
A Unifying Framework for Deciding
Synchronizability
Benedikt Bollig #

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, France

Cinzia Di Giusto #

Université Côte d’Azur, CNRS, I3S, France

Alain Finkel #

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, France
Institut Universitaire de France, Paris, France

Laetitia Laversa #

Université Côte d’Azur, CNRS, I3S, France

Etienne Lozes #

Université Côte d’Azur, CNRS, I3S, France

Amrita Suresh #

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, France

Abstract
Several notions of synchronizability of a message-passing system have been introduced in the
literature. Roughly, a system is called synchronizable if every execution can be rescheduled so that
it meets certain criteria, e.g., a channel bound. We provide a framework, based on MSO logic and
(special) tree-width, that unifies existing definitions, explains their good properties, and allows one
to easily derive other, more general definitions and decidability results for synchronizability.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases communicating finite-state machines, message sequence charts, synchroniz-
ability, MSO logic, special tree-width

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.14

Related Version Full Version: https://hal.archives-ouvertes.fr/hal-03278370

1 Introduction

Communication systems. The model of concurrent processes communicating asynchron-
ously through FIFO channels is used since the 1960s in applications such as communication
protocols [28], hardware design, MPI programs, and more recently for designing and verifying
session types [23], web contracts, choreographies, concurrent programs, Erlang, Rust, etc.
Since communication systems use FIFO channels, it is well known that all non-trivial proper-
ties (e.g., are all channels bounded?) are undecidable [9], essentially because a FIFO channel
may simulate the tape of Turing machines and the counters of Minsky machines. However,
there are many subclasses of communication systems for which the control-state reachability
problem becomes decidable: e.g., synchronizable systems and existentially bounded systems
(executions can be reorganized or decomposed into a finite number of sequences in which all
channels are bounded), flat FIFO machines [15,17] (the graph of the machine does not contain
nested loops), channel-recognizable systems [4], unreliable (lossy, insertion, duplication) FIFO
systems [11], input-bounded FIFO machines [5], and half-duplex systems [10].

© Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Etienne Lozes, and Amrita Suresh;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bollig@lsv.ens-cachan.fr
https://orcid.org/0000-0003-0985-6115
mailto:cinzia.di-giusto@univ-cotedazur.fr
https://orcid.org/0000-0003-1563-6581
mailto:finkel@lsv.fr
https://orcid.org/0000-0003-0702-3232
mailto:laetitia.laversa@univ-cotedazur.fr
https://orcid.org/0000-0003-3775-6496
mailto:etienne.lozes@univ-cotedazur.fr
https://orcid.org/0000-0001-8505-585X
mailto:amrita.suresh@ens-paris-saclay.fr
https://orcid.org/0000-0001-6819-9093
https://doi.org/10.4230/LIPIcs.CONCUR.2021.14
https://hal.archives-ouvertes.fr/hal-03278370
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 A Unifying Framework for Deciding Synchronizability

On the boundedness problem. We focus on the boundedness problem, which is known
to be undecidable. We could limit our analysis to decide whether for a given integer k ≥ 0,
known in advance, the FIFO channels are k-bounded, and this property is generally decidable
in PSPACE. Unfortunately, the k-boundedness property is too binding since we could want
to design an unbounded system that is able, for example, to make unbounded iterations of
sending and receiving messages. Hence, to cope with this limitation, one can find variants of
the boundedness property that essentially reduce to say that every unbounded execution
of a system (i.e., channels are unbounded along the execution) is equivalent (for instance,
causally equivalent) to another bounded execution.

About synchronizability. To mention some examples, Lohrey and Muscholl introduced
existentially k-bounded systems [25] (see also [18,19,24]) where all accepting executions leading
to a stable (with empty channels) final configuration can be re-ordered into a k-bounded
execution. This property is undecidable, even for a given k [18]. A more general definition,
still called existentially bounded, is given in 2014 where the considered executions are not
supposed to be final or stable [22]. In [21,25], the notion of universally k-bounded (all possible
schedulings of an execution are k-bounded) is also discussed and the authors show that the
property is undecidable in general. In 2011, Basu and Bultan introduced synchronizable
systems [3], for which every execution is equivalent (for the projection on sending messages)
to one of the same system but communicating by rendezvous; to avoid ambiguity, we call such
systems send-synchronizable. In 2018, Bouajjani et al., called a system S k-synchronizable [8]
(to avoid confusion we call such systems weakly k-synchronizable) if every MSC of S admits a
linearization (which is not necessarily an execution) that can be divided into blocks of at most
k messages. After each block, a message is either read, or will never be read. This constraint
seems to imply that buffers are bounded to k messages. However, as the linearization need
not be an execution, this implies that a weakly k-synchronizable execution, even with the
more efficient reschedule, can need unbounded channels to be run by the system.

Communication architecture and variants. A key difference between these works is that
they consider different communication architectures. Existentially bounded systems have
been studied for p2p (with one queue per pair of processes), whereas k-synchronizability has
been studied for mailbox communication, for which each process merges all its incoming
messages in a unique queue. The decidability results for k-synchronizability have been
extended to p2p communications [14], but it is unknown whether the decidability results
for existentially bounded systems extend to mailbox communication. Moreover, variants of
those definitions can be obtained depending on if we consider messages that are sent but
never read, called unmatched messages. Indeed the challenges that arise in [8] are due to
mailbox communication and unmatched messages blocking a channel so that all messages
sent afterwards will never be read. To clarify and overcome this issue, we propose strong
k-synchronizability, a new definition that is suitable for mailbox communication: an execution
is called strongly k-synchronizable if it can be rescheduled into another k-bounded execution
such that there are at most k messages in the channels before emptying them.

Contributions. Our contributions can be summarized as follows:
In order to unify the notions of synchronizability, we introduce a general framework based
on monadic second-order (MSO) logic and (special) tree-width that captures most existing
definitions of systems that may work with bounded channels. Moreover, reachability and
model checking are shown decidable in this framework.

B. Bollig, C. Di Giusto, A. Finkel, L. Laversa, E. Lozes, and A. Suresh 14:3

We show that existentially bounded systems can be expressed in our framework and, as a
consequence, the existentially k-bounded property is decidable by using the generic proof.
We generalize the existing notion of (weak) k-synchronizability in [8] and we introduce
three new classes of synchronizable systems: weakly synchronizable (which are more gen-
eral than weakly k-synchronizable), strongly synchronizable and strongly k-synchronizable
(which are particular cases of weakly synchronizable). We then prove that these properties
all fit in our framework and are all shown decidable using the generic proof.
We then deduce that reachability and model checking are decidable for these classes
(only control-state reachability was shown to be decidable for weakly k-synchronizable
in [8] and it is clearly also decidable for existentially/universally bounded systems but
reachability properties are generally not studied for these classes of systems).
In order to obtain better complexity results for some classes (strongly and weakly
synchronizable systems), we also use the fragment of propositional dynamic logic with
loop and converse (LCPDL) instead of MSO logic in our framework.
We provide a comparison between synchronizable classes both for p2p and mailbox
semantics (see Fig. 8 for p2p systems and Fig. 9 for mailbox systems). In particular,
we clarify the link between weakly synchronizable and existentially bounded systems for
both p2p and mailbox systems, which was left open in [8] and solved only for p2p systems
in [23, Theorem 7] where weakly synchronizable systems are shown to be included into
existentially bounded ones when considering executions (and not MSCs as in our case).

