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Abstract
A homomorphism from a graph G to a graph H is an edge-preserving mapping from V (G) to V (H).
For a fixed graph H, in the list homomorphism problem, denoted by LHom(H), we are given a
graph G, whose every vertex v is equipped with a list L(v) ⊆ V (H). We ask if there exists a
homomorphism f from G to H, in which f(v) ∈ L(v) for every v ∈ V (G). Feder, Hell, and Huang
[JGT 2003] proved that LHom(H) is polynomial time-solvable if H is a so-called bi-arc-graph, and
NP-complete otherwise.

We are interested in the complexity of the LHom(H) problem in F -free graphs, i.e., graphs
excluding a copy of some fixed graph F as an induced subgraph. It is known that if F is connected
and is not a path nor a subdivided claw, then for every non-bi-arc graph the LHom(H) problem is
NP-complete and cannot be solved in subexponential time, unless the ETH fails. We consider the
remaining cases for connected graphs F .

If F is a path, we exhibit a full dichotomy. We define a class called predacious graphs and
show that if H is not predacious, then for every fixed t the LHom(H) problem can be solved in
quasi-polynomial time in Pt-free graphs. On the other hand, if H is predacious, then there exists t,
such that the existence of a subexponential-time algorithm for LHom(H) in Pt-free graphs would
violate the ETH.

If F is a subdivided claw, we show a full dichotomy in two important cases: for H being irreflexive
(i.e., with no loops), and for H being reflexive (i.e., where every vertex has a loop). Unless the
ETH fails, for irreflexive H the LHom(H) problem can be solved in subexponential time in graphs
excluding a fixed subdivided claw if and only if H is non-predacious and triangle-free. On the other
hand, if H is reflexive, then LHom(H) cannot be solved in subexponential time whenever H is not
a bi-arc graph.
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1 Introduction

Many natural graph-theoretic problems, including Independent Set, k-Coloring, Max
Cut, Odd Cycle Transversal, etc., can be defined in a uniform way as the question
of the existence of certain graph homomorphisms. For two graphs G and H, a function
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54:2 Complexity of the List Homomorphism Problem in Hereditary Graph Classes

f : V (G) → V (H) is a homomorphism from G to H if for every uv ∈ E(G) it holds that
f(u)f(v) ∈ E(H). If f is a homomorphism from G to H we denote it by f : G → H. As an
important special case, we observe that homomorphisms to Kk are precisely k-colorings of G.
This is why homomorphisms to H are often called H-colorings. We will refer to the graph
H as the target and to the vertices of H as colors. For fixed H, by Hom(H) we denote the
computational problem of deciding if an instance graph admits an H-coloring.

The complexity dichotomy for Hom(H) was shown by Hell and Nešetřil [21]: If H is
bipartite or has a vertex with a loop, then the problem is polynomial-time-solvable, and
otherwise it is NP-complete. The study of variants of graph homomorphisms has attracted
a significant attention [2, 26, 7, 8, 16, 15]. Arguably, the most natural generalization of
the problem is the list homomorphism problem. For fixed H, an instance of the LHom(H)
problem is a pair (G, L), where G is a graph and L is a function that to every vertex v ∈ V (G)
assigns its H-list (or list) L(v) ⊆ V (H). We ask if there exists a homomorphism f : G → H,
such that for every v ∈ V (G) it holds that f(v) ∈ L(v). We write f : (G, L) → H if f is a
list homomorphism from G to H which respects the lists L, and we write (G, L) → H to
indicate that some such f exists.

The complexity classification for LHom(H) was proven in three steps. First, Feder and
Hell [11] considered reflexive target graphs H, i.e., where every vertex has a loop. In this case
LHom(H) is polynomial-time solvable if H is an interval graph and NP-complete otherwise.
Then, Feder et al. [12] showed the dichotomy in the case that H is irreflexive, i.e., has
no loops. This problem appears to be polynomial-time solvable if H is bipartite and its
complement is a circular-arc graph, and NP-complete otherwise. Finally, Feder et al. [13]
defined a new class of graphs with possible loops, called bi-arc graphs, and showed that if
H is a bi-arc graph, then LHom(H) can be solved in polynomial time, and otherwise the
problem is NP-complete. Reflexive bi-arc graphs coincide with interval graphs, and irreflexive
bi-arc graphs are precisely bipartite graphs whose complement is a circular-arc graph. Let
us point out that all mentioned hardness reductions for LHom(H) also exclude the existence
of a subexponential-time algorithm, unless the ETH fails.

An active line of research is to study the complexity of computational problems, when
the instance is assumed to belong some specific graph class. We usually assume that the
considered classes are hereditary, i.e., closed under vertex deletion. Each such a hereditary
class can be characterized by a (possibly infinite) set of forbidden induced subgraphs. For a
family F of graphs, a graph is F-free if it does not contain any member of F as an induced
subgraph. Most attention is put into considering classes with only one forbidden subgraph,
i.e., for F = {F}. In this case we write F -free, instead of {F}-free. We will always assume
that F is connected.

Let us define two important families of graphs. For an integer t ⩾ 1, by Pt we denote the
path with t vertices. For a, b, c ⩾ 0, by Sa,b,c we denote the graph obtained by taking three
disjoint paths Pa+1, Pb+1, and Pc+1 and merging one of the endvertices of each path into
one vertex. Note that if at least one of a, b, c is equal to 0, then Sa,b,c is an induced path.
The members of {Sa,b,c | a, b, c ⩾ 0} are called subdivided claws.

Let us briefly discuss the complexity of k-Coloring in F -free graphs. First, we observe
that if F is not a path, then for every fixed k ⩾ 3, the k-Coloring remains NP-complete
in F -free graphs. Indeed, Emden-Weinert et al. [10] proved that the problem is hard for
graphs with no cycles shorter than p, for any constant p. Setting p = |V (F )| + 1 yields the
hardness for F -free graphs whenever F contains a cycle. On the other hand, k-Coloring
is NP-complete in line graphs [23, 27], which are in particular S1,1,1-free. This implies the
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hardness for F -free graphs if F is a tree with maximum degree at least 3. Combining these,
we conclude that the only connected graphs F , for which we might hope for a polynomial-time
algorithm for k-Coloring in F -free graphs, are paths.

The complexity of k-Coloring in Pt-free graphs has been an active area of research in
the last two decades, see the survey by Golovach et al. [18]. The current state of art is as
follows. We know that for each fixed k, the problem is polynomial-time-solvable in P5-free
graphs [22]. On the other hand, for every k ⩾ 5, the problem is NP-complete in P6-free
graphs [24]. The complexity of 4-Coloring in Pt-free graphs is also fully understood: it
is polynomial-time solvable for t ⩽ 6 [34] and NP-complete for t ⩾ 7 [24]. Finally, we know
that 3-Coloring admits a polynomial time algorithm in P7-free graphs [1]. Interestingly,
we know no proof of NP-hardness of 3-Coloring in Pt-free graphs, for any value of t. The
problem is believed to be solvable in polynomial time for every t, and obtaining such an
algorithm is one of the main open questions in the area.

