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Abstract
We propose a new compressed representation for weighted de Bruijn graphs, which is based on the
idea of delta-encoding the variations of k-mer abundances on a spanning branching of the graph.
Our new data structure is likely to be of practical value: to give an idea, when combined with the
compressed BOSS de Bruijn graph representation, it encodes the weighted de Bruijn graph of a
16x-covered DNA read-set (60M distinct k-mers, k = 28) within 4.15 bits per distinct k-mer and can
answer abundance queries in about 60 microseconds on a standard machine. In contrast, state of
the art tools declare a space usage of at least 30 bits per distinct k-mer for the same task, which
is confirmed by our experiments. As a by-product of our new data structure, we exhibit efficient
compressed data structures for answering partial sums on edge-weighted trees, which might be of
independent interest.
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1 Introduction

A DNA resequencing experiment consists of reconstructing the nucleotide sequence of large
collections of short DNA fragments sampled from a reference genome [16, 18]. Depending
on the genome’s length and on the number of sampled fragments, each genome position is
typically covered several times (up to a few hundred on average) by different fragments. One
of the most common (lossy) representations of such a dataset is a de Bruijn graph of order
k (k is usually chosen around 30) introduced in [31] and used by the majority of genome
and transcriptome assemblers [2, 24, 20, 37]: this is a combinatorial structure storing all
k-mers occurring in the DNA fragments, and connecting two k-mers with an edge when their
length-(k +1) concatenation also occurs in the dataset. While such a representation is already
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16:2 Compressed Weighted de Bruijn Graphs

useful to discover important features of the sequenced genome (for example, single-point
mutations correspond to bubbles in De Bruijn graphs, see e.g., [35, 36]), a much more useful
representation should also record the abundance of each k-mer, i.e., how often it appears in
the dataset. This augmented structure takes the name weighted de Bruijn graph and has
many applications in both genome and transcriptome analysis. For instance, in de novo
genome projects it can be used for error correction [22, 37] or to infer genome characteristics
as repeat structures or rate of heterozygosity [21]. In transcriptome projects the role of
k-mer abundances is even more important as the abundance of a gene does not only reflect
its copy-number in the genome, but also and mostly its expression level. Hence, k-mer
abundances are crucial for quantifying the expression level of transcripts [26, 30] but also for
distinguishing SNPs from sequencing errors, or between different types of alternative splicing
events [17, 23].

Due to the massive size of sequencing data, the main challenge is to design data structures
for weighted de Bruijn graphs, which can scale up to very large instances such as genomes,
genome collections or metagenomics datasets (see for example [24]). In this paper, we tackle
exactly this problem and present new space-efficient data structures for storing weighted de
Bruijn graphs.

1.1 State of the art
As far as (unweighted) de Bruijn graphs are concerned, Bowe et al. in [3] presented a
space-efficient data structure – BOSS in the following – based on the concept of prefix sorting.
Their idea is to sort co-lexicographically the k-mers appearing in the dataset and to append
their outgoing labels to a sequence. It turns out that this sequence is a generalization to de
Bruijn graphs of the celebrated Burrows-Wheeler transform [4], the text permutation at the
core of the FM-index [12]. In its most basic form, the BOSS representation requires just 4
bits per edge to be stored and supports fast navigation queries on the de Bruijn graph.

It would be highly desirable to achieve the same rate of space efficiency also for weighted
de Bruijn graphs. A naive strategy to extend the BOSS representation to weighted de Bruijn
graphs could be to associate to each node a counter explicitly storing k-mer abundances.
The large variance of these counters (that is, difference between the largest and mean
abundance), however, requires some compression strategy in order to save space with respect
to a straightforward uncompressed solution.

Although many data structures already present in the literature could support k-mer
quantification, their representations are not space efficient [24]. For instance an extension
of Bloom filters, known as counting Bloom filters [19], allocates a fixed number of bits per
k-mer to store its count. This is clearly not space efficient for datasets where most of the
k-mers have low abundance. To deal with this, variable-length counters have been proposed.
Among them the counting quotient filter has been introduced in [28] and based on it two
tools have been proposed: deBGR [27] and Squeakr [29]. Both tools are approximate in the
sense that the returned counters could be wrong with low probability, but can also store exact
counts at the price of a higher space usage. On a RNA-seq Human experiment composed of
1.4 billion distinct k-mers (k = 28) with average abundance per k-mer equal to 27, deBGR
[27] reports a space usage of 37 bit/k-mer, while Squeakr [29] uses 79.8 bit/k-mer. Another
experiment on k-mer counting tools [29] reports that, on a dataset composed of 6.6 billion
distinct k-mers (k = 28) with average abundance per k-mer equal to 14.9, the RAM usage of
Squeakr [29] is of 77.8 bit/k-mer, the RAM usage of KMC2 [8] (signature-based) is of 139
bit/k-mer, and the RAM usage of Jellyfish2 [25] (hash-based) is of 80 bit/k-mer.
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Finally, in [33] an approximate data structure called Set-Min sketch has been proposed.
This method takes advantage of the power-law distribution of the k-mer counts to reduce
the error rate of the returned results. Set-Min sketch is implemented in the tool fress which
achieves better memory consumption but does not guarantee exact counts. For a dataset
of 6.6 billion distinct k-mers (k = 28) with average abundance per k-mer equal to 14.9, the
declared RAM usage of fress is 16.9 bit/k-mer with an error rate of 0.01.

