
Dynamic Data-Race Detection Through the
Fine-Grained Lens
Rucha Kulkarni #

University of Illinois at Urbana-Champaign, IL, USA

Umang Mathur #

University of Illinois at Urbana-Champaign, IL, USA

Andreas Pavlogiannis #

Aarhus University, Denmark
Abstract

Data races are among the most common bugs in concurrency. The standard approach to data-race
detection is via dynamic analyses, which work over executions of concurrent programs, instead of
the program source code. The rich literature on the topic has created various notions of dynamic
data races, which are known to be detected efficiently when certain parameters (e.g., number of
threads) are small. However, the fine-grained complexity of all these notions of races has remained
elusive, making it impossible to characterize their trade-offs between precision and efficiency.

In this work we establish several fine-grained separations between many popular notions of
dynamic data races. The input is an execution trace σ with N events, T threads and L locks.
Our main results are as follows. First, we show that happens-before HB races can be detected in
O(N ·min(T ,L)) time, improving over the standard O(N · T) bound when L = o(T). Moreover,
we show that even reporting an HB race that involves a read access is hard for 2-orthogonal vectors
(2-OV). This is the first rigorous proof of the conjectured quadratic lower-bound in detecting HB
races. Second, we show that the recently introduced synchronization-preserving races are hard to
detect for 3-OV and thus have a cubic lower bound, when T = Ω(N). This establishes a complexity
separation from HB races which are known to be strictly less expressive. Third, we show that
lock-cover races are hard for 2-OV, and thus have a quadratic lower-bound, even when T = 2 and
L = ω(logN). The similar notion of lock-set races is known to be detectable in O(N · L) time, and
thus we achieve a complexity separation between the two. Moreover, we show that lock-set races
become hitting-set (HS)-hard when L = Θ(N), and thus also have a quadratic lower bound, when
the input is sufficiently complex. To our knowledge, this is the first work that characterizes the
complexity of well-established dynamic race-detection techniques, allowing for a rigorous comparison
between them.

2012 ACM Subject Classification Software and its engineering → Software testing and debugging;
Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases dynamic analyses, data races, fine-grained complexity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.16

Related Version Full Version: https://arxiv.org/abs/2107.03569

Funding Umang Mathur : partially funded by a Google PhD Fellowship and by the Simons Institute
for the Theory of Computing.

1 Introduction

Concurrent programs that communicate over shared memory are prone to data races. Two
events are conflicting if they access the same memory location and one (at least) modifies that
location. Data races occur when conflicting accesses happen concurrently between different
threads, and form one of the most common bugs in concurrency. In particular, data races are
often symptomatic of bugs in software like data corruption [5, 20, 27], and they have been
deemed pure evil [6] due to the problems they have caused in the past [44]. Moreover, many
compiler optimizations are unsound in the presence of data races [37, 41], while data-race
freeness is often a requirement for assigning well-defined semantics to programs [7].

© Rucha Kulkarni, Umang Mathur, and Andreas Pavlogiannis;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 16; pp. 16:1–16:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ruchark2@illinois.edu
https://orcid.org/0000-0002-7636-6856
mailto:umathur3@illinois.edu
https://orcid.org/0000-0002-7610-0660
mailto:pavlogiannis@cs.au.dk
https://orcid.org/0000-0002-8943-0722
https://doi.org/10.4230/LIPIcs.CONCUR.2021.16
https://arxiv.org/abs/2107.03569
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Dynamic Data-Race Detection Through the Fine-Grained Lens

The importance of data races in concurrency has led to a multitude of techniques for
detecting them efficiently [4, 40]. By far the most standard approach is via dynamic analyses.
Instead of analyzing the full program, dynamic analyzers try to predict the existence of data
races by observing and analyzing concurrent executions [38, 21, 29]. As full dynamic data
race prediction is NP-hard in general [25], researchers have developed several approximate
notions of dynamic races, accompanied by efficient techniques for detecting each notion.

Happens-before races. The most common technique for detecting data races dynamically
is based on Lamport’s happens-before (HB) partial order [23]. Two conflicting events form
an HB race if they are unordered by HB, as the lack of ordering between them indicates
the fact that they may execute concurrently, thereby forming a data race. The standard
approach to HB race detection is via the use of vector clocks [19], and has seen wide success
in commercial race detectors [36]. As vector clock computation is known to require Θ(N · T)
time on traces of N events and T threads [10], HB race detection is often assumed to suffer
the same bound, and has thus been a subject of further practical optimizations [30, 16].

Synchronization preserving races. HB races were recently generalized to sync(hronization)-
preserving races [26]. Intuitively, two conflicting events are in a sync-preserving race if the
observed trace can be soundly reordered to a witness trace in which the two events are
concurrent, but without reordering synchronization events (e.g., locking events). Similar to
HB races, sync-preserving races can be detected in linear time when the number of threads
is constant. However, the dependence on the number of threads is cubic for sync-preserving
races, as opposed to the linear dependence for HB races. On the other hand, sync-preserving
races are known to offer better precision in program analysis.

Races based on the locking discipline. The locking discipline dictates that threads that
access a common memory location must do so inside critical sections, using a common lock,
when performing the access [40]. Although this discipline is typically not enforced, it is
considered good practice, and hence instances that violate this principle are often considered
indicators of erroneous behavior. For this reason, there have been two popular notions of
data races based on the locking discipline, namely lock-cover races [14] and lock-set races [34].
Both notions are detectable in linear time when the number of locks is constant, however,
lock-set race detection is typically faster in practice, which also comes at the cost of being
less precise.

Observe that, although techniques for all aforementioned notions of races are generally
thought to operate in linear time, they only do so assuming certain parameters, such as the
number of threads, are constant. However, as these techniques are deployed in runtime, often
with extremely long execution traces, they have to be as efficient as absolutely possible, often
in scenarios when these parameters are very large. When a data-race detection technique is
too slow for a given application, the developers face a dilemma: do they look for a faster
algorithm, or for a simpler abstraction (i.e., a different notion of dynamic races)? For these
reasons, it is important to understand the fine-grained complexity of the problem at hand
with respect to such parameters. Fine-grained lower bounds can rule out the possibility of
faster algorithms, and thus help the developers focus on new abstractions that are more
tractable for the given application. Motivated by such questions, in this work we settle the
fine-grained complexity of dynamically detecting several popular notions of data races.

R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:3

1.1 Our Contributions
Here we give a full account of the main results of this work, while we refer to later sections for
precise definitions and proofs. We also refer to Section 2.3 for relevant notions in fine-grained
complexity and popular hypotheses. The input is always a concurrent trace σ of length N ,
consisting of T threads, L locks, and V variables.

Happens-before race. We first study the fine-grained complexity of HB races, as they form
the most popular class of dynamic data races. The task of most techniques is to report all
events in σ that participate in an HB race, which is known to take O(N · T) time [19]. Note
that the bound is quadratic when T = Θ(N), and multiple heuristics have been developed
to address it in practice (see e.g., [16]). Our first result shows that polynomial improvements
below this quadratic bound are unlikely.

▶ Theorem 1. For any ϵ > 0, there is no algorithm that detects even a single HB race that
involves a read in time O(N 2−ϵ), unless the OV hypothesis fails.

Orthogonal vectors (OV) is a well-studied problem with a long-standing quadratic worst-
case upper bound. The associated hypothesis states that there is no sub-quadratic algorithm
for the problem [43]. It is also known that the strong exponential time hypothesis (SETH)
implies the Orthogonal Vectors hypothesis [42]. Thus, under the OV hypothesis, Theorem 1
establishes a quadratic lower bound for HB race detection.

Note that the hardness of Theorem 1 arises out of the requirement to detect HB races
that involve a read. A natural follow-up question is whether detecting if the input contains
any HB race (i.e., not necessarily involving a read) has a similar lower bound based on SETH.
Our next theorem shows that under the non-deterministic SETH (NSETH) [9], there is no
fine-grained reduction from SETH that proves any lower bound for this problem above N 3/2.

▶ Theorem 2. For any ϵ > 0, there is no (2N ,N 3/2+ϵ)-fine-grained reduction from SAT to
the problem of detecting any HB race, unless NSETH fails.

Given the impossibility of Theorem 2, it would be desirable to at least show a super-linear
lower bound for detecting any HB data race. To tackle this question, we show that detecting
any HB race is hard for the general problem of model checking first-order formulas quantified
by ∀∃∃ on structures of size n with m relational tuples (denoted FO(∀∃∃)).

▶ Theorem 3. For any ϵ > 0, if there is an algorithm for detecting any HB race in time
O(N 1+ϵ), then there is an algorithm for FO(∀∃∃) formulas in time O(m1+ϵ).