Let us point out that all mentioned hardness proofs rule out the existence of
subexponential-time algorithms, unless the ETH fails. Furthermore, all algorithmic results
hold even for List k-Coloring, except for the case (k, t) = (4, 6), which is NP-complete in
the list setting [19].

Even though our current toolbox seems to be insufficient to solve 3-Coloring in Pt-free
graphs in polynomial time for all t, we can still solve the problem significantly faster than for
general graphs. Groenland et al. [20] showed an algorithm with running time 2O(

√
n log n),

for all fixed t. Very recently, Pilipczuk et al. [33] observed that the breakthough algorithm
for Independent Set in Pt-free graphs by Gartland and Lokshtanov [17], could be adapted
to solve 3-Coloring in time nO(log3 n). They also presented an arguably simpler algorithm
with running time nO(log2 n).

The complexity of the Hom(H) and LHom(H) problems in F -free graphs received a
lot less attention [14, 25]. On the negative side, Piecyk and Rzążewski [32], showed that if
F is connected and is not a subdivided claw, then for every non-bi-arc H, the LHom(H)
problem remains NP-complete in F -free graphs and cannot be solved in subexponential time,
assuming the ETH.

There are several results about the complexity of LHom(H) in Pt-free graphs. First,
Chudnovsky et al. [3] showed that for k ∈ {5, 7, 9} ∪ [10; ∞), the LHom(Ck) problem can be
solved in polynomial time for P9-free graphs. Very recently, Chudnovsky et al. [4] studied
some further generalization of the homomorphism problem in subclasses of P6-free graphs.
Furthermore, the already mentioned 2O(

√
n log n)-time algorithm by Groenland et al. [20]

actually works for LHom(H) for a large family of graphs H: the requirement is that H does
not contain two vertices with two common neighbors. Even more generally, the algorithm
can solve a weighted homomorphism problem, where, in addition to lists, we allow vertex- and
edge-weights. Later, Okrasa and Rzążewski [31] proved that the weighted homomorphism
problem cannot be solved in Pt-free graphs in subexponential time, whenever the target
graph has two vertices with two common neighbors. However, for some of the hardness
reductions it was essential to exploit the existence of vertex- and edge-weights and thus they
cannot be translated to the arguably more natural LHom(H) problem.

Our results. In this paper we investigate the fine-grained complexity of LHom(H) in F -free
graphs, where F is a subdivided claw. Recall that these are the only connected forbidden
graphs for which we can hope for the existence of subexponential-time algorithms.

First, we define the family of predacious graphs, and show that they precisely correspond
to “hard” cases of LHom(H) in Pt-free graphs. More specifically, we prove the following
theorem.

STACS 2021



54:4 Complexity of the List Homomorphism Problem in Hereditary Graph Classes

▶ Theorem 1. Let H be a fixed graph.
a) If H is not predacious, then for every t, the LHom(H) problem can be solved in time

nO(log2 n) in n-vertex Pt-free graphs.
b) If H is predacious, then there exists t, such that the LHom(H) problem cannot be solved

in time 2o(n) in n-vertex Pt-free graphs, unless the ETH fails.

The definition of predacious graphs is based on the decomposition theorem by Okrasa et
al. [28] that is particularly useful for solving the LHom(H) problem. Using this theorem, each
graph H can be decomposed into a family of induced subgraphs, called factors. Now, a graph
H is predacious, if it has a factor that is simultaneously non-bi-arc and contains a predator :
two vertices a1, a2 with two common neighbors b1, b2, such that a1 and a2 have incomparable
neighborhoods and b1 and b2 have incomparable neighborhoods. Note that a predator is
a refinement of the essential structure in the dichotomy for the weighted homomophism
problem [20, 31].

The proof of Theorem 1 a) builds on the already mentioned decomposition of target graphs
by Okrasa et al. [28] and on the recent quasi-polynomial-time algorithm for 3-Coloring
Pt-free graphs [33]. The hardness counterpart is proven in two steps. First, we consider a
special case that H is bipartite and “undecomposable” (the exact meaning of this is given in
Section 2). Okrasa et al. [28] analyzed the structure of such graphs and showed that it is
rich enough to build a number of useful gadgets. We use them as building blocks of gadgets
required in our hardness reduction. Then, we lift this hardness result to general predacious
graphs H, using the idea of associated bipartite graphs [13].

Next, we turn our attention to the case that F is an arbitrary subdivided claw. We obtain
the dichotomy in two important special cases: that H is irreflexive, and that H is reflexive.
Recall that these cases correspond to the first two steps of the complexity dichotomy for
LHom(H) [11, 12].

As a warm-up, let us discuss the case that H is irreflexive and F is the simplest subdivided
claw, i.e., the claw S1,1,1. Recall that 3-Coloring is NP-complete in line graphs [23], which
are in particular claw-free. Since the reduction yields an ETH lower bound, we obtain that if
H contains a simple triangle, then LHom(H) cannot be solved in subexponential time in
claw-free graphs.

So let us consider the case that H is triangle-free. We note that there is no homomorphism
K3 → H, so if the instance graph contains a triangle, we can immediately report a no-instance.
On the other hand, {S1,1,1, K3}-free graphs are just collections of disjoint paths and cycles,
where the problem can be solved in polynomial time using dynamic programming. We
generalize this simple classification to the case if F is an arbitrary subdivided claw as follows.

▶ Theorem 2. Let H be a fixed irreflexive graph.
a) If H is non-predacious and triangle-free, then for every a, b, c, the LHom(H) problem can

be solved in time 2O(n8/9 log n) in n-vertex Sa,b,c-free graphs.
b) If H is predacious or contains a triangle, then there exist a, b, c, such that the LHom(H)

problem cannot be solved in time 2o(n) in n-vertex Sa,b,c-free graphs, unless the ETH fails.
The algorithm from Theorem 2 a) is based on the existence of the so-called extended strip
decomposition [6]. A similar approach was used by Chudnovsky et al. [5] to obtain a QPTAS
and a subexponential-time algorithm for the Max Independent Set problem in Sa,b,c-free
graphs. However, the decomposition itself is not structured enough to be useful for coloring
problems, such as LHom(H). We proceed as follows. First, similarly as before, we restrict
ourselves to instances that are {Sa,b,c, K3}-free. We analyze the structure of such graphs
G and show that they admit an extended strip decomposition with a very simple structure.
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Very roughly speaking, we can find a “small” set X ⊆ V (G), such that for each connected
component C of G − X, the vertices of C can be partitioned into “small” sets called atoms,
that can be arranged in a path-like or cycle-like manner. We exhaustively guess the coloring
of X (which is fine, as X is small). For each atom we solve the problem recursively. Finally,
we use the path-like or cycle-like arrangement of atoms to combine partial results using
dynamic programming, similarly as we did for {S1,1,1, K3}-free graphs.