Outline. Section 2 defines some preliminary notions such as p2p/mailbox message sequence
charts (MSCs), and communicating systems. Section 3 presents the unifying MSO framework
and two general theorems on k-synchronizability and model checking. In Section 4, we apply
the MSO framework to different existing definitions of synchronizability, and we introduce
a new decidable one. Section 5 studies the relations between the classes. In Section 6, we
conclude with some final remarks. Due to space constraints, some proofs are given in the full
version of the paper, available at: https://hal.archives-ouvertes.fr/hal-03278370

2 Preliminaries

2.1 Message Sequence Charts
Assume a finite set of processes P and a finite set of messages M. The set of (p2p) channels
is C = {(p, q) ∈ P × P | p ≠ q}. A send action is of the form send(p, q, m) where (p, q) ∈ C
and m ∈ M. It is executed by p and sends message m to q. The corresponding receive action,
executed by q, is rec(p, q, m). For (p, q) ∈ C, let Send(p, q,) = {send(p, q, m) | m ∈ M}
and Rec(p, q,) = {rec(p, q, m) | m ∈ M}. For p ∈ P, we set Send(p, ,) = {send(p, q, m) |
q ∈ P \ {p} and m ∈ M}, etc. Moreover, Σp = Send(p, ,) ∪ Rec(, p,) will denote the
set of all actions that are executed by p. Finally, Σ =

⋃
p∈P Σp is the set of all the actions.

Peer-to-peer MSCs. A p2p MSC (or simply MSC) over P and M is a tuple M = (E , →,◁, λ)
where E is a finite (possibly empty) set of events and λ : E → Σ is a labeling function. For
p ∈ P, let Ep = {e ∈ E | λ(e) ∈ Σp} be the set of events that are executed by p. We require
that → (the process relation) is the disjoint union

⋃
p∈P →p of relations →p ⊆ Ep × Ep such

that →p is the direct successor relation of a total order on Ep. For an event e ∈ E , a set of
actions A ⊆ Σ, and a relation R ⊆ E × E , let #A(R, e) = |{f ∈ E | (f, e) ∈ R and λ(f) ∈ A}|.
We require that ◁ ⊆ E × E (the message relation) satisfies the following:

CONCUR 2021

https://hal.archives-ouvertes.fr/hal-03278370

14:4 A Unifying Framework for Deciding Synchronizability

e1

e2e′
2

e3 e′
3

e4e′
4

p q r
m1

m2

m3

m4

Figure 1 MSC M1.

(1) for every pair (e, f) ∈ ◁, there is a send action send(p, q, m) ∈ Σ such that λ(e) =
send(p, q, m), λ(f) = rec(p, q, m), and #Send(p,q,)(→+, e) = #Rec(p,q,)(→+, f),

(2) for all f ∈ E such that λ(f) is a receive action, there is e ∈ E such that e◁ f .
Finally, letting ≤M = (→ ∪◁)∗, we require that ≤M is a partial order.

Condition (1) above ensures that every (p2p) channel (p, q) behaves in a FIFO manner.
By Condition (2), every receive event has a matching send event. Note that, however, there
may be unmatched send events in an MSC. We let SendEv(M) = {e ∈ E | λ(e) is a send
action}, RecEv(M) = {e ∈ E | λ(e) is a receive action}, Matched(M) = {e ∈ E | there is
f ∈ E such that e◁ f}, and Unm(M) = {e ∈ E | λ(e) is a send action and there is no f ∈ E
such that e ◁ f}. We do not distinguish isomorphic MSCs and let MSC be the set of all
MSCs over the given sets P and M.

▶ Example 1. For a set of processes P = {p, q, r} and a set of messages M = {m1, m2, m3, m4},
M1 = (E , →,◁, λ) is an MSC where, for example, e2 ◁ e′

2 and e′
3 → e4. The dashed

arrow means that the send event e1 does not have a matching receive, so e1 ∈ Unm(M1).
Moreover, e2 ≤M1 e4, but e1 ̸≤M1 e4. We can find a total order ⇝ ⊇ ≤M1 such that
e1 ⇝ e2 ⇝ e′

2 ⇝ e3 ⇝ e′
3 ⇝ e4 ⇝ e′

4. We call ⇝ a linearization, which is formally defined
below.

Mailbox MSCs. For an MSC M = (E , →,◁, λ), we define an additional binary relation
that represents a constraint under the mailbox semantics, where each process has only one
incoming channel. Let ⊏M ⊆ E × E be defined by: e1 ⊏M e2 if there is q ∈ P such that
λ(e1) ∈ Send(, q,), λ(e2) ∈ Send(, q,), and one of the following holds:

e1 ∈ Matched(M) and e2 ∈ Unm(M), or
e1 ◁ f1 and e2 ◁ f2 for some f1, f2 ∈ Eq such that f1 →+ f2.

We let ⪯M = (→ ∪ ◁ ∪ ⊏M)∗. Note that ≤M ⊆ ⪯M . We call M ∈ MSC a mailbox
MSC if ⪯M is a partial order. Intuitively, this means that events can be scheduled in a
way that corresponds to the mailbox semantics, i.e., with one incoming channel per process.
Following the terminology in [8], we also say that a mailbox MSC satisfies causal delivery.
The set of mailbox MSCs M ∈ MSC is denoted by MSCmb.

▶ Example 2. MSC M1 is a mailbox MSC. Indeed, even though the order ⇝ defined in
Example 1 does not respect all mailbox constraints, particularly the fact that e4 ⊏M1 e1,
there is a total order ⇝ ⊇ ⪯M1 such that e2 ⇝ e3 ⇝ e′

3 ⇝ e4 ⇝ e1 ⇝ e′
2 ⇝ e′

4. We call ⇝ a
mailbox linearization, which is formally defined below.

Linearizations, Prefixes, and Concatenation. Consider M = (E , →,◁, λ) ∈ MSC. A p2p
linearization (or simply linearization) of M is a (reflexive) total order ⇝ ⊆ E × E such that
≤M ⊆ ⇝. Similarly, a mailbox linearization of M is a total order ⇝ ⊆ E × E such that

B. Bollig, C. Di Giusto, A. Finkel, L. Laversa, E. Lozes, and A. Suresh 14:5

⪯M ⊆⇝. That is, every mailbox linearization is a p2p linearization, but the converse is not
necessarily true (Example 2). Note that an MSC is a mailbox MSC iff it has at least one
mailbox linearization.

Let M = (E , →,◁, λ) ∈ MSC and consider E ⊆ E such that E is ≤M -downward-
closed, i.e, for all (e, f) ∈ ≤M such that f ∈ E, we also have e ∈ E. Then, the MSC
(E, → ∩ (E × E),◁ ∩ (E × E), λ′), where λ′ is the restriction of E to E, is called a prefix of
M . In particular, the empty MSC is a prefix of M . We denote the set of prefixes of M by
Pref (M). This is extended to sets L ⊆ MSC as expected, letting Pref (L) =

⋃
M∈L Pref (M).

▶ Lemma 3. Every prefix of a mailbox MSC is a mailbox MSC.