It is known that FO(∀∃∃) can be solved in O(m3/2) time [17], which yields a bound
O(n3) for dense structures (i.e., when m = Θ(n2)). Theorem 3 implies that if m3/2 is the
best possible bound for FO(∀∃∃), then detecting any HB race cannot take O(N 1+ϵ) time for
any ϵ < 1/2. Although improvements for FO(∀∃∃) over the current O(m3/2) bound might
be possible, we find that a truly linear bound O(m) would require major breakthroughs 1.
Under this hypothesis, Theorem 3 implies a super-linear bound for HB races.

Finally, we give an improved upper bound for this problem when L = o(T).

▶ Theorem 4. Deciding whether σ has an HB race can be done in time O(N ·min(T ,L)).

In fact, similar to existing techniques [16], the algorithm behind Theorem 4 detects all
variables that participate in an HB race (instead of just reporting σ as racy).

1 Even the well-studied problem of testing triangle freeness, which is a special case of the similarly flavored
FO(∃∃∃), has the super-linear bound O(nω), where ω is the matrix multiplication exponent.

CONCUR 2021

16:4 Dynamic Data-Race Detection Through the Fine-Grained Lens

Synchronization-preserving races. Next, we turn our attention to the recently introduced
sync-preserving races [25]. It is known that detecting sync-preserving races takes O(N ·V ·T 3)
time. As sync-preserving races are known to be more expressive than HB races, the natural
question is whether sync-preserving races can be detected more efficiently, e.g., by an
algorithm that achieves a bound similar to Theorem 4 for HB races. Our next theorem
answers this question in negative.

▶ Theorem 5. For any ϵ > 0, there is no algorithm that detects even a single sync-preserving
race in time O(N 3−ϵ), unless the 3-OV hypothesis fails. Moreover, the statement holds even
for traces over a single variable.

As HB races take at most quadratic time, Theorem 5 shows that the increased ex-
pressiveness of sync-preserving races incurs a complexity overhead that is unavoidable in
general.

Races based on the locking discipline. We now turn our attention to data races based on
the locking discipline, namely lock-cover races and lock-set races. It is known that lock-cover
races are more expressive than lock-set races. On the other hand, existing algorithms run
in O(N 2 · L) time for lock-cover races and in O(N · L) time for lock-set races, and thus
hint that the former are computationally harder to detect. Our first theorem makes this
separation formal, by showing that even with just two threads, having slightly more that
logarithmically many locks implies a quadratic hardness for lock-cover races.

▶ Theorem 6. For any ϵ > 0, any T ≥ 2 and any L = ω(logN), there is no algorithm that
detects even a single lock-cover race in time O(N 2−ϵ), unless the OV hypothesis fails.

Observe that the O(N · L) bound for lock-set races also becomes quadratic, when the
number of locks is unbounded (i.e., L = Θ(N)). Is there a SETH-based quadratic lower
bound similar to Theorem 6 for this case? Our next theorem rules out this possibility, again
under NSETH.

▶ Theorem 7. For any ϵ > 0, there is no (2N ,N 1+ϵ)-fine-grained reduction from SAT to
the problem of detecting any lock-set race, unless NSETH fails.

Hence, even though we desire a quadratic lower bound, Theorem 7 rules out any super-
linear lower-bound based on SETH. Alas, our next theorem shows that a quadratic lower
bound for lock-set races does exist, based on the hardness of the hitting set (HS) problem.

▶ Theorem 8. For any ϵ > 0 and any T = ω(logn), there is no algorithm that detects even
a single lock-set race in time O(N 2−ϵ), unless the HS hypothesis fails.

Hitting set is a problem similar to OV, but has different quantifier structure. Just like
the OV hypothesis, the HS hypothesis states that there is no sub-quadratic algorithm for
the problem [3]. Although HS implies OV, the opposite is not known, and thus Theorem 8
does not contradict Theorem 7. In conclusion, we have that both lock-cover and lock-set
races have (conditional) quadratic lower bounds, though the latter is based on a stronger
hypothesis (HS), and requires more threads and locks for hardness to arise.

Finally, on our way to Theorem 7, we obtain the following theorem.

▶ Theorem 9. Deciding whether a trace σ has a lock-set race on a given variable x can be
performed in O(N) time. Thus, deciding whether σ has a lock-set race can be performed in
O(N ·min(L,V)) time.

Hence, Theorem 9 strengthens the O(N ·L) upper bound for lock-set races when V = o(L).

R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:5

1.2 Related Work
Dynamic data-race detection. There exists a rich literature in dynamic techniques for
data race detection. Methods based on vector clocks (Djit algorithm [19]) using Lamport’s
Happens Before (HB) [23] and the lock-set principle in Eraser [34] were the first ones to
popularize dynamic analysis for detecting data races. Later work attempted to increase the
performance of these notions using optimizations as in [30] and FastTrack [16], altogether
different algorithms (e.g., the GoldiLocks algorithm [15]), and hybrid techniques [28]. HB
and lock-set based race detection are respectively sound (but incomplete) and complete (but
unsound) variants of the more general problem of data-race prediction [35]. While earlier
work on data race prediction focused on explicit [35] or symbolic [32, 33] enumeration, recent
efforts have focused on scalability [38, 24, 21, 29, 31, 39]. The more recent notion [26] of
sync-preserving races generalizes the notion of HB. As the complexity of race prediction is
prohibitive (NP-hard in general [25]), this work characterizes the fine-grained complexity of
popular, more relaxed notions of dynamic races that take polynomial time.

Fine-grained complexity. Traditional complexity theory usually shows a problem is in-
tractable by proving it NP-hard, and tractable by showing it is in P. For algorithms with
large input sizes, this distinction may be too coarse. It becomes important to understand,
even for problems in P, whether algorithms with smaller degree polynomials than the known
are possible, or if there are fine-grained lower bounds making this unlikely. Fine-grained
complexity involves proving such lower bounds, by showing relationships between problems
in P, with an emphasis on the degree of the complexity polynomial, and is nowadays a field
of very active study. We refer to [8] for an introductory, and to [43] for a more extensive
exposition on the topic. Fine-grained arguments have also been instrumental in characterizing
the complexity of various problems in concurrency, such as bounded context-switching [11],
safety verification [12], data-race prediction [25] and consistency checking [13].

2 Preliminaries

2.1 Concurrent Program Executions and Data Races
Traces and Events. We consider execution traces (or simply traces) generated by concurrent
programs, under the sequential consistency memory model. Under this memory model, a
trace σ is a sequence of events. Each event e is labeled with a tuple lab(e) = ⟨t, op⟩, where t
is the (unique) identifier of the thread that performs the event e, and op is the operation
performed in e. We will often write e = ⟨t, op⟩ instead of lab(e) = ⟨t, op⟩. For the purpose of
this presentation, an operation can be one of
(a) read (r(x)) from, or write (w(x)) to, a shared memory variable x, or
(b) acquire (acq(ℓ)) or release (rel(ℓ)) of a lock ℓ.

For an event e = ⟨t, op⟩, we use tid(e) and op(e) to denote respectively the thread identifier
t and the operation op. For a trace σ, we use Eventsσ to denote the set of events that appear
in σ. Similarly, we will use Threadsσ, Locksσ and Varsσ to denote respectively the set of
threads, locks and shared variables that appear in trace σ. We denote by N = |Eventsσ|,
T = |Threadsσ|, L = |Locksσ|, and V = |Varsσ|. The set of read events and write events
on variable x ∈ Varsσ will be denoted by Readsσ(x) and Writesσ(x), and further we let
Accessesσ(x) = Readsσ(x) ∪ Writesσ(x). Similarly, we let Acquiresσ(ℓ) and Releasesσ(ℓ)
denote the set of lock-acquire and lock-release events, respectively, of σ on lock ℓ. The trace
order of σ, denoted ≤σ

tr, is the total order on Eventsσ induced by the sequence σ. Finally,
the thread-order of σ, denoted ≤σ

TO is the smallest partial order on Eventsσ such that for any
two events e1, e2 ∈ Eventsσ, if e1 ≤σ

tr e2 and tid(e1) = tid(e2), then e1 ≤σ
TO e2.

CONCUR 2021

16:6 Dynamic Data-Race Detection Through the Fine-Grained Lens

Traces are assumed to be well-formed in that critical sections on the same lock do not
overlap. For a lock ℓ ∈ Locksσ, let σ|ℓ be the projection of the trace σ on the set of events
Acquiresσ(ℓ) ∪ Releasesσ(ℓ). Also, let t1, . . . tk be the thread identifiers in Threadsσ. Well-
formedness then entails that for each lock ℓ, the projection σ|ℓ is a prefix of some string
in the language of the grammar with production rules S → ε|S · St1 |S · St2 | · · · |S · Stk

and
Sti → ⟨ti, acq(ℓ)⟩ · ⟨ti, rel(ℓ)⟩ and start symbol S. Thus, every release event e has a unique
matching acquire event, which we denote by matchσ(e). Likewise for an acquire event e,
matchσ(e) denotes the unique matching release event if one exists. For an acquire event e, the
critical section of e is the set of events CSσ(e) = {f | e ≤σ

TO f ≤σ
TO matchσ(e)} if matchσ(e)

exists, and CSσ(e) = {f | e ≤σ
TO f} otherwise.