Let us point out that the assumption that H is irreflexive and triangle-free is only used
to ensure that the instance is triangle-free. For such instances we can solve LHom(H) in
subexponential time for every non-predacious graph H.

The hardness counterpart of Theorem 2 is simple. If H is predacious, then we are done
by Theorem 1 b), as every Pt-free graph is also St,t,t-free. On the other hand, if H contains
a simple triangle, then the problem is hard even in claw-free graphs, as mentioned before.

Finally, we show that for reflexive H the only “easy” cases are bi-arc graphs.

▶ Theorem 3. For every fixed reflexive non-bi-arc graph H, there exist a, b, c, such that the
LHom(H) problem cannot be solved in time 2o(n) in n-vertex Sa,b,c-free graphs, unless the
ETH fails.

Unfortunately, we were not able to provide the full complexity dichotomy for Sa,b,c-free
graphs. We conjecture that the distinction between “easy” and “hard” cases is as follows.

▶ Conjecture 4. Assume the ETH. Let H be a non-bi-arc graph. Then for all a, b, c, the
LHom(H) problem can be solved in time 2o(n) in n-vertex Sa,b,c-free graphs if and only if
none of the following conditions is satisfied:
a) H is predacious,
b) H contains a simple triangle,
c) has a factor that is not bi-arc and contains two incomparable vertices with loops.

Full version of the paper. The proofs of some statements, marked with (♣), are omitted
or just sketched. Complete proofs can be found in the full version of the paper [30].

2 Notation and preliminaries

For a positive integer n, by [n] we denote the set {1, 2, . . . , n}. For a set X and integer k, by
2X we denote the family of all subsets of X and by

(
X
k

)
(resp.

(
X
⩽k

)
) we denote the family of

all subsets of X with exactly (resp. at most) k elements.
For two sets X, Y ⊆ V (G), we say that X is complete to Y if every vertex from X is

adjacent to every vertex from Y . For v ∈ V (G), by NG(v) we denote the set of neighbors of
v and by NG[v] we denote the set NG(v) ∪ {v}. Note that if v has a loop, then v ∈ NG(v),
so NG(v) = NG[v]. We omit the subscript and write N(v) and N [v], respectively, if G is
clear from the context.

We say that two vertices u, v of G are incomparable if N(u) ̸⊆ N(v) and N(v) ̸⊆ N(u).
We say that a set S of vertices is incomparable if its elements are pairwise incomparable.
Let H be a graph and suppose that there are two distinct vertices a, b of H, such that
NH(a) ⊆ NH(b). We observe that in any homomorphism to H, if some vertex is mapped to
a, we can safely remap it to b. Thus, if for some instance (G, L) of the LHom(H) problem
and for some v ∈ V (G) the list L(v) contains a and b as above, then we can safely remove a

from L(v). Thus, without loss of generality, we can always assume that in any instance of
LHom(H) each list is an incomparable set in H.

STACS 2021
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For a graph H, by H∗ we denote the bipartite graph with vertex set {a′, a′′ | a ∈ V (H)}
and edge set {a′b′′ | ab ∈ E(H)}. We observe that H∗ is connected if and only if H is
connected and non-bipartite. Moreover, for bipartite H, the graph H∗ consists of two disjoint
copies of H. Feder et al. [13] proved that H is a bi-arc graph if and only H∗ is a bi-arc
graph. As H∗ is bipartite, we can equivalently say that H is a bi-arc graph if and only if the
complement of H∗ is a circular-arc graph.

▶ Definition 5 (Predator). A predator is a tuple (a1, a2, b1, b2) of vertices, such that a1 ̸=
a2, b1 ̸= b2, and {a1, a2} and {b1, b2} are incomparable sets, complete to each other.

Figure 1 shows some examples of predators. Let us point out that the leftmost structure
in Figure 1 is the only predator, which can be bipartite. It will play a special role in our
hardness proofs; we call it an incomparable C4. Observe that (a1, a2, b1, b2) is a predator in
H, for some a1, a2, b1, b2 ∈ V (H), if and only if (a′

1, a′
2, b′′

1 , b′′
2) is an incomparable C4 in H∗.

This implies the following observation.

▶ Observation 6. A graph H contains a predator if and only if H∗ contains an incompara-
ble C4.

a1

b1

b2

a2

a1

b1

b2

a2

a1

b1

b2

a2

a1 = b2

b1

a2

a1 = b2 a2 = b1

Figure 1 Examples of predators (a1, a2, b1, b2) and their neighbors. Red dashed lines denote the
edges that cannot exist. The edges that are not drawn are possible, but not necessary.

We say that H is a strong split graph if V (H) can be partitioned into two sets, P and B,
such that H[P ] is a reflexive clique and B is independent.

For a bipartite graph H with bipartition classes X, Y , a bipartite decomposition is a
partition of V (H) into an ordered triple of sets (D, N, R), such that (i) N is non-empty and
separates D and R, (ii) |D ∩ X| ⩾ 2 or |D ∩ Y | ⩾ 2, (iii) (D ∪ N) ∩ X is complete to N ∩ Y

and (D ∪ N) ∩ Y is complete to N ∩ X. We say that H is undecomposable if it admits no
bipartite decomposition.

▶ Theorem 7 (Okrasa et al. [28, 29]). Let H be a graph. In time |V (H)|O(1) we can construct
a family H of O(|V (H)|) connected graphs, called factors of H, such that:
(1) H is a bi-arc graph if and only if every H ′ ∈ H is a bi-arc graph,
(2) for each H ′ ∈ H, the graph H ′∗ is an induced subgraph of H∗ and:

a. H ′ is a bi-arc graph, or
b. H ′ a strong split graph and has an induced subgraph H ′′, which is not a bi-arc graph

and is an induced subgraph of H, or
c. (H ′)∗ is undecomposable,

(3) for every instance (G, L) of LHom(H), the following implication holds:
If there exists a non-decreasing, convex function f : N → R, such that for every H ′ ∈ H,
for every induced subgraph G′ of G, and for every H ′-lists L′ on G′, we can decide
whether (G′, L′) → H ′ in time f(|V (G′)|), then we can solve the instance (G, L) in time
O

(
|V (H)|f(n) + n2 · |V (H)|3

)
.

Now we are ready to define the class of predacious graphs.
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▶ Definition 8 (Predacious graphs). Let H be a graph and let H be the family of factors of H.
We say that H is predacious if there exists H ′ ∈ H that is not a bi-arc graph and contains a
predator.

3 Pt-free graphs

3.1 Quasi-polynomial-time algorithm
We observe that to obtain Theorem 1 a), it is sufficient to prove the following.

▶ Theorem 9. Let H be a fixed graph that does not contain a predator. Then for every t,
the LHom(H) problem can be solved in time nO(log2 n) in n-vertex Pt-free graphs.