1.2 Our contribution
In this paper we propose a new representation for weighted de Bruijn graphs, which is based
on the idea of delta-encoding the abundance variations on a spanning branching of the graph.
To show the usefulness of our representation we test it on different real datasets obtaining
each time a significant space improvement with respect to the state of the art. As an example,
when combined with the compressed BOSS de Bruijn graph representation [3], our new data
structure stores the weighted de Bruijn graph of a 16x-covered DNA read-set (60M distinct
k-mers, k = 28) within 4.15 bits per distinct k-mer: just 1.4 bits per k-mer on top of the
BOSS representation1 [3].

Our data structure does not make any assumption on the distribution of the k-mer counts,
which makes it appropriate to any dataset for both DNA and RNA. As a by-product of our
data structure, we exhibit efficient compressed data structures for answering partial sums on
edge-weighted trees, which might be of independent interest.

2 Notation

Logarithms are to the base 2. To simplify notation, we take log 1 = 1. Notation [n]
denotes the set {1, 2, . . . , n}. Throughout the paper, we work with the DNA alphabet
Σ = {A, C, G, T}. A k-mer is a string from Σk. If w ∈ Σ∗ is a string, then w[i, j] denotes
substring w[i]·w[i+1] · · · w[j], where the symbol “·” represents the concatenation of characters.

De Bruijn graphs. A de Bruijn graph is a directed graph G = (V, E) whose nodes are in
bijection with the k-mers appearing in the dataset. To distinguish between k-mers and the
corresponding nodes of G, we use the notation ŝ to denote the node of G corresponding to
k-mer s ∈ Σk.

Let s, s′ ∈ Σk be two k-mers. We say that s is adjacent to s′ if s[2, k] = s′[1, k − 1] and
the (k + 1)-mer s · s′[k] occurs in the dataset. The directed edges of G are in bijection with
all pairs of adjacent k-mers: (ŝ, ŝ′) belongs to E if and only if s is adjacent to s′. A weighted
de Bruijn graph associates an integer positive weight c(ŝ) to each of its nodes. Weight c(ŝ)
(equivalently, c(s) when we refer to the corresponding k-mer) is called the abundance of s

and corresponds to the number of times that k-mer s appears in the dataset.

3 Compressed Weighted de Bruijn Graphs

To compress the weights (abundances) of a de Bruijn graph, one could exploit the following
observation: since consecutive genomic positions generate adjacent k-mers, weights of adjacent
nodes in the de Bruijn graph are likely to be very similar. Let s, s′ ∈ Σk be such that s is

1 Note that we divide the total space by the number of distinct k-mers rather than the number of de
Bruijn graph edges as done in [3]. More details on this in Section 4.
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16:4 Compressed Weighted de Bruijn Graphs

adjacent to s′. Recall that with c(s) we denote the k-mer’s abundance and we extend this
notation to the nodes of G as c(ŝ) = c(s). Let (ŝ, ŝ′) be the corresponding edge of G, and let
w(ŝ, ŝ′) = c(ŝ) − c(ŝ′) be the difference between the weights of ŝ and ŝ′. Note that w(ŝ, ŝ′)
might be negative.

A first idea could be to store (i) the compressed integer w(ŝ, ŝ′) on each edge, and (ii)
the explicit value c(û) whenever û has in-degree equal to 0. In this case, we say that û is
a sampled node. At this point, one could retrieve c(ŝ) also for any non-sampled node ŝ by
summing c(û) to the weights of the edges on a path from ŝ to û, where û is a sampled node.
This solution has two main drawbacks: it is not time-efficient (in the worst case we need to
visit the whole graph G to compute one single weight) and it stores one integer per edge,
whereas the original graph contained one integer per node (the abundance).

In fact, all we need is a spanning branching2 T = (V, E) of G. The idea is to store (i) the
compressed weight w(ŝ, ŝ′) only for the edges of T and (ii) the weights c(r̂1), . . . , c(r̂t) for
the t roots r̂1, . . . , r̂t of T . To simplify the description, in the following we will assume that
c(r̂i) = 0 for 1 ≤ i ≤ t. This information is sufficient to reconstruct the weight of each node
of T , but still leaves us with a few issues:

(1) We would like to design a fast data structure to compute the partial sum of the values
w(ŝ, ŝ′) on the edges of an arbitrary node-to-root path in T ;

(2) We have to decide how to encode each w(ŝ, ŝ′) on the edges of T . This may affect the
computation of a branching that minimizes such cost;

(3) We do not know to which k-mer (node of G) each node of T corresponds to.

Issues (1) and (2) can be solved with a compressed data structure for answering partial
sums on trees. In Section 3.1 we first discuss our new compressed solution to partial sums
on the special case of arrays, which may be of independent interest. Then, in Section 3.2
we generalize this solution to partial sums on trees. The solution will introduce a cost in
bits for encoding each weight w(ŝ, ŝ′). The branching T = (V, E) will then be chosen so
as to minimize the sum of the costs on its edges. Issue (3) requires us to keep a mapping
between the nodes of G and T . In Section 3.3 we show how to solve this problem with a
simplified (and practical) variant of the structure of Section 3.2. Finally, in Section 4 we
present experimental results on real DNA datasets, comparing the space usage of our data
structure with the state of the art.

3.1 Partial Sums on Arrays
Given a (static) sequence s[1, n] of positive integers such that u =

∑n
i=1 s[i], we would

like to design a data structure to support partial sum operations, i.e., to answer queries
sum(i) =

∑i
j=1 s[j], for any i ∈ [n]. Note that there are succinct data structures that are

able to support sum queries in constant time [10, 11, 32] within the information-theoretic
lower bound of ⌈log

(
u
n

)
⌉ = n log u

n + O(n) bits. These classic results are summarized in the
following theorem.

