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Abstract
In the maximum coverage problem, we are given subsets T1, . . . , Tm of a universe [n] along with an
integer k and the objective is to find a subset S ⊆ [m] of size k that maximizes C(S) :=

∣∣⋃
i∈S

Ti

∣∣.
It is a classic result that the greedy algorithm for this problem achieves an optimal approximation
ratio of 1 − e−1.

In this work we consider a generalization of this problem wherein an element a can contribute
by an amount that depends on the number of times it is covered. Given a concave, nondecreasing
function φ, we define Cφ(S) :=

∑
a∈[n] waφ(|S|a), where |S|a = |{i ∈ S : a ∈ Ti}|. The standard

maximum coverage problem corresponds to taking φ(j) = min{j, 1}. For any such φ, we provide an
efficient algorithm that achieves an approximation ratio equal to the Poisson concavity ratio of φ,
defined by αφ := minx∈N∗

E[φ(Poi(x))]
φ(E[Poi(x)]) . Complementing this approximation guarantee, we establish a

matching NP-hardness result when φ grows in a sublinear way.
As special cases, we improve the result of [4] about maximum multi-coverage, that was based

on the unique games conjecture, and we recover the result of [11] on multi-winner approval-based
voting for geometrically dominant rules. Our result goes beyond these special cases and we illustrate
it with applications to distributed resource allocation problems, welfare maximization problems and
approval-based voting for general rules.
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1 Introduction

Coverage functions are central objects of study in combinatorial optimization. Problems
related to optimizing such functions arise in multiple fields, such as operations research [10],
machine learning [14], algorithmic game theory [12], and information theory [2]. The
most basic covering problem is the maximum coverage one. In this problem, we are given
subsets T1, . . . , Tm of a universe [n], along with a positive integer k, and the objective is
to find a size-k subset S ⊆ [m] that maximizes the coverage function C(S) :=

∣∣⋃
i∈S Ti

∣∣. A
fundamental result in the field of approximation algorithms establishes that an approximation
ratio of 1 − e−1 can be achieved for this problem in polynomial-time [15] and, in fact, this
approximation guarantee is tight, under the assumption that P ̸= NP [13].
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9:2 Tight Approximation Guarantees for Concave Coverage Problems

Note that in the maximum coverage problem, an element a ∈ [n] is counted at most once
in the objective, even if a appears in several selected sets. However, if we think of elements
a ∈ [n] as goods or resources, there are many settings wherein the utility indeed increases
with the number of copies of a that get accumulated. Motivated, in part, by such settings,
we consider a generalization of the maximum coverage problem where an element a can
contribute by an amount that depends on the number of times it is covered.

Given a function φ : N → R+, an integer k ∈ N, a universe of elements [n], positive
weights wa for each a ∈ [n], and subsets T1, . . . , Tm ⊆ [n], the φ-MaxCoverage problem
entails maximizing Cφ(S) :=

∑
a∈[n] waφ(|S|a) over subsets S ⊆ [m] of cardinality k; here

|S|a = |{i ∈ S : a ∈ Ti}|.
This work focuses on functions φ that are nondecreasing and concave (i.e., φ(i+ 2) −

φ(i+ 1) ≤ φ(i+ 1) − φ(i) for i ∈ N). We will also assume that the function φ is normalized
in the sense that φ(0) = 0 and φ(1) = 1.1 Our approximation guarantees are in terms of the
Poisson concavity ratio of φ, which we define as follows

αφ := inf
x∈N∗

E[φ(Poi(x))]
φ(E[Poi(x)]) = inf

x∈N∗

E[φ(Poi(x))]
φ(x) . (1)

Here Poi(x) denotes a Poisson-distributed random variable with parameter x. We will
write αφ(x) := E[φ(Poi(x))]

φ(x) , with αφ(0) = 1. One can show that αφ = minx∈N∗ αφ(x) =
infx∈R+ αφ(x).2 We refer to the full version [3] for more details on the proof of this statement.

Our main result is that φ-MaxCoverage admits an efficient αφ-approximation algorithm,
when φ is normalized nondecreasing concave, and this approximation guarantee is tight when
φ grows sublinearly. Formally,

▶ Theorem 1. For any normalized nondecreasing concave function φ, there exists a
polynomial-time αφ-approximation algorithm for the φ-MaxCoverage problem. Fur-
thermore, for φ(n) = o(n), it is NP-hard to approximate the φ-MaxCoverage problem
within a factor better than αφ + ε, for any constant ε > 0.

Before detailing the proof of the theorem, we provide a few remarks and connections to
related work.

1.1 Applications and related work
We can directly reduce the standard maximum coverage problem to φ-MaxCoverage by
setting φ(j) = min{j, 1}. In this case αφ = 1 − e−1. One can also encapsulate, within our
framework, the ℓ-MultiCoverage problem studied in [4] by instantiating φ(j) = min{j, ℓ}.
In this setting, we recover the approximation ratio αφ = 1 − ℓℓe−ℓ

ℓ! by a simple calculation,
which matches the approximation guarantee obtained in [4]. Note that the hardness result
in [4] was based on the Unique Games Conjecture, whereas the current work proves that this
guarantee is tight under P ̸= NP.

Another application of φ-MaxCoverage is in the context of multiwinner elections that
entail selecting k (out of m) candidates with the objective of maximizing the cumulative
utility of n voters; here, the utility of each voter a ∈ [n] increases as more and more approved
(by a) candidates get selected. One can reduce multiwinner elections to a coverage problem

1 One can always replace a generic φ to a normalized one without changing the optimal solutions through
a simple affine transformation.

2 We require φ to be defined for nonnegative integers and will extend it over R+ by considering its
piecewise linear extension.
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by considering subset Ti ⊆ [n] as the set of voters that approve of candidate i ∈ [m] and φ(j)
as the utility that an agent achieves from j approved selections.3 Addressing multiwinner
elections in this standard utilitarian model, Dudycz et al. [11] obtain tight approximation
guarantees for some well-studied classes of utilities. Specifically, the result in [11] applies to
the classic proportional approval voting rule, which assigns a utility of

∑j
i=1

1
i for j approved

selections. This voting rule corresponds to the coverage problem with φ(j) =
∑j

i=1
1
i .

Section 4.1 shows that Theorem 1 holds for all the settings considered in [11] and, in fact,
applies more generally. In particular, the voting version of ℓ-MultiCoverage (studied in
[21]) can be addressed by Theorem 1, but not by the result in [11]. Such a separation also
arises when one truncates the proportional approval voting rule to, say, ℓ candidates, i.e.,
upon setting φ(j) =

∑min{j,ℓ}
i=1

1
i . Given that multiwinner elections model multiple real-world

settings (e.g., committee selection [21] and parliamentary proceedings [6]), instantiations
of φ-MaxCoverage in such social-choice contexts substantiate the applicability of our
algorithmic result.