Indeed, suppose we have proven Theorem 9 and consider a non-predacious graph H, let H be
the family of its factors given by Theorem 7. Since H is non-predacious, every H ′ ∈ H is either
a bi-arc graph, or does not contain a predator. Thus, for each H ′ we can solve the LHom(H ′)
problem in Pt-free graphs in polynomial time (in the first case) or in time nO(log2 n), using
Theorem 9 (in the second case). Now Theorem 1 a) follows from Theorem 7 (3).

Before we proceed to the proof of Theorem 9, let us show one crucial property of graphs H.

▶ Observation 10. Let H be a graph which does not contain a predator. For any incomparable
sets X, Y ⊆ V (H), each of size at least 2, there exist x ∈ X and y ∈ Y such that xy /∈ E(H).

Proof. For contradiction, suppose that there are two incomparable sets X, Y , each of size at
least 2, which are complete to each other. Let x1, x2 be distinct elements from X, and y1, y2
be distinct elements from Y . Then (x1, x2, y1, y2) is a predator. ◀

So let us now prove Theorem 9. The algorithm follows the algorithm for 3-Coloring by
Pilipczuk et al. [33], which is in turn inspired by the work of Gartland and Lokshtanov [17].

Sketch of proof of Theorem 9. Let (G, L) be an instance of LHom(H), such that graph
G is Pt-free. We start with a preprocessing phase, in which we exhaustively perform the
following steps. (1) If for some v ∈ V (G) it holds that L(v) = ∅, then we terminate and report
a no-instance. (2) If for some v ∈ V (G), the list L(v) contains two vertices x, y ∈ V (H),
such that NH(x) ⊆ NH(y), then we remove x from L(v). (3) If for some edge uv ∈ E(G),
and some x ∈ L(u), the vertex x is non-adjacent in H to every y ∈ L(v), then we remove x

from L(u). (4) If for some v ∈ V (G) we have |L(v)| = 1, we remove v from G. Note that by
the previous step the lists of neighbors of v contain only neighbors of the vertex in L(v). (5)
We enumerate all S ∈

(
V (G)
⩽t

)
and all possible H-colorings of (G[S], L). If for some v ∈ V (G)

and some x ∈ L(v), for some S ∈
(

V (G)
⩽t

)
such that v ∈ S there is no h : (G[S], L) → H such

that h(v) = x, we remove x from L(v).
We will continue calling the current instance (G, L), let n be its number of vertices of G.

The instance satisfies the following properties.
(P1) For every v ∈ V (G), the set L(v) is incomparable and has at least two elements.
(P2) For every v ∈ V (G), every S ∈

(
V (G)
⩽t

)
, such that v ∈ S, and every x ∈ L(v), there

exists h : (G[S], L) → H which maps v to x.
Now let us describe the algorithm. If n ⩽ 1, then we report a yes-instance; recall that by
property (P1) each list is non-empty. If the instance G is disconnected, we call the algorithm
for each connected component independently. If none of the above cases occurs, we perform
branching. We will carefully choose a branching pair (v, x), where v ∈ V (G) and x ∈ L(v),
and branch into two possibilities. In the first one, called the successful branch, we call the

STACS 2021
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algorithm recursively with the list of v set to {x}. In the second branch we call the algorithm
with x removed from L(v). We report a yes-instance if at least one of the branches reports a
yes-instance.

Now let us discuss how we select a branching pair. For each {u, u′} ∈
(

V (G)
2

)
we define

the bucket Bu,u′ . The elements of Bu,u′ are all possible pairs (P, h), where P is an induced
u-u′-path and h is a list homomorphism from (P, L) to H. We will refer to pairs (P, h) as
colored paths.

Note that since G is Pt-free, the total size of all buckets is O(nt) and they can be
enumerated in polynomial time. Furthermore, by property (P2), we know that Bu,u′ is
non-empty if and only if u and u′ are in the same connected component of G. Even more,
if w belongs to an induced u-u′-path P , and x ∈ L(w), then Bu,u′ contains a colored path
(P, h), such that h(w) = x.

Define

δ := 1
2|V (H)|+1 · t

and ε := 1
2|V (H)|+1 · |V (H)|t · t

= δ

|V (H)|t .

▷ Claim 11. If G is a connected Pt-free graph, then there is a pair (v, x), where v ∈ V (G)
and x ∈ L(v), with the following property. There is a set Q ⊆

(
V (G)

2
)

of size at least δ ·
(

n
2
)
,

such that for every {u, u′} ∈ Q there is a subset Pu,u′ ⊆ Bu,u′ of size at least ε · |Bu,u′ |, such
that for every (P, h) ∈ Pu,u′ , there is wP ∈ V (P ) ∩ N [v], such that h(wP ) /∈ NH(x).
Proof. For {u, u′} ∈

(
V (G)

2
)
, let θ(u, u′) denote the number of induced u-u′-paths in G. By

[33, Lemma 5], there is a vertex v ∈ V (G), such that for at least 1
2t

(
n
2
)

pairs {u, u′} ∈
(

V (G)
2

)
and for at least 1

2t θ(u, u′) induced u-u′-paths P , the set N [v] intersects V (P ). Since the
number of distinct H-lists is at most 2|V (H)|, we observe that by the pigeonhole principle there
is a list L′ ⊆ V (H) and a subset Q ⊆

(
V (H)

2
)

of size at least 1
2|V (H)|+1·t

(
n
2
)

= δ ·
(

n
2
)
, such that

for every {u, u′} ∈ Q there exists a set Pu,u′ of at least δ · θ(u, u′) induced u-u′-paths, with
the property that for every P ∈ Pu,u′ there exists wP ∈ N [v] ∩ V (P ), such that L(wP ) = L′.

By property (P1) we know that each of L(v) and L′ is an incomparable set with at least
two elements. Thus by Observation 10 there are x ∈ L(v) and y ∈ L′, which are non-adjacent
in H.

