n, i.e. n =

∑
i∈N 2i · Biti(n).

For each m ≥ 1, by Binm(n) = Bit0(n) · · · Bitm−1(n) we denote the sequence of the first m
least significant bits of the binary presentation of n, i.e. the least significant bit is on the
left. Conversely, given a binary string w = w0 · · ·wn−1 ∈ {0, 1}n of length n we denote by
Val(w) =

∑n−1
i=0 2i · wi ∈ [0, 2n − 1] the value of w interpreted as a non-negative integer.

Let A be a parametric timed automaton over a set of clocks Ω with two parametric
clocks x and y. We say a valuation v : Ω → N is bit-compatible if v(ω) ∈ {0, 1} for all
non-parametric clocks ω ∈ Ω. Assume moreover that Ω contains non-parametric clocks
Θ+ ∪ Θ−, where Θ is some set and Θ+ = {ϑ+ | ϑ ∈ Θ} and Θ− = {ϑ− | ϑ ∈ Θ} are two
disjoint corresponding copies of Θ; in this case, for any valuation v : Ω → N we define the
mapping v̂ : Θ → {0, 1} as v̂(ϑ) = 0 if v(ϑ+) = v(ϑ−) and v̂(ϑ) = 1 otherwise. In the
following we call such non-parametric clocks {ϑ+, ϑ− | ϑ ∈ Θ}, appearing as implicit pairs,
bit clocks since they are used to encode bits.

▶ Definition 5. A (2, 1)-PTA A = (Q,Ω, {p}, R, qinit, {qfin}) whose parametric clocks are x
and y and whose one parameter is p computes a function f : N × {0, 1}n → {0, 1}m if its set
of clocks Ω contains two disjoint sets of

non-parametric “input” bit clocks {in0
+, in0

−, . . . , in+
n−1, in

−
n−1} and

non-parametric “output” bit clocks {out0+, out0
−, . . . , outm−1

+, outm−1
−}

such that for all N ∈ N and all bit-compatible v0 : Ω → [0, N − 1] we have

STACS 2021
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1. qinit(v0) N−→
∗
qfin(v′) for some bit-compatible v′ : Ω → [0, N − 1] and

2. for all v′ : Ω → N for which qinit(v0) N−→
∗
qfin(v′) we have

v′ ∈ [0, N − 1]Ω is bit-compatible,
v̂′(ini) = v̂0(ini) for all i ∈ [0, n− 1],
v′(x) − v′(y) ≡ v0(x) − v0(y) mod N , and∏m−1
j=0 v̂′(outj) = f(v0(x) − v0(y) mod N,

∏n−1
i=0 v̂0(ini)), where

∏
denotes concatena-

tion.

The following lemma essentially has its roots in the PSPACE-hardness proof for the
emptiness problem for timed automata (without parameters) introduced by Alur and Dill [2],
however constructed to satisfy the carefully chosen interface given by Definition 5.

▶ Lemma 6. For every PSPACE-computable function g : {0, 1}n → {0, 1}m one can compute
in polynomial time in n+m a (2, 1)-PTA computing the function f : N × {0, 1}n → {0, 1}m,
where f(k,w) = g(w) for all (k,w) ∈ N × {0, 1}n.

The following lemma shows that PTA with two parametric clocks and one parameter can
compute modulo dynamically given numbers in binary.

▶ Lemma 7. One can compute in polynomial time in n+m a (2, 1)-PTA with two parametric
clocks and one parameter that computes the function f : N × {0, 1}n → {0, 1}m, where
f(k,w) = Binm(k mod Val(w)).

We are now ready to state the main result of this section.

▶ Theorem 8. (2, 1)-PTA-Reachability is EXPSPACE-hard.

For each language L ⊆ A∗ let χL : A∗ → {0, 1} denote the characteristic function of L.
By ⪯n we denote the lexicographic order on n-bit strings, thus w ⪯n v if Val(w) ≤ Val(v),
e.g. 0101 ⪯4 0011.

Our EXPSPACE lower bound proof makes use of the following characterization of
EXPSPACE, which is a slight padded adjustment of the leaf-language characterization of
PSPACE from [20], which in turn has its roots in Barrington’s Theorem [7].

▶ Theorem 9 (Theorem 2 in [13]). For every language L ⊆ {0, 1}∗ in EXPSPACE there exists
a polynomial s : N → N, a regular language R ⊆ {0, 1}∗, and a language U ∈ LOGSPACE
such that for all w ∈ {0, 1}n we have

w ∈ L ⇐⇒
22s(n)−1∏
m=0

χU (w · Bin2s(n)(m)) ∈ R, (1)

where · and
∏

denote string concatenation.

Let us fix any language L in EXPSPACE and assume L ⊆ {0, 1}∗ without loss of generality.
Applying Theorem 9, let us fix the regular language R ⊆ {0, 1}∗ along with some fixed

deterministic finite automaton (DFA for short) D = (QD, {0, 1}, q0, δD, FD) with L(D) = R,
the fixed polynomial s and the fixed language U ∈ LOGSPACE.