Coverage functions arise in numerous resource-allocation settings, such as sensor alloca-
tion [16], job scheduling, and plant location [10]. The goal, broadly, in such setups is to
select k subsets of resources (out of m pre-specified ones) such that the welfare generated by
the selected resources is maximized–each resource’s contribution to the welfare increases with
the number of times it is selected. This problem can be cast as φ-MaxCoverage by setting
n to be the number of resources, {Ti}i∈[m] as the given collection of subsets, and φ(j) to be
the welfare contribution of a resource when it is covered j times.4 Here, we mention a specific
allocation problem to highlight the relevance of studying φ beyond the standard coverage
and ℓ-coverage formulations (see Section 4.3 for details): in the Vehicle-Target Assign-
ment problem [17, 19] the resources are n targets and covering a target j times contributes
φp(j) = 1−(1−p)j

p to the welfare; here, p ∈ (0, 1) is a given parameter. Interestingly, we find
that for this problem, the approximation ratio αφ we obtain can outperform the Price of
Anarchy (PoA), which corresponds to the approximation ratio of any algorithm where the
agents selfishly maximize their utilities (see Section 4.3 for further discussion of this point).
This is to be contrasted with the resource allocation problem with φ(j) = min{j, ℓ} for which
it was shown in [8] that the Price of Anarchy matches with αφ.

Theorem 1 gives us a tight approximation bound of αφ for all the above-mentioned
applications of φ-MaxCoverage. The values of αφ for these instantiations are listed in
Table 1.

It is relevant to compare the approximation guarantee, αφ, obtained in the current work
with the approximation ratio based on the notion of curvature of submodular functions.
Note that if φ is nondecreasing and concave, then Cφ is submodular. One can show, via a
direct calculation, that for such a submodular Cφ the curvature (as defined in [9]) is given by
c = 1 − (φ(m) −φ(m− 1)) for instances with at most m cover sets. Therefore, the algorithm
of Sviridenko et al. [22] provides an approximation ratio of 1−ce−1 for the φ-MaxCoverage
problem. We note that the Poisson concavity ratio αφ is always greater than or equal to
this curvature-dependent ratio (see full version [3]). Specifically, for p-Vehicle-Target
Assignment, it is strictly better for all p /∈ {0, 1} and for ℓ-MultiCoverage, it is strictly
better for all ℓ ≥ 2 as remarked in [4]. Therefore, for the setting at hand, the current work
improves the approximation guarantee obtained in [22].

3 Indeed, for a subset of candidates S ⊆ [m], the utility of a voter a ∈ [n] is equal to φ(|S|a), with
|S|a = |{i ∈ S : a ∈ Ti}|.

4 Formally, to capture specific welfare-maximization problems in their entirety we have to a consider
φ-MaxCoverage with a matroid constraint, and not just bound the number of selected subsets by k.
Details pertaining to matroid constraints and the reduction appear in Section 2.2 and 4.2, respectively.

STACS 2021



9:4 Tight Approximation Guarantees for Concave Coverage Problems

Table 1 Tight approximation ratios for particular choices of φ in the φ-MaxCoverage problem.
See full version [3] for derivations of these values.

φ-MaxCoverage φ(j) αφ

MaxCoverage min{j, 1} 1 − e−1

ℓ-MultiCoverage min{j, ℓ} 1 − ℓℓe−ℓ

ℓ!
Proportional Approval Voting

∑j

i=1
1
i

αφ(1) ≃ 0.7965 . . .

PAV capped at 3
∑min{j,3}

i=1
1
i

αφ(1) ≃ 0.7910 . . .

p-Vehicle-Target Assignment 1−(1−p)j

p
1−e−p

p

0.1-Vehicle-Target Assignment 1−(1−0.1)j

0.1
1−e−0.1

0.1 ≃ 0.9516 . . .

0.1-VTA capped at 5 1−(1−0.1)min{j,5}

0.1 αφ(5) ≃ 0.8470 . . .

1.2 Remarks on the Poisson concavity ratio αφ

By Jensen’s inequality along with the nonnegativity and concavity of φ, we have that
αφ ∈ [0, 1]. We show that αφ can be computed numerically up to any precision ε > 0, in time
that is polynomial in 1

ε . In fact, one can show that αφ(x) ≥ 1 − ε for all x ≥ Nε := ⌈
( 6

ε

)4⌉
(see full version [3]). Thus, we can iterate over all x ∈ {1, 2, . . . , Nε} and find minx∈[Nε] αφ(x)
up to ε precision (under reasonable assumptions on φ). This gives us a method to overall
compute αφ, up to an absolute error of 2ε: if αφ ≤ 1 − ε, then computing minx∈[Nε] αφ(x)
(up to ε precision) suffices. Otherwise, if αφ ≥ 1 − ε, then αφ(1) ≤ 1 provides the desired
bound. Furthermore, we note that even if we consider αφ(x) over all x ∈ R+, an infimum
(i.e., the value of αφ) is achieved at an integer.

1.3 Proof techniques and organization
In Section 2, we present our approximation algorithm for the φ-MaxCoverage. The
algorithm is an application of pipage rounding, a technique introduced in [1], on a linear
programming relaxation of φ-MaxCoverage. We show that the multilinear extension
Fφ of Cφ is efficiently computable and thus, we can compute an integer solution xint from
the optimal fractional one x∗ satisfying Cφ(xint) ≥ Fφ(x∗). Using the notion of convex
order between distributions, we show that Fφ(x∗) ≥

∑
a∈[n] waE[φ(Poi(|x∗|a))], where

|x|a =
∑

i∈[m]:a∈Ti
xi. Comparing this to the value

∑
a∈[n] waφ(|x∗|a) taken by the linear

program, we get a ratio given by the Poisson concavity ratio αφ. The concavity of φ is
crucial at several steps of the proof: it guarantees that the natural relaxation can be written
as a linear program, it is used to relate between sums of Bernouilli random variables and a
Poisson random variable via the convex order, as well as for the fact that we can restrict
the infimum in the definition of αφ to integer values of x. The generalization to matroid
constraints follows in a standard way and is presented in Section 2.2.

In Section 3, we present the hardness result for φ-MaxCoverage. For this, we define a
generalization of the partitioning gadget of Feige [13], extending also [4]. Roughly speaking,
for an integer xφ ∈ N, it is a collection of xφ-covers of the set [n] (an x-cover is a collection
of subsets such that each element a ∈ [n] is covered x times, or in other words, its φ-coverage
is φ(x)n) that are incompatible in the sense that if we take an element from each one of
these xφ-covers, then the φ-coverage is bounded approximately by E[φ(Poi(xφ))]n. Then,
we construct an instance of φ-MaxCoverage from an instance of the NP-hard problem
Label Cover (as in [11]) using such a gadget with xφ ∈ argminx∈N∗αφ(x). Having set up the
partitioning gadget, the analysis of the reduction can be obtained by carefully generalizing
the reductions of [4] and [11].

In Section 4, we present different domains of application of our result.
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2 Approximation Algorithm for φ-MaxCoverage

Fix a function φ : N → R+ that is normalized, nondecreasing and concave. The φ-
MaxCoverage problem is defined as follows. The input to the problem is given by
positive integers n,m, t and m subsets T1, . . . , Tm of the set [n] (described as characteristic
vectors), the weights wa ∈ Q∗

+ for a ∈ [n] (described as a couple of bitstring of length t),
as well as an integer k ∈ {1, . . . ,m}. The output is a subset S ⊆ [m] of size exactly k that
maximizes Cφ(S) =

∑
a∈[n] waφ(|S|a), where |S|a = |{i ∈ S : a ∈ Ti}|.