Let M1 = (E1, →1,◁1, λ1) and M2 = (E2, →2,◁2, λ2) be two MSCs. Their concatenation
M1 · M2 = (E , →,◁, λ) is defined if, for all (p, q) ∈ C, e1 ∈ Unm(M1), and e2 ∈ E2 such
that λ(e1) ∈ Send(p, q,) and λ(e2) ∈ Send(p, q,), we have e2 ∈ Unm(M2). As expected,
E is the disjoint union of E1 and E2, ◁ = ◁1 ∪ ◁2, λ is the “union” of λ1 and λ2, and
→ = →1 ∪ →2 ∪ R. Here, R contains, for all p ∈ P such that (E1)p and (E2)p are non-empty,
the pair (e1, e2) where e1 is the maximal p-event in M1 and e2 is the minimal p-event in M2.
Note that M1 · M2 is indeed an MSC and that concatenation is associative.

2.2 Communicating Systems
We now recall the definition of communicating systems (aka communicating finite-state
machines or message-passing automata), which consist of finite-state machines Ap (one for
every process p ∈ P) that can communicate through the FIFO channels from C.

▶ Definition 4. A communicating system over P and M is a tuple S = (Ap)p∈P. For each
p ∈ P, Ap = (Locp, δp, ℓ0

p) is a finite transition system where Locp is a finite set of local
(control) states, δp ⊆ Locp × Σp × Locp is the transition relation, and ℓ0

p ∈ Locp is the initial
state.

Given p ∈ P and a transition t = (ℓ, a, ℓ′) ∈ δp, we let source(t) = ℓ, target(t) = ℓ′,
action(t) = a, and msg(t) = m if a ∈ Send(, , m) ∪ Rec(, , m).

There are in general two ways to define the semantics of a communicating system. Most
often it is defined as a global infinite transition system that keeps track of the various local
control states and all (unbounded) channel contents. As, in this paper, our arguments are
based on a graph view of MSCs, we will define the language of S directly as a set of MSCs.
These two semantic views are essentially equivalent, but they have different advantages
depending on the context. We refer to [1] for a thorough discussion.

Let M = (E , →,◁, λ) be an MSC. A run of S on M is a mapping ρ : E →
⋃

p∈P δp that
assigns to every event e the transition ρ(e) that is executed at e. Thus, we require that

(i) for all e ∈ E , we have action(ρ(e)) = λ(e),
(ii) for all (e, f) ∈ →, target(ρ(e)) = source(ρ(f)),
(iii) for all (e, f) ∈ ◁, msg(ρ(e)) = msg(ρ(f)), and
(iv) for all p ∈ P and e ∈ Ep such that there is no f ∈ E with f → e, we have source(ρ(e)) =

ℓ0
p.

Letting run S directly on MSCs is actually very convenient. This allows us to associate
with S its p2p language and mailbox language in one go. The p2p language of S is Lp2p(S) =
{M ∈ MSC | there is a run of S on M}. The mailbox language of S is Lmb(S) = {M ∈ MSCmb |
there is a run of S on M}.

CONCUR 2021

14:6 A Unifying Framework for Deciding Synchronizability

ℓ0
p ℓ1

p ℓ2
p

send(p, q, m1) rec(q, p, m2)
Ap ℓ0

q ℓ1
q

ℓ2
qℓ3

q

send(q, p, m2)

send(q, r, m3)
rec(r, q, m4)

Aq

ℓ0
r ℓ1

r ℓ2
r

rec(q, r, m3) send(r, q, m4)
Ar

Figure 2 System S1.

Note that, following [8, 14], we do not consider final states or final configurations, as our
purpose is to reason about all possible traces that can be generated by S. The next lemma
is obvious for the p2p semantics and follows from Lemma 3 for the mailbox semantics.

▶ Lemma 5. For all com ∈ {p2p, mb}, Lcom(S) is prefix-closed: Pref (Lcom(S)) ⊆ Lcom(S).

▶ Example 6. Fig. 2 depicts S1 = (Ap, Aq, Ar) such that MSC M1 in Fig. 1 belongs to
Lp2p(S1) and to Lmb(S1). There is a unique run ρ of S1 on M1. We can see that (e′

3, e4) ∈ →
and target(ρ(e′

3)) = source(ρ(e4)) = ℓ1
r, (e2, e′

2) ∈ ◁M1 , and msg(ρ(e2)) = msg(ρ(e′
2)) = m2.

2.3 Conflict Graph
We now recall the notion of a conflict graph associated to an MSC defined in [8]. This graph
is used to depict the causal dependencies between message exchanges. Intuitively, we have
a dependency whenever two messages have a process in common. For instance, an SS−−→
dependency between message exchanges v and v′ expresses the fact that v′ has been sent after
v, by the same process. This notion is of interest because it was seen in [8] that the notion of
synchronizability in MSCs (which is studied in this paper) can be graphically characterized
by the nature of the associated conflict graph. It is defined in terms of linearizations in [14],
but we equivalently express it directly in terms of MSCs.

For an MSC M = (E , →,◁, λ) and e ∈ E , we define the type τ(e) ∈ {S, R} of e by
τ(e) = S if e ∈ SendEv(M) and τ(e) = R if e ∈ RecEv(M). Moreover, for e ∈ Unm(M), we
let µ(e) = e, and for (e, e′) ∈ ◁, we let µ(e) = µ(e′) = (e, e′).

▶ Definition 7 (Conflict graph). The conflict graph CG(M) of an MSC M = (E , →,◁, λ)
is the labeled graph (Nodes, Edges), with Edges ⊆ Nodes × {S, R}2 × Nodes, defined by
Nodes = ◁ ∪ Unm(M) and Edges = {(µ(e), τ(e)τ(f), µ(f)) | (e, f) ∈ →+}. In particular, a
node of CG(M) is either a single unmatched send event or a message pair (e, e′) ∈ ◁.

3 Model Checking and Synchronizability

In this section, we survey two classical decision problems for communicating systems. The
first problem is the model-checking problem, in which one checks whether a given system
satisfies a given specification. A canonical specification language for MSCs is monadic
second-order (MSO) logic. However, model checking in full generality is undecidable. A
common approach is, therefore, to restrict the behavior of the given system to MSCs of
bounded (special) tree-width. Next, we introduce MSO logic and special tree-width.

3.1 Logic and Special Tree-Width
Monadic Second-Order Logic. The set of MSO formulas over MSCs (over P and M) is given
by the grammar φ ::= x → y | x ◁ y | λ(x) = a | x = y | x ∈ X | ∃x.φ | ∃X.φ | φ ∨ φ | ¬φ,
where a ∈ Σ, x and y are first-order variables, interpreted as events of an MSC, and X is a

B. Bollig, C. Di Giusto, A. Finkel, L. Laversa, E. Lozes, and A. Suresh 14:7

M |= Eσ if JσKM ̸= ∅ J→KM := → and J◁KM := ◁
JaKM := {e ∈ E | λ(e) = a} Jtest(σ)KM := {(e, e) | e ∈ JσKM }
J⟨π⟩σKM := {e ∈ E | ∃f ∈ JσKM : (e, f) ∈ JπKM } JjumpKM := E × E
JLoop⟨π⟩KM := {e ∈ E | (e, e) ∈ JπKM } Jπ1 + π2KM := Jπ1KM ∪ Jπ2KM

Jπ−1KM := {(e, f) ∈ E × E | (f, e) ∈ JπKM } Jπ∗KM :=
⋃

n∈NJπKn
M

Jπ1 · π2KM := {(e, f) ∈ E × E | ∃g ∈ E : (e, g) ∈ Jπ1KM and (g, f) ∈ Jπ2KM }

Figure 3 Semantics of LCPDL.

second-order variable, interpreted as a set of events. We assume that we have an infinite
supply of variables, and we use common abbreviations such as ∧, ∀, etc. The satisfaction
relation is defined in the standard way and self-explanatory. For example, the formula
¬∃x.(

∨
a∈Send(, ,) λ(x) = a ∧ ¬matched(x)) with matched(x) = ∃y.x◁ y says that there

are no unmatched send events. It is not satisfied by MSC M1 of Fig. 1, as message m1 is not
received, but by M4 from Fig. 6.