Let us argue that the pair (v, x) satisfies the desired conditions. Fix some {u, u′} ∈ Q. As
every induced u-u′ path has at most t − 1 elements, we have that |Bu,u′ | ⩽ |V (H)|t · θ(u, u′).
On the other hand, by property (P2) for every P ∈ Pu,u′ there exists a homomorphism
h : (P, L) → H such that h(wP ) = y /∈ NH(x). So, summing up, we obtain that the number
of such pairs (P, h) ∈ Bu,u′ is at least |Pu,u′ | ⩾ δ · θ(u, u′) ⩾ δ

|V (H)|t · |Bu,u′ | = ε · |Bu,u′ |. ◁

Consider the successful branch for the branching pair (v, x) given by Claim 11. For some
{u, u′} ∈ Q, let (P, h) be a colored path in Pu,u′ , and let wP be as in the claim. Consider
the preprocessing phase of the current call. If wP = v, then wP is removed from the graph,
so (P, h) will no longer appear in the bucket of {u, u′}. Similarly, if wP ̸= v, then we remove
h(wP ) from L(wP ), so (P, h) will not appear in the bucket of {u, u′}. Thus when we branch
using the pair (v, x), in the successful branch we remove an ε-fraction of elements in a
δ-fraction of buckets. This gives the quasi-polynomial running time, we refer to the full
version of the paper for a detailed complexity analysis (♣). ◀

3.2 Hardness results for Pt-free graphs
Let H be a predacious graph and let H be the family of factors of H. Since H is predacious,
there is some non-bi-arc factor H ′ ∈ H, which contains a predator. By Theorem 7 (2) there
are two possible cases:



K. Okrasa and P. Rzążewski 54:9

Case A. H ′ is a strong split graph as in Theorem 7 (2b) (every such graph H ′ contains a
predator, but we will not use it explicitly), and

Case B. (H ′)∗ is an undecomposable induced subgraph of H∗.

Case A: Strong split target graphs. We show that for strong split graphs H ′ the LHom(H ′)
problem remains hard even if the instance is a split graph, i.e., its vertex set can be partitioned
into a clique and an independent set. Equivalently, split graphs are {C4, C5, 2P2}-free graphs.

▶ Theorem 12. Let H ′ be a fixed non-bi-arc strong split graph. Then the LHom(H ′) problem
cannot be solved in time 2o(n) in n-vertex split graphs, unless the ETH fails.

Proof. Let P be the set of vertices in H ′ that have loops, and let B be the set of vertices of
H ′ without loops. Consider an instance (G, L) of LHom(H ′). Recall that without loss of
generality we can assume that each list L(v) is an incomparable set. As for every p ∈ P and
b ∈ B it holds that NH′(b) ⊆ NH′(p), no vertex in G has both a vertex from P and a vertex
from B in its list. Since every list is non-empty, we can partition the vertex set of V (G) into
two sets:

X := {v ∈ V (G) | L(v) ∩ P ̸= ∅} and Y := {v ∈ V (G) | L(v) ∩ B ̸= ∅}.

Furthermore, as B is independent, we can assume that Y is independent; otherwise (G, L)
is a no-instance. Let G′ be obtained from G by adding all edges with both endvertices
in X (except for loops). It is straightforward to verify that (G, L) → H ′ if and only if
(G′, L) → H ′. ◀

Now we can show the main result of this subsection.

Proof of Theorem 1 b) in Case A. Let H be as in Case A and let H ′, H ′′ be as in Theo-
rem 7 (2b). Since H ′′ is an induced subgraph of H ′, it is also a strong split graph, so by
Theorem 12 we know that LHom(H ′′) admits no subexponential-time algorithm in split
graphs. As H ′′ is an induced subgraph of H, every instance of LHom(H ′′) is also an instance
of LHom(H), and we are done. ◀

Case B: Target graphs with the associated bipartite graph undecomposable. First we
consider bipartite, undecomposable, non-bi-arc graphs H, which contain a predator. Recall
that the only bipartite predator is an incomparable C4. We will prove the following.

▶ Theorem 13. Let H be a fixed, bipartite, non-bi-arc, undecomposable graph, which contains
an incomparable C4. Then there exists t, such that LHom(H) cannot be solved in time 2o(n)

in n-vertex Pt-free graphs, unless the ETH fails.

Before we proceed to the proof of Theorem 13, we need to introduce some tools which
we will need. For a pair of vertices (a, b) of V (H), an OR3(a, b)-gadget is an instance (F, L)
of LHom(H) with interface vertices o1, o2, o3 ∈ V (F ), such that L(o1) = L(o2) = L(o3) =
{a, b}, and

{f(o1)f(o2)f(o3) | f : (F, L) → H} = {aaa, aab, aba, baa, abb, bab, bba}.

For an incomparable set of vertices S, such that |S| ⩾ 2, a NEQ(S)-gadget is an instance
(F, L) of LHom(H) with interface vertices s1, s2 ∈ V (F ), such that L(s1) = L(s2) = S, and

{f(s1)f(s2) | f : (F, L) → H} = {uv | u, v ∈ S, u ̸= v}.

The following structural result is proven by Okrasa et al. [29, Lemma 19 and Corollary 20].
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▶ Lemma 14 (Okrasa et al. [29]). Let H be a connected, bipartite, non-bi-arc, undecomposable
graph with bipartition classes X and Y . Then there exist two incomparable sets of vertices
{α, β} ⊆ X and {α′, β′} ⊆ Y , such that αα′, ββ′ ∈ E(H), αβ′, βα′ /∈ E(H), and the
following conditions hold.
(1) For any incomparable two-element set {a, b} ⊆ V (H), and for any {γ, δ} ∈

{{α, β}, {α′, β′}}, such that {a, b, γ, δ} is contained in one bipartition class, there exist
a path D

γ/δ
a/b with endvertices x, y and H-lists L, such that L(x) = {a, b}, L(y) = {γ, δ},

and:
(D1) there is a list homomorphism ha : (Dγ/δ

a/b , L) → H, such that ha(x) = a and
ha(y) = γ,

(D2) there is a list homomorphism hb : (Dγ/δ
a/b , L) → H, such that hb(x) = b and

hb(y) = δ,
(D3) there is no list homomorphism h : (Dγ/δ

a/b , L) → H, such that h(x) = a and h(y) = δ.
(2) There exist an OR3(α, β)-gadget and an OR3(α′, β′)-gadget.

▶ Lemma 15 ([29]). Let H be a connected, bipartite, non-bi-arc, undecomposable graph, let
S ⊆ V (H) be an incomparable set contained in one bipartition class of H. Then there exists
a NEQ(S)-gadget.

We use Lemma 14 and Lemma 15 to construct the so-called occurrence gadget.

▶ Lemma 16. Let H be a connected, bipartite, non-bi-arc and undecomposable graph, and
let {a, b}, γ, δ be as in Lemma 14 (1). Then there is a Var(a, b)-gadget (G, L) with interface
vertices v, t, f , such that L(v) = {a, b}, L(t) = L(f) = {γ, δ}, and:
(1) for any homomorphism h : (G, L) → H, if h(v) = a, then h(t) = γ and h(f) = δ,
(2) for any homomorphism h : (G, L) → H, if h(v) = b, then h(t) = δ and h(f) = γ.

Proof. We use Lemma 14 to construct gadgets (Dγ/δ
a/b , L) and (Dγ/δ

b/a , L) with endvertices,
respectively, x1, y1 ∈ V (Dγ/δ

a/b ) and x2, y2 ∈ V (Dγ/δ
b/a ). We then use Lemma 15 for S = {γ, δ}

to construct a NEQ(S)-gadget (F, L) with interface vertices s1, s2 ∈ V (F ).
We identify vertices x1 and x2 into a single vertex v. We identify vertices y1 and s1

into a single vertex t, and we identify vertices y2 and s2 into a single vertex f , see Figure 2
(top left). ◀

We proceed to the proof of Theorem 13.