Note that the input to this problem can be specified using n(m+ 2t) +O(lognmt) bits.
To reduce the number of parameters, we will assume that t is polynomial in n and m, so
that a polynomial time algorithm for this problem means an algorithm that runs in time
polynomial in n and m. The counting function φ is fixed and does not depend on the
instance of the problem, but for a given instance the problem only depends on the values
φ(0), φ(1), . . . , φ(m). We assume that we have black box access to φ and to ensure that all
the algorithms run in polynomial time, we assume that φ(j) can be described with a number
of bits that is polynomial in j and that this description can be computed in polynomial time.

We now describe the approximation algorithm for φ-MaxCoverage that we analyze.
As described above, we follow the standard relax and round strategy, as in [4]. First, we
define a natural convex relaxation.

▶ Definition 2.1 (Relaxed program).

maximize
∑

a∈[n]

waca

subject to ca ≤ φ(|x|a),∀a ∈ [n], with |x|a :=
∑

i∈[m]:a∈Ti

xi

0 ≤ xi ≤ 1,∀i ∈ [m]
m∑

i=1
xi = k .

(2)

As previously mentioned, φ is defined on R+ by extending it in a piecewise linear fashion
on non-integral points. As such, the constraint ca ≤ φ(|x|a) is equivalent to m linear
constraints. In fact, we can define φj to be the linear function φj(t) = (φ(j) − φ(j − 1))t−
(j − 1)φ(j) + jφ(j − 1) for j ∈ [m]. Since φ is concave, we have that for all t ∈ [0,m],
φ(t) = minj∈[m] φj(t). As such, the constraint ca ≤ φ(|x|a) is equivalent to ca ≤ φj(|x|a) for
all j ∈ [m] and so the program from Definition 2.1 is a linear program. Overall there are
n+m variables and (n+ 1)m+ 1 linear constraints, and by assumptions all the coefficients
can be described using a number of bits that is polynomial in n and m. Hence an optimal
solution of this linear program can be found in polynomial time.

Also observe that the program from Definition 2.1 is a relaxation of the φ-MaxCoverage
problem. To see this, given a set S of size k, consider the characteristic vector x ∈ {0, 1}m

defined by xi = 1 if and only if i ∈ S. Then for all a ∈ [n], we can set ca = φ(|x|a) = φ(|S|a),
and we get an objective value of

∑
a∈[n] waφ(|S|a) which is exactly Cφ(S). When solving the

program from Definition 2.1, we get an optimal x∗ ∈ [0, 1]m which is in general not integral.
Next, we describe a method to round it to an integral vector xint ∈ {0, 1}m.

2.1 Rounding
For a submodular function f : {0, 1}m → R , one can use pipage rounding [1, 23, 7] to
transform, in polynomial time, any fractional solution x ∈ [0, 1]m satisfying

∑m
i=1 xi = k

into an integral vector xint ∈ {0, 1}m such that
∑m

i=1 x
int
i = k and F (xint) ≥ F (x), where F

STACS 2021



9:6 Tight Approximation Guarantees for Concave Coverage Problems

corresponds to the multilinear extension of f , provided that F (x) is computable in polynomial
time for a given x; see e.g., [23, Lemma 3.4]. The multilinear extension F : [0, 1]m → R
of f is defined by F (x1, . . . , xm) := E[f(X1, . . . , Xm)], where Xi are independent random
variables with Xi ∼ Ber(xi), i.e., Xi ∈ {0, 1} with P(Xi = 1) = xi. Note that F (x) = f(x)
for an integral vector x ∈ {0, 1}m.

We apply this strategy to Cφ, which is submodular, and the solution x∗ of the LP
relaxation from Definition 2.1. Note that overall the algorithm is polynomial time, since here
F (x) is computable in polynomial time for a given x:

▶ Proposition 2.2 ([3]). Let F (x) := EX∼x[Cφ(X)] for x ∈ {0, 1}m. We have an explicit
formula for F :

F (x) =
n∑

a=1

m∑
k=0

[ 1
m+ 1

m∑
ℓ=0

ω−ℓk
m+1

∏
j∈[m]:a∈Tj

(1 + (ωℓ
m+1 − 1)xj)

]
φ(k) with ωm+1 := e

2iπ
m+1

Thus, F is computable in polynomial time in n and m.

We now analyze the value returned by the algorithm. Using the property of pipage
rounding, with the notation X = (X1, . . . , Xm) and Ber(x) = (Ber(x1), . . . ,Ber(xm)), we get

Cφ(xint) = EX∼Ber(xint)[Cφ(X)] ≥ EX∼Ber(x∗)[Cφ(X)] .

Then it suffices to relate EX∼Ber(x∗)[Cφ(X)] to the optimal value of the LP relaxation 2.1,
which can only be larger than the optimal value of the φ-MaxCoverage problem.

▶ Theorem 2. Let x, c be a feasible solution of the program from Definition 2.1 and
X ∼ Ber(x). Recalling the definition of αφ and αφ(j) from (1), we have

EX∼Ber(x)[Cφ(X)] ≥
(

min
j∈[m]

αφ(j)
) ∑

a∈[n]

waca

In particular, this implies that the described polynomial time algorithm has an approximation
ratio of αφ:

Cφ(xint) ≥ αφ

∑
a∈[n]

wac
∗
a ≥ αφ max

S⊆[m]:|S|=k
Cφ(S) .

In order to prove this theorem, we need the following lemma:

▶ Lemma 2.3. For φ concave, and p ∈ [0, 1]m, we have:

E
[
φ

( m∑
i=1

Ber(pi)
)]

≥ E
[
φ

(
Poi

( m∑
i=1

pi

))]

Proof. The notion of convex order discussed in [20] allows us to prove this result. We say
that X ≤cx Y ⇐⇒ E[f(X)] ≤ E[f(Y )] for any convex f . Thanks to Lemma 2.3 of [4], we
have that for p ∈ [0, 1]:

Ber(p) ≤cx Poi(p)
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Since this order is preserved through convolution (Theorem 3.A.12 of [20]), and the fact that∑m
i=1 Poi(pi) ∼ Poi

( ∑m
i=1 pi

)
, we have:

m∑
i=1

Ber(pi) ≤cx Poi
( m∑

i=1
pi

)
Applying this result to −φ, which is convex, concludes the proof. ◀

We will also use the following property on αφ(x):

▶ Proposition 2.4 ([3]). For all x ∈ R+, we have αφ(x) ≥ min{αφ(⌊x⌋), αφ(⌈x⌉)}; here,
αφ(0) := lim

x→0
αφ(x) = 1.

Proof of Theorem 2. By linearity of expectation and the fact that the weights wa are
positive, it is sufficient to show that for all a ∈ [n]:

E[Cφ
a (X)] ≥

(
min

j∈[m]
αφ(j)

)
ca ,

where Cφ
a (S) := φ(|S|a). Note that |X|a =

∑
i∈[m]:a∈Ti

Xi, and thus:

E[Cφ
a (X)] = E

[
φ

( ∑
i∈[m]:a∈Ti

Xi

)]
= E

[
φ

( ∑
i∈[m]:a∈Ti

Ber(xi)
)]

≥ E
[
φ

(
Poi

( ∑
i∈[m]:a∈Ti

xi

))]
thanks to Lemma 2.3

= E[φ(Poi(|x|a))] ≥ min{αφ(⌊|x|a⌋), αφ(⌈|x|a⌉)}φ(|x|a) by Proposition 2.4

≥
(

min
j∈[m]

αφ(j)
)
φ(|x|a) ≥

(
min

j∈[m]
αφ(j)

)
ca .