Let us moreover fix an input w ∈ {0, 1}n of length n for L. Figure 2 rephrases the
characterization (1) in Theorem 9 in terms of an execution of a program that returns 1 if,
and only if, w ∈ L.

The following lemma gives us a helpful initial gadget PTA that allows us to enforce that
the parameter p can only be evaluated to numbers that are larger than 22s(n) , thus being
helpful for storing variables up to the value 22n .
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(1) var q ∈ QD
(2) var b ∈ {0, 1}
(3) var B ∈ N
(4) q := q0;
(5) B := 0;
(6) while B < 22n loop
(7) b := χU (w · Bin2s(n)(B))
(8) q := δD(q, b)
(9) B := B + 1
(10) end loop
(11) return q ∈ F

Figure 2 A program returning 1 if, and only if, w ∈ L (using the charactization in Theorem 9),
where D = (QD, {0, 1}, q0, δD, FD) is some deterministic finite automaton such that L(D) = R.

▶ Lemma 10. One can compute in polynomial time in n some parametric timed automaton
Abig = (Qbig,Ωbig, {p}, Rbig, qbig,init, {qbig,fin}) with two parametric clocks x, y ∈ Ωbig and
one parameter p such that

1. qbig,init(⃗0) N−→ qbig,fin(v′) for some v′ : Ωbig → N for some N ∈ N, and

2. for all N ∈ N and all v′ : Ωbig → N we have qbig,init(⃗0) N−→
∗
qbig,fin(v′) implies N > 22s(n) .

Using the above gadgets one can show that the program in Figure 2 can indeed be
simulated by small (2, 1)-PTA, whose proof we sketch below.

▶ Lemma 11. One can compute in polynomial time in n a (2, 1)-PTA A for which reachability
holds, if and only if, the execution of the program depicted in Figure 2 returns 1.

Proof (sketch). The initial part of A will consist of the gadget PTA Abig from Lemma 10
and allow us to enforce an assignment of A’s only parameter p to some value N > 22s(n) .
We store the variable B of the program in Figure 2 as the difference between A’s two
parametric clocks x and y modulo N . We only sketch the most crucial program line (7),
namely computing the bit χU (w · Bin2s(n)(B)), where we recall that U is in LOGSPACE.

For simulating a suitable logspace Turing machine on this exponentially large input our
PTA A will use O(log(n+ 2s(n))) = poly(n) auxiliary bit clocks, say J , to store in binary
the position of the input head and further O(log(n+ 2s(n))) = poly(n) auxiliary bit clocks
for storing the working tape. Reading and writing on the working tape as well as updating
the position of the input head can be done quite straightforwardly using polynomially many
bit clocks. The main challenge is to access the cell content Bitj(w · Bin2s(n)(B)), where the
address j can directly (in binary) be stored using the above-mentioned bit clocks J .

To compute Bitj(w · Bin2s(n)(B)) we access B on the fly via its Chinese Remainder
Representation CRR(B) that we define next: Let pi denote the i-th prime number and assume∏m
i=1 pi > B for some m ∈ N, then CRRm(B) denotes the bit tuple (bi,r)i∈[1,m],r∈[0,pi−1],

where bi,r = 1 if B mod pi = r and bi,r = 0 otherwise. The individual input bits to CRR(B)
can be sub-computed via our modulo gadget from Lemma 7. The individual input bits to
Bin2s(n)(B) can be obtained by a composition of the latter access to CRR(B) and simulating
a logspace Turing machine that computes Bin2s(n)(B) from CRR(B) by a result by Chiu,
Davida, and Litow [11]. ◀
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4 From two-parametric timed automata with one parameter to
parametric one-counter automata

Being introduced by Bundala and Ouaknine in [10], we define parametric one-counter
automata. These are automata that can manipulate a counter that can be incremented or
decremented, parametrically or not, compared against constants or parameters, and with
divisibility tests modulo constants. It is worth mentioning that the notion of parametric one-
counter automata from [10] is slightly more expressive than ours, allowing more operations.

After introducing parametric one-counter automata we mention Theorem 13, proven
essentially already in [10] – again, however for a slightly more expressive model of parametric
one-counter automata – that states that (2, 1)-PTA-Reachability can be reduced in
exponential time to the reachability problem of parametric one-counter automata over one
parameter.

Given a set of parameters P we denote by Op(P ) the set of operations, namely Op(P ) =
Op± ∪ Op±P ∪ OpmodN ∪ Op▷◁N ∪ Op▷◁P , where

Op± = {−1, 0,+1}, Op±P = {+p,−p | p ∈ P},
OpmodN = {mod c | c ∈ N},
Op▷◁N = {▷◁ c |▷◁∈ {<,≤,=,≥, >}, c ∈ N}, and Op▷◁P = {▷◁ p |▷◁∈ {<,≤,=,≥, >}, p ∈
P}.

The size |op| of an operation op is defined as |op| = log(c) if op = mod c or op =▷◁
c with c ∈ N and |op| = 1 otherwise. We denote by updates those operations that lie in
Op± ∪ Op±P and by tests those operations that lie in OpmodN ∪ Op▷◁N ∪ Op▷◁P .