Proof of Theorem 13. Let (a1, a2, b1, b2) be an incomparable C4 in H. Let X and Y be the
bipartition classes of H, so that a1, a2 ∈ X and b1, b2 ∈ Y .

We reduce from 3-Sat. Consider a formula Φ of 3-Sat with variables x1, . . . , xN and
clauses C1, . . . , CM . We can assume that each clause has exactly three literals. We construct
an instance (GΦ, L) of LHom(H) as follows. We introduce a biclique with partite sets
V := {v1, . . . , vN } and U := {u1, . . . , u3M }. Vertices in V correspond to the variables of Φ,
while vertices in U correspond to literals in Φ, i.e., the occurrences of the variables in clauses.
For a clause Ci, by Ui we denote the three-element subset of vertices of U corresponding to
the literals of Ci. For every j ∈ [N ] we set L(vj) := {a1, a2} and for every i ∈ [3M ] we set
L(ui) := {b1, b2}.

Mapping the vertex vj to a1 (a2, resp.) will correspond to making the variable vj true
(false, resp.). Similarly, we will interpret uj being mapped to b1 (b2, resp.) as setting the
corresponding literal true (false, resp.). So we need to ensure that (i) the coloring of vertices
in V is consistent with the coloring of vertices in U , and (ii) for each clause Ci, at least one
vertex in Ui is mapped to b1.
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v := x1 = x2

f := s2 = y2

t := s1 = y1

a
b

γ
δ

γ
δ

(F, L)

(D
γ/δ

a/b
, L)

(D γ/δ
b/a , L) u1

u2

u3

o1

o2

o3

b1
b2

b1
b2

b1
b2

α′
β′

α′
β′

α′
β′

Var(a1, a2) Var(b1, b2)

v1

f1

t1

a1
a2

α
β

α
β v2

f2

t2

b1
b2

α′
β′

α′
β′

Figure 2 A schematic view of a Var(a, b)-gadget (top left), an OR3(b1, b2)-gadget (top right) and
a positive occurrence gadget (bottom). On every picture, the blue lines indicate that there exists an
H-coloring of the respective part of the graph, which assigns chosen values to white vertices, and
the red ones indicate that there is no such H-coloring. The red area indicates an OR3(α′, β′)-gadget
with interface vertices o1, o2, o3.

To ensure property (i), we will introduce two types of occurrence gadgets. We use
Lemma 16 to construct two variable gadgets Var(a1, a2) and Var(b1, b2) and add an edge
between their t-vertices and another one between f -vertices. This way we obtain a positive
occurrence gadget, see Figure 2 (bottom). A negative occurrence gadget is obtained from
a positive occurrence gadget by adding a copy of a NEQ({b1, b2})-gadget, constructed by
Lemma 15, with interface vertices s1, s2, and identifying s1 with v2. The occurrence gadgets
have two special vertices: a variable vertex v1, and a literal vertex, which is v2 for the
positive occurrence gadget, and s2 for the negative occurrence gadget. Consider a vertex
ui ∈ U , which corresponds to an occurrence of a variable xj , and thus to the vertex vj . If ui

corresponds to a positive (resp., negative) literal, we introduce a positive (resp., negative)
occurrence gadget, and identify vj with its variable vertex and ui with its literal vertex. One
can readily verify that the constructed gadgets can indeed be used to ensure property (i).

Consider a set Ui = {u1, u2, u3}, corresponding to the literals of some clause Ci. We
observe that in order to ensure property (ii), we need to construct an OR3(b1, b2)-gadget,
whose interface vertices are precisely u1, u2, and u3. We call Lemma 14 to construct an
OR3(α′, β′)-gadget with interface vertices o1, o2, o3 and three copies of the graph D

β′/α′

b2/b1
.

For s ∈ {1, 2, 3}, we identify one endvertex of the s-th copy of D
β′/α′

b2/b1
(the one with the list

{b1, b2}) with us, and the other endvertex (the one with the list {α′, β′}) with os, see Figure 2
(top right). Again, it is straightforward to verify that the constructed subgraph is indeed an
OR3(b1, b2)-gadget with interface vertices u1, u2, u3.

The discussion above implies that (GΦ, L) → H if and only if Φ is satisfiable. Let t′

be the maximum of the numbers of vertices in the negative occurrence gadget and in the
OR3(b1, b2)-gadget and define t := t′ + 4. By a simple case analysis it can be verified that
GΦ is Pt-free (♣). ◀

Finally, we can prove Theorem 1 b) in Case B.
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Proof of Theorem 1 b) in Case B. For contradiction, suppose that there exists a graph H,
satisfying the assumptions, and for every t there is an algorithm At, which solves every
Pt-free instance of LHom(H) in subexponential time. Let H ′ be a factor of H as in the
assumptions of Case B and observe that H ′∗ satisfies the assumptions of Theorem 13. Let t

be given by Theorem 13 for H ′∗.
Let (G, L′) be an instance of LHom(H ′∗) constructed as in the proof of Theorem 13.

Since H ′∗ is an induced subgraph of H∗, (G, L′) is also an instance of LHom(H∗). Note
that G is bipartite and Pt-free, and no list intersects both bipartition classes of H∗. Define
L : V (G) → 2V (H) as follows: L(v) := {a | {a′, a′′} ∩ L(v) ̸= ∅}. It is straightforward to
verify that (G, L′) → H∗ if and only if (G, L) → H [29, Proposition 43]. Thus we can use
At to decide if (G, L) → H or, equivalently, if (G, L′) → H ′∗, in subexponential time. By
Theorem 13 this contradicts the ETH. ◀

4 Sa,b,c-free graphs

4.1 Subexponential-time algorithm for {Sa,b,c, K3}-free graphs
To describe the algorithm, we first need to introduce the notion of an extended strip de-
composition [6, 5]. For a graph G, by T (G) we denote the set of all triangles in G, i.e.,
three-element sets {x, y, z} of pairwise adjacent vertices. We will denote a triangle {x, y, z}
shortly by xyz.

Let G be a simple graph. An extended strip decomposition (D, η) of G consists of:
a simple graph D and a function η : V (D) ∪ E(D) ∪ T (D) → 2V (G),
for each xy ∈ E(D), subsets η(xy, x), η(xy, y) ⊆ η(xy),

which satisfy the following properties:
1. {η(o) | o ∈ V (D) ∪ E(D) ∪ T (D)} is a partition of V (G),
2. for every x ∈ V (D) and every distinct y, z ∈ ND(x), the set η(xy, x) is complete to

η(xz, x),
3. every uv ∈ E(G) is contained in one of the sets η(o) for o ∈ V (D) ∪ E(D) ∪ T (D) or:

u ∈ η(xy, x), v ∈ η(xz, x) for some x ∈ V (D) and y, z ∈ ND(x), or
u ∈ η(xy, x), v ∈ η(x) for some xy ∈ E(D), or
u ∈ η(xyz) and v ∈ η(xy, x) ∩ η(xy, y) for some xyz ∈ T (D).