▶ Theorem 1 ([10, 11, 32]). Given a (static) sequence s[1, n] of positive integers such that
u =

∑n
i=1 s[i], there exists a data structure that can answer any sum query in O(1) time

using n log(u/n) + O(n) bits of space.

2 In this paper spanning branching stands for spanning forest of arborescences, that is, a collection of
disjoint directed trees spanning the de Bruijn graph. We note that a spanning forest of undirected trees
would work as well; however, as we discuss in Section 3.3 this introduces some technical complications.
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This space bound is always at most the space required by writing down all partial sums
explicitly, i.e., n⌈log u⌉ bits. However, it is possible to get a better space bound in terms
of a well-known data-aware measure called gap measure [15], where the gap measure of the
sequence s is defined as gap(s) =

∑n
i=1⌈log(s[i] + 1)⌉ bits. Notice that in general it is not

possible to represent each s(i) with ⌈log(s(i) + 1)⌉ bits, and thus data structures must incur
a space overhead on top of the gap measure. Note that the gap measure is always at most
the information-theoretic lower bound of ⌈log

(
u
n

)
⌉ bits: this is because the gap measure is

maximised when s[i] = u/n for every i. However, in practice the gap measure could be much
smaller than the information-theoretic lower bound.

Gupta et al. [15] designed a data structure that is able to answer each sum query
in O(log log u) time and uses gap(s) + O(n log log(u/n) + n log(u/n)/ log n) bits of space.
Delpratt et al. [7] defined the delta measure ∆(s) =

∑n
i=1 |δ(s[i])|, where |δ(x)|, for x ≥ 1, is

the size in bits of encoding the number x with Elias’ δ coding. They present a data structure
that answers each sum query in O(log log u) time using ∆(s) + o(n) bits of space. Since for
any x we have δ(x) = log x + 2 log log x + O(1) bits, ∆(s) ≤ gap(s) + 2n log log(u/n) + O(n)
bits [7]. This improves over Gupta et al. due to the lower order term in the space bound.

In the remainder of this section we prove the following theorem. Even if our result on
de Bruijn graphs requires partial sums on trees instead of arrays, we present this result on
arrays here mainly for two reasons. First, it will be used to solve partial sums on trees in
Section 3.1. Second, we believe it can be of independent interest since it provides different
query-time/space trade-offs for partial sums on arrays.

▶ Theorem 2. Given a (static) sequence s[1, n] of positive integers such that u =
∑n

i=1 s[i],
there exists a data structure that answer sum queries in O( 1

ϵ ) time using (1 + ϵ)gap(s) +
O(n log log(u/n) + u

1
c ) bits of space, for any 0 < ϵ ≤ 1 and any constant c ≥ 1.

We first present a solution using standard ideas and tools. This solution will be then
refined to obtain the claimed result. We start by concatenating in a vector D the Elias’
δ encoding of each value of s. Elias’ γ and δ codes [10] are two standard encodings for
positive integers. Notice that binary encoding could also suffice however we believe that the
proof is clearer using the Elias’s one. Elias’ γ(x) of an integer x > 0 is obtained by writing
⌊log x⌋ in unary, followed by the value x − 2⌊log x⌋ written with ⌊log x⌋ bits. Elias’ δ instead
encodes x by writing ⌊log x⌋ + 1 with Elias’ γ, followed by the value x − 2⌊log x⌋ written with
⌊log x⌋ bits. We would like also to be able to compute the starting position in D of the
encoding of any integers of s. This can be easily done by representing the sequence L[1, n]
with the data structure of Theorem 1. The entry L[i] equals the length of the encoding of
s[i]. This way, the starting position of the encoding of s[i] in D is sum(i) in L. Note that
D and L suffice to decompress any value of the original sequence s in constant time. The
space required by these two vectors is bounded by gap(s) + O(n log log(u/n)) bits. In order
to support sum queries, we can partition s into blocks of size b = ⌈ 1

ϵ ⌉ each. We store in
an array B = [1, n/b] the partial sums in s up to the beginning of each block. This way
we can easily support any sum(i) in O( 1

ϵ ) time. We first get from B the sum up to the
block, say j, that contains the ith element of s. Then, we decompress the elements in the
jth blocks one after the other up to the element s[i]. This clearly requires O(1/ϵ) time per
operation. However, the space needed by B is ϵn log u bits. This gives an overall space usage
of gap(s) + ϵn log u + O(n log log(u/n) + n) bits, which is worse than what is claimed in
Theorem 2, since the term ϵn log u may be potentially larger than the term ϵgap(s).

To improve the space bound, we use a different partitioning strategy. The goal is to
partition s into variable size blocks such that the cost of encodings the values in each block
(but the last one) is between log u

ϵ bits and 3 log u
ϵ bits. This guarantees that there are at most

ϵgap(s)
log u + 1 blocks and, thus, the cost of storing the vector B is at most ϵgap(s) + log u bits.

CPM 2021



16:6 Compressed Weighted de Bruijn Graphs

We observe that a partition with the above characteristics is always possible. For example
we can use the following greedy algorithm. We start with an empty block and we process
the sequence from left to right. While processing an element we have two possibilities: we
either include the element in the current block or we create a new block with this element.
We take the former decision only if the overall cost of encoding the elements in the block is
less than log u

ϵ bits. As the code of an element is at most log u + O(log log u) bits, the above
partitioning strategy gives blocks of size between log u

ϵ bits and 3 log u
ϵ bits as claimed.

As now we have variable-size blocks, we need to store a binary vector V of size n bits to
keep track of blocks boundaries: an entry V [i] is 1 if and only if the ith element of s is the
first element in a block. We use a data structure to support rank/select operations on V in
constant time [32].