Data Races. Two events e1, e2 ∈ Eventsσ are said to be conflicting if they are performed by
different threads, they are access events touching the same memory location, and at least one
of them is a write access. Formally, we have (i) tid(e1) ̸= tid(e2), (ii) e1, e2 ∈ Accessesσ(x)
for some x ∈ Varsσ, and (iii) {e1, e2} ∩Writesσ(x) ̸= ∅. An event e ∈ Eventsσ is said to be
enabled in a prefix ρ of σ, if for every event e′ ̸= e with e′ ≤σ

TO e, we have e′ ∈ Eventsρ. A
data race in σ is a pair of conflicting events (e1, e2) such that there is a prefix ρ in which
both e1 and e2 are simultaneously enabled.

2.2 Notions of Dynamic Data Races
As the problem of determining whether a concurrent program has an execution with a data
race is undecidable, dynamic techniques observe program traces and report whether certain
events indicate the presence of a race. Here we describe in detail some popular approaches
to dynamic race detection that are the subject of this work.

Happens-Before Races. Given a trace σ, the happens before order ≤σ
HB is the smallest

partial order on Eventsσ such that
(a) ≤σ

TO⊆≤σ
HB, and

(b) for any lock ℓ ∈ Locksσ and for events e ∈ Releasesσ(ℓ) and f ∈ Acquiresσ(ℓ), if e ≤σ
tr f

then e ≤σ
HB f .

A pair of conflicting events (e1, e2) is an HB-race in σ if they are unordered by HB, i.e.,
e1 ̸≤σ

HB e2 and e2 ̸≤σ
HB e1. The associated decision question is, given a trace σ, determine

whether σ has an HB race. Typically HB race detectors are tasked to report all events that
form HB race with an earlier event in the trace [36, 2, 1]). That is, they solve the following
function problem:given a trace σ, determine all events e2 ∈ Eventsσ for which there exists
an event e1 ∈ Eventsσ such that e1 ≤σ

tr e2, and (e1, e2) is an HB race of σ. The standard
algorithm for solving both versions of the problem is a vector-clock algorithm that runs in
O(N · T) time [19].

Synchronization Preserving Races. Next, we present the notion of sync(hronization)-
preserving races [25]. For a trace σ and a read event e, we use lwσ(e) to denote the write
event observed by e. That is, e′ = lwσ(e) is the last (according to the trace order ≤σ

tr) write
event e′ of σ such that e and e′ access the same variable and e′ ≤σ

tr e; if no such e′ exists,
then we write lwσ(e) = ⊥. A trace ρ is said to be a correct reordering of trace σ, if
(a) Eventsρ ⊆ Eventsσ

(b) Eventsρ is downward closed with respect to ≤σ
TO, and further ≤ρ

TO⊆≤σ
TO, and

(c) for every read event e ∈ Eventsρ, lwρ(e) = lwσ(e).

R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:7

t1 t2

1 acq(ℓ)
2 w(x)
3 rel(ℓ)
4 w(x)
5 acq(ℓ)
6 rel(ℓ)

t1 t2

1 w(x)
2 acq(ℓ)
3 rel(ℓ)
4 acq(ℓ)
5 rel(ℓ)
6 w(x)

t1 t2

1 acq(ℓ)
2 w(x)
3 rel(ℓ)
4 acq(ℓ)
5 r(x)
6 rel(ℓ)
7 w(x)

t1 t2

1 acq(ℓ1)
2 acq(ℓ2)
3 w(x)
4 rel(ℓ2)
5 rel(ℓ1)
6 acq(ℓ2)
7 acq(ℓ3)
8 w(x)
9 rel(ℓ3)

10 rel(ℓ2)
11 acq(ℓ1)
12 acq(ℓ3)
13 w(x)
14 rel(ℓ3)
15 rel(ℓ1)

(a) HB-race. (b) Sync-preserving race. (c) Lock-cover race. (d) Lockset race.

Figure 1 Types of data races.

Further, ρ is sync-preserving with respect to σ if for every lock ℓ and for any two acquire
events e1, e2 ∈ Acquiresρ(ℓ), we have e1 ≤ρ

tr e2 iff e1 ≤σ
tr e2. Thus, the order of critical sections

on the same lock is the same in σ and ρ.
A pair of conflicting events (e1, e2) is a sync-preserving race in σ if σ has a sync-preserving

correct reordering ρ such that (e1, e2) is a data race of ρ. The associated decision question
is, given a trace σ, determine whether σ has a sync-preserving race. As with HB races, we
are typically interested in reporting all events e2 ∈ Eventsσ for which there exists an event
e1 ∈ Eventsσ such that e1 ≤σ

tr e2, and (e1, e2) is an sync-preserving race of σ. It is known
one can report all such events e2 in time O(N · V · T 3).

Lock-Cover and Lock-Set Races. Lock-cover and lock-set races indicate violations of the
locking discipline. For an event e in a trace σ, let locksHeldσ(e) = {ℓ | ∃f ∈ Acquiresσ(ℓ), such
that e ∈ CSσ(f)}, i.e., locksHeldσ(e) is the set of locks held by thread tid(e) when e is
executed. A pair (e1, e2) of conflicting events might indicate a data race if locksHeldσ(e1) ∩
locksHeldσ(e2) = ∅. Although this condition doesn’t guarantee the presence of a race, it
constitutes a violation of the locking discipline and can be further investigated.

A pair of conflicting events (e1, e2) is a lock-cover race if locksHeldσ(e1)∩ locksHeldσ(e2) =
∅. The decision question is, given a trace σ, determine if σ has a lock-cover race. The
problem is solvable in O(N 2 · L) time, by checking the above condition over all conflicting
event pairs.

As the algorithm for lock-cover races takes quadratic time, developers often look for less
expensive indications of violations of locking discipline, called lock-set races (as proposed by
Eraser race detector [34]). A trace σ has a lock-set race on variable x ∈ Varsσ if
(a) there exists a pair of conflicting events (e1, e2) ∈Writesσ(x)× Accessesσ(x), and
(b)

⋂
e∈Accessesσ(x) locksHeldσ(e) = ∅.

The associated decision question is, given a trace σ, determine if σ has a lock-set race.
Note that a lock-cover race implies a lock-set race, but not vice versa. On the other hand,
determining whether σ has a lock-set race is easily performed in O(N · L) time.

Example. We illustrate the different notions of races in Figure 1. We use ei to denote the
ith event of the trace in consideration. First consider the trace σa in Figure 1a. The events e2
and e4 are conflicting and unordered by ≤σa

HB, thus (e2, e4) is an HB-race. Second, in trace σb

CONCUR 2021

16:8 Dynamic Data-Race Detection Through the Fine-Grained Lens

of Figure 1b, the pair (e1, e6) is not an HB-race as e1 ≤σb

HB e6. But this is a sync-preserving
race witnessed by the correct reordering e4, e5, as both e1 and e6 are enabled. Third, in trace
σc of Figure 1c, the pair (e2, e7) is neither a sync-preserving race nor an HB race, but is a
lock-cover race as locksHeldσc(e2) ∩ locksHeldσc(e7) = ∅. Finally, the trace σd in Figure 1d
has no HB, sync-preserving or lock-cover race, as all w(x) are protected by a common lock.
But there is a lock-set race on x as there is no single lock that protects all w(x).

2.3 Fine-Grained Complexity and Popular Hypotheses
In this section we present notions of fine-grained complexity theory that are relevant to
our work. We refer to the survey [43] for a detailed exposition on the topic. This theory
relates the computational complexity of problems under the popular notion of fine-grained
reductions (See Appendix A for a formal definition).

Such a reduction A(a)⪯(b)B would be interesting for B if a(n) was a proven or well-believed
conjectured lower bound on A, thus implying a believable lower bound on B. One such
well-believed conjecture in complexity theory is SETH [18] (See Appendix A for a formal
definition) for the classic CNF-SAT problem.SETH implies a lower bound conjecture, denoted
by OVH, on the Orthogonal Vectors problem OV, as shown by a reduction from CNF-SAT
to k-OV [42]. Thus, a conditional lower bound under OVH implies one under SETH as well,
leading to numerous conditional lower bound results under OVH [See [43] for a detailed
literature review]. We next formally define k-OV and OVH.