Given a sentence φ, i.e., a formula without free variables, we let L(φ) denote the set of
(p2p) MSCs that satisfy φ. It is worth mentioning that the (reflexive) transitive closure of a
binary relation defined by an MSO formula with free variables x and y, such as x → y, is
MSO-definable so that the logic can freely use formulas of the form x →+ y or x ≤ y (where
≤ is interpreted as ≤M for the given MSC M). Therefore, the definition of a mailbox MSC
can be readily translated into the formula φmb = ¬∃x.∃y.(¬(x = y) ∧ x ⪯ y ∧ y ⪯ x) so that
we have L(φmb) = MSCmb. Here, x ⪯ y is obtained as the MSO-definable reflexive transitive
closure of the union of the MSO-definable relations →, ◁, and ⊏. In particular, we may
define x ⊏ y by:

x ⊏ y =
∨
q∈P

a,b∈Send(,q,)

λ(x) = a ∧ λ(y) = b∧

(
matched(x) ∧ ¬matched(y)

∨ ∃x′.∃y′.(x◁ x′ ∧ y ◁ y′ ∧ x′ →+ y′)

)
.

Propositional Dynamic Logic (PDL). For better complexity, we also consider PDL with
Loop and Converse, henceforth called LCPDL (cf. [6, 7, 27] for more details). Its syntax is:

Φ ::= Eσ | Φ ∨ Φ | ¬Φ (sentence)
σ ::= a | σ ∨ σ | ¬σ | ⟨π⟩σ | Loop⟨π⟩ (event formula)
π ::= → | ◁ | test(σ) | jump | π + π | π · π | π∗ | π−1 (path formula)

where a ∈ Σ. We use the symbol ⊤ to denote a tautology event formula (such as a ∨ ¬a).
We describe the semantics for the logic in Fig. 3 (apart from the obvious cases). A sentence
Φ is evaluated wrt. an MSC M = (E , →,◁, λ). An event formula σ is evaluated wrt. M and
an event e ∈ E so that it defines a unary relation JσKM ⊆ E . Finally, a path formula π is
evaluated over two events, and so it defines a binary relation JπKM ⊆ E × E . Finally, we let
L(Φ) = {M ∈ MSC | M |= Φ}. Note that every LCPDL-definable property is MSO-definable.

It can be seen below that the mailbox semantics can be readily translated into the LCPDL
formula Φmb = ¬E (Loop⟨(◁+ → +⊏)+⟩) such that L(Φmb) = MSCmb. Hereby, we let

⊏ = ◁ · →+ ·◁−1 +
∑
q∈P

a,b∈Send(,q,)

test(a) ·◁ · jump · test(b ∧ ¬⟨◁⟩⊤) .

CONCUR 2021

14:8 A Unifying Framework for Deciding Synchronizability

Special Tree-Width. Special tree-width [12], is a graph measure that indicates how close a
graph is to a tree (we may also use classical tree-width instead). This or similar measures are
commonly employed in verification. For instance, tree-width and split-width have been used
in [26] and, respectively, [2, 13] to reason about graph behaviors generated by pushdown and
queue systems. There are several ways to define the special tree-width of an MSC. We adopt
the following game-based definition from [7].

Adam and Eve play a two-player turn based “decomposition game” whose positions are
MSCs with some pebbles placed on some events. More precisely, Eve’s positions are marked
MSC fragments (M, U), where M = (E , →,◁, λ) is an MSC fragment (an MSC with possibly
some edges from ◁ or → removed) and U ⊆ E is the subset of marked events. Adam’s
positions are pairs of marked MSC fragments. A move by Eve consists in the following steps:
1. marking some events of the MSC resulting in (M, U ′) with U ⊆ U ′ ⊆ E ,
2. removing (process and/or message) edges whose endpoints are marked,
3. dividing (M, U) in (M1, U1) and (M2, U2) such that M is the disjoint (unconnected)

union of M1 and M2 and marked nodes are inherited.
When it is Adam’s turn, he simply chooses one of the two marked MSC fragments. The
initial position is (M, ∅) where M is the (complete) MSC at hand. A terminal position is
any position belonging to Eve such that all events are marked. For k ∈ N, we say that the
game is k-winning for Eve if she has a (positional) strategy that allows her, starting in the
initial position and independently of Adam’s moves, to reach a terminal position such that,
in every single position visited along the play, there are at most k + 1 marked events.

▶ Fact 8 ([7]). The special tree-width of an MSC is the least k such that the associated game
is k-winning for Eve.

The set of MSCs whose special tree-width is at most k is denoted by MSCk-stw.

3.2 Model Checking
In general, even simple verification problems, such as control-state reachability, are unde-
cidable for communicating systems [9]. However, they are decidable when we restrict to
behaviors of bounded special tree-width, which motivates the following definition of a generic
bounded model-checking problem for com ∈ {p2p, mb}:
Input: Two finite sets P and M, a communicating system S, an MSO sentence φ, and k ∈ N
(given in unary).
Question: Do we have Lcom(S) ∩ MSCk-stw ⊆ L(φ)?

▶ Fact 9 ([7]). The bounded model-checking problem for com = p2p is decidable. When the
formulas φ are from LCPDL, then the problem is solvable in exponential time.

Note that [7] does not employ the LCPDL modality jump, but it can be integrated easily.
Using φmb or Φmb, we obtain the corresponding result for mailbox systems as a corollary:

▶ Theorem 10. The bounded model-checking problem for com = mb is decidable. When the
formulas φ are from LCPDL, then the problem is solvable in exponential time.

3.3 Synchronizability
The above model-checking approach is incomplete in the sense that a positive answer does
not imply correctness of the whole system. The system may still produce behaviors of special
tree-width greater than k that violate the given property. However, if we know that a system
only generates behaviors from a class whose special tree-width is bounded by k, we can still
conclude that the system is correct.

B. Bollig, C. Di Giusto, A. Finkel, L. Laversa, E. Lozes, and A. Suresh 14:9

Table 1 Summary of the decidability of the synchronizability problem in various classes.