A parametric one-counter automaton (POCA for short) is a tuple C = (Q,P,R, qinit, F ),
where Q is a non-empty finite set of control states, P is a non-empty finite set of parameters
that can take non-negative integer values, R ⊆ Q× Op(P ) ×Q is a finite set of rules, qinit is
an initial control state, and F ⊆ Q is a set of final control states. The size of C is defined as
|C| = |Q| + |P | + |R| +

∑
(q,op,q′)∈R |op|. Let Consts(C) denote the constants that appear in

the operations op ∈ OpmodN ∪ Op▷◁N for some rule (q, op, q′) in R. By Conf(C) = Q× Z we
denote the set of configurations of C. We prefer however to denote a configuration of Conf(C)
by q(z) instead of (q, z).

Being slightly non-standard we define configurations to take counter values over Z rather
than over N for notational convenience. This does not cause any loss of generality as we
allow guards that enable us to test if the value of the counter is greater or equal to zero.

▶ Definition 12 (transition). For every op ∈ Op(P ), for every parameter valuation µ : P → N,
for every POCA C, and for every two configurations q(z) and q′(z′) in Conf(C) we define the
transition q(z) op,µ−−−→ q′(z′) if there exists some (q, op, q′) ∈ R such that either of the following
holds
(1) op = c ∈ Op± and z′ = z + c,
(2) op ∈ Op±P , and either op = +p and z′ = z + µ(p), or op = −p and z′ = z − µ(p).
(3) op = mod c ∈ OpmodN, z = z′ and z′ ≡ 0 mod c,
(4) op =▷◁ c ∈ Op▷◁N, z = z′ and z′ ▷◁ c, or
(5) op =▷◁ p ∈ Op▷◁P , z = z′ and z′ ▷◁ µ(p).

Let µ : P → N be a parameter valuation. We just write q(z) µ−→ q′(z′) if q(z) op,µ−−−→ q′(z′)
for some operation op. A µ-run (or just run) in C (from q0(z0) to qn(zn)) is a sequence,
possibly empty (i.e. n = 0), of the form π = q0(z0) op0,µ−−−→ q1(z1) · · · opn−1,µ−−−−−→ qn(zn).

We say π is accepting if q0 = qinit, z0 = 0, and qn ∈ F . We say reachability holds (for the
POCA C) if there exists an accepting µ-run for some µ ∈ NP . We refer to Figure 3 for an
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Figure 3 An example of a POCA. The automaton consists of five states and the set of parameters
is {p}. The edges are represented by arrows labeled with the corresponding operations. A parameter
valuation µ : {p} → N witnesses that reachability holds for the above POCA if, and only, if
µ(p) ≡ 1 mod 6.

instance of a POCA for which reachability holds. For any two c, d ∈ [0, n] we define the subrun
π[c, d] from qc(zc) to qd(zd) of π as the µ-run qc(zc)

πc,µ−−−→ qc+1(zc+1) · · · πd−1,µ−−−−→ qd(zd).
As expected, a prefix (resp. suffix) of π is an µ-run of the form π[0, d] (resp. π[d, n]). In

the particular case where P = {p} is a singleton for some parameter p and µ(p) = N , we
write q(z) op,N−−−→ q′(z′) to denote q(z) op,µ−−−→ q′(z′) and prefer to call a µ-run an N -run.

We define ∆(π) = zn − z0 as the counter effect of the run π and for each i ∈ [0, n− 1]
we define ∆(π, i) = ∆(π[i, i+ 1]) to denote the counter effect of the i-th transition of π. Its
length is defined as |π| = n. As expected, let Values(π) = {zi | i ∈ [0, n]} denote the set
of counter values of the configurations of the run π. The run π’s maximum is defined as
max(π) = max(Values(π)) and its minimum as min(π) = min(Values(π)).

The next theorem states an exponential time reduction from (2, 1)-PTA-Reachability
to the reachability problem of POCA over one parameter whose counter values are bound
by a linear function in the parameter value and its size. It has already been proven in the
more general setting over an arbitrary number of parameters in [10], however using a POCA
model allowing more operations.

▶ Theorem 13. The following is computable in exponential time:
INPUT: A (2, 1)-PTA A.
OUTPUT: A POCA C over one parameter p such that

1. for all N ∈ N all accepting N -runs π in C satisfy Values(π) ⊆ [0, 4 · max(N, |C|)], and
2. reachability holds for A if, and only if, reachability holds for C.

5 Semiruns, their bracket projection, and embeddings

In this section we motivate and introduce the notion of semiruns by loosening the conditions
on runs, and define basic operations on them. These basic operations possibly change their
counter values, length, or counter effect. We finally introduce the notion of embeddings,
which provide a formal means to express when a semirun can structurally be found as a
subsequence of another.