(3)

◀

2.2 Generalization to Matroid Constraints
Instead of taking a cardinality constraint k on the size of the subset S, we look now at
general matroid constraints on S. Specifically, as input, instead of k, we take a matroid M
defined on [m] and given by a set of linear constraints describing its base polytope B(M).
The output is a set S ∈ M that maximizes Cφ(S). Note that the cardinality constraint
considered above is the special case where M is the uniform matroid of all subsets of size at
most k and the base polytope B(M) = {x ∈ [0, 1]m :

∑m
i=1 xi = k}.

We first note that in the order to establish Theorem 2, the cardinality constraint
∑m

i=1 xi =
k is not used. Thus, since the pipage rounding strategy applies to matroid constraints M
(see [23, Lemma 3.4]), the strategy and the analysis of its efficiency generalize immediately
when applied to the following linear program:

▶ Definition 2.5 (Relaxed program for matroid constraints).

maximize
∑

a∈[n]

waca

subject to ca ≤ φ(|x|a),∀a ∈ [n]
0 ≤ xi ≤ 1,∀i ∈ [m]
x ∈ B(M) the base polytope of M .

(4)

STACS 2021



9:8 Tight Approximation Guarantees for Concave Coverage Problems

▶ Theorem 3. Let x, c a feasible solution of the program from Definition 2.5 and X ∼ Ber(x).
Then:

EX∼Ber(x)[Cφ(X)] ≥
(

min
j∈[m]

αφ(j)
) ∑

a∈[n]

waca .

In particular, this implies that the described polynomial time algorithm has an approximation
ratio of αφ:

Cφ(xint) ≥ αφ

∑
a∈[n]

wac
∗
a ≥ αφ max

S∈M
Cφ(S) .

3 Hardness of Approximation for φ-MaxCoverage

In this section, we establish an inapproximability bound for the φ-MaxCoverage problem
with weights 1 under cardinality constraints. Throughout this section we use Γ to denote the
universe of elements and, hence, an instance of the φ-MaxCoverage problem consists of Γ,
along with a collection of subsets F = {Fi ⊆ Γ}m

i=1 and an integer k. Recall that the objective
of this problem is to find a size-k subset S ⊆ [m] that maximizes Cφ(S) =

∑
a∈Γ φ(|S|a).

We establish the following theorem in this section:

▶ Theorem 4. It is NP-hard to approximate the φ-MaxCoverage problem for φ(n) = o(n)
within a factor greater that αφ + ε for any ε > 0.

Our reduction is based on a problem called h-AryLabelCover, which is equivalent to
the more standard GapLabelCover problem.

▶ Definition 3.1 (h-AryLabelCover). An instance G = (V,E, [L], [R], {πe,v}e∈E,v∈e) of
h-AryLabelCover is characterized by an h-uniform regular hypergraph (V,E) and bijection
constraints πe,v : [L] → [R]. Here, each h-uniform hyperedge represents a h-ary constraint.
Additionally, for any labeling σ : V → [L], we have the following notions of strongly and
weakly satisfied constraints:

An edge e = (v1, . . . , vh) ∈ E is strongly satisfied by σ if:

∀x, y ∈ [h], πe,vx
(σ(vx)) = πe,vy

(σ(vy))

An edge e = (v1, . . . , vh) ∈ E is weakly satisfied by σ if:

∃x ̸= y ∈ [h], πe,vx(σ(vx)) = πe,vy (σ(vy))

▶ Proposition 3.2 (δ, h-AryGapLabelCover - [3]). For any fixed integer h ≥ 2 and
fixed δ > 0, there exists an R0 such that for any integer R ≥ R0, it is NP-hard for
instances G = (V,E, [L], [R], {πe,v}e∈E,v∈e) of h-AryLabelCover with right alphabet [R]
to distinguish between:

YES: There exists a labeling σ that strongly satisfies all the edges.
NO: No labeling weakly satisfies more than δ fraction of the edges.

3.1 Partitioning System
The key ingredient to prove Theorem 4 is a constant size combinatorial object called
partitioning system, generalizing the work of Feige [13] and [4]. For any set [n], Q ⊆ 2[n],
we overload the definition Cφ(Q) :=

∑
a∈[n] φ(|Q|a) with |Q|a := |{P ∈ Q : a ∈ P}| and

Cφ
a (Q) := φ(|Q|a). Let us take xφ ∈ argminx∈N∗αφ(x), thus αφ = αφ(xφ).

We say that Q is an x-cover of x ∈ N if every element of [n] is covered x times, so
Cφ(Q) = nφ(x).
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▶ Definition 3.3. An ([n], h,R, φ, η)-partitioning system consists of R collections of subsets
of [n], P1, . . . ,PR ⊆ 2[n], that satisfy xφn

h ∈ N, xφ ≥ h and:
1. For every i ∈ [R],Pi is a collection of h subsets Pi,1, . . . , Pi,h ⊆ [n] each of size xφn

h which
is an xφ-cover.

2. For any T ⊆ [R] and Q = {Pi,j(i) : i ∈ T} for some function j : T → [h], we have∣∣∣Cφ(Q) − ψφ
|T |,hn

∣∣∣ ≤ ηn where:

ψφ
k,h := E

[
φ

(
Bin

(
k,
xφ

h

))]
. (5)

▶ Remark. In particular, for any Q = {Q1, . . . , Qk} with Qi of size xφn
h , we have that

Cφ(Q) ≤ nφ(k xφ

h ). Indeed Cφ(Q) =
∑

a∈[n] φ(|Q|a) with
∑

a∈[n] |Q|a =
∑

i∈[k] |Qi| =
k · xφn

h . By concavity of φ and Jensen’s inequality, this function is maximized when all |Q|a
are equals, where we get nφ(k xφ

h ).

▶ Proposition 3.4 ([3]). For R, h ∈ N with h ≥ xφ, η ∈ (0, 1), n ≥ η−2Rφ(R)2 log(20(h+ 1))
such that xφn

h ∈ N, there exists an ([n], h,R, φ, η)-partitioning system, which can be found
in time exp(Rn log(n))·poly(h).

3.2 The Reduction
Proof of Theorem 4. Let ε > 0. Without loss of generality, we can assume that ε < 1.
We show that it is NP-hard to reach an approximation greater than αφ + ε for the φ-
MaxCoverage problem, via a reduction from δ, h-AryGapLabelCover. Define:

η = φ(xφ)
4xφ

ε, so 0 < η ≤ ε < 1,

h ≥ xφ such that
∣∣∣ψφ

h,h − αφφ(xφ)
∣∣∣ ≤ η (see (5) for the definition of ψφ); one can show

that such a choice exists by bounding the total variation between Bernouilli and Poisson
laws, together with the fact that φ(x) = o(x) (see full version [3]),
θ such that for all x ≥ θ, φ(x)

x ≤ η, which exists since φ(x) = o(x),
ξ = xφ

θ ,
δ = η

2
ξ3

h2 ,
R ≥ h large enough for Proposition 3.2 to hold.