Peer-to-Peer Mailbox
Weakly synchronous Undecidable [Thm. 22] EXPTIME [Thm. 21]
Weakly k-synchronous Decidable [8, 14] and [Thm. 29]
Strongly k-synchronous — Decidable [Thm. 35]
Existentially k-p2p-bounded Decidable [18, Prop. 5.5]
Existentially k-mailbox-bounded — Decidable [Prop. 40]

This motivates the synchronizability problem. Several notions of synchronizability have
been introduced in the literature. However, they all amount to asking whether all behaviors
generated by a given communicating system have a particular shape, i.e., whether they are
all included in a fixed (or given) set of MSCs C. Thus, the synchronizability problem is
essentially an inclusion problem, namely Lp2p(S) ⊆ C or Lmb(S) ⊆ C. We show that, for
decidability, it is enough to have that C is MSO-definable and special-tree-width-bounded
(STW-bounded): We call C ⊆ MSC

(i) MSO-definable if there is an MSO-formula φ such that L(φ) = C,
(ii) LCPDL-definable if there is an an LCPDL-formula Φ such that L(Φ) = C,
(iii) STW-bounded if there is k ∈ N such that C ⊆ MSCk-stw.

An important component of the decidability proof is the following lemma, which shows
that we can reduce synchronizability wrt. an STW-bounded class to bounded model-checking.

▶ Lemma 11. Let S be a communicating system, com ∈ {p2p, mb}, k ∈ N, and C ⊆ MSCk-stw.
Then, Lcom(S) ⊆ C iff Lcom(S) ∩ MSC(k+2)-stw ⊆ C.

The result follows from the following lemma. Note that a similar property was shown
in [18, Proposition 5.4] for the specific class of existentially k-bounded MSCs.

▶ Lemma 12. Let k ∈ N and C ⊆ MSCk-stw. For all M ∈ MSC \ C, we have (Pref (M) ∩
MSC(k+2)-stw) \ C ̸= ∅.

We now have all ingredients to state a generic decidability result for synchronizability:

▶ Theorem 13. Fix finite sets P and M. Suppose com ∈ {p2p, mb} and let C ⊆ MSC be an
MSO-definable and STW-bounded class (over P and M). The following problem is decidable:
Given a communicating system S, do we have Lcom(S) ⊆ C?

Proof. Consider the MSO-formula φ such that L(φ) = C, and let k ∈ N such that C ⊆
MSCk-stw. We have Lcom(S) ⊆ C Lemma 11⇐⇒ Lcom(S) ∩ MSC(k+2)-stw ⊆ C ⇐⇒ Lcom(S) ∩
MSC(k+2)-stw ⊆ L(φ). The latter can be solved thanks to Fact 9 and Theorem 10. ◀

▶ Remark 14. Note that, in some cases (cf. Section 4), P and M are part of the input and the
concrete class C may be parameterized by a natural number so that it is part of the input,
too. Then, we need to be able to compute the MSO formula characterizing the class as well
as the bound on the special tree-width.

4 Application to Concrete Classes of Synchronizability

In this section, we instantiate our general framework by specific classes. Table 1 gives a
summary of the results.

CONCUR 2021

14:10 A Unifying Framework for Deciding Synchronizability

q rp
m1
m2

m
3

m
3

m4

m4

m5

Figure 4 MSC M2.

4.1 A New General Class: Weakly Synchronous MSCs
We first introduce the class of weakly synchronous MSCs. This is a generalization of
synchronous MSCs studied earlier, in [8, 14], which we shall discuss later. We say an MSC
is weakly synchronous if it is breakable into exchanges where an exchange is an MSC that
allows one to schedule all sends before all receives. Let us define this formally:

▶ Definition 15 (exchange). Let M = (E , →,◁, λ) be an MSC. We say that M is an exchange
if SendEv(M) is a ≤M -downward-closed set.

▶ Definition 16 (weakly synchronous). We say that M ∈ MSC is weakly synchronous if it is
of the form M = M1 · . . . · Mn such that every Mi is an exchange.

We use the term weakly to distinguish from variants introduced later.

▶ Example 17. Consider the MSC M2 in Fig. 4. It is is weakly synchronous. Indeed, m1,
m2, and m5 are independent and can be put alone in an exchange. Repetitions of m3 and
m4 are interlaced, but they constitute an exchange, as we can do all sends and then all
receptions.

An easy adaptation of a characterization from [14] yields the following result for weakly
synchronous MSCs:

▶ Proposition 18. Let M be an MSC. Then, M is weakly synchronous iff no RS edge occurs
on any cyclic path in the conflict graph CG(M).

It is easily seen that the characterization from Proposition 18 is LCPDL-definable:

▶ Corollary 19. The sets of weakly synchronous MSCs and weakly synchronous mailbox
MSCs are LCPDL-definable. Both formulas have polynomial size.

Moreover, under the mailbox semantics, we can show:

▶ Proposition 20. The set of weakly synchronous mailbox MSCs is STW-bounded (in fact,
it is included in MSC4|P|-stw).

Proof. Let M be fixed, and let us sketch Eve’s winning strategy. Let n = |P|.
The first step for Eve is to split M in exchanges. She first disconnects the first exchange

from the rest of the graph (2n pebbles are needed), then she disconnects the second exchange
from the rest of the graph (2n pebbles needed, plus n pebbles remaining from the first round),
and so on for each exchange.

So we are left with designing a winning strategy for Eve with 4n + 1 pebbles on the graph
of an exchange M0, where initially there are (at most) n pebbles placed on the first event
of each process and also (at most) n pebbles placed on the last event of each process. Eve

B. Bollig, C. Di Giusto, A. Finkel, L. Laversa, E. Lozes, and A. Suresh 14:11

also places (at most) n pebbles on the last send event of each process and also (at most)
n pebbles on the first receive event of each process. Eve erases the (at most) n →-edges
between the last send event and the first receive event.

We are now in a configuration that will be our invariant.
Let us fix a mailbox linearization of M0 and let e be the first send event in this linearization.
if e is an unmatched send of process p, Eve places her last pebble on the next send event
of p (if it exists), let us call it e′. Then Eve erases the →-edge (e, e′), and now e is
completely disconnected, so it can be removed and the pebble can be taken back.
if e ◁ e′, with e′ a receive event of process q, then due to the mailbox semantics e′ is
the first receive event of q, so it has a pebble placed on it. Eve removes the ◁-edge
between e and e′, then using the extra pebble she disconnects e and places a pebble on
the →-successor of e, then she also disconnects e′ and places a pebble on the →-successor
of e′.

After that, we are back to our invariant, so we can repeat the same strategy with the second
send event of the linearization, and so on until all edges have been erased. ◀

We obtain the following result as a corollary. Note that it assumes the mailbox semantics.

▶ Theorem 21. The following problem is decidable in exponential time: Given P, M, and a
communicating system S (over P and M), is every MSC in Lmb(S) weakly synchronous?

Proof. According to Corollary 19, we determine the LCPDL formula Φwsmb such that
L(Φwsmb) is the set of weakly synchronous mailbox MSCs. Moreover, recall from Propos-
ition 20 that the special tree-width of all weakly synchronous mailbox MSCs is bounded
by 4|P|. By Lemma 11, Lmb(S) ⊆ L(Φwsmb) iff Lmb(S) ∩ MSC(4|P|+2)-stw ⊆ L(Φwsmb). The
latter is an instance of the bounded model-checking problem. As the length of Φwsmb is
polynomial in |P|, we obtain that the original problem is decidable in exponential time by
Theorem 10. ◀

For the same reasons, the model-checking problem for “weakly synchronous” systems
is decidable. Interestingly, a reduction from Post’s correspondence problem shows that
decidability fails when adopting the p2p semantics:

▶ Theorem 22. The following problem is undecidable: Given finite sets P and M as well as
a communicating system S, is every MSC in Lp2p(S) weakly synchronous?