A query sum(i) is answered as follows. We first use rank/select operations on V to
compute the block j of position i and its offset p within this block. We now need to decode
the first p elements of the jth block and sum them to the value B[j]. Unfortunately, there
may be Θ(log u) elements encoded in a block and, thus, we cannot use a trivial decoding.
Instead, we conceptually split each block into subblocks such that each subblock is either
(i) formed of elements whose overall encoding sizes is no more than 1

2 log u bits, or (ii) a
single element. This split into subblocks can be done by an easy variant of the greedy
partitioning strategy above. Note that there are O( 1

ϵ ) subblocks per block. We use a table of
size O(

√
u log u) bits to precompute the sum of any prefix of any subblock given its encoding.

This way, computing the sum of the first p elements in jth block costs O( 1
ϵ ) time as required.

Note that the splitting above can be changed to use 1
c log u bits, for any constant c ≥ 1

instead 1
2 log u bits. This way we need a table of size O(2 1

c log u log u) = O(u 1
c log u) bits and

the query time remains O( 1
ϵ ). By adjusting infinitesimally the constant c, the table takes

O(u 1
c ) bits of space.

We conclude by showing how to adapt any solution for the partial sums problem to the
variant of the problem in which the sequence s has both positive and negative integers. Let
us define gap±(s) =

∑n
i=1⌈log(|s[i]| + 1)⌉

This variant can be easily reduced to two instances of the original problem as follows. We
first use a binary vector S[1, n] that records the signs of the values in s, i.e., S[i] = 1 if and
only if s < 0, S[i] = 0 otherwise. We use the data structure by Raman et al. [32] to support
constant time rank/select operation on S using log

(
n
p

)
+ o(n) bits of space, where p is the

number of positive integers in s. Then, we create two sequences s+[1, p] and s−[1, n − p]
that store positive and negative integers of s, respectively. Any partial sum query can now
be answered with two partial sums queries on s+ and s−. Combining this reduction with
Theorem 2 yields the following corollary.

▶ Corollary 3. Given a (static) sequence s[1, n] of positive and negative integers such that
u =

∑n
i=1 |s[i]|, there exists a data structure that answer each sum operation in O( 1

ϵ ) time
using (1 + ϵ)gap±(s) + log

(
n
p

)
+ O(n log log(u/n) + u

1
c ) bits of space, for any 0 < ϵ ≤ 1 and

any constant c ≥ 1, where p is the number of positive integers.

3.2 Partial Sums on Trees
Let T = (V, E) be a rooted weighted tree and let w(i, j) denote the (possibly negative)
integer weight of edge (i, j) ∈ E. We would like to build a space-efficient data structure
that answers partial sum queries of the form sum(v) =

∑
(i,j)∈Π(v) w(i, j) on paths, i.e., that

reports the sum of the weights on the path Π(v) connecting node v to the root, where v is
represented in pre-order (the solution for post-order is symmetrical and we do not discuss it).
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Chan et al. [5] tackle this problem in a more general framework, where weights belong to
a semigroup of size γ. Let n = |V | be the number of nodes. In this model, they provide a
data structure taking n log γ + o(n log γ) + 2n bits and answering queries in O(α(n)) (inverse
Ackermann) time. Note that this space is succinct but does not achieve compression: each
weight w(i, j) is stored in log γ bits, independently of its magnitude. Typically, one would like
a data structure using much less space: ideally, close to gap±(T ) =

∑
(i,j)∈E⌈log(|w(i, j)|+1)⌉

bits of space.
A folklore approach can reduce partial sums on trees to partial sums on arrays. The

idea consists of linearizing the weights according to a Euler tour of the tree. Recall that
tree edges are directed towards the root and note that the Euler tour visits each tree edge
(i, j) twice: the first time in the direction (j, i) and the second time in the direction (i, j).
If (i, j) ∈ E, we assign to the reverse edge (j, i) weight w(j, i) = −w(i, j). We initialize an
empty sequence W and, for each edge (i, j) visited along the tour (that is, in the direction
i → j), append −w(i, j) at the end of W . Then, it holds that sum(v) =

∑t
j=1 W [j], where

t is the index corresponding to the first time we see node v in the Euler tour (i.e., W [t]
contains the weight w(π(v), v), where π(v) is the parent of v). This equality holds because,
in W [1], . . . , W [t], all values that correspond to edges not belonging to the path from v to
the root appear two times with opposite signs and thus they cancel out.

We can use the data structure of Corollary 3 on the sequence W to have O( 1
ϵ ) query

time. The space is (2 + ϵ)gap±(s) + O(n log log(u/n) + u
1
c ) bits because every gap occurs

twice in W .
Another folklore approach uses the Heavy-Light decomposition of the dynamic trees

of Sleator and Tarjan [34]. The idea is to split the tree into heavy paths and use a data
structure for prefix sums on each of these heavy paths. By virtues of the decomposition,
any root-to-a-node path crosses O(log n) heavy paths and, thus, a query can be answered
with O(log n) prefix sums on arrays. This solution has a better space bound as every gap is
represented exactly once, but its query time is logarithmic.

In the remainder of this section we prove the following theorem, which improves over the
two folklore solutions above.

▶ Theorem 4. Given a (static) rooted tree T = (V, E) with positive integer weights w(i, j)
associated with each edge (i, j) ∈ E such that u =

∑
(i,j)∈E w(i, j), there exists a data

structure that answers sum queries in O( 1
ϵ ) time using (1 + ϵ)gap(T ) + O(n log log(u/n) + u

1
c )

bits of space, for any 0 < ϵ ≤ 1 and any constant c ≥ 1.