Given an instance G = (V,E, [L], [R],Σ, {πe,v}e∈E,v∈e) of δ, h-AryGapLabelCover, we
construct an instance (Γ,F , k) of the φ-MaxCoverage problem with:

n a large enough integer to have an ([n], h,R, φ, η)-partitioning system (Proposition 3.4),
Γ = [n] × E,
k = |V |,
Consider a ([n], h,R, φ, η)-partitioning system, and call P = {P1, . . . ,PR} the correspond-
ing set of collections. Define sets T e,vj

β = Pπe,vj
(β),j × {e} for e = (v1, . . . , vh) ∈ E, j ∈

[h], β ∈ [L]. Then, choose as cover sets F v
β :=

⊔
e∈E:v∈e T

e,v
β and take F := {F v

β , v ∈
V, β ∈ [L]}.

We will now prove that if we are in a YES instance, we have that there exists T of size
k such that Cφ(T ) ≥ φ(xφ)|Γ| (completeness). Moreover, if we are in a NO instance, then
we have that for all T of size k = |V |, Cφ(T ) ≤ (αφ + ε)φ(xφ)|Γ| (soundness). Establishing
these two properties will conclude the proof.

In order to achieve this, let us define Cφ,e :=
∑

a∈[n]×{e} C
φ
a . In particular, Cφ =∑

a∈Γ C
φ
a =

∑
e∈E C

φ,e. For T ⊆ F , we define the relevant part of T on e by:

Te := {T e,v
β : v ∈ e, β ∈ [L], F v

β ∈ T } = {F v
β ∩ ([n] × {e}), F v

β ∈ T }.

Note that Cφ,e(T ) = Cφ,e(Te), and in particular Cφ(T ) =
∑

e∈E C
φ,e(Te).

STACS 2021
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3.3 Completeness
Suppose the given h-AryLabelCover instance G is a YES instance. Then, there exists a
labeling σ : V 7→ [L] which strongly satisfies all edges. Consider the collection of |V | subsets
T := {F v

σ(v) : v ∈ V }. Fix e = (v1, . . . , vh) ∈ E. Since e is strongly satisfied by σ, there exists
r ∈ [R] such that πe,vi

(σ(vi)) = r for all i ∈ [h]. Thus, Te = {T e,vi

σ(vi)}i∈[h] = {Pr,i × {e}}i∈[h]
is an xφ-cover of [n] × {e}, and so Cφ,e(Te) = nφ(xφ). Thus Cφ(T ) =

∑
e∈E C

φ,e(Te) =
|E|φ(xφ)n = φ(xφ)|Γ|.

3.4 Soundness
Suppose the given h-AryLabelCover instance G is a NO instance. Let us prove the
contrapositive of the soundness: we suppose that there exists T of size k = |V | such that
Cφ(T ) > (αφ + ε)φ(xφ)|Γ|. Let us show that there exists a labelling σ that weakly satisfies
a strictly larger fraction of the edges than δ.

For every vertex v ∈ V , we define L(v) := {β ∈ [L] : F v
β ∈ T } to be the candidate set

of labels that can be associated with the vertex v. We extend this definition to hyperedges
e = (v1, . . . , vh) where we define L(e) :=

⋃
i∈[h] L(vi) to be the multiset of all labels associated

with the edge. Note that |Te| = |L(e)|.
We say that e = (v1, . . . , vh) ∈ E is consistent if and only if ∃x ̸= y ∈ [h], πe,vx

(L(vx)) ∩
πe,vy (L(vy)) ̸= ∅. We then decompose E in three parts:

B is the set of edges e ∈ E with |L(e)| ≥ h
ξ .

N is the set of consistent edges e ∈ E with |L(e)| < h
ξ .

I = E − (B ∪N) is the set of inconsistent edges e ∈ E with |L(e)| < h
ξ .

We want to show that the contribution of N is not too small, which we will use to
construct a labelling weakly satisfying enough edges. This comes from the following lemmas:

▶ Lemma 3.5.
∑

e∈E |L(e)| = |E|h

Proof. Recall that our h-uniform hypergraph is regular; call d its regular degree. In particular,
we have that d|V | = |E|h. Note also that

∑
v∈V |L(v)| = |T | = |V |. Thus:∑

e∈E

|L(e)| =
∑
e∈E

∑
v∈V :v∈e

|L(v)| =
∑
v∈V

∑
e∈E:v∈e

|L(v)| = d
∑
v∈V

|L(v)| = d|V | = |E|h . (6)

◀

Next, we bound the contribution of B:

▶ Lemma 3.6.
∑

e∈B C
φ,e(Te) ≤ ε

4φ(xφ)|Γ|.

Proof. We have:∑
e∈B

Cφ,e(Te) ≤
∑
e∈B

nφ
(

|L(e)|xφ

h

)
by the remark on Definition 3.3 and |Te| = |L(e)|

≤ |B| · nφ
(∑

e∈B |L(e)|
|B|

xφ

h

)
by Jensen’s inequality on concave φ

≤ |B| · nφ
( |E|h

|B|
xφ

h

)
since φ nondecreasing and

∑
e∈B

|L(e)| ≤ |E|h

=
φ

( |E|xφ

|B|
)

|E|xφ

|B|

xφ|Γ| .
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(7)

We have seen that
∑

e∈B |L(e)| ≤ |E|h, but
∑

e∈B |L(e)| ≥ |B| h
ξ by definition of B, so we

have that |B|
|E| ≤ ξ. Thus |E|xφ

|B| ≥ xφ

ξ = θ. By definition of θ, we get that
∑

e∈B C
φ,e(Te) ≤

ηxφ|Γ| = ε
4φ(xφ)|Γ|. ◀

In order to bound the contribution of I, we will prove a property on inconsistent edges:

▶ Proposition 3.7. Let e = (v1, . . . , vh) ∈ E be an inconsistent hyperedge with respect to T .
Then we have that

∣∣∣Cφ,e(Te) − ψφ
|L(e)|,hn

∣∣∣ ≤ ηn.

Proof. Since e is inconsistent, ∀x ≠ y ∈ [h], πe,vx
(L(vx)) ∩ πe,vy

(L(vy)) = ∅. Therefore, for
every i ∈ [R], there is at most one v ∈ e such that i ∈ πe,v(L(v)), i.e., Te intersects with
Pi × {e} in at most one subset. This gives us a subset T ⊆ [R] and a function j : T → [h]
such that Te = {Pi,j(i) × {e} : i ∈ T}. As a consequence, |T | = |Te| = |L(e)| and by the
second condition of the partitioning system, we get the expected result. ◀

Now, we can bound the contribution of I:

▶ Lemma 3.8.
∑

e∈I C
φ,e(Te) ≤ (αφ + ε

2 )φ(xφ)|Γ|.