4.2 Weakly k-Synchronous MSCs
This negative result for the p2p semantics motivates the study of other classes. In fact, our
framework captures several classes introduced in the literature.

▶ Definition 23 (k-exchange). Let M = (E , →,◁, λ) be an MSC and k ∈ N. We call M a
k-exchange if M is an exchange and |SendEv(M)| ≤ k.

Let us now recall the definition from [8,14], but (equivalently) expressed directly in terms
of MSCs rather than via executions. It differs from the weakly synchronous MSCs in that
here, we insist on constraining the number of messages sent per exchange to be at most k.

▶ Definition 24 (weakly k-synchronous). Let k ∈ N. We say that M ∈ MSC is weakly
k-synchronous if it is of the form M = M1 · . . . · Mn such that every Mi is a k-exchange.

▶ Example 25. MSC M3 in Fig. 5 is weakly 1-synchronous, as it can be decomposed into
three 1-exchanges (the decomposition is depicted by the horizontal dashed lines). We remark
that M3 ∈ MSCmb. Note that there is a p2p linearization that respects the decomposition.

CONCUR 2021

14:12 A Unifying Framework for Deciding Synchronizability

p q r

m1

m2

m3

Figure 5 MSC M3.

On the other hand, a mailbox linearization needs to reorganize actions from different MSCs:
the sending of m3 needs to be done before the sending of m1. Note that M1 in Fig. 1 is also
weakly 1-synchronous.

▶ Proposition 26. Let k ∈ N. The set of weakly k-synchronous p2p (mailbox, respectively)
MSCs is effectively MSO-definable.

In fact, MSO-definability essentially follows from the following known theorem:

▶ Theorem 27 ([14]). Let M be an MSC. Then, M is weakly k-synchronous iff every SCC
in its conflict graph CG(M) is of size at most k and no RS edge occurs on any cyclic path.

This property is similar to the graphical characterization of weakly synchronous MSCs,
except for the condition that every SCC in the conflict graph is of size at most k. Furthermore,
it is easy to establish a bound on the special tree-width:

▶ Proposition 28. Let k ∈ N. The set of MSCs that are weakly k-synchronous have special
tree-width bounded by 2k + |P|.

Hence, we can conclude that the class of weakly k-synchronous MSCs is MSO-definable
and STW-bounded. As a corollary, we get the following (known) decidability result, but via
an alternative proof:

▶ Theorem 29 ([8, 14]). For com ∈ {p2p, mb}, the following problem is decidable: Given
finite sets P and M, a communicating system S, and k ∈ N, is every MSC in Lcom(S) weakly
k-synchronous?

Proof. We proceed similarly to the proof of Theorem 21. For the given P, M, and k, we
first determine, using Proposition 26, the MSO formula φk such that L(φk) is the set of
weakly k-synchronous p2p/mailbox MSCs. From Proposition 28, we know that the special
tree-width of all weakly k-synchronous MSCs is bounded by 2k + |P|. By Lemma 11, we have
Lcom(S) ⊆ L(φk) iff Lcom(S) ∩ MSC(2k+|P|+2)-stw ⊆ L(φk). The latter is an instance of the
bounded model-checking problem. By Fact 9 and Theorem 10, we obtain decidability. ◀

▶ Remark 30. The set of weakly k-synchronous MSCs is not directly expressible in LCPDL
(the reason is that LCPDL does not have a built-in counting mechanism). However, its
complement is expressible in the extension of LCPDL with existentially quantified propositions
(we need k + 1 of them). The model-checking problem for this kind of property is still in
EXPTIME and, therefore, so is the problem from Theorem 29 when k is given in unary. It is
very likely that our approach can also be used to infer the PSPACE upper bound from [8]
by showing bounded path width and using finite word automata instead of tree automata.
Finally, note that the problem to decide whether there exists an integer k ∈ N such that all
MSCs in Lcom(S) are weakly k-synchronous has recently been studied in [20] and requires
different techniques.

B. Bollig, C. Di Giusto, A. Finkel, L. Laversa, E. Lozes, and A. Suresh 14:13

p q

m1

m1

m1

Figure 6 MSC M4.

Observe also that we can remove the constraint of all the sends preceding all the receives
in a k-exchange, and still have decidability. We then have the following definition.

▶ Definition 31 (modified k-exchange). Let M = (E , →,◁, λ) be an MSC and k ∈ N. We
call M a modified k-exchange if |SendEv(M)| ≤ k.

We extend this notion to consider modified weakly k-synchronous executions as before,
and the graphical characterization of this property is that there are at most k nodes in every
SCC of the conflict graph. Hence, this class is also MSO-definable, and since each modified
k-exchange has at most 2k events, it also has bounded special tree-width.

4.3 Strongly k-Synchronous MSCs and Other Classes
Our framework can be applied to a variety of other classes. Here we show how the decidability
results can be shown for a variant of the class of weakly k-synchronous MSCs.

▶ Definition 32. Let M = (E , →,◁, λ) ∈ MSCmb. We call M strongly k-synchronous if
it can be written as M = M1 · . . . · Mn such that every MSC Mi = (Ei, →i,◁i, λi) is a
k-exchange and, for all (e, f) ∈ ⊏M , there are 1 ≤ i ≤ j ≤ n such that e ∈ Ei and f ∈ Ej.

▶ Example 33. MSC M4 ∈ MSCmb in Fig. 6 is strongly 1-synchronous. Indeed, we can
decompose it into 1-exchanges and this decomposition allows for a total order compatible with
⊏M4 . Moreover, MSC M3 in Fig. 5, which is weakly 1-synchronous, is strongly 3-synchronous.
Indeed, we need to put the three messages in the same k-exchange to regain our total order.
Finally, for all k, MSC M1 in Fig. 1 is not strongly k-synchronous, as we cannot put all
messages in the same k-exchange, where all sends are followed by all receptions. Here, this is
not possible as the reception of m3 has to take place before the sending of m4.

▶ Proposition 34. For all k ∈ N, the set of strongly k-synchronous mailbox MSCs is
MSO-definable and STW-bounded.

The proof proceeds similarly to what has been shown in the previous cases, but MSO-
definability now relies on an extended conflict graph. As a corollary, we thus obtain:

▶ Theorem 35. The following problem is decidable: Given finite sets P and M, a commu-
nicating system S, and k ∈ N, is every MSC in Lmb(S) strongly k-synchronous?

▶ Remark 36. Only mailbox MSCs are considered for the definition of strongly k-synchronous
MSCs for the following reason: A natural p2p analogue of Definition 32 would require from
the decomposition that, for all (e, f) ∈ ≤M , there are indices 1 ≤ i ≤ j ≤ n such that e ∈ Ei

and f ∈ Ej . But this is always satisfied. So the natural definition of “strongly k-synchronous
MSCs” would coincide with weakly k-synchronous MSCs.

CONCUR 2021

14:14 A Unifying Framework for Deciding Synchronizability

p q r
m

1

m
1

m
1

m
2

m
2

m3
m3

m3

Figure 7 MSC M5.