An instance of k-OV is an integer d = ω(logn) and k sets Ai ⊆ {0, 1}d, i ∈ [k] such that
|Ai| = n, and denoted by OV(n, d, k).

▶ Problem 1 (Orthogonal Vectors (k-OV)). Given an instance OV(n, d, k), the k-OV problem
is to decide if there are k vectors ai ∈ Ai for all i ∈ [k] such that the sum of their point wise
product is zero, i.e.,

∑d
j=1

∏k
i=1 ai[j] = 0.

For ease of exposition, we denote OV(n, d, 2) and 2-OV by OV(n, d) and OV respectively.

▶ Hypothesis 1 (Orthogonal Vectors Hypothesis (OVH)). No randomized algorithm can solve
k-OV for an instance OV(n, d, k) in time O(n(k−ϵ) · poly(d)) for any constant ϵ > 0.

The following impossibility result from [9] proves that a reduction under SETH, and hence
under OVH, is not possible unless the NSETH conjecture (definition included in Appendix A)
is false.

▶ Theorem 10. If NSETH holds and a problem C ∈ NTIME[TC] ∩ coNTIME[TC], then for
any problem B that is SETH-hard under deterministic reductions with time TB , and γ > 0,
we cannot have a fine-grained reduction B (TB)⪯(c) C where c = T

(1+γ)
C .

We show some of our problems satisfy the conditions of Theorem 10, and hence show
lower bounds for these conditioned on two other hypotheses described below.

An instance of the hitting set problem, denoted by HS, is an integer d = ω(logn) and
sets X,Y ⊆ {0, 1}d, i ∈ [n] such that |X| = |Y | = n, and denoted by HS(n,d).

▶ Problem 2 (Hitting Sets (HS)). Given an instance HS(n,d), the HS problem is to decide if
there is a vector x ∈ X such that for all y ∈ Y we have x · y ̸= 0, or informally, some vector
in X hits all vectors in Y.

▶ Hypothesis 2 (Hitting Sets Hypothesis (HSH)). No randomized algorithm can solve HS for
an instance HS(n,d) in time O(n(2−ϵ) · poly(d)) for any constant ϵ > 0.

HSH implies OVH, but the reverse direction is not known.
Finally we consider the subclass of first order formulae over structures of size n and with

m relational tuples [17].

R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:9

▶ Problem 3 (FO(∀∃∃)). Decide if a given a first-order formula quantified by ∀∃∃ has a
model on a structure of size n with m relational tuples.

It is known that FO(∀∃∃) can be solved in O(m3/2) time using ideas from triangle
detection algorithms [17]. For dense graph structures (m = Θ(n2)), this yields the bound
O(n3). Although sub-cubic algorithms might be possible, achieving a truly quadratic bound
seems unlikely or at least highly non-trivial.

3 Happens-Before Races

In this section we prove the results for detecting HB races, i.e., Theorem 1 to Theorem 4.

3.1 Algorithm for HB Races
We first outline our O(N ·L)-time algorithm for checking if a trace σ has an HB-race, thereby
proving Theorem 4. As with the standard vector clock algorithm [19], our algorithm is
based on computing timestamps for each event. However, unlike the standard algorithm that
assigns thread-indexed timestamps, we use lock-indexed timestamps, or lockstamps, which we
formalize next. We fix the input trace σ in the rest of the discussion.

Lockstamps. A lockstamp is a mapping from locks to natural numbers (including infinity)
L : Locksσ → N ∪ {∞}. Given lockstamps L,L1, L2 and lock ℓ, we use the notation

(i) L[ℓ 7→ c] to denote the the lockstamp λm· if m = ℓ then c else L(m),
(ii) L1 ⊔ L2 to denote the pointwise maximum, i.e., (L1 ⊔ L2)(ℓ) = max(L1(ℓ), L2(ℓ)) for

every ℓ,
(iii) L1 ⊓ L2 to denote the pointwise minimum, and
(iv) L1 ⊑ L2 to denote the predicate ∀ℓ·L1(ℓ) ≤ L2(ℓ).

Our algorithm computes acquire and release lockstamps AcqLSσ
e and RelLSσ

e for every
event e ∈ Eventsσ, defined next. For a lock ℓ and acquire event f ∈ Acquiresσ(ℓ) (resp. release
event g ∈ Releasesσ(ℓ)), let posσ(f) = |{f ′ ∈ Acquiresσ(ℓ) | f ′ ≤σ

tr f}| (resp. posσ(g) = |{g′ ∈
Releasesσ(ℓ) | g′ ≤σ

tr g}|) denote the relative position of f (resp. g) among all acquire events
(resp. release events) of ℓ. Then, for an event e ∈ Eventsσ the lockstamps AcqLSσ

e and RelLSσ
e

are defined as follows (we assume that max∅ = 0 and min∅ =∞.)

AcqLSσ
e (ℓ) = λℓ ·max{posσ(f) | f ∈ Acquiresσ(ℓ), f ≤σ

HB e}

RelLSσ
e (ℓ) = λℓ ·min{posσ(g) | g ∈ Releasesσ(ℓ), e ≤σ

HB g}
(1)

Our O(N · L) algorithm now relies on the following observations. First, the HB partial
order can be inferred by comparing lockstamps of events (Lemma 11). Second, there is an
O(N · L) time algorithm that computes the acquire and release lockstamps for each event
in the input trace. Third, the existence of an HB race can be determined by examining
only O(N) pairs of conflicting events (using their lockstamps), instead of all possible O(N 2)
pairs (Lemma 12). Finally, we can also examine all the O(N) pairs in time O(N · L) (using
O(N) lockstamp comparisons) and thus determine the existence of an HB race in the same
asymptotic running time. Let us first state how we use lockstamps to infer the HB relation.

▶ Lemma 11. Let e1 ≤σ
tr e2 be events in σ such that tid(e1) ̸= tid(e2). We have, e1 ≤σ

HB
e2 ⇐⇒ ¬(AcqLSσ

e2
⊑ RelLSσ

e1
)

The proof of Lemma 11 is presented in Appendix B.1.

CONCUR 2021

16:10 Dynamic Data-Race Detection Through the Fine-Grained Lens

Computing Lockstamps. We now illustrate how to compute the acquire lockstamps for
all events, by processing the trace σ in a forward pass. For each thread t and lock ℓ, we
maintain lockstamp variables Ct and Lℓ. We also maintain an integer variable pℓ for each
lock ℓ that stores the index of the latest acq(ℓ) event in σ. Initially, we set Ct and Lm to
the bottom map λℓ · 0, and pm to 0, for each thread t and lock m. We traverse σ left to right,
and perform updates to the data structures as described in Algorithm 1, by invoking the
appropriate handler based on the thread and operation of the current event e = ⟨t, op⟩. At
the end of each handler, we assign the lockstamp AcqLSσ

e to e. The computation of release
lockstamps is similar, albeit in a reverse pass, and presented in Appendix B.1. Observe that
each step takes O(L) time giving us a total running time of O(N · L) to assign lockstamps.

Algorithm 1 Assigning acquire lockstamps to events in the trace.

1 acquire(t, ℓ):
2 pℓ ← pℓ + 1
3 Ct ← Ct[ℓ 7→ pℓ] ⊔ Lℓ

4 AcqLSσ
e ← Ct

5 release(t, ℓ):
6 Lℓ ← Ct

7 AcqLSσ
e ← Ct

8 read(t, x):
9 AcqLSσ

e ← Ct

10 write(t, x):
11 AcqLSσ

e ← Ct

We say that a pair of conflicting access events (e1, e2) (with e1 ≤σ
tr e2) to a variable x is a

consecutive conflicting pair if there is no event f ∈Writesσ(x) such that e1 <
σ
tr f <

σ
tr e2. We

make the following observation.

▶ Lemma 12. A trace σ has an HB-race iff there is pair of consecutive conflicting events in
σ that is an HB-race. Moreover, σ has at most O(N) many consecutive conflicting pairs of
events.

Checking for an HB race. We now describe the algorithm for checking for an HB race in σ.
We perform a forward pass on σ while storing the release lockstamps of some of the earlier
events. When processing an access event e, we check if it is in race with an earlier event
by comparing the acquire lockstamp of e with a previously stored release lockstamp. More
precisely, we maintain a variable Wx to store the release lockstamp of the last write event on
x, a variable tw

x to store the thread that performed this write and set Sx to store pairs (t, L)
of threads and release lockstamps of all the read events performed since the last write on x

was observed. Initially, tw
x = NIL, Wx = λℓ · ∞ and Sx = ∅. The updates performed at each

read or write event e are presented in the corresponding handler in Algorithm 2; no updates
need to be performed at acquire or release events in this case.