The following corollary generalizes the solution to trees with positive and negative weights.

▶ Corollary 5. Given a (static) rooted tree T = (V, E) with positive and negative integer
weights w(i, j) associated with each edge (i, j) ∈ E such that u =

∑
(i,j)∈E |w(i, j)|, there

exists a data structure that solves queries sum in O( 1
ϵ ) time using (1 + ϵ)gap±(T ) + log

(
n
p

)
+

O(n log log(u/n) + u
1
c ) bits of space, for any 0 < ϵ ≤ 1 and any constant c ≥ 1, where p is

the number of positive integers.

These results are obtained by adapting to trees the solutions of Theorem 2 and Corollary 3,
respectively.

The high level ideas behind our approach are as follows. We first partition the tree into
subtrees. Subtrees are either disjoint or intersect only at their common root. Then, we
store the sums on the paths from the tree’s root to each subtree root. The sum sum(v) is
computed by taking the sum up to the root of v’s subtree and summing up the sum of the
path within the subtree. The sum within each subtree is computed by using an approach
similar to the one in the previous subsection.

CPM 2021



16:8 Compressed Weighted de Bruijn Graphs

The partitioning of the tree is crucial for the space and time efficiency of the solution.
For this aim we use a weighted variant of the tree covering procedure described by Geary et
al. [14, Sec. 2.1] to decompose T into subtrees. Given any parameter M > 2, the original
tree covering procedure as described in [14, Sec. 2.1] is used to decompose T into Θ(n/M)
sub-trees containing O(M) nodes each. Two subtrees are either disjoint or intersect only at
their common root. The covering is built by visiting the tree in post-order and by grouping
nodes into components. The procedure lets the current component grow until its size falls in
the range [M, 3M −4]. When a component reaches the required size, a new empty component
is created. This greedy procedure guarantees that every component (except for the one
containing the root) has between M and 3M − 4 nodes. See Geary et al. [14, Sec. 2.1] for
more details.

In our solution we use a simple variant of this covering procedure. We fix M to be log u
ϵ

and we use the greedy procedure above with the only difference that every node i has an
encoding cost which equals the size of encoding w(π(i), i), where π(i) is the parent of i. We
build our components to have a cost bounded by M . This way, we can control the size of the
encoding of each subtree, which is between log u

ϵ bits and 3 log u
ϵ + 2 log u bits. We now need

to δ-encode the weights w of a subtree one after the other by following an ordering (specified
later) which is suitable for solving queries efficiently. Our goal is, given a node v represented
in pre-order, to compute the sum from tree’s root to node v. This is solved by summing up:
i) the sum from the tree’s root to the root of the subtree containing v; ii) the sum of the
weights on the path from the subtree’s root to node v. Geary et al. [14, Sec. 4.3] show how
to find the pre-order number of the root of the subtree containing v in constant time and
o(n) bits of space. This index can be used to access a vector containing the sum mentioned
at point (i). Point (ii) is computed in O( 1

ϵ ) time in a way similar to what we have done for
arrays. We split the representation of a subtree into O( 1

ϵ ) subblocks and use tables storing
precomputed answers to all the possible subblocks representations. However, the solution
here is more involved than the one we used for arrays because we need to compute the sum
only of some of the elements of a subblock, i.e., those elements that belong to the query
path, and exclude the other elements. This can be done by using a mask that marks the
elements belonging to the query path. Given the representation of a subblock and a mask,
a precomputed table returns the sum of the marked elements only. The main issue is now
to compute the required mask. This can be done by splitting the subtree into subsubtrees
whose encoding takes between 1

12 log u bits and 1
4 log u bits. This is done by using once again

the covering procedure described above. We δ-encode the elements in these subsubtrees
by visiting nodes in BFS order. We also need to store the topology of each subsubtree.
To do that, we can use a balanced sequence representation of each subsubtree so that we
need 2n + o(n) bits overall. Observe that each subsubtree has at most 1

4 log u nodes. Thus,
its balanced parentheses representation always takes at most 1

2 log u bits and we can use a
table of size O(u 1

2 log2 u) bits that, given a subsubtree topology ( 1
2 log u bits) and a node

represented as a pre-order position in the subsubtree topology (O(log log u) bits), returns the
required mask, i.e., a mask of 1

4 log u bits that marks only nodes on the path from the root
to the node. Another table of size O(u 1

2 log u) bits is used to, given any possible combination
of the delta-encoded weights of a subsubtree (at most 1

4 log u bits) and any possible mask
(at most 1

4 log u bits), return the sum of the marked elements only. Note that to perform
the above operations we need, given a pre-order node v, to obtain (a) the packed balanced
parentheses sequence representation of the subsubtree containing v and (b) the pre-order
position of v within its subsubtree. Information (a) can be obtained as done above by using
the procedure described by Geary et al. [14, Sec. 4.3]: we locate the pre-order number of
the root of the subsubtree and use it as index in an array containing the packed balanced
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sequence representations of the subsubtrees (O(n) bits of space). In the same section, Geary
et al. [14, Sec. 4.3] show also how to obtain information (b) in constant time and o(n) bits
of additional space. Finally note that, as done in the previous section, we can replace the
size 1

4 log u of the subsubtrees by 1
c log u for any constant c ≥ 1 and obtain the claimed space

bound.

3.3 Adding the dBg Topology
In this section we discuss how to combine a simplified (and practical) variant of the data
structure of Corollary 5 with the BOSS de Bruijn graph representation of Bowe et al. [3].
Our final data structure represents a weighted de Bruijn graph in compressed space and
supports computing the abundance of any given input k-mer. In Section 4 we present
experimental results based on our data structure. Our implementation is available at
https://github.com/nicolaprezza/cw-dBg/.