Like the variant for the case of weakly synchronous MSCs, we can also generalize strongly
k-synchronous MSCs by removing the restriction on the number of messages per exchange:

▶ Definition 37. Let M = (E , →,◁, λ) ∈ MSCmb. We call M strongly synchronous if it can
be written as M = M1 · . . . · Mn such that every MSC Mi = (Ei, →i,◁i, λi) is an exchange
and, for all (e, f) ∈ ⊏M , there are indices 1 ≤ i ≤ j ≤ n such that e ∈ Ei and f ∈ Ej.

Similarly to the constructions for strongly k-synchronous MSCs, we can obtain a graphical
characterization where we only look for the absence of RS-edges in a cycle. Hence, this class
is also MSO-definable (in fact, even LCPDL-definable) and STW-bounded.

4.4 Existentially k-Bounded MSCs
Now, we turn to existentially k-bounded MSCs [18,19,24]. Synchronizability has been studied
for the p2p case in [18], so we only consider the mailbox case here. A linearization ⇝ of an
MSC M = (E , →,◁, λ) ∈ MSC is called k-mailbox-bounded if, for all e ∈ Matched(M), say
with λ(e) = send(p, q, m), we have #Send(,q,)(⇝, e) − #Rec(,q,)(⇝, e) ≤ k .

▶ Definition 38. Let M = (E , →,◁, λ) ∈ MSC and k ∈ N. We call M existentially
k-mailbox-bounded if it has some mailbox linearization that is k-mailbox-bounded.

Note that every existentially k-mailbox-bounded MSC is a mailbox MSC.

▶ Example 39. MSC M5 in Fig. 7 is existentially 1-mailbox-bounded, as witnessed by
the (informally given) linearization s(q, p, m2) ⇝ s(p, q, m1) ⇝ s(q, r, m3) ⇝ r(q, r, m3) ⇝
r(p, q, m1) ⇝ s(p, q, m1) ⇝ r(q, p, m2) ⇝ s(q, r, m3) . . . Note that M5 is neither weakly nor
strongly synchronous as we cannot divide it into exchanges.

▶ Proposition 40. For all k ∈ N, the set of existentially k-mailbox-bounded MSCs is
MSO-definable and STW-bounded.

This extension is also valid for the p2p definition of existentially k-bounded MSCs, which
were addressed in [18]. Finally, our framework can also be adapted to treat universally
bounded systems [21,24].

5 Relations Between Classes

In this section we study how the classes introduced and recalled so far are related to each
other. Notably, depending on the semantics (p2p or mailbox), we obtain two different
classifications. The results are summed up in Figures 8 and 9. Here, we define existentially
k-p2p-bounded MSCs and universally bounded counterparts as expected.

B. Bollig, C. Di Giusto, A. Finkel, L. Laversa, E. Lozes, and A. Suresh 14:15

Weakly synchronizable
Existentially bounded

Universally
bounded

Weakly
k-synchronizable S5S8S1S3S6S7

Figure 8 Hierarchy of classes for p2p systems.

Weakly synchro.
Existentially

bounded

Weakly
k-synchro.

Strongly
synchro.

Strongly
k-synchro. Universally

bounded

S2

S9

S7

S13 S3

S11

S10

S6

S4 S12

S1

S5

S8

Figure 9 Hierarchy of classes for mailbox systems.

To refer to those systems we use the following terminology: a system S is called weakly
synchronizable (resp. strongly synchronizable) if all MSCs M in the respective language
are weakly synchronous (resp. strongly synchronous). A system is called weakly k-synchro-
nizable (resp. strongly k-synchronizable, existentially bounded or universally bounded) if all
MSCs are weakly k-synchronous (resp. strongly k-synchronous, existentially k-bounded or
universally k-bounded). A similar comparison relating existentially bounded systems, weakly
k-synchronizable systems, as well as other systems that have not been described here, can
also be found in [23] for p2p systems.

We give some results showing the inclusion of certain classes. Recall that strong k-
synchronizability is tailored to mailbox systems (cf. also Remark 36) so that, for p2p systems,
we only consider the case of weak (k-)synchronizability.

▶ Proposition 41. Every weakly k-synchronous MSC is existentially k-p2p-bounded.
Moreover, every strongly k-synchronous mailbox MSC is existentially k-mailbox-bounded.

Finally, if a system is weakly synchronizable and universally k-bounded then, there is
a k′ such that it is also weakly k′-synchronizable. The equivalent property is also valid for
strong classes.

▶ Proposition 42. Every weakly (resp. strongly) synchronizable and universally k-bounded
system is weakly (resp. strongly) k′-synchronizable for a k′.

6 Conclusion and Perspectives

We have presented a unifying framework based on MSO logic and (special) tree-width, that
brings together existing definitions, explains their good properties, and allows one to easily
derive other, more general definitions and decidability results for synchronizability. Let us
notice that the send-synchronizability does not fit in our framework because the question
Lp2p(S) ⊆ C0 would be decidable (by Theorem 13), where C0 is the set of send-synchronizable
MSCs, but this property is equivalent to checking whether the system S is send-synchronizable
and this last property is undecidable [16].

Many other related questions could be studied in the future. For example, we could
think about the hypotheses to add to our general framework to make the problem “does
there exist an k ≥ 0 such that Lp2p(S) ⊆ Ck?” decidable. From very recent work [20], one

CONCUR 2021

14:16 A Unifying Framework for Deciding Synchronizability

knows that the problem “does there exist an k ≥ 0 such that the system is (weakly/strongly)
k-synchronizable?" is decidable; but it remains to be seen if it would be possible to obtain
these results by showing that these properties can be expressed in a decidable extension of
our framework. Let us remark that the decidability of the question whether there exists
an k ≥ 0 such that Lp2p(S) ⊆ Ck allows us to build a bounded model checking strategy by
first deciding whether there exists such an k ≥ 0 and then by testing if Lp2p(S) ⊆ Ck for
k = 0, 1, 2 One may use this strategy for weakly/strongly synchronizable systems, but
not for existentially bounded systems (except for deadlock-free systems) or for deterministic
deadlock-free universally bounded systems. In [23], Lange and Yoshida introduced an
asynchronous compatibility property and it would also be interesting to verify whether this
property could be expressed into our framework.

References

1 C. Aiswarya and Paul Gastin. Reasoning about distributed systems: WYSIWYG (invited talk).
In Venkatesh Raman and S. P. Suresh, editors, 34th International Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS 2014, December 15-17,
2014, New Delhi, India, volume 29 of LIPIcs, pages 11–30. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.11.

2 C. Aiswarya, Paul Gastin, and K. Narayan Kumar. Verifying communicating multi-pushdown
systems via split-width. In Automated Technology for Verification and Analysis - 12th Inter-
national Symposium, ATVA 2014, volume 8837 of Lecture Notes in Computer Science, pages
1–17. Springer, 2014.

3 Samik Basu and Tevfik Bultan. Choreography conformance via synchronizability. In Sadagopan
Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi
Kumar, editors, Proceedings of the 20th International Conference on World Wide Web, WWW
2011, Hyderabad, India, March 28 - April 1, 2011, pages 795–804. ACM, 2011. doi:10.1145/
1963405.1963516.

4 Bernard Boigelot and Patrice Godefroid. Symbolic verification of communication protocols
with infinite state spaces using qdds (extended abstract). In Rajeev Alur and Thomas A.
Henzinger, editors, Computer Aided Verification, 8th International Conference, CAV ’96, New
Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings, volume 1102 of Lecture Notes in
Computer Science, pages 1–12. Springer, 1996. doi:10.1007/3-540-61474-5_53.