We will sometimes refer to elements of V (D) ∪ E(D) ∪ T (D) as objects of D.
The following subsets of V (G) are called atoms of a decomposition (D, η): (1) for an

object o ∈ V (D)∪T (D), the set η(o), (2) for xy ∈ E(D), the set η(xy)−(η(xy, x) ∪ η(xy, y)),
the set η(x) ∪ η(xy) − η(xy, y), and the set η(x) ∪ η(y) ∪ η(xy) ∪

⋃
xyz∈T (D) η(xyz).

The following theorem is the main combinatorial tool used in our algorithm.

▶ Theorem 17 (♣). Let t ⩾ 4, σ ∈ (0, 1
100t ), and let G be a connected (St,t,t, K3)-free

graph on n vertices with ∆(G) < σ8 · n. Then there exists X ⊆ V (G) and an extended strip
decomposition (D, η) of G − X with each atom of size at most α, such that:
(1) α ⩽ (1 − σ7)n and |X| ⩽ σ(n − α),
(2) η(xyz) = ∅ for every xyz ∈ T (D),
(3) D is a simple graph with maximum degree at most 2,
(4) if for some edge xy of D we have η(xy, x) = ∅, then x is of degree 1 in D.

Sketch of proof. By a result of Chudnovsky et al. [5, Lemma 6.5] there is X ⊆ V (G) and an
extended strip decomposition (D′, η′) of G − X, satisfying (1). We aim to modify (D′, η′) in
order to obtain a decomposition with the desired structure. We will still denote the extended
strip decomposition obtained after each step of modification as (D′, η′).
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To ensure properties (2), (3), and (4), we use the fact that G is triangle-free. Let us start
with (2) and consider a triangle xyz in D′. Define Axy := η(xy, x) ∩ η(xy, y). Sets Ayz and
Axz are defined in an analogous way. Recall that the neighborhood of η(xyz) is contained in
Axy ∪ Ayz ∪ Axz. However, these three sets are complete to each other, so at least one of
them must be empty. It turns out that we can “absorb” η(xyz) into η(o), where o is either a
vertex or an edge of xyz, without violating the properties of an extended strip decomposition
and increasing the maximum atom size.

Now let us discuss property (3). Suppose D′ has a vertex x with at least three neighbors,
say y, y′, y′′. As the sets η(xy, x), η(xy, x), η(xy′′, x) are pairwise complete to each other, at
least one of them, say η(xy, x), must be empty. We introduce a new vertex x′ to D′, add the
edge x′y with η(x′y) := η(xy) and η(x′y, y) := η(xy, y), and remove xy from D′. Observe
that the degree of x was reduced by 1. We repeat this step exhaustively. Property (4) is
ensured in a similar way. ◀

▶ Theorem 18 (♣). Let H be a connected graph with no predator. Then for every a, b, c ⩾ 0,
the LHom(H) problem can be solved in time 2O(n8/9 log n) in n-vertex {Sa,b,c, K3}-free graphs.

Sketch of proof. We assume that n is large, as otherwise we solve the problem exhaustively.
We will present a recursive algorithm. Let F (n) be the running time bound on instances
with n vertices.

Similarly as we did in Section 3.1, we can ensure that every list is an incomparable set of
size at least two and for every uv ∈ E(G) and every a ∈ L(v) there exists b ∈ L(u) such that
ab ∈ E(H).

First, suppose that exists a vertex v ∈ V (G) such that degG(v) ⩾ n1/9. This implies that
there exists a list L′ assigned to at least ℓ := n1/9/2|V (H)| neighbors of v. By Observation 10
there exist a ∈ L(v) and b ∈ L′ such that ab ̸∈ E(H). We branch on assigning a to v; either
we remove a from L(v) or color v with a and remove b from the lists of all neighbors of v.
Since in the second branch at least ℓ lists are shortened, we obtain that the complexity in
this case is F (n) = 2O(n8/9 log n).

Now suppose that the maximum degree of G is smaller than n1/9. Theorem 17 called for
t := max(a, b, c, 4) and σ := n1−/9 yields X ⊆ V (G) and an extended strip decomposition
(D, η) of G − X, satisfying the conditions stated in the statement. Let α be the maximum
size of an atom of (D, η). If x ∈ V (D) has two neighbors y and z, then, by Theorem 17 (4),
η(xy, x) ̸= ∅ and η(xz, x) ̸= ∅. As η(xy, x) is complete to η(xz, x) and the maximum degree
of G is at most n1/9, we observe that |η(xy, x)| < n1/9 and |η(xz, x)| < n1/9.

We proceed as follows. We exhaustively guess the H-coloring of vertices of X; there are
at most |V (H)||X| possibilities. In each branch we need to decide if the H-coloring of X

can be extended to all vertices of G. For an edge uv ∈ E(G), such that u ∈ X and v /∈ X,
we remove from L(v) every non-neighbor of the color of u. Now the problem is reduced
to solving the instance of LHom(H) on each component G′ of G − X independently. We
observe that V (G′) ⊆

⋃
o∈V (D′)∪E(D′)∪T (D′) η(o) for some connected component D′ of D.

Recall that D′ is a path or a cycle.

▷ Claim 19 (♣). We can solve the instance (G′, L) of LHom(H) in time |V (H)|4n1/9 · F (α) ·
nO(1).

Sketch of Proof. Suppose D′ is a path with consecutive vertices x1, . . . , xm. If m ⩽ 2,
then |V (G′)| ⩽ α and we solve the problem recursively in time F (α). Otherwise, for
every edge xixi+1, except for x1x2 and xm−1xm, we enumerate all pairs (f, g), such that
f : (G[η(xixi+1, xi)], L) → H and g : (G[η(xixi+1, xi+1)], L) → H. Now for each such pair
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we verify if the partial H-coloring given by f and g can be extended to an H-coloring of
G([η(xixi+1)], L). We can do it in time F (α) by recursively solving an appropriate instance
of LHom(H). Similarly, for each vertex xi, except for x1, xm, we enumerate all list H-
colorings of η(xi−1xi, xi) and η(xixi+1, xi) and recursively check if they can be extended to
a homomorphism (G[η(xi)], L) → H. To deal with the extremities of D′, for each coloring
of η(x1x2, x2) (resp. η(xm−1xm, xm−1)) we test if it can be extended to an H-coloring of
(G[η(x1) ∪ η(x1x2)], L) (resp. (G[η(xm) ∪ η(xm−1xm)], L)); note that each of these instances
has at most α vertices. Then we use dynamic programming to decide if (G′, L) → H.