Proof. Thanks to Proposition 3.7, we have:∑
e∈I

Cφ,e(Te) ≤
∑
e∈I

(ψφ
|L(e)|,h + η)n ≤

∑
e∈E

(ψφ
|L(e)|,h + η)n , (8)

since I ⊆ E and ψφ
|L(e)|,h ≥ 0. But

∑
e∈E |L(e)| = |E|h by Lemma 3.5, and one can show

that x 7→ ψφ
x,h is concave (see full version [3]), so we can use Jensen’s inequality to get∑

e∈E ψ
φ
|L(e)|,h ≤ |E|ψφ∑

e∈E
|L(e)|

|E| ,h

= |E|ψφ
h,h and thus:

∑
e∈I

Cφ,e(Te) ≤ (ψφ
h,h + η)n|E| ≤ (αφφ(xφ) + 2η)|Γ| , (9)

by definition of h. This implies that the total contribution of inconsistent edges I is at most∑
e∈I C

φ,e(Te) ≤ (αφφ(xφ) + 2η)|Γ| ≤ (αφ + ε
2 )φ(xφ)|Γ| by definition of η. ◀

▶ Lemma 3.9.
∑

e∈N Cφ,e(Te) > ε
4φ(xφ)|Γ| and thus |N |

|E| ≥ ξη.

Proof. Since we have supposed that
∑

e∈E C
φ,e(Te) = Cφ(T ) > (αφ + ε)φ(xφ)|Γ|, and with

the help of Lemmas 3.6 and 3.8, we have that the contribution of N is:∑
e∈N

Cφ,e(Te) > ε

4φ(xφ)|Γ| .

However, we have that for e ∈ N that Cφ,e(Te) ≤ nφ
(

|Te| xφ

h

)
= nφ

(
|L(e)| xφ

h

)
≤

nφ
(

xφ

ξ

)
≤ nxφ

ξ thanks to the remark on Definition 3.3 and the bound |L(e)| < h
ξ . This

implies that:

|N |
|E|

≥ ξ

xφ

εφ(xφ)
4 = ξη . ◀
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From this, we construct a randomized labeling σ : V 7→ [L] as follows: for v ∈ V , if
L(v) ̸= ∅, set σ(v) uniformly from L(v), otherwise set it arbitrarily. We claim that in
expectation, this labeling must weakly satisfy δ fraction of the hyperedges.

To see this, fix any e = (v1, . . . , vh) ∈ N . Thus ∃x ̸= y ∈ [h], πe,vx(L(vx))∩πe,vy (L(vy)) ̸=
∅. Furthermore |L(vx)|, |L(vy)| ≤ h

ξ . Thus, we have that πe,vx
(L(vx)) = πe,vy

(L(vy)) with

probability at least 1
|L(vx)||L(vy)| ≥

(
ξ
h

)2
.

Therefore:

EσEe∼E [σ weakly satisfies e]
≥ ξηEσEe∼E [σ weakly satisfies e|e ∈ N ] by Lemma 3.9

>
η

2
ξ3

h2 = δ .

(10)

In particular there exists some labeling σ such that Ee∼E [σ weakly satisfies e] > δ, and
thus the soundness is also proved. ◀

4 Applications

This section show that instantiations of φ-MaxCoverage encapsulate and generalize
multiple problems from fields such as computational social choice [5] and algorithmic game
theory [18].

4.1 Multiwinner Elections
As mentioned previously, multiwinner elections (with a utilitarian model for the voters)
entail selection of k (out of m) candidates that maximize the utility across n voters. Here,
the utility of each voter a ∈ [n] increases with the number of approved (by a) selections.
The work of Dudycz et al. [11] study the computational complexity of such elections and,
in particular, address classic voting rules in which – for a specified sequence of nonnegative
weights (w1, w2, . . .) – voter a’s utility is equal to

∑j
i=1 wi, when she approves of j candidates

among the selected ones. One can view this election exercise as a coverage problem by
considering subset Ti ⊆ [n] as the set of voters that approve of candidate i ∈ [m] and
φ(j) =

∑j
i=1 wi. Indeed, for a subset of candidates S ⊆ [m], the utility of a voter a ∈ [n] is

equal to φ(|S|a), with |S|a = |{i ∈ S : a ∈ Ti}|.
Dudycz et al. [11] show that if the weights satisfy w1 ≥ w2 ≥ . . . (i.e., bear a diminishing

returns property) along with geometric dominance (wi · wi+2 ≥ w2
i+1 for all i ∈ N∗) and

limi→∞ wi = 0, then a tight approximation guarantee can be obtained for the election
problem at hand. Note that the diminishing returns property implies that φ(j) =

∑j
i=1 wi is

concave and limi→∞ wi = 0 ensures that φ is sublinear. Furthermore, one can show that:

▶ Proposition 4.1 ([3]). If wi := φ(i)−φ(i−1) is geometrically dominant, ie. ∀i ∈ N∗, wi

wi+1
≥

wi+1
wi+2

, then αφ = αφ(1).

Hence, Theorem 1, together with Proposition 4.1, can be invoked to recover the result in
[11] where we get αφ = αφ(1). In fact, Theorem 1 does not require geometric dominance
among the weights and, hence, applies to a broader class of voting rules. For instance, the
geometric dominance property does not hold if one considers the voting weights induced
by ℓ-MultiCoverage, i.e., wi = 1, for 1 ≤ i ≤ ℓ, and wj = 0 for j > ℓ. However, using
Theorem 1, we get that for this voting rule we can approximate the optimal utility within
a factor of αφ = 1 − ℓℓe−ℓ

ℓ! . Another example of such a separation arises if one truncates
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the proportional approval voting. The standard proportional approval voting corresponds
to wi = 1

i , for all i ∈ N (equivalently, φ(j) =
∑j

i=1
1
i ) and falls within the purview of [11].

While the truncated version with φ(j) =
∑min{j,ℓ}

i=1
1
i , for a given threshold ℓ, does not satisfy

geometric dominance, Theorem 1 continues to hold and provide a tight approximation ratio
that can be computed numerically (see Table 1 for examples):

▶ Proposition 4.2 ([3]). If ∀x ≥ ℓ, φ(x) = φ(ℓ) > 0, then αφ(x) is nondecreasing from ℓ to

+∞ and αφ(x) = φ(ℓ)−e−x
∑ℓ−1

k=0
(φ(ℓ)−φ(k)) xk

k!
φ(x) . In particular, αφ = minx∈[ℓ] αφ(x), and the

argmin can be computed numerically.

4.2 Resource Allocation in Multiagent Systems
A significant body of prior work in algorithmic game theory has addressed game-theoretic
aspects of maximizing welfare among multiple (strategic) agents; see, e.g., [19]. Comple-
menting such results, this section shows that the optimization problem underlying multiple
welfare-maximization games can be expressed in terms of φ-MaxCoverage.

Specifically, consider a setting with n resources, k agents, and a (counting) function φ :
N 7→ R+. Every agent i is endowed with a collection of resource subsets Ai = {T i

1, . . . , T
i
mi

} ⊆
2[n] (i.e., each T i

j ⊆ [n]). The objective is to select a subset Ai ∈ Ai, for all i ∈ [k], so as to
maximize Wφ(A1, A2, . . . , Ak) :=

∑
a∈[n] wa φ(|A|a). Here, wa ∈ R+ is a weight associated

with a ∈ [n] and |A|a := |{i ∈ [k] : a ∈ Ai}|. We will refer to this problem as the φ-Resource
Allocation problem.

While φ-Resource Allocation does not directly reduce to φ-MaxCoverage, the next
theorem shows that it corresponds to maximizing φ-coverage functions subject to a matroid
constraint. Hence, invoking our result from Section 2.2, we obtain a tight αφ-approximation
for φ-Resource Allocation:

▶ Theorem 5 ([3]). For any normalized nondecreasing concave function φ, there exists a
polynomial-time αφ-approximation algorithm for φ-Resource Allocation. Furthermore,
for φ(n) = o(n), it is NP-hard to approximate φ-Resource Allocation within a factor
better than αφ + ε, for any constant ε > 0.