Let n and m be the number of nodes and edges of the input de Bruijn graph G, respectively.
First of all, we compute a branching T of G minimizing measure gap±(T ). This can be
achieved using Gabow et al.’s optimized version [13] of Edmonds’ algorithm [9], running in
O(m + n log n) time.

The second step is to observe that, by definition of branching, its topology is embedded in
the topology of the de Bruijn graph. Consider the list ŝ1, . . . , ŝn of the n nodes of the de Bruijn
graph sorted by the co-lexicographic order of their corresponding k-mers. Note that this is
precisely the order in which nodes are stored in the BOSS representation [3]. Let e1

i , . . . , eti
i

be the ti incoming edges of node ŝi, and consider the list e1, . . . , em = ⟨e1
i , . . . , eti

i ⟩i=1,...,n of
all the m edges in the graph, sorted by their target node. We keep one bitvector IN_B[1, m]
marking the edges, in the above order, that are included in the branching. It is clear that
the topology of the de Bruijn graph, combined with bitvector IN_B, fully specifies the
topology of the branching. Importantly, we observe that de Bruijn graphs are usually very
sparse, i.e., m ≈ n. This implies that IN_B is composed mostly of bits equal to 1, thus
its zero-order entropy ⌈log

(
m
n

)
⌉ is likely to be very small. We thus store IN_B with the

zero-order compressed representation of Raman et al. [32], supporting constant-time rank
and select queries.

The third step is to build a simplified version of the structure of Corollary 5 over each
arborescence of the branching. We do this as follows. Given a parameter ρ (the sample
rate), 1 ≤ ρ ≤ n, we use the tree covering procedure of Geary et al. [14, Sec. 2.1] to
decompose each arborescence into Θ(n′/ρ) subtrees of O(ρ) nodes each, where n′ is the
number of nodes of the arborescence. We furthermore explicitly store the abundances of the
subtree’s roots in a vector, sorting them by the order in which nodes appear in the BOSS
data structure (that is, by the co-lexicographic order of their corresponding k-mers). The
sampled abundances take O(( n

ρ + t) log u) bits, where t is the number of arborescences. An
additional zero-order compressed bitvector marks sampled nodes. Using the representation
of Raman et al. [32], this bitvector takes O((n

ρ + t) log ρ) + o(n) bits and supports access,
rank, and select operations in constant time.

We store the weight of each edge of T (that is, the difference between the abundances
of its endpoint k-mers) using a version of Elias’ gamma encoding supporting fast random
access queries. First, we convert each (possibly negative) weight w into a positive integer
w′ ≥ 1 using the formula

w′ =
{

−2w, if w < 0
2w + 1, otherwise
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In practice, using the above conversion, rather than storing explicitly the sign of w in
a separate bitvector, has an important practical advantage, as the minimum branching
algorithm compresses also the sign of the weights. Indeed, we observed experimentally that
this choice compresses each sign to about 0.3 bits on average (rather than 1 bit per sign
required when storing them in a plain bitvector). The random access gamma-compressed
weights are implemented as follows. We concatenate the binary representation of each w′

(devoid of its most significant bit) in an uncompressed bitvector X, and its length in unary
in a bitvector Y (for example: w′ = 27 would be encoded as 1011 in X and 10000 in Y ). We
compress Y using the representation of Raman et al. [32]. The i-th weight can be extracted
from this representation in O(1) time with one select operation on Y and one packed access
operation on X. Since we compress Y , it is not hard to see that our representation takes
at most gap±(T ) + O(n log log(u/n)) bits of space. Finally we mention that, in order to
achieve further compression, we used the compressed bitvector of Raman et al. [32] also to
implement the components of the BOSS representation [3].

Let s be a k-mer. To retrieve its abundance, we do the following:
1. We use the de Bruijn graph representation to retrieve the node ŝ (in the BOSS repre-

sentation, a position in the Burrows-Wheeler transform of the graph) corresponding to
s. This step takes O(k) time via the backward search algorithm (see [3] for full details)
since we assume constant-sized DNA alphabet Σ = {A, C, G, T}.

2. Starting from ŝ, we move upward towards the root of the tree containing ŝ in the branching,
stopping as soon as a sampled node ŝ′ is found (that is, a node whose abundance has been
stored explicitly). Each move in the tree is implemented with a constant-time application
of the FL function [3]. Along the walk, we sum the abundance of the sampled node ŝ′ to
the weights of the edges on the path connecting ŝ′ with ŝ. Overall, this step takes O(ρ)
time.

Observe that Step 1 can be avoided if we are already given the representation of a node
in the de Bruijn graph (for example, if we are navigating it). Now we can also explain why
we use a branching instead of a minimum spanning undirected forest. With a branching,
the parent of node ŝ (in its corresponding arborescence) is always one of its incoming edges
(precisely, the one marked in bitvetor IN_B). With an undirected spanning forest, instead, the
parent of node ŝ could be one of its outgoing edges; this would force us to use an additional
bitvector, increasing the overall space and slowing down operations.