Algorithm 2 Determining the existence of an HB-race using lockstamps.

1 read(t, x):
2 if tw

x ̸∈ {NIL, t} ∧ AcqLSσ
e ⊑Wx then

3 declare “race” and exit
4 Sx ← Sx ∪ {(t, RelLSσ

e)}

5 write(t, x):
6 if tw

x ̸∈ {NIL, t} ∧ AcqLSσ
e ⊑Wx then

7 declare “race” and exit
8 if ∃(u, L) ∈ Sx, t ̸= u ∧ AcqLSσ

e ⊑ L then
9 declare “race” and exit

10 tw
x = t; Sx ← ∅; Wx ← RelLSσ

e

We refer to Appendix B.1 for the correctness, which concludes the proof of Theorem 4.

R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:11

3.2 Hardness Results for HB
We now turn our attention to the hardness results for HB race detection. To this end, we
prove Theorem 1, Theorem 2, and Theorem 3. We start with defining the graph Gσ

HB, which
can be thought of as a form of transitive reduction of the HB relation.For an integer n ≥ 1,
we use [n] to denote {1, . . . , n}.

The graph Gσ
HB. Given a trace σ, the graph Gσ

HB is a directed graph with node set Eventsσ,
and we have an edge (e1, e2) in Gσ

HB iff
(i) e2 is the immediate successor of e1 in thread order ≤σ

TO, or
(ii) e1 ∈ Acquiresσ(ℓ), e2 ∈ Releasesσ(ℓ), e1 ≤σ

tr e2, and there is no intermediate event in σ

that accesses the common lock ℓ.
It follows easily that for any two distinct events e1, e2, we have e1 ≤σ

HB e2 iff e2 is reachable
from e1 in Gσ

HB. Moreover, every node has out-degree ≤ 2 and thus Gσ
HB is sparse, while it

can be easily constructed in O(N) time.

OV hardness of write-read HB races
Given a OV instance OV(n, d) on two vector sets A1, A2, we create a trace σ as follows. For
the part A1 of OV, we introduce n·(d+ 1) threads {t(x,i)}x∈A1,i∈{0}∪[d], and d locks {li}i∈[d].
For the second part A2 we introduce n·d locks denoted by {l(y,i)}y∈A2,i∈[d], and n threads
{ty}y∈A2 . Finally, we have a single variable z.

We first describe the threads t(x, i). For each vector x, for each i ∈ [d] with x[i] = 1,
we introduce a critical section on the lock li. If x is the last vector of A1 with x[i] = 1, we
also insert the critical sections l(y,i) for all y ∈ [n], to t(x, i) after the critical section of lx.
Finally, we construct a thread tx,0 which starts with a write event w(z), followed by a critical
section on lock lx. We also insert a critical section on lock lx to all threads t(x, i), for i ∈ [d].
Hence the w(z) event is ordered by HB before all other events of t(x, i).

Now we describe the threads ty. For each i ∈ [d], if y[i] = 1, we add a critical section of
the lock l(y, i) in ty. We end the thread with a read event r(z).

Finally, we construct σ by first executing each thread t(x, i) in the pre-determined order
of x ∈ A1, followed by executing the traces ty in any order. See Figure 2 for an illustration.
We refer to Appendix B for the correctness, which concludes the proof of Theorem 1.

Conditional impossibility for SETH-based hardness
We now turn our attention to the problem of detecting a single HB race (i.e., not necessarily
involving a read event). We define a useful multi-connectivity problem on graphs.

w(z) w(z) w(z)

cs(lx1) cs(lx2) cs(lx3)

cs(l1)

cs(l3)

cs(l1,3)

cs(l2,3)

cs(l3,3)

cs(l1)

cs(l1,1)

cs(l2,1)

cs(l3,1)

cs(l2)

cs(l1,2)

cs(l2,2)

cs(l3,2)

cs(l1,1)

cs(l1,2)

cs(l1,3)

cs(l2,2)

cs(l2,3)

cs(l3,1)

cs(l3,2)

r(z)

r(z) r(z)

A1

101
100
010

A2

111
011
110

OV instance
For vectors in Y, n threads with

n × d locks, where thread i has crit-
ical section of lock (i, k) if yi[k] = 1.

We end each thread with r(z).

Figure 2 Reducing OV to finding HB races. For simplicity, we show the graph Gσ
HB instead of the

trace σ. The HB race is marked in red, corresponding to the orthogonal pair (x2, y2).

CONCUR 2021

16:12 Dynamic Data-Race Detection Through the Fine-Grained Lens

▶ Problem 4 (MCONN). Given a directed graph G with n nodes and m edges, and k pairs
of nodes (si, ti), i ∈ [k], decide if there is a path in G from every si to the corresponding ti.

Due to Lemma 12, detecting whether there is an HB race in σ reduces to testing MCONN
between all O(N) pairs of consecutive conflicting events in σ.

Short witnesses for HB races. We now prove Theorem 2. Following [9, Corollary 2], it
suffices to show that deciding MCONN can be done in NTIME[N 3/2] ∩ coNTIME[N 3/2]. At
a first glance, the bound NTIME[N 3/2] may seem too optimistic, as there are Θ(N) paths
Pi : si ⇝ ti, and each of them can have size Θ(N). Hence even just guessing these paths
appears to take quadratic time. Our proof shows that more succinct witnesses exist.
Proof of Theorem 2. First consider the simpler case where σ has an HB-race. Phrased as a
MCONN problem on Gσ

HB, it suffices to show that there is a pair (si, ti) such that si does not
reach ti. We construct a non-deterministic algorithm for this task that simply guesses the
pair (si, ti), and verifies that there is no si ⇝ ti path. Since Gσ

HB is sparse, this can be easily
verified in O(N) time.

Now consider the case when there is no HB-race. Phrased as a MCONN problem on Gσ
HB,

it suffices to verify that for every pair (si, ti), we have that si reaches ti. We construct a
non-deterministic algorithm for this task, as follows. The algorithm operates in two phases,
using a set A, initialized as A = {(si, ti)}i∈k.
1. In the first phase, the algorithm repeatedly guesses a node u that lies on at least N 1/2

paths si ⇝ ti, for (si, ti) ∈ A. It verifies this guess via a backward and a forward traversal
from u. The algorithm then removes all such (si, ti) from A, and repeats.

2. In the second phase, the algorithm guesses for every remaining (si, ti) ∈ A a path
Pi : si ⇝ ti, and verifies that Pi is a valid path.

Phase 1 can be execute at most N 1/2 iterations, while each iteration takes O(N) time since
Gσ

HB is sparse. Hence the total time for phase 1 is O(N 3/2). Phase 2 takes O(N 3/2) time, as
every node of Gσ

HB appears in at most N 1/2 paths Pi. The desired result follows. ◀

A super-linear lower bound for general HB races
Finally, we turn our attention to Theorem 3. The problem FO(∀∃∃) takes as input a first-order
formula ϕ with quantifier structure ∀∃∃ and whose atoms are tuples, and the task is to verify
whether ϕ has a model on a structure of n elements and m relational tuples. For simplicity,
we can think of the structure as a graph G of n nodes and m edges, and ϕ a formula that
characterizes the presence/absence of edges (e.g., ϕ = ∀x∃y∃z e(x, y) ∧ ¬e(y, z)).

The crux of the proof of Theorem 3 is showing the following lemma.

▶ Lemma 13. FO(∀∃∃) reduces to MCONN on a graph G with O(n) nodes in O(n2) time.

Finally, we arrive at Theorem 3 by constructing in O(n2) time a trace σ with N = Θ(n2)
such that Gσ

HB is similar in structure to the graph G of Lemma 13. In the end, detecting an
HB race in σ in O(N 1+ϵ) time yields an algorithm for FO(∀∃∃) in Θ(n2+ϵ′) time. We refer
to Appendix B for the details, which conclude the proof of Theorem 3.

4 Synchronization-Preserving Races

In this section, we discuss the dynamic detection of sync-preserving races, and prove The-
orem 5.

For notational convenience, we will frequently use the composite sync events. A sync(ℓ)
event represents the sequence acq(ℓ), r(xℓ), w(xℓ), rel(ℓ). The key ideas behind the sync
events are as follows. First, if Xℓ appears only in sync(ℓ) events, then there can be no race
involving these. Second, assume that in a trace σ we have two sync(ℓ) events e1 and e2 with
e1 <

σ
tr e2. Then any correct reordering ρ of σ with e2 ∈ Eventsρ satisfies the following.