▶ Definition 14 (semitransition). Let C = (Q,P,R, qinit, F ) be a POCA. For every operation
op ∈ Op(P ) and every N ∈ N and for every two configurations q(z) and q′(z′) in Conf(C)
we define the semitransition q(z) op,µ===⇒ q′(z′) if there exists some (q, op, q′) ∈ R such that
conditions (1),(2), and (3) hold and where conditions (4) and (5) are loosened by
(4’) op =▷◁ c ∈ Op▷◁N and z = z′, and
(5’) op =▷◁ p ∈ Op▷◁P , and z = z′.

Thus, in a nutshell, when writing q(z) op,µ===⇒ q′(z′) we do not require that the comparison
tests against parameters or against constants hold; however the updates and the modulo
tests against constants must be respected.
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This naturally gives rise to the definition of a µ-semirun, which is defined as expected.
Note that in particular every µ-run is a µ-semirun. The notion of an N -semirun, the relation
q(z) op,N===⇒ q′(z′), the counter effect ∆, Values, min, max, subsemirun, prefix, suffix are
defined as for runs.

Importantly, note also that semitransitions involving comparison tests are still syntactically
present in semiruns. By a careful analysis, one can therefore possibly perform operations on
N -semiruns in order to show that they are in fact N -runs.

Let Γ be any integer that is divisible by all constants in Consts(C) in some POCA C. We define
the shifting of an N -semirun π by Γ as π + Γ = q0(z0 + Γ) π0,N===⇒ q1(z1 + Γ) · · · πn−1,N=====⇒
qn(zn + Γ). Since there are no effective comparison tests and Γ is an integer that is divisible
by all constants appearing in modulo tests in C, it is clear that π + Γ is again an N -semirun.

For two configurations qi(zi) and qj(zj) with 0 ≤ i < j ≤ n, qi = qj , and zj − zi = Γ we
define the gluing of the configurations as

π − [i, j] = q0(z0) · · · πi−1,N=====⇒ qi(zi)
πj ,N===⇒ qj+1(zj+1 − Γ) · · · πn−1,N=====⇒ qn(zn − Γ).

When gluing the leftmost and rightmost configurations of pairwise non-intersecting
intervals I1 = [a1, b1], . . . , Ik = [ak, bk] ⊆ [0, n], assuming bi < ai+1 for all 1 ≤ i < k, and
qai = qbi and zbi − zai is divisible by all constants in LCM(Consts(C)) for all 1 ≤ i ≤ k,
we will use π − I1 − I2 · · · − Ik to denote the result corresponding to gluing each interval
successively while shifting the others accordingly, formally π(k), where π(1) = π− [a1, b1] and
inductively, π(s) = π(s−1) − [as − Σ1≤j<s(|Ij | − 1), bs − Σ1≤j<s(|Ij | − 1)] for all s ∈ [2, k].

We define the projection ϕ of a semitransition τ = q(z) op,N===⇒ q′(z′) to a word over the
binary alphabet {[, ]}, where transitions with op = +p are mapped to [, transitions with
op = −p are mapped to ], and all other transitions are mapped to the empty word ε. The
mapping ϕ is naturally extended to a morphism on semiruns.

We are particularly interested in N -semiruns whose projection by ϕ contains as many
opening as closing brackets and only a few pending (when read from left to right) opening or
closing brackets. To make this formal, for all k ∈ N we define regular language

Λk =
{
w ∈ {[, ]}∗ : |w|[ = |w|],∀u, v ∈ {[, ]}∗. uv = w =⇒ |u|[ − |u|] ∈ [−k, k]

}
.

We will often prefer to view N -runs as N -semiruns. Indeed, in case N is sufficiently large
we first view any N -run as an N -semirun, apply certain of the above-mentioned operations on
them to obtain some (N − Γ)-semirun, where Γ is divisible by all constants appearing in the
underlying POCA. However, we would then like to claim that the resulting (N − Γ)-semirun
is in fact an (N − Γ)-run as desired, in particular the comparison tests need to hold. To do
so, we introduce a notion when an N -semirun can be embedded into an M -semirun (possibly
N ̸= M) in the sense that operations are being preserved, source and target control states
are being preserved and that with respect to some line ℓ ∈ Z the counter value of each
configuration of the embedding has the same orientation with respect to ℓ as the counter
value of the configuration it corresponds to.

▶ Definition 15 (ℓ-embedding). Let ℓ ∈ Z. An N-semirun σ = s0(y0) · · · σn−1,N=====⇒ sn(yn)

is an ℓ-embedding of an M-semirun π = q0(z0) · · · πm−1,M======⇒ qm(zm) if s0 = q0, sn = qm

and there exists an order-preserving injective mapping ψ : [0, n] → [0,m] such that
σi = πψ(i) for all i ∈ [0, n− 1], and
ℓ ▷◁ yi if, and only if, ℓ ▷◁ zψ(i) for all ▷◁∈ {<,=, >} and all i ∈ [0, n].

Moreover we say σ is max-falling, resp. min-rising, w.r.t. π if max(σ) ≤ max(π), resp. if
min(σ) ≥ min(π).
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Figure 4 Example of a semirun σ that could possibly be a 7-embedding of the semirun π and a
semirun τ that cannot.