To sum up, our implementation offers the following trade-offs. Let G be a de Bruijn
graph with m edges and n nodes, w(̂i, ĵ) = c(̂i) − c(ĵ) be the weight associated with each
edge (̂i, ĵ) of G, where c(̂i) is the abundance of node î, T = (V, E) be a branching of G

with t connected components minimizing measure gap±(T ) =
∑

(̂i,ĵ)∈E⌈log(|w(̂i, ĵ)| + 1)⌉,
u =

∑
(̂i,ĵ)∈E |w(̂i, ĵ)|, and 1 ≤ ρ ≤ n be the user-defined sample rate. Our data structure

uses gap±(T ) + O
(

n log log(u/n) +
(

n
ρ + t

)
log u

)
+ log

(
m
n

)
bits on top of the compressed

BOSS representation [3] and allows us to retrieve:
(1) the abundance of a given k-mer s ∈ Σk in O(k + ρ) time, and
(2) the abundance of a given node in the de Bruijn graph (represented as a position in BOSS)

in O(ρ) time.

Note that, in practice, ρ is usually chosen to be ρ ≫ k (in our experiments, ρ = 64 and
k = 28) so the two query times are not expected to differ much in practical applications.

Our experiments (see next section) highlight that, in practice, the number t of arbores-
cences is negligible compared to the size of the graph.
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4 Experiments

In order to get a feeling of its practical value, we implemented a first preliminary version of
our compressed representation of weighted de Bruijn graphs. In the following, we refer to
this implementatio as cw-dBg; its code is available at https://github.com/nicolaprezza/
cw-dBg.

Tools. We ran cw-dBg on four datasets and compared the results obtained against the
state-of-the-art algorithms for this problem: Squeakr [29], deBGR [27], and the very recent tool
fress [33] which appeared online in November 2020. Both Squeakr and deBGR are based on
the so-called counting quotient filter (CQF) data structure [28]. Squeakr supports two modes:
approximate and exact. When run in exact mode, the k-mers are inserted in the CQF using
an invertible 2k-bit hash function. In approximate mode, Squeakr uses a p-bit hash function,
with p ≤ 2k, and thus can have false positives with an error rate depending on the chosen
p. deBGR is based on Squeakr and builds an approximate data structure with smaller error
rate by increasing the space complexity of approximate Squeakr by just 18% − 20%. Finally,
fress [33] implements an approximate data structure called Set-Min sketch, inspired by the
Count-Min sketch data structure [6], that takes advantage of the power-law distribution of
the k-mer counts to reduce both the error rate of the returned results and the space usage
(by an entropy-compression mechanism). Similarly to Count-Min sketch, Set-Min sketch uses
several hash functions to map a given k-mer to sketches of its abundance; at query time,
the abundance of the k-mer is computed by combining the retrieved sketches. As shown by
the authors, Set-Min sketch is more space-efficient than minimal perfect hash functions and
provides better error guarantees compared to equally-dimensioned Count-Min sketches.

Datasets. We selected datasets to cover applications that could be as widely different as
possible. In particular, we tested the above tools against the following datasets:

IAVs Inf. 1 (1.2Gbp) and IAVs Inf. 2 (578Mbp) are samples from the dataset presented in
[1] of human lung cells infected by Influenza A viruses (IAVs) and correspond to a sample
of 10 millions reads and a sample of 4, 814, 148 reads from chromosome 2, respectively.
E. coli (2.3Gbp) consists of 22, 720, 100 Illumina reads of E. Coli K-12 strain MG1655
(available in the ENA repository under the following study: PRJEB2323, https://www.
ebi.ac.uk/ena/browser/view/ERR022075).
Human (6.5Gbp) consists of 63, 917, 134 Illumina reads of human RNA (available in the
ENA repository under the following study: PRJNA609878, https://www.ebi.ac.uk/
ena/browser/view/SRX7829390).

Experimental settings. The experiments were carried out on a single core of an 8-core Intel
i9-9900K server with 64 GB of RAM and running Linux 5.4.0, 64 bits. Our code is written
in C++ and compiled with gcc 9.3.0.

As deBGR assumes k-mers of size 28 (which cannot be changed), for consistency we also
used this value in all our experiments for all tools. Table 1 reports some characteristics of
the datasets. Notice that, as it was previously mentioned, the number of arborescences is
very small, when compared to the size of the graph, and thus negligible in practice. We used
sample rate ρ = 64 for cw-dBg.

deBGR and Squeakr (the latter both in its approximate and exact version) were run using
only 1 thread. When running deBGR, the user needs to specify two parameters related to the
log of the number of slots in the counting quotient filter. The CQF size argument is estimated
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Table 1 Characteristics of the de Bruijn graph resulted from each of the dataset for k-mers of
size 28. The columns correspond to: number of bases and number of distinct k-mers in the dataset,
number of edges and number of arborescences in the de Bruijn graph, average and max abundance
of the k-mers and the total number of distinct abundances in the dataset (which influences fress’
space).

Dataset # bases # k-mers # edges # Arb. Avg ab. Max ab. # ab.
IAVs Inf. 1 1,200,000,000 57,629,309 65,880,010 259 16.14 607,028 13,452
IAVs Inf. 2 577,697,760 34,914,869 41,295,094 100 12.82 55,110 9,007
E. coli 2,317,450,200 87,414,957 281,845,871 1 19.49 8,520,260 2,657
Human 6,455,630,534 362,818,017 463,413,958 1226 13.04 11,054,076 21,472

using the lognumslots.sh script provided by the authors and corresponds approximately to
the log of the number of k-mers. The exact CQF size argument is estimated as 20% less
then the CQF size (personal communication with the authors of deBGR).

Finally, fress is an approximate tool and allows to specify a parameter related to the
error rate: in our experiments, we ran it using an error rate of ϵ = 0.01, as used in fress’
paper [33]. Notice that the error rate estimates the expected number of collision which could
possibly lead to output a wrong abundance. An error rate of 0.01 means that in N queries,
the number of expected collisions in the hash table is ϵN .