R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:13

A1

11
11

A2

11
01

A3

11
10

3-OV instance.

tx

34 acq(l1)
35 rel(l1)
36 acq(l2)
37 rel(l2)
50 acq(X)
51 w(z)
52 rel(X)

ty1

42 sync(s1)
43 acq(l′1)
44 rel(l′1)
45 acq(l′2)
46 rel(l′2)
59 acq(Y)
60 r(z)
61 rel(Y)

ty2

47 sync(s2)
48 acq(l′2)
49 rel(l′2)
62 acq(Y)
63 r(z)
64 rel(Y)

t1

1 acq(l1)
2 sync(ℓ1)
3 acq(l′1)
4 rel(l1)

13 sync(ℓ1)
14 rel(l′1)

-z1 ends-
20 acq(l1)
21 sync(ℓ1)
22 acq(l′1)
23 rel(l1)
28 sync(ℓ1)
29 rel(l′1)

t2

5 acq(l2)
6 sync(ℓ2)
7 acq(l′2)
8 rel(l2)

15 sync(ℓ2)
16 rel(l′2)

-z1 ends-
24 sync(ℓ2)
30 sync(ℓ2)

tAux

9 sync(ℓ1)
10 sync(ℓ2)
11 sync(s1)
12 sync(s2)
17 acq(Y)
18 sync(ℓ1)
19 sync(ℓ2)
25 sync(ℓ1)
26 sync(ℓ2)
27 rel(Y)
31 acq(Y)
32 sync(ℓ1)
33 sync(ℓ2)
56 acq(X)
57 rel(X)
58 rel(Y)

Figure 3 Example reduction from 3-OV to sync race detection. The trace orders events as shown
by their numbering. We only show one thread tx, as the two x vectors are identical.

(a) We have e1 ∈ Eventsρ. This is because, for any two consecutive sync(ℓ) events e ≤σ
tr e

′,
lwσ(e′

r) = ew, where e′
r is the r(xℓ) event in the sync sequence e, and ew is the w(xℓ) event

in the sync sequence e.
(b) For every e′

1, e
′
2 ∈ Eventsρ such that e′

1 ≤σ
TO e1 and e2 ≤σ

TO e′
2, we have e′

1 <
ρ
tr e

′
2.

We hence use sync events to ensure certain orderings in any sync-preserving correct reordering
of σ that exposes a sync-preserving data race.

Informal Description
Before we proceed with the detailed reduction, we provide a high-level description. The input
to 3-OV is three sets of vectors A1 = {xi}i∈[n], A2 = {yi}i∈[n], and A3 = {zi}i∈[n]. Every vec-
tor x ∈ A1 is represented by a thread tx, ending with the critical section acq(X), w(z), rel(X).
Similarly, every vector y ∈ A2 is represented by a thread ty, ending with the critical section
acq(Y), r(z), rel(Y). There are no further access events, hence we can only have a race
between the write event of a thread tx and the read event of a thread ty. To encode the
vectors in A3, we use k threads tk, for k ∈ [d]. Each thread tk has n segments such that the
ith segment of tk encodes zi[k]. Finally, there is a single thread t that will have the property
(enforced using sync events) that it must be included in any reordering if and only if all the
threads encoding A3 are included entirely. The thread t also has locks that, if present in a
reordering, prevent the access events of z from being in race with each other.

If there is a triplet of vectors x ∈ A1, y ∈ A2 and z ∈ A3 that is orthogonal, then a valid
reordering of the trace σ need only contain the threads corresponding to A3 up to the events
of z; the thread t is not required to be a part of this reordering, causing the events of x and
y to be in race. If no such triple exists, then the notion of sync-preservation ensures that
all events of the threads representing A3 must be present in any valid reordering of σ, thus
enforcing t also to be a part of such a reordering. Thus, the access events belonging to some
threads tx and ty will be in race if and only if there is a vector z ∈ A3 that makes the triplet
x, y, z orthogonal.

Reduction
Given a 3-OV instance OV(n, d, 3) on vector sets A1 = {xi}i∈[n], A2 = {yi}i∈[n], and
A3 = {zi}i∈[n], we create a trace σ as follows (see Figure 3). We have T = 2 · n + d + 1
threads, while all access events (not counting the sync events) are of the form w(z)/r(z) in a
single variable z. We first describe the threads, and then how they interleave in σ.

CONCUR 2021

16:14 Dynamic Data-Race Detection Through the Fine-Grained Lens

Threads. We introduce a thread tx for every vector x ∈ A1 and a lock lk for every k ∈ [d].
Each thread tx consists of two segments t1x and t2x. We create t1x as follows. For every k ∈ [d]
where x[k] = 1, we add an empty critical section acq(lk), rel(lk) in t1x. We create t2x as the
sequence acq(X), w(z), rel(X), where X is a new lock, common for all t2x.

For the vectors in A2, we introduce threads similar to those of part A1, as follows. We
have a thread ty for every vector y ∈ A2 and a lock l′k for every k ∈ [d]. Each thread ty
consists of two segments t1y and t2y. For every k ∈ [d] where y[k] = 1, we add an empty critical
section acq(l′k), rel(l′k) in t1y. In contrast to the t1x, every t1y also has an event sync(sy) at
the very beginning. We create t2y as the sequence acq(Y), r(z), rel(Y), where Y is a new
lock, common for all t2y.

The construction of the threads corresponding to the vectors in A3 is more involved.
We have one thread tk for every k ∈ [d]. Each thread has some fixed sync events, as
well as critical sections corresponding to one coordinate of all n vectors in A3. In par-
ticular, we construct each tk as follows. We iterate over all zi, and if zi[k] = 0, we
simply append two events sync(ℓk), sync(ℓk) to tk. On the other hand, if zi[k] = 1,
we interleave these sync events with two critical sections, by appending the sequence
acq(lk), sync(ℓk), acq(l′k), rel(lk), sync(ℓk), rel(l′k).

Lastly, we have a single auxiliary thread t that consists of three parts t1, t2 and t3, where

t1 = sync(ℓ1), . . . , sync(ℓk), sync(sy1), . . . sync(syn
)

t2 = (acq(Y), sync(ℓ1), . . . , sync(ℓk), sync(ℓ1), . . . , sync(ℓk), rel(Y))n−1

t3 = acq(Y), sync(ℓ1), . . . , sync(ℓk), acq(X), rel(X), rel(Y)

Concurrent trace. We are now ready to describe the interleaving of the above threads in
order to obtain the concurrent trace σ.
1. We execute the auxiliary thread t and all threads tk, for k ∈ [d] (i.e., the threads

corresponding to the vectors of A3) arbitrarily, as long as for every k ∈ [d], every sequence
of sync(ℓk) events
(a) starts with the sync(ℓk) event of tk and proceeds with the sync(ℓk) event of t,
(b) strictly alternates in every two sync(ℓk) events between t and tk, and
(c) ends with the last sync(ℓk) event of tk.

2. We execute all t1x and t1y (i.e., the first parts of all threads that correspond to the vectors
in A1 and A2) arbitrarily, but after all threads tk, for k ∈ [d].

3. We execute all t2x (i.e., the second parts of all threads that correspond to the vectors in
A1) arbitrarily, but before the segment acq(X), rel(X), rel(Y) of t.

4. We execute all t2y (i.e., the second parts of all threads that correspond to the vectors in
A2) arbitrarily, but after the segment acq(X), rel(X), rel(Y) of t.

We refer to the full paper [22] for the correctness of the reduction and thus the proof of
Theorem 5.

5 Violations of the Locking Discipline

5.1 Lock-Cover Races
We start with a simple reduction from OV to detecting lock-cover races. Given a OV instance
OV(n,d) on two vector sets A1, A2, we create a trace σ as follows. We have a single variable
x and two threads t1, t2. We associate with each vector of the set Ai a write access event
e = ⟨ti, w(x)⟩. Moreover, each such event holds up to d locks, so that e holds the kth lock
iff kth coordinate of the vector corresponding to the event is 1. The trace σ is formed by

R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:15

ordering the sequence of events corresponding to vectors of A1 of OV first, in a fixed arbitrary
order, followed by the sequence of events corresponding to A2, again in arbitrary order. We
refer to [22] for the correctness, which concludes the proof of Theorem 6.

5.2 Lock-Set Races
We now turn our attention to lock-set races. We first prove Theorem 9, i.e., that determining
whether a trace σ has a lock-set race on a specific variable x can be performed in linear time.

A linear-time algorithm per variable. Verifying that there are two conflicting events on x

is straightforward by a single pass of σ. The more involved part is in computing the lock-set
of x, i.e., the set

⋂
e∈Accessesσ(x) locksHeldσ(e), in linear time. Indeed, each intersection alone

requires Θ(L) time, resulting to Θ(N · L) time overall.
Here we show that a somewhat more involved algorithm achieves the task. The algorithm

performs a single pass of σ, while maintaining three simple sets A, B, and C. While processing
an event e, the sets are updated to maintain the invariant

A = locksHeldσ(e) B = Locksσ ∩
⋂

e′∈Accessesσ(x),e′≤σ
tr e

locksHeldσ(e′) C = A ∩B (2)

The sets are initialized as A = ∅, B = C = Locksσ. Then the algorithm performs a pass
over σ and processes each event e according to the description of Algorithm 3.