Consider the semiruns π, σ and τ in Figure 4, where neither concrete counter values nor
the control states of σ nor τ are mentioned. The semirun σ can possibly be an 7-embedding
of π (if its source control control is q0 and its target control state is q6). However, τ cannot
be a 7-embedding of π. Indeed, for every possible injection ψ such that τ2 = +p = πψ(2), the
counter value of τ at position 2 is strictly larger than 7, whereas the counter value of π at
position ψ(2) is strictly below 7.

It is immediate that an ℓ-embedding of an ℓ-embedding is again an ℓ-embedding. Moreover,
if the target configuration of σ equals the source configuration of τ and σ and τ are ℓ-
embeddings of σ′ and τ ′ respectively, and σ′τ ′ is a semirun, then so is their concatenation
στ an ℓ-embedding of σ′τ ′. Such basic properties will be used extensively in our proofs.

6 Upper bounds

In this section we state the Small Parameter Theorem which states that every POCA over
one parameter and every sufficiently large parameter value N , accepting N -runs with counter
values all in [0, 4N ] can be turned into accepting N ′-runs for some smaller N ′. After having
stated the theorem one can show that together with Theorem 13 it implies an EXPSPACE
upper bound for (2, 1)-PTA-Reachability.

For each POCA C = (Q,P,R, qinit, F ) we define the following constants:

ZC = LCM(Consts(C)) ΓC = LCM(17 · |Q|) · ZC

ΥC = 17 · |Q| · LCM(17 · |Q|) · (17 · |Q| · ZC + 2) MC = 30 · (ΥC + ΓC + 1)

Since for every non-empty finite set U ⊆ N \ {0} we have LCM(U) ≤ max(U)|U |, all of the
above constants are asymptotically bounded by 2poly(|C|).

The main result of this section is the following theorem.

▶ Theorem 16 (Small Parameter Theorem). Let C = (Q, {p}, R, qinit, F ) be a POCA with one
parameter. If there exists an accepting N -run in C with values in [0, 4N ] for some N > MC,
then there exists an accepting (N − ΓC)-run in C.

The Small Parameter Theorem has the following consequence for (2, 1)-PTA-
Reachability.

▶ Corollary 17. (2, 1)-PTA-Reachability is in EXPSPACE.
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Overview of the proof of the Small Parameter Theorem
The Small Parameter Theorem (Theorem 16) states that, in case N is sufficiently large,
accepting N -runs whose configurations have counter values all inside [0, 4N ] can be turned
into accepting (N − ΓC)-runs. For its proof we proceed as follows. As mentioned already in
Section 5 we prefer to view N -runs as N -semiruns.

Manipulating only N -semiruns, the following Depumping Lemma can turn N -semiruns
whose ∆ is either sufficiently large (resp. sufficiently small) again into N -semiruns whose
∆ is less large (resp. small). It requires however an N -run whose ϕ-projection has a nice
bracketing property, namely a ϕ-projection that lies in the regular language Λ8.

▶ Lemma 18 (Depumping Lemma). For all N -semiruns π satisfying ϕ(π) ∈ Λ8 and |∆(π)| >
ΥC there exists an N -semirun π′ such that either

∆(π) > ΥC and ∆(π′) = ∆(π) − ΓC, or
∆(π) < −ΥC and ∆(π′) = ∆(π) + ΓC.

Moreover, π′ = π − I1 − I2 · · · − Ik for pairwise disjoint intervals I1, . . . , Ik ⊆ [0, |π|] such
that we have ϕ(π[Ii]) ∈ Λ16 for all i ∈ [1, k], and either ∆(π[Ii]) > 0 for all i ∈ [1, k] or
∆(π[Ii]) < 0 for all i ∈ [1, k].

Proof. Let π = q0(z0) π0,N===⇒ q1(z1) π1,N===⇒ · · · πn−1,N=====⇒ qn(zn) be an N -semirun such
that ϕ(π) ∈ Λ8. We will assume without loss of generality that ∆(π) > ΥC . The dual case
when ∆(π) < −ΥC can be proven analogously.
For every position i ∈ [0, n] let us define

λ(i) = |ϕ(π[0, i])|[ − |ϕ(π[0, i])|] and pot(i) = zi − z0 − λ(i) ·N .

Note that since ϕ(π) ∈ Λ8 by assumption we have for all i ∈ [0, n],

λ(i) ∈ [−8, 8], (2)

and moreover

ϕ(π[0, i]) ∈ Λ8 ⇐⇒ λ(i) = 0. (3)

We note the following important properties of pot,
1. |pot(i− 1) − pot(i)| ≤ 1 for all i ∈ [1, n],
2. pot(0) = 0,
3. for all 0 ≤ i < j ≤ n, if λ(i) = λ(j), then pot(j) − pot(i) = zj − zi, and
4. pot(n) = zn − z0 = ∆(π) since λ(0) = λ(n) = 0.

The following claim states that if in a subsemirun pot increases sufficiently, one can find
a subsemirun therein that can potentially be glued.