4.3 Vehicle-Target Assignment
Vehicle-Target Assignment [17, 19] is another problem which highlights the applicability
of coverage problems, with a concave φ. In particular, Vehicle-Target Assignment
can be directly expressed as φ-Resource Allocation: the [n] resources correspond to
targets, the agents correspond to vehicles i ∈ [k], each with a collection of covering choices
Ai ⊆ 2[n], and φp(j) = 1−(1−p)j

p , for a given parameter p ∈ (0, 1). As limit cases, we define
φ0(j) := limp→0 φ

p(j) = j and φ1(j) := 1. Since φp(j) is concave, by a simple calculation
and Theorem 5, we obtain a novel tight approximation ratio of αφp = 1−e−p

p for this
problem. Also, one can look at the capped version of this problem, φp

ℓ (j) := φp(min{j, ℓ}).
In particular, we recover the ℓ-MultiCoverage function when p = 0. In Figure 1, we have
plotted several cases of the tight approximations αφp

ℓ
in function of ℓ for several values of ℓ:

Paccagnan and Marden [19] study the game-theoretic aspects of Vehicle-target
assignment. A key goal in [19] is to bound the welfare loss incurred due to strategic
selection by the k vehicles, i.e., the selection of each Ai ∈ Ai by a self-interested vehicle/agent
i ∈ [k]. The loss is quantified in terms of the Price of Anarchy (PoA). Formally, this
performance metric is defined as ratio between the welfare of the worst-possible equilibria and
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Figure 1 Tight approximation ratios αφ
p
ℓ
, where ℓ is the rank of the capped version of the

p-Vehicle-Target Assignment problem. When p = 0, we recover the ℓ-coverage problem.

the optimal welfare. Paccagnan and Marden [19] show that, for computationally tractable
equilibrium concepts (in particular, for coarse correlated equilibria), tight price of anarchy
bounds can be obtained via linear programs.

Note that our hardness result (Theorem 1) provides upper bounds on PoA of tractable
equilibrium concepts–this follows from the observation that computing an equilibrium provides
a specific method for finding a coverage solution. In [8] and in the particular case of the
ℓ-MultiCoverage problem, it is shown that this in fact an equality, i.e., PoA = αφ if
φ(j) = min{j, ℓ} for all values of ℓ. However, numerically comparing the approximation ratio
for Vehicle-Target Assignment, αφp = 1−e−p

p , with the optimal PoA bound, we note
that αφp can in fact be strictly greater than the PoA guarantee; see Figure 2.

0 0.2 0.4 0.6 0.8 10.5

0.6

0.7

0.8

0.9
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p

αφp = 1−e−p

p

PoA20

Curv = 1 − c
e

Figure 2 Comparison between the PoA and αφ for the Vehicle-Target Assignment problem.
Using the linear program found in [19], we were able to compute the blue curve PoA20, the Price
of Anarchy of this problem for m = 20 players. Since the PoA only decreases when the number of
players grows, this means that PoA < αφ in that case. As a comparison, the red curve Curv depicts
the general approximation ratio (see [22]) obtained for submodular function with curvature c, with
c = 1 − φp(m) + φp(m − 1) here.

4.4 Welfare Maximization for φ-Coverage
Maximizing (social) welfare by partitioning items among agents is a key problem in algorithmic
game theory; see, e.g., the extensive work on combinatorial auctions [18]. The goal here is to
partition t items among a set of k agents such that the sum of values achieved by the agents
– referred to as the social welfare – is maximized. That is, one needs to partition [t] into k
pairwise disjoint subsets A1, A2, . . . , Ak with the objective of maximizing

∑k
i=1 vi(Ai). Here,

vi(S) denotes the valuation that agent i has for a subset of items S ⊆ [t].
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When each agent’s valuation vi is submodular, a tight (1 − e−1)-approximation ratio is
known for social welfare maximization [23]. This section shows that improved approximation
guarantees can be achieved if, in particular, the agents’ valuations are φ-coverage functions.
Towards a stylized application of such valuations, consider a setting in which each “item”
b ∈ [t] represents a bundle (subset) of goods Tb ⊆ [n] and the value of an agent increases with
the number of copies of any good a ∈ [n] that get accumulated. Indeed, if each agent’s value
for j copies of a good is φ(j), then we have a φ-coverage function and the overall optimization
problem is find a k-partition, A1, A2, . . . , Ak, of [t] that maximizes

∑k
i=1

(∑
a∈[n] φ (|Ai|a)

)
,

where |Ai|a := {b ∈ Ai : a ∈ Tb}.
In the current setup, one can obtain an αφ approximation ratio for social-welfare maxim-

ization by reducing this problem to φ-coverage with a matroid constraint, and applying the
result from Section 2.2. Specifically, we can consider a partition matroid over the universe
[t] × [k]: for a bundle/item b ∈ [t] and an agent i ∈ [k], the element (b, i) in the universe
represents that bundle b is assigned to agent i, i.e., b ∈ Ai. The partition-matroid constraint
is imposed to ensure that each bundle b is assigned to at most one agent. Furthermore, we
can create k copies of the underlying set of goods [n] and set T(b,i) := {(a, i) : a ∈ Tb} to
map the φ-coverage over the universe to the social-welfare objective. This, overall, gives us
the desired αφ approximation guarantee.

Conclusion

We have introduced the φ-MaxCoverage problem where having c copies of element a
gives a value φ(c). We have shown that when φ is normalized, nondecreasing and concave,
we can obtain an approximation guarantee given by the Poisson concavity ratio αφ :=
minx∈N∗

E[φ(Poi(x))]
φ(E[Poi(x)]) and we showed it is tight for sublinear functions φ. The Poisson concavity

ratio strictly beats the bound one gets when using the notion of curvature submodular
functions, except in very special cases such as MaxCoverage where the two bounds are
equal.

An interesting open question is whether there exists combinatorial algorithms that achieve
this approximation ratio. As mentioned in [4], for the ℓ-MultiCoverage with ℓ ≥ 2, which
is the special case where φ(x) = min{x, ℓ}, the simple greedy algorithm only gives a 1 − e−1

approximation ratio, which is strictly less than the ratio αφ = 1− ℓℓe−ℓ

ℓ! in that case. Also, for
any geometrically dominant vector w = (φ(i+ 1) − φ(i))i∈N which is not p-geometric, such
as Proportional Approval Voting, the greedy algorithm achieves an approximation
ratio which is strictly less than αφ (see Theorem 18 of [11]).

Another open question is whether the hardness result remains true even when φ(n) ̸= o(n).
A good example is given by φ(0) = 0 and φ(1 + t) = 1 + (1 − c)t with c ∈ (0, 1). We know
that the problem is hard for c = 1 but easy for c = 0. One can show that the approximation
ratio achieved by our algorithm is αφ = 1 − c

e in that case (which is the same approximation
ratio obtained from the curvature in [22]), but the tightness of this approximation ratio
remains open.

References
1 Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of constructing

algorithms with proven performance guarantee. J. Comb. Optim., 8(3):307–328, 2004. doi:
10.1023/B:JOCO.0000038913.96607.c2.