Algorithm 3 Computing the lock-set of variable x.

1 acquire(t, ℓ):
2 A← A ∪ {ℓ}
3 if ℓ ∈ B then
4 C ← C \ {ℓ}

5 release(t, ℓ):
6 A← A \ {ℓ}
7 if ℓ ∈ B then
8 C ← C ∪ {ℓ}

9 read(t, y):
10 if x = y then
11 B ← B \ C
12 C ← ∅

13 write(t, y):
14 if x = y then
15 B ← B \ C
16 C ← ∅

The correctness of Algorithm 3 follows by proving the invariant in Equation (2). We refer
to [22] for the details, which concludes the proof of Theorem 9.

Short witnesses for lock-set races. Besides the advantage of a faster algorithm, Theorem 9
implies that lock-set races have short witnesses that can be verified in linear time. This
allows us to prove that detecting a lock-set race is in NTIME[N] ∩ coNTIME[N], and we can
thus use [9, Corollary 2] to prove Theorem 7.

Proof of Theorem 7. First we argue that the problem is in NTIME[N]. Indeed, the certific-
ate for the existence of a lock-set race is simply the variable x on which there is a lock-set
race. By Theorem 9, verifying that we indeed have a lock-set race on x takes O(N) time.

Now we argue that the problem is in coNTIME[N], by giving a certificate to verify in linear
time that σ does not have a race of the required form. The certificate has size O(|Varsσ|),
and specifies for every variable, either the lock that is held by all access events of the variable,
or a claim that there exist no two conflicting events on that variable. The certificate can be
easily verified by one pass over σ. ◀

Lock-set races are Hitting-Set hard. Finally we prove Theorem 8, i.e., that determining a
single lock-set race is HS-hard, and thus also carries a conditional quadratic lower bound. We
establish a fine-grained reduction from HS. Given a HS instance HS(n,d) on two vector sets

CONCUR 2021

16:16 Dynamic Data-Race Detection Through the Fine-Grained Lens

X

1 001
2 100
3 101
4 011

Y

001
010
111
110

HS instance: n = 4, d = 3.

t1

1 acq(ℓ1)
2 acq(ℓ2)
3 w(z2)
4 w(z3)
5 rel(ℓ2)
6 rel(ℓ1)

t2

7 acq(ℓ1)
8 w(z4)
9 rel(ℓ1)

t3

10 acq(ℓ2)
11 acq(ℓ4)
12 w(z1)
13 w(z3)
14 w(z4)
15 rel(ℓ4)
16 rel(ℓ2)

t0

17 acq(ℓ1)
18 ...
19 acq(ℓ4)
20 w(z1)
21 ...
22 w(z4)
23 rel(ℓ4)
24 ...
25 rel(ℓ1)

Figure 4 Reducing HS to detecting a lock-set race on trace σ with d threads. Thread tk uses lock
li if yi[k] = 0, and w(zj) if xj [k] = 1. Vector x4 hits all vectors in Y , implying a lock-set race on z4.

X,Y , we create a trace σ using d+ 1 threads {tj}j∈{0}∪[d], n locks {ℓi}i∈[n], and n variables
{zi}k∈[n]. Thread t0 that executes acq(ℓ1), . . . , acq(ℓn), w(z1), . . . w(zn), rel(ℓn), . . . rel(ℓ1).
Each of the threads tj , for j ∈ [d], has a single nested critical section consisting of the locks
ℓi ∈ [n] such that the ith vector of Y has its jth coordinate 0, i.e, yi[j] = 0. The events in
the critical section are all write events of all variables zk ∈ [n] with xk[j] = 1. The trace
orders all events of each thread td consecutively, and all the events overall in increasing order
of d. See Figure 4 for an illustration. We refer to [22] for the correctness, which concludes
the proof of Theorem 8.

6 Conclusion

In this work we have taken a fine-grained view of the complexity of popular notions of
dynamic data races. We have established a range of lower bounds on the complexity of
detecting HB races, sync-preserving races, as well as races based on the locking discipline
(lock-cover/lock-set races). Moreover, we have characterized cases where lower bounds based
on SETH are not possible under NSETH. Finally, we have proven new upper bounds for
detecting HB and lock-set races. To our knowledge, this is the first work that characterizes
the complexity of well-established dynamic race-detection techniques, allowing for a rigorous
characterization of their trade-offs between expressiveness and running time.

References
1 Helgrind: a thread error detector. Accessed: 2021-04-30. URL: https://valgrind.org/docs/

manual/hg-manual.html.
2 Intel inspector. Accessed: 2021-04-30. URL: https://software.intel.com/content/www/

us/en/develop/tools/oneapi/components/inspector.html.
3 Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation and fixed

parameter subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16,
page 377–391, USA, 2016. Society for Industrial and Applied Mathematics.

4 Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and Paul Petersen. A theory of data race detection. In
Proceedings of the 2006 Workshop on Parallel and Distributed Systems: Testing and Debugging,
PADTAD ’06, pages 69–78, New York, NY, USA, 2006. ACM. doi:10.1145/1147403.1147416.

5 Hans-J. Boehm. How to miscompile programs with “benign” data races. In Proceedings of the
3rd USENIX Conference on Hot Topic in Parallelism, HotPar’11, page 3, USA, 2011. USENIX
Association.

6 Hans-J. Boehm. Position paper: Nondeterminism is unavoidable, but data races are pure
evil. In Proceedings of the 2012 ACM Workshop on Relaxing Synchronization for Multicore
and Manycore Scalability, RACES ’12, page 9–14, New York, NY, USA, 2012. Association for
Computing Machinery. doi:10.1145/2414729.2414732.

https://valgrind.org/docs/manual/hg-manual.html
https://valgrind.org/docs/manual/hg-manual.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/inspector.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/inspector.html
https://doi.org/10.1145/1147403.1147416
https://doi.org/10.1145/2414729.2414732

R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:17

7 Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ Concurrency Memory Model.
In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’08, page 68–78, New York, NY, USA, 2008. Association for Computing
Machinery. doi:10.1145/1375581.1375591.

8 Karl Bringmann. Fine-Grained Complexity Theory (Tutorial). In Rolf Niedermeier and
Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer
Science (STACS 2019), volume 126 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 4:1–4:7, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.STACS.2019.4.

9 Marco L Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and
Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis and
consequences for non-reducibility. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, pages 261–270, 2016.

10 Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems. In-
formation Processing Letters, 39(1):11–16, 1991. doi:10.1016/0020-0190(91)90055-M.

11 Peter Chini, Jonathan Kolberg, Andreas Krebs, Roland Meyer, and Prakash Saivasan. On the
Complexity of Bounded Context Switching. In Kirk Pruhs and Christian Sohler, editors, 25th
Annual European Symposium on Algorithms (ESA 2017), volume 87 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 27:1–27:15, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ESA.2017.27.

12 Peter Chini, Roland Meyer, and Prakash Saivasan. Fine-grained complexity of safety verifica-
tion. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 20–37, Cham, 2018. Springer International Publishing.

13 Peter Chini and Prakash Saivasan. A Framework for Consistency Algorithms. In Nitin Saxena
and Sunil Simon, editors, 40th IARCS Annual Conference on Foundations of Software Techno-
logy and Theoretical Computer Science (FSTTCS 2020), volume 182 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 42:1–42:17, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSTTCS.2020.42.

14 Anne Dinning and Edith Schonberg. Detecting access anomalies in programs with critical
sections. In Proceedings of the 1991 ACM/ONR Workshop on Parallel and Distributed
Debugging, PADD ’91, pages 85–96, New York, NY, USA, 1991. ACM. doi:10.1145/122759.
122767.

15 Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: A race and transaction-aware java
runtime. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’07, pages 245–255, New York, NY, USA, 2007. ACM.
doi:10.1145/1250734.1250762.

16 Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient and precise dynamic race
detection. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, pages 121–133, New York, NY, USA, 2009. ACM.
doi:10.1145/1542476.1542490.

17 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness
for first-order properties on sparse structures with algorithmic applications. ACM Trans.
Algorithms, 15(2), December 2018. doi:10.1145/3196275.

18 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer
and System Sciences, 62(2):367–375, 2001.

19 Ayal Itzkovitz, Assaf Schuster, and Oren Zeev-Ben-Mordehai. Toward integration of data
race detection in dsm systems. J. Parallel Distrib. Comput., 59(2):180–203, November 1999.
doi:10.1006/jpdc.1999.1574.