▷ Claim 19. For each subsemirun π[a, b] that satisfies pot(b) − pot(a) > 17 · |Q| · ZC there
exist positions a ≤ s < t ≤ b, such that

qs = qt,
λ(s) = λ(t), and
zt − zs = dZC for some d ∈ [1, 17 · |Q|].

Proof of the Claim. Since by assumption pot(b) − pot(a) > 17 · |Q| · ZC, by the pigeonhole
principle and Point 1 above, there exist two indices a ≤ s < t ≤ b such that qs = qt,
λ(s) ∈ [−8, 8] and λ(t) ∈ [−8, 8] are equal, and pot(t) − pot(s) = dZC for some d ∈ [1, 17 · |Q|].
By Point 3 above, from λ(t) = λ(s), it follows zt − zs = pot(t) − pot(s) = dZC . ◁



S. Göller and M. Hilaire 36:13

Since pot(i) − pot(i− 1) ≤ 1 for all i ∈ [1, n] by Point 1 above and

pot(n) − pot(0) = zn − z0

= ∆(π)
> ΥC

page 11= 17 · |Q| · LCM(17 · |Q|) · (17 · |Q| · ZC + 2) ,

by the pigeonhole principle, there exist at least

17 · |Q| · LCM(17 · |Q|)

pairwise disjoint subsemiruns π[a, b] satisfying pot(b) − pot(a) > 17 · |Q| · ZC . Let

L = LCM(17 · |Q|),

and let π[a1, b1], . . . , π[a17·|Q|·L, b17·|Q|·L] be an enumeration of these latter subsemiruns. We
apply the above Claim to all of these π[ai, bi]: there exist positions ai ≤ si ≤ ti ≤ bi such that
λ(si) = λ(ti), qsi

= qti , and zti = zsi
+ diZC for some di ∈ [1, 17 · |Q|]. From λ(si) = λ(ti)

and (2) it follows ϕ(π[si, ti]) ∈ Λ16. Recall that ΓC = LCM(17 · |Q|) ·ZC = L ·ZC by definition
on page 11. By the pigeonhole principle, among these 17 · |Q| ·L pairwise disjoint subsemiruns
π[ai, bi], there exists some d ∈ [1, 17 · |Q|] such that there are L/d many different π[ai, bi]
all satisfying di = d. Let π[ai1 , bi1 ], . . . , π[aiL/d

, biL/d
] be an enumeration of these latter

π[ai, bi]. Note that for all of these π[ai, bi] we have ∆(π[sij , tij ]) = d · ZC. Since moreover
qsij

= qtij
we know that, for all j ∈ [1, L/d], the gluing π − [sij , tij ] is an N -semirun with

∆(π − [sij , tij ]) = ∆(π) − dZC . Thus,

π′ = π − [si1 , ti1 ] − . . .− [siL/d
, tiL/d

]

is an N -semirun satisfying ∆(π′) = ∆(π) − d · (L/d) · ZC = ∆(π) − ΓC as required. ◀

Assuming N to be sufficiently large the Bracket Lemma shows that for every (N − ΓC)-
semirun whose ∆ is again sufficiently large (resp. sufficiently small) and whose ϕ-projection
satisfies a majority condition, the existence of a subsemirun whose ∆ is again sufficiently
large (resp. sufficiently small) but which has a ϕ-projection that lies in the regular language
Λ8. Since the resulting subsemiruns have a desirable ϕ-projection, the Depumping Lemma
can be applied to these. Combining these remarks allows us to construct a new semirun
whose ∆ is slightly smaller (resp. bigger) than the ∆ of the original semirun the Bracket
Lemma was applied to.

▶ Lemma 20 (Bracket Lemma). For all N > MC and for all (N − ΓC)-semiruns π satisfying
Values(π) ⊆ [0, 4N ], ∆(π) < −ΥC (resp. ∆(π) > ΥC) and where ϕ(π) contains at least as
many occurrences of [ as occurrences of ] (resp. at least as many occurrences of ] as occurrences
of [) there exists a subsemirun π[c, d] satisfying ϕ(π[c, d]) ∈ Λ8 and ∆(π[c, d]) < −ΥC (resp.
∆(π[c, d]) > ΥC).

Note that trivially, every N -semirun ρ with ϕ(ρ) = ε is already an (N − ΓC)-semirun.
Let us exemplify an interplay between the Bracket Lemma and the Depumping Lemma. For
instance, assume we are to turn the following N -semirun into an (N − ΓC)-semirun with
the same source and target configuration, namely an N -semirun of the form τρ, where τ is
a +p-transition (thus a length one N -semirun), ϕ(ρ) = ε, and ∆(ρ) < −ΥC : indeed, firstly
one can explicitly turn the +p-transition τ into the +p-transition τ̂ with ∆(τ̂) = N − ΓC
(thus a length one (N − ΓC)-semirun) and secondly apply (by observing that ρ is already
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Figure 5 Illustration of the dependencies between the lemmas. The presence of an arrow going
from a lemma to another means that the lemma in question is used inside the proof of the lemma
the arrow points to.

an (N − ΓC)-semirun) the Bracket Lemma to ρ. Using the interplay between the Bracket
Lemma and the Depumping Lemma one can obtain an (N − ΓC)-semirun ρ̂ (obtained by
gluing and shifting) such that τ̂ ρ̂ is an (N − ΓC)-semirun with the same source and target
configuration as τρ.