5 Benedikt Bollig, Alain Finkel, and Amrita Suresh. Bounded reachability problems are
decidable in FIFO machines. In Igor Konnov and Laura Kovacs, editors, Proceedings of
the 31st International Conference on Concurrency Theory (CONCUR’20), volume 171 of
Leibniz International Proceedings in Informatics, pages 49:1–49:17, Vienna, Austria, 2020.
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CONCUR.2020.49.

6 Benedikt Bollig, Marie Fortin, and Paul Gastin. Communicating finite-state machines, first-
order logic, and star-free propositional dynamic logic. J. Comput. Syst. Sci., 115:22–53,
2021.

7 Benedikt Bollig and Paul Gastin. Non-sequential theory of distributed systems. CoRR,
abs/1904.06942, 2019. arXiv:1904.06942.

8 Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On the completeness of
verifying message passing programs under bounded asynchrony. In Hana Chockler and Georg
Weissenbacher, editors, Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part II, volume 10982 of Lecture Notes in Computer Science, pages 372–391.
Springer, 2018. doi:10.1007/978-3-319-96142-2_23.

9 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983. doi:10.1145/322374.322380.

https://doi.org/10.4230/LIPIcs.FSTTCS.2014.11
https://doi.org/10.1145/1963405.1963516
https://doi.org/10.1145/1963405.1963516
https://doi.org/10.1007/3-540-61474-5_53
https://doi.org/10.4230/LIPIcs.CONCUR.2020.49
http://arxiv.org/abs/1904.06942
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1145/322374.322380

B. Bollig, C. Di Giusto, A. Finkel, L. Laversa, E. Lozes, and A. Suresh 14:17

10 Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communication.
Information and Computation, 202(2):166–190, 2005. doi:10.1016/j.ic.2005.05.006.

11 Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable channels are easier
to verify than perfect channels. Information and Computation, 124(1):20–31, 1996. URL:
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/CFP-IC96.ps.

12 Bruno Courcelle. Special tree-width and the verification of monadic second-order graph
properties. In FSTTCS, volume 8 of LIPIcs, pages 13–29, 2010. doi:10.4230/LIPIcs.FSTTCS.
2010.13.

13 Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown
systems via split-width. In Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012 -
Concurrency Theory - 23rd International Conference, CONCUR 2012, Newcastle upon Tyne,
UK, September 4-7, 2012. Proceedings, volume 7454 of Lecture Notes in Computer Science,
pages 547–561. Springer, 2012. doi:10.1007/978-3-642-32940-1_38.

14 Cinzia Di Giusto, Laetitia Laversa, and Étienne Lozes. On the k-synchronizability of systems.
In Jean Goubault-Larrecq and Barbara König, editors, Foundations of Software Science
and Computation Structures - 23rd International Conference, FOSSACS 2020, Proceedings,
volume 12077 of Lecture Notes in Computer Science, pages 157–176. Springer, 2020. doi:
10.1007/978-3-030-45231-5_9.

15 Javier Esparza, Pierre Ganty, and Rupak Majumdar. A perfect model for bounded verification.
In Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer
Science, LICS ’12, pages 285–294, Washington, DC, USA, 2012. IEEE Computer Society.
doi:10.1109/LICS.2012.39.

16 Alain Finkel and Étienne Lozes. Synchronizability of communicating finite state machines is
not decidable. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,
editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 122:1–122:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

17 Alain Finkel and M. Praveen. Verification of Flat FIFO Systems. Logical Methods in Computer
Science, 20(4), 2020. doi:10.23638/LMCS-16(4:4)2020.

18 Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating automata with bounded
channels. Fundamenta Informaticae, 80(1-3):147–167, 2007.

19 Blaise Genest, Anca Muscholl, and Dietrich Kuske. A kleene theorem for a class of communic-
ating automata with effective algorithms. In Cristian Calude, Elena Calude, and Michael J.
Dinneen, editors, Developments in Language Theory, 8th International Conference, DLT 2004,
Auckland, New Zealand, December 13-17, 2004, Proceedings, volume 3340 of Lecture Notes in
Computer Science, pages 30–48. Springer, 2004. doi:10.1007/978-3-540-30550-7_4.

20 Cinzia Di Giusto, Laetitia Laversa, and Étienne Lozes. Guessing the buffer bound for
k-synchronizability. In Implementation and Application of Automata - 25th International
Conference, CIAA 2021, Proceedings, Lecture Notes in Computer Science. Springer, 2021. To
appear.

21 Jesper G. Henriksen, Madhavan Mukund, K. Narayan Kumar, Milind Sohoni, and P.S.
Thiagarajan. A theory of regular msc languages. Information and Computation, 202(1):1–38,
2005.

22 Dietrich Kuske and Anca Muscholl. Communicating automata, 2014.
23 Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating

session automata. CoRR, abs/1901.09606, 2019. arXiv:1901.09606.
24 Markus Lohrey and Anca Muscholl. Bounded MSC communication. In Mogens Nielsen and

Uffe Engberg, editors, Foundations of Software Science and Computation Structures, 5th
International Conference, FOSSACS 2002. Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings,
volume 2303 of Lecture Notes in Computer Science, pages 295–309. Springer, 2002. doi:
10.1007/3-540-45931-6_21.

CONCUR 2021

https://doi.org/10.1016/j.ic.2005.05.006
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/CFP-IC96.ps
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.13
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.13
https://doi.org/10.1007/978-3-642-32940-1_38
https://doi.org/10.1007/978-3-030-45231-5_9
https://doi.org/10.1007/978-3-030-45231-5_9
https://doi.org/10.1109/LICS.2012.39
https://doi.org/10.23638/LMCS-16(4:4)2020
https://doi.org/10.1007/978-3-540-30550-7_4
http://arxiv.org/abs/1901.09606
https://doi.org/10.1007/3-540-45931-6_21
https://doi.org/10.1007/3-540-45931-6_21

14:18 A Unifying Framework for Deciding Synchronizability

25 Markus Lohrey and Anca Muscholl. Bounded MSC communication. Inf. Comput., 189(2):160–
181, 2004. doi:10.1016/j.ic.2003.10.002.

26 P. Madhusudan and Gennaro Parlato. The tree width of auxiliary storage. In Thomas Ball
and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 283–294. ACM, 2011.

27 Robert S. Streett. Propositional dynamic logic of looping and converse. In Proceedings of
the 13th Annual ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee,
Wisconsin, USA, pages 375–383. ACM, 1981.

28 Gregor von Bochmann. Communication protocols and error recovery procedures. Operating
Systems Review, 9(3):45–50, 1975.

https://doi.org/10.1016/j.ic.2003.10.002

	1 Introduction
	2 Preliminaries
	2.1 Message Sequence Charts
	2.2 Communicating Systems
	2.3 Conflict Graph

	3 Model Checking and Synchronizability
	3.1 Logic and Special Tree-Width
	3.2 Model Checking
	3.3 Synchronizability

	4 Application to Concrete Classes of Synchronizability
	4.1 A New General Class: Weakly Synchronous MSCs
	4.2 Weakly k-Synchronous MSCs
	4.3 Strongly k-Synchronous MSCs and Other Classes
	4.4 Existentially k-Bounded MSCs

	5 Relations Between Classes
	6 Conclusion and Perspectives