Experimental results. In Table 2 we present the detailed space required by our representation
for each of the datasets considered, while Table 3 reports the space usage of all the tools
considered.

The bit/k-mer of each component in Tables 2 and 3 were computed using the number
of distinct k-mers over the alphabet {A, C, G, T} present in the original dataset. We note
that this is not the same calculation performed by Bowe et al. [3] when estimating the size
of their BOSS representation: in that case, the authors divide by the number of edges in
the de Bruijn graph when also including dummy (that is, left-padded) k-mers, obtaining
roughly 4 bits per edge. In fact, the two values (number of edges and number of k-mers) are
close to each other only when the number of dummy k-mers is small (which is not always
the case, as explained below). We believe that dividing the total bit-size by the number
of distinct k-mers appearing in the dataset is more general, since it applies to any k-mer
counting data structure like the ones shown in Table 3. Notice that for this reason in Table
2 the space reported for the BOSS representation of the E. coli dataset is larger than the
typical 4 bit/edge reported by the authors of BOSS [3] as the number of dummy k-mers for
this dataset is significantly large (approximately equal to the number of distinct k-mers).

The results in Table 2 and Table 3 show that our representation uses at most 4.75
bit/k-mer (and as little as 1.42 bit/k-mer) to encode the abundances. Even when adding the
BOSS representation (required to map k-mers to their corresponding abundances), we obtain
at most 12.64 bit/k-mer (and as little as 4.14 bit/k-mer) while the exact version of Squeakr
uses 83.26 bit/k-mer in the best scenario. In almost all our experiments cw-dBg required
substantially much less space, an by several orders of magnitude, than all the other tools.
The only exception occured in the E. coli dataset, where fress performed slightly better than
cw-dBg by using 10.95 bit/k-mer (versus 12.64 bit/k-mer of cw-dBg).

We stress out, however, that fress achieves this slight space saving at the cost of returning
a wrong abundance 1% of the times in the worst case. Indeed, if its error rate is lowered from
0.01 to 0.005, fress uses 14.6 bit/k-mer on this dataset. The efficiency of fress on this dataset
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Table 2 The space required for each dataset by our representation of the weighted de Bruijn
graph. The columns correspond to: the size of the file containing the final representation, the space
required by the BOSS representation of the de Bruijn graph; the space required by the compressed
abundances divided in the space required by the delta-compressed weights (stored on the edges of the
branching) and the one for the branching topology and the sampled abundances on the root of each
subtree; the total space required by our representation and the average query time in microseconds
for retrieving the abundance of a given k-mer (represented as a string). Space is measured in bits
per distinct k-mer (see Table 1) and we used sample rate ρ = 64.

Final BOSS Compressed ab. (bit/k-mer) Total size Query time
Dataset size (MB) (bit/k-mer) weights branching total (bit/k-mer) (µs/query)
IAVs Inf. 1 29 2.73 0.95 0.48 1.43 4.15 47.56
IAVs Inf. 2 20 2.87 1.19 0.53 1.72 4.59 44.24
E. coli 132 7.88 2.93 1.82 4.75 12.64 62.34
Human 223 3.14 1.40 0.61 2.01 5.14 67.42

Table 3 For each dataset we report the space required for the representation of the weighted de
Bruijn graph by each of the considered tools.

IAVs Inf. 1 IAVs Inf. 2 E. coli Human
MB bit/k-mer MB bit/k-mer MB bit/k-mer MB bit/k-mer

cw-dBg 29 4.15 20 4.59 132 12.64 223 5.14
Squeakr approx. 325 47.19 179 42.80 325 31.11 1126 24.05
Squeakr exact 965 140.40 499 119.75 965 92.57 3686 83.26
deBGR 912 132.46 376 89.55 912 87.32 5529 119.00
fress 733 106.56 135 32.35 115 10.95 733 16.90

is explained by the fact that the number of distinct k-mer abundances is much smaller than
in the other three datasets (see Table 1). This is clearly the case where we expect fress to
work well, as it fully takes advantage of the power-law distribution of the abundances by
entropy-compressing their values.

Finally, we estimated the average query time of cw-dBg, by querying a set of 5, 000
randomly chosen 28-mers. The largest measured query time for cw-dBg on our machine
was 67.42 µs/query on the Human dataset (see Table 2 for the query times on all datasets).
As expected, hash-based data structures have better query time: on the same Human
dataset, Squeakr answers queries in average 0.19 µs/query using 1 thread. However, as we
discussed before, hash-based structures have a much higher space usage, in addition to being
approximate. The exact variant of Squeakr uses orders of magnitude more space than cw-dBg.

5 Conclusions and open problems

We propose a new compressed representation for weighted de Bruijn graphs based on the idea
of delta-encoding the variations of k-mer abundances on a spanning branching of the graph.
As a by-product of independent interest, we exhibit efficient compressed data structures for
answering partial sums on edge-weighted trees.

We show both theoretically and experimentally that our approach uses significantly less
memory than the one used by the state-of-the-art exact representations. Our de Bruijn graph
representation is general, in other words it is not restricted by the application (e.g., variation
finding or RNA-seq), and can be used as part of any algorithm that represents NGS data
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with de Bruijn graphs. Future extensions will include implementing a strategy similar to
the one used by fress in order to take advantage of the small number of distinct abundance
observed in practice. The basic idea is to use a table storing all the distinct abundances
sorted and, for each node, encode its abundance’s offset in the table with our data structure
(that is, storing the deltas of these offsets rather than of the original abundances). We also
plan to integrate our structure in a usable bioinformatics tool.
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