The following notion of hills and valleys provides a more general class of semiruns to
which the above-mentioned reasoning in the previous paragraph can be applied. B-hills
are semiruns that start and end in configurations with low counter values but where all
intermediate configurations have counter values above these source and target configurations,
and where moreover +p-transitions (resp. −p-transitions) are followed (resp. preceded)
by semiruns with counter effect strictly smaller than −ΥC (resp. strictly larger than ΥC).
B-valleys are defined dually.

Formally let q0(z0) π0,N===⇒ q1(z1) · · · πn−1,N=====⇒ qn(zn) be an N -semirun. It is a B-hill if
z0, zn < B, zi ≥ B for all i ∈ [1, n− 1], πi = −p implies zi > z0 + ΥC for all i ∈ [0, n− 1], and
πi = +p implies zi+1 > zn + ΥC for all i ∈ [0, n− 1]. Dually, it is a B-valley if z0, zn > B,
zi ≤ B for all i ∈ [1, n− 1], πi = −p implies zi+1 < zn − ΥC for all i ∈ [0, n− 1], and πi = +p
implies zi < z0 − ΥC for all i ∈ [0, n− 1].

The Hill and Valley Lemma (Lemma 21) allows us to transform N -semiruns that are B-
hills (resp. B-valleys) into (N − ΓC)-semiruns with the same source and target configurations.

▶ Lemma 21 (Hill and Valley Lemma). For all N,B ∈ N and all N -semiruns π from q0(z0)
to qn(zn) with N > MC and Values(π) ⊆ [0, 4N ] such that moreover π is either a B-hill or
a B-valley, there exists an (N − ΓC)-semirun from q0(z0) to qn(zn) that is both a min-rising
and max-falling (B−ΥC −ΓC −1)-embedding of π (in case π is a B-hill), or both a min-rising
and max-falling (B + ΥC + ΓC + 1)-embedding of π (in case π is a B-valley).

By carefully factorizing N -semiruns with a ∆ smaller than 5/6 ·N into suitably chosen
hills and valleys, one can turn them into (N − ΓC)-semiruns that are moreover ℓ-embeddings
for every ℓ that is not far away from the counter values of both the source and target
configuration. The following lemma makes this more formal.

▶ Lemma 22 (5/6-Lemma). For all N > MC and all ℓ ∈ Z and all N -semiruns π from q0(z0)
to qn(zn) with Values(π) ⊆ [0, 4N ] satisfying max(z0, zn, ℓ) − min(z0, zn, ℓ) ≤ 5/6 ·N there
exists an (N − ΓC)-semirun π′ from q0(z0) to qn(zn) that is an ℓ-embedding of π such that
Values(π′) ⊆ [min(π) − ΓC ,max(π) + ΓC ].

Figure 5 provides an overview of the dependencies of the above-mentioned lemmas.
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Figure 6 Application of the 5/6-Lemma to the subrun σ[a, b + 1].

Let us exemplify how the 5/6-Lemma is used in proving the Small Parameter Theorem.
For this let us fix some POCA C over a parameter p, some N > MC and an accepting N -run π
with Values(π) ⊆ [0, 4N ], where π is of the form π = r0(x0) π0,N−−−→ r1(x1) · · · πn−1,N−−−−−→ rn(xn)
and where rn ∈ F . We need to show the existence of an accepting (N − ΓC)-run. We may
assume xn = 0 w.l.o.g. (by simply requiring a final zero test in a new PTA).

Since N
3 < N − ΓC , by definition of the constants on page 11, every subrun ρ of π with

Values(ρ) ⊆ [0, N3 [ is already an (N − ΓC)-run. One can therefore uniquely factorize π as
π = ρ(0)σ(1)ρ(1) · · ·σ(m)ρ(m), where each ρ(j) satisfies Values(ρ(j)) ⊆ [0, N3 [ and each σ(j)

is some subrun π[c, d] with xc <
N
3 , xd < N

3 and xe ≥ N
3 for all e ∈ [c + 1, d − 1], where

moreover [c+ 1, d− 1] ̸= ∅.
Thus, it suffices to show that for every N -run σ = q0(z0) · · · σm−1,N−−−−−→ qm(zm) satisfying

Values(σ) ⊆ [0, 4N ], z0, zm < N
3 and zi ≥ N

3 for all i ∈ [1,m− 1], there exists an (N − ΓC)-
run from q0(z0) to qm(zm). Let us assume max(σ) ≥ N (the case max(σ) < N is even easier)
and let a ∈ [0,m] be minimal such that za < N and za+1 ≥ N and let b ∈ [0,m] be maximal
such that zb ≥ N and zb+1 < N . That is, one can factorize σ as σ = ασ[a, a+1]βσ[b, b+1]γ,
where α = σ[0, a], β = σ[a+ 1, b] and γ = σ[b+ 1,m]. The situation is depicted in Figure 6.