2 Siddharth Barman and Omar Fawzi. Algorithmic aspects of optimal channel coding. IEEE
Trans. Inf. Theory, 64(2):1038–1045, 2018. doi:10.1109/TIT.2017.2696963.

STACS 2021

https://doi.org/10.1023/B:JOCO.0000038913.96607.c2
https://doi.org/10.1023/B:JOCO.0000038913.96607.c2
https://doi.org/10.1109/TIT.2017.2696963


9:16 Tight Approximation Guarantees for Concave Coverage Problems

3 Siddharth Barman, Omar Fawzi, and Paul Fermé. Tight approximation guarantees for concave
coverage problems. CoRR, abs/2010.00970, 2020. arXiv:2010.00970.

4 Siddharth Barman, Omar Fawzi, Suprovat Ghoshal, and Emirhan Gürpinar. Tight approxima-
tion bounds for maximum multi-coverage. In Daniel Bienstock and Giacomo Zambelli, editors,
Integer Programming and Combinatorial Optimization - 21st International Conference, IPCO
2020, London, UK, June 8-10, 2020, Proceedings, volume 12125 of Lecture Notes in Computer
Science, pages 66–77. Springer, 2020. doi:10.1007/978-3-030-45771-6_6.

5 Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors.
Handbook of Computational Social Choice. Cambridge University Press, 2016. doi:10.1017/
CBO9781107446984.

6 Markus Brill, Jean-François Laslier, and Piotr Skowron. Multiwinner approval rules as
apportionment methods. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA, pages 414–420. AAAI Press, 2017. doi:10.1177/0951629818775518.

7 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011. doi:10.1137/080733991.

8 Rahul Chandan, Dario Paccagnan, and Jason R. Marden. Optimal mechanisms for distributed
resource-allocation. CoRR, abs/1911.07823, 2019. arXiv:1911.07823.

9 Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the greedy
algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem.
Discret. Appl. Math., 7(3):251–274, 1984. doi:10.1016/0166-218X(84)90003-9.

10 Gérard Cornuéjols, Marshall L Fisher, and George L Nemhauser. Exceptional paper—location
of bank accounts to optimize float: An analytic study of exact and approximate algorithms.
Management science, 23(8):789–810, 1977. doi:10.1287/mnsc.23.8.789.

11 Szymon Dudycz, Pasin Manurangsi, Jan Marcinkowski, and Krzysztof Sornat. Tight approx-
imation for proportional approval voting. In Christian Bessiere, editor, Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
276–282. ijcai.org, 2020. doi:10.24963/ijcai.2020/39.

12 Shaddin Dughmi and Jan Vondrák. Limitations of randomized mechanisms for combinatorial
auctions. Games Econ. Behav., 92:370–400, 2015. doi:10.1016/j.geb.2014.01.007.

13 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

14 Vitaly Feldman and Pravesh Kothari. Learning coverage functions and private release of
marginals. In Maria-Florina Balcan, Vitaly Feldman, and Csaba Szepesvári, editors, Proceedings
of The 27th Conference on Learning Theory, COLT 2014, Barcelona, Spain, June 13-15, 2014,
volume 35 of JMLR Workshop and Conference Proceedings, pages 679–702. JMLR.org, 2014.
URL: http://proceedings.mlr.press/v35/feldman14a.html.

15 Dorit S. Hochbaum. Approximation algorithms for NP-hard problems. SIGACT News,
28(2):40–52, 1997. doi:10.1145/261342.571216.

16 Jason R. Marden and Adam Wierman. Distributed welfare games with applications to
sensor coverage. In Proceedings of the 47th IEEE Conference on Decision and Control,
CDC 2008, December 9-11, 2008, Cancún, Mexico, pages 1708–1713. IEEE, 2008. doi:
10.1109/CDC.2008.4738800.

17 Robert A Murphey. Target-based weapon target assignment problems. In Nonlinear assignment
problems, pages 39–53. Springer, 2000. doi:10.1007/978-1-4757-3155-2_3.

18 Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors. Algorithmic
Game Theory. Cambridge University Press, 2007. doi:10.1017/CBO9780511800481.

19 Dario Paccagnan and Jason R Marden. Utility design for distributed resource allocation–part
II: Applications to submodular, covering, and supermodular problems. CoRR, abs/1807.01343,
2018. arXiv:1807.01343.

http://arxiv.org/abs/2010.00970
https://doi.org/10.1007/978-3-030-45771-6_6
https://doi.org/10.1017/CBO9781107446984
https://doi.org/10.1017/CBO9781107446984
https://doi.org/10.1177/0951629818775518
https://doi.org/10.1137/080733991
http://arxiv.org/abs/1911.07823
https://doi.org/10.1016/0166-218X(84)90003-9
https://doi.org/10.1287/mnsc.23.8.789
https://doi.org/10.24963/ijcai.2020/39
https://doi.org/10.1016/j.geb.2014.01.007
https://doi.org/10.1145/285055.285059
http://proceedings.mlr.press/v35/feldman14a.html
https://doi.org/10.1145/261342.571216
https://doi.org/10.1109/CDC.2008.4738800
https://doi.org/10.1109/CDC.2008.4738800
https://doi.org/10.1007/978-1-4757-3155-2_3
https://doi.org/10.1017/CBO9780511800481
http://arxiv.org/abs/1807.01343


S. Barman, O. Fawzi, and P. Fermé 9:17

20 Moshe Shaked and J George Shanthikumar. Stochastic orders. Springer Science & Business
Media, 2007. doi:10.1007/978-0-387-34675-5.

21 Piotr Skowron, Piotr Faliszewski, and Jérôme Lang. Finding a collective set of items: From
proportional multirepresentation to group recommendation. Artif. Intell., 241:191–216, 2016.
doi:10.1016/j.artint.2016.09.003.

22 Maxim Sviridenko, Jan Vondrák, and Justin Ward. Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res., 42(4):1197–1218,
2017. doi:10.1287/moor.2016.0842.

23 Jan Vondrák. Submodularity in Combinatorial Optimization. Univerzita Karlova, Matematicko-
Fyzikální Fakulta, 2007. URL: https://dspace.cuni.cz/bitstream/handle/20.500.11956/
13738/140038775.pdf.

STACS 2021

https://doi.org/10.1007/978-0-387-34675-5
https://doi.org/10.1016/j.artint.2016.09.003
https://doi.org/10.1287/moor.2016.0842
https://dspace.cuni.cz/bitstream/handle/20.500.11956/13738/140038775.pdf
https://dspace.cuni.cz/bitstream/handle/20.500.11956/13738/140038775.pdf

	1 Introduction
	1.1 Applications and related work
	1.2 Remarks on the Poisson concavity ratio alpha_{phi}
	1.3 Proof techniques and organization

	2 Approximation Algorithm for phi-MaxCoverage
	2.1 Rounding
	2.2 Generalization to Matroid Constraints

	3 Hardness of Approximation for phi-MaxCoverage
	3.1 Partitioning System
	3.2 The Reduction
	3.3 Completeness
	3.4 Soundness

	4 Applications
	4.1 Multiwinner Elections
	4.2 Resource Allocation in Multiagent Systems
	4.3 Vehicle-Target Assignment
	4.4 Welfare Maximization for phi-Coverage