Suppose now that D′ is a cycle x1, x2, . . . , xm. We guess the coloring of η(x1x2, x1), adjust
the lists of its neighbors, and remove η(x1x2, x1) from G′. We modify D′ by introducing
a vertex x′

1 and the edge x′
1x2 to D′, and removing the edge x1x2. Sets η are modified as

in the proof of Claim 19. After the modification D′ is a path and we continue as in the
previous case. ◁

So let us now estimate the total running time in case that the maximum degree of G is at
most n1/9. Recall that we exhaustively guess the coloring of |X| and then, for every connected
component of G − X, we try to extend it, using Claim 19. Thus the overall complexity F (n)
in the considered case is described by F (n) ⩽ |V (H)||X| · |V (H)|4n1/9 · F (α) · nO(1). Applying
|X| ⩽ n−1/9(n − α) and 1 ⩽ α ⩽ n − n2/9, and the inductive assumption, we conclude that
F (n) = 2O(n8/9 log n). ◀

Combining Theorem 18 with Theorem 7, we immediately obtain the following corollary.

▶ Corollary 20. Let H be a non-predacious graph. Then for every a, b, c ⩾ 0, the LHom(H)
problem can be solved in time 2O(n8/9 log n) in n-vertex {Sa,b,c, K3}-free graphs.

Now Theorem 2 a) follows from Corollary 20. Since H is irreflexive and triangle-free, if
G is not triangle-free, we report a no-instance. In the other case, we use the algorithm from
Corollary 20.

4.2 Hardness results
▶ Theorem 3 b). Let H be a graph, which is predacious or contains a simple triangle. Then
there is t, such that LHom(H) cannot be solved in time 2o(n) in n-vertex St,t,t-free graphs,
unless the ETH fails.

Proof. The first case of the theorem follows directly from Theorem 1 b), as Pt-free graphs are
St,t,t-free. The second case follows from the hardness of 3-Coloring in line graphs [23]. ◀

▶ Theorem 21. Let H be a connected non-bi-arc graph such that H∗ is undecomposable
and there are three distinct vertices u1, u2, u3 of H with loops, such that S = {u1, u2, u3}
is incomparable. Then there is t, such that LHom(H) cannot be solved in time 2o(n) in
St,t,t-free graphs, unless the ETH fails.

Proof. Let G be an instance of 3-Coloring with V (G) = {v1, v2, . . . , vN }. We construct an
instance (G′, L) of LHom(H) such that G is 3-colorable if and only if (G′, L) → H. First,
for every i ∈ [N ] we introduce to G′ a graph Ki, which is a complete graph with the vertex
set V (Ki) := {xij | vj ∈ NG(vi)}. Intuitively, the vertex xij represents the connection of vi

and vj from the point of view of vi. We set L(xij) := S for all relevant i, j. Now, for each
edge vivj of G, we introduce a copy of the NEQ(S)-gadget given by Lemma 15, and identify
its two interface vertices with xij and xji, respectively. Suppose for now that we can ensure
the following property.
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(⋆) For each i ∈ [N ] and each f : (Ki, L) → H, all vertices of Ki are mapped to the same
element of S, and for each u ∈ S there is f : (Ki, L) → H that maps all vertices of Ki

to u.
With the property above at hand, we can interpret the mapping of vertices in Ki as coloring
vi with one of three possible colors. The properties of the NEQ(S)-gadget imply that G is
3-colorable if and only if the constructed graph admits a list homomorphism to H.

Now let us argue how to ensure property (⋆). For each i ∈ [N ] we add an independent
set Qi and make it complete to Ki. The size of Qi and the lists of its vertices depend on the
structure of H.

For {ℓ, ℓ′, ℓ′′} = [3], a private neighbor of uℓ ∈ S ⊆ V (H) is a vertex wℓ ∈ N(uℓ)−(N(uℓ′)∪
N(uℓ′′)). Note that if uℓ does not have a private neighbor, then, since S is incomparable,
there exist wℓℓ′ ∈ N(uℓ) ∩ N(uℓ′) − N(uℓ′′) and wℓℓ′′ ∈ N(uℓ) ∩ N(uℓ′′) − N(uℓ′).

We consider three cases. If for each ℓ ∈ [3], the vertex uℓ has a private neighbor, then
Qi := {qi}, and L(qi) := {w1, w2, w3}. Otherwise, if there are exactly two vertices in S

which have private neighbors, say u2 and u3, we set Qi := {qi, ri}, L(qi) := {w12, w2, w3}
and L(ri) := {w13, w2, w3}. Last, if there is at most one vertex in S which has private
neighbors, say u3, we set Qi := {qi, ri, si} and L(qi) := {w12, w13}, L(ri) := {w12, w23},
and L(si) := {w13, w23}. It is straightforward to verify that in each of the above cases the
property (⋆) holds.

That completes the construction of (G′, L). By the reasoning above we observe that
(G′, L) → H if and only if G is 3-colorable. Let t ⩾ 2 be the number of vertices in the
NEQ(S)-gadget given by Lemma 15. A straightforward analysis of the structure of G′ implies
that G′ is St,t,t,-free (♣). ◀

With Theorem 21 at hand, we can prove Theorem 3.

Proof of Theorem 3. Let H ′ be a vertex-minimal induced non-bi-arc subgraph of H. Feder
and Hell [11] proved that H ′ (i) is an induced cycle with at least four vertices, or (ii) consists
of an independent set {x, y, z} and three paths, each joining two vertices from {x, y, z}
and avoiding the neighborhood of the third one. The minimality of H ′ implies that H ′∗ is
undecomposable (see e.g. [9]). Now observe that H ′ contains an incomparable set of size 3:
in case (i) we can take any three vertices of H ′, and in case (ii) this set is {x, y, z}. Thus the
claim follows from Theorem 21. ◀

5 Conclusion

Recall that while for Pt-free graphs, in Theorem 1 we were able to fully characterize the
“easy” and “hard” cases of LHom(H), for the case of Sa,b,c-free graphs we obtained a full
dichotomy only for irreflexive (Theorem 2) and for reflexive (Theorem 3) graphs H. In order
to complete the dichotomy, we need to consider graphs H that are neither irreflexive nor
reflexive. Some hardness results for such graphs follow already from Theorem 3 b) and
Theorem 21. We were also able to obtain a few more ad-hoc hardness results, which we do
not present here. All our results seem to support the following conjecture.

▶ Conjecture 4. Assume the ETH. Let H be a non-bi-arc graph. Then for all a, b, c, the
LHom(H) problem can be solved in time 2o(n) in n-vertex Sa,b,c-free graphs if and only if
none of the following conditions is satisfied:
a) H is predacious,
b) H contains a simple triangle,
c) has a factor that is not bi-arc and contains two incomparable vertices with loops.
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