For i ∈ [1, 5] let Ii =
{
z ∈ [0, 4N ] | iN3 ≤ z < (i+1)N

3

}
. Our proof involves a careful case

distinction on which of the Ii the counter values za, za+1, zb and zb+1 lie in, respectively. Let
us here only treat the case za+1, zb ∈ I5; thus σa (resp. σb) is a +p-transition (resp. −p-
transition) and therefore za, zb+1 ∈ I2. We apply the 5/6-Lemma to the subrun σ[a, b+ 1] for
ℓ = N , hereby obtaining an (N−ΓC)-semirun ̂σ[a, b+ 1] that is an N -embedding of σ[a, b+1]
also from qa(za) to qb+1(zb+1). It follows from Values( ̂σ[a, b+ 1]) ⊆ [min(σ[a, b + 1]) −
ΓC ,max(σ[a, b+ 1]) + ΓC ] that ̂σ[a, b+ 1] − ΓC is in fact an (N − ΓC)-run from qa(za − ΓC) to
qb+1(zb+1 −ΓC). By definition of a and b it follows that ϕ(α) = ϕ(γ) = ε. Thus, by exploiting
that za, zb+1 ∈ I2 one can, by suitably applying the Depumping Lemma (possibly several
times), obtain an (N − ΓC)-run α̂ from q0(z0) to qa(za − ΓC), and dually an (N − ΓC)-run
γ̂ from qb+1(zb+1 − ΓC) to qm(zm). The concatenation of α̂, ̂σ[a, b+ 1] − ΓC and γ̂ is the
desired (N − ΓC)-run from q0(z0) to qm(zm).

7 Conclusion

In this paper we have shown that the reachability problem for parameteric timed automata
with two parametric clocks and one parameter is complete for exponential space.

For the lower bound proof, inspired by [13, 15], we made use of two results from complexity
theory. First, we made use of a serializability characterization of EXPSPACE from [13] which
is a padded version of the serializability characterization of PSPACE from [20], which in turn
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has its roots in Barrington’s Theorem [7]. Second, we made use of a result of Chiu, Davida,
Litow that states that numbers in Chinese Remainder Representation can be translated into
binary representation in NC1 (and thus in logarithmic space). We are convinced that it is
worthwhile to develop a suitable programming language that serves as a unifying framework
in that it provides an interface for proving lower bounds for various problems involving
automata. In a sense, we have developed the corresponding interface “by hand” when defining
how parametric timed automata can compute functions (Definition 5).

For the EXPSPACE upper bound we first followed the approach of Bundala and Ou-
aknine [10] by providing an exponential time translation from reachability in parametric
timed automata with two parametric clocks and one parameter (i.e. (2, 1)-PTA) to reach-
ability in parametric one-counter automata (POCA) over one parameter, yet on a slightly
less expressive POCA model as introduced in [10]. We then studied the reachability in
POCA with one parameter p. A repeated application of our Small Parameter Theorem
(Theorem 16) allows to conclude that such a POCA has an accepting N -run all of whose
counter values lie in [0, 4N ] if, and only if, there exists such an accepting N -run for some N
that is at most exponential in the size of the POCA. Since the translation from (2, 1)-PTA
to POCA is computable in exponential time, this gives a doubly exponential upper bound
on the parameter value of the original (2, 1)-PTA and hence an EXPSPACE upper bound for
(2, 1)-PTA-Reachability (Corollary 17).

In proving the Small Parameter Theorem we introduced the notion of semiruns and gave
several techniques for manipulating them. The Depumping Lemma (Lemma 18) allowed us
to construct from semiruns with large absolute counter effect new semiruns with a smaller
absolute counter effect. The Bracket Lemma (Lemma 20) allowed us to find in semiruns
having a sufficiently large absolute counter effect and satisfying some majority condition on
the number of occurrences of +p-transitions and −p-transitions some subsemirun that has
again a large absolute counter effect and moreover some bracketing properties. Our Hill and
Valley Lemma (Lemma 21) allowed to turn, for sufficiently large N , any N -semirun that is
either a hill or a valley into an N ′-semirun for some N ′ < N . Our 5/6-Lemma (Lemma 22)
allowed to turn for sufficiently large N any N -semirun with an absolute counter effect of at
most 5/6 ·N into an N ′-semirun for some N ′ < N .

We hope that extensions of our techniques provide a line of attack for finally showing
decidability (and the precise complexity) of (2, ∗)-PTA-Reachability. For these however, it
seems that the reduction to POCA indeed requires the presence of so-called +[0, p]-transitions.
When analyzing runs in the corresponding more general POCA model that in turn also
involves an arbitrary number of parameters, it will become necessary to “de-scale” semiruns
in the following sense. Already in the presence of two parameters one can see that it becomes
necessary to decrease the value of both parameters simultaneously proportionally: for instance
one can build a (2, 2)-PTA for which reachability holds only if the first parameter is a multiple
of the second parameter. How our techniques can be extended to handle such obstacles
remains yet to be explored.
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