20 Baris Kasikci, Cristian Zamfir, and George Candea. Racemob: Crowdsourced data race
detection. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, page 406–422, New York, NY, USA, 2013. Association for Computing
Machinery. doi:10.1145/2517349.2522736.

CONCUR 2021

https://doi.org/10.1145/1375581.1375591
https://doi.org/10.4230/LIPIcs.STACS.2019.4
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.4230/LIPIcs.ESA.2017.27
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.42
https://doi.org/10.1145/122759.122767
https://doi.org/10.1145/122759.122767
https://doi.org/10.1145/1250734.1250762
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/3196275
https://doi.org/10.1006/jpdc.1999.1574
https://doi.org/10.1145/2517349.2522736

16:18 Dynamic Data-Race Detection Through the Fine-Grained Lens

21 Dileep Kini, Umang Mathur, and Mahesh Viswanathan. Dynamic race prediction in linear
time. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, pages 157–170, New York, NY, USA, 2017. ACM.
doi:10.1145/3062341.3062374.

22 Rucha Kulkarni, Umang Mathur, and Andreas Pavlogiannis. Dynamic data-race detection
through the fine-grained lens, 2021. arXiv:2107.03569.

23 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

24 Umang Mathur, Dileep Kini, and Mahesh Viswanathan. What happens-after the first race?
enhancing the predictive power of happens-before based dynamic race detection. Proc. ACM
Program. Lang., 2(OOPSLA):145:1–145:29, October 2018. doi:10.1145/3276515.

25 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. The complexity of dynamic
data race prediction. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’20, page 713–727, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3373718.3394783.

26 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. Optimal prediction of
synchronization-preserving races. Proc. ACM Program. Lang., 5(POPL), January 2021.
doi:10.1145/3434317.

27 Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and Brad Calder.
Automatically classifying benign and harmful data races using replay analysis. In Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’07, page 22–31, New York, NY, USA, 2007. Association for Computing Machinery.
doi:10.1145/1250734.1250738.

28 Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. SIGPLAN
Not., 38(10):167–178, June 2003. doi:10.1145/966049.781528.

29 Andreas Pavlogiannis. Fast, sound, and effectively complete dynamic race prediction. Proc.
ACM Program. Lang., 4(POPL), 2019. doi:10.1145/3371085.

30 Eli Pozniansky and Assaf Schuster. Efficient on-the-fly data race detection in multithreaded
C++ programs. SIGPLAN Not., 38(10):179–190, 2003. doi:10.1145/966049.781529.

31 Jake Roemer, Kaan Genç, and Michael D. Bond. High-coverage, unbounded sound predictive
race detection. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, pages 374–389, New York, NY, USA, 2018.
ACM. doi:10.1145/3192366.3192385.

32 Grigore Rosu. Rv-predict, runtime verification, 2018. URL: https://runtimeverification.
com/predict.

33 Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. Generating data race
witnesses by an smt-based analysis. In Proceedings of the Third International Conference on
NASA Formal Methods, NFM’11, pages 313–327, Berlin, Heidelberg, 2011. Springer-Verlag.
URL: http://dl.acm.org/citation.cfm?id=1986308.1986334.

34 Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.
Eraser: A dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst., 15(4):391–411, 1997. doi:10.1145/265924.265927.

35 Koushik Sen, Grigore Roşu, and Gul Agha. Detecting errors in multithreaded programs
by generalized predictive analysis of executions. In Martin Steffen and Gianluigi Zavattaro,
editors, Formal Methods for Open Object-Based Distributed Systems, pages 211–226, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

36 Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: Data Race Detection
in Practice. In WBIA ’09: Proceedings of the Workshop on Binary Instrumentation and
Applications, 2009.

37 Jaroslav Ševčík and David Aspinall. On validity of program transformations in the java
memory model. In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming, pages
27–51, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

https://doi.org/10.1145/3062341.3062374
http://arxiv.org/abs/2107.03569
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3276515
https://doi.org/10.1145/3373718.3394783
https://doi.org/10.1145/3434317
https://doi.org/10.1145/1250734.1250738
https://doi.org/10.1145/966049.781528
https://doi.org/10.1145/3371085
https://doi.org/10.1145/966049.781529
https://doi.org/10.1145/3192366.3192385
https://runtimeverification.com/predict
https://runtimeverification.com/predict
http://dl.acm.org/citation.cfm?id=1986308.1986334
https://doi.org/10.1145/265924.265927

R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:19

38 Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan.
Sound predictive race detection in polynomial time. In Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’12, pages
387–400, New York, NY, USA, 2012. ACM. doi:10.1145/2103656.2103702.

39 Martin Sulzmann and Kai Stadtmüller. Efficient, near complete, and often sound hybrid
dynamic data race prediction. In Proceedings of the 17th International Conference on Managed
Programming Languages and Runtimes, MPLR 2020, page 30–51, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3426182.3426185.

40 Christoph von Praun. Race Detection Techniques, pages 1697–1706. Springer US, Boston,
MA, 2011. doi:10.1007/978-0-387-09766-4_38.

41 Jaroslav Ševčík. Safe optimisations for shared-memory concurrent programs. SIGPLAN Not.,
46(6):306–316, June 2011. doi:10.1145/1993316.1993534.

42 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2-3):357–365, 2005.

43 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the ICM, volume 3, pages 3431–3472. World Scientific, 2018.

44 M. Zhivich and R. K. Cunningham. The real cost of software errors. IEEE Security and
Privacy, 7(2):87–90, March 2009. doi:10.1109/MSP.2009.56.

A Fine-grained Complexity

Fine-grained Reductions. Assume that A and B are computational problems and a(n)
and b(n) are their conjectured running time lower bounds, respectively. Then we say A
(a, b)-reduces to B, denoted by A (a)⪯(b) B, if for every ϵ > 0, there exists δ > 0, and an
algorithm R for A that runs in time a(n)(1−δ) on inputs of length n, making q calls to an
oracle for B with query lengths n1, . . . , nq, where,

∑q
1(b(n))(1−ϵ) ≤ (a(n))(1−δ).

▶ Hypothesis 3 (Strong Exponential Time Hypothesis (SETH)). For every ϵ > 0 there exists
an integer k ≥ 3 such that CNF-SAT on formulas with clause size at most k and n variables
cannot be solved in O(2(1−ϵ)n) time even by a randomized algorithm.

▶ Hypothesis 4 (Non-deterministic SETH (NSETH)). For every ϵ > 0, there exists a k so
that k-TAUT is not in NTIME[2n(1−ϵ)], where k-TAUT is the language of all k-DNF formulas
which are tautologies.

B Proofs of Section 3

B.1 Proofs from Section 3.1
▶ Lemma 11. Let e1 ≤σ

tr e2 be events in σ such that tid(e1) ̸= tid(e2). We have, e1 ≤σ
HB

e2 ⇐⇒ ¬(AcqLSσ
e2
⊑ RelLSσ

e1
)

Proof. (⇒) Let e1 ≤σ
HB e2. Using the definition of ≤σ

HB, there must be a sequence of events
f1, f2 . . . fk with k > 1, f1 = e1, fk = e2, and for every 1 ≤ i < k, fi ≤σ

tr fi+1 and either
fi ≤σ

TO fi+1 or there is a lock ℓ, such that fi ∈ Releasesσ(ℓ) and fi+1 ∈ Acquiresσ(ℓ). Let j
be the smallest index i such that tid(fi) ̸= tid(fi+1); such an index exists as tid(e1) ̸= tid(e2).
Observe that there must be a lock ℓ for which op(fj) = rel(ℓ) and op(fj+1) = acq(ℓ).
Observe that posσ(fj) < posσ(fj+1), RelLSσ

e1
(ℓ) ≤ posσ(fj) and posσ(fj+1) ≤ AcqLSσ

e2
,

giving us RelLSσ
e1

(ℓ) < AcqLSσ
e2

(ℓ).
(⇐) Let ℓ be a lock such that RelLSσ

e1
(ℓ) < AcqLSσ

e2
(ℓ). Then, there is a release event f

and an acquire event g on lock ℓ such that posσ(f) < posσ(g),e1 ≤σ
HB f and g ≤σ

HB e2. This
means f ≤σ

HB g and thus e1 ≤σ
HB e2. ◀

CONCUR 2021

https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/3426182.3426185
https://doi.org/10.1007/978-0-387-09766-4_38
https://doi.org/10.1145/1993316.1993534
https://doi.org/10.1109/MSP.2009.56

16:20 Dynamic Data-Race Detection Through the Fine-Grained Lens

For the sake of completeness, we present the computation of release lockstamps. The
computation of release lockstamps takes place in the reverse order of ≤σ

tr (i.e., from right to
left), unlike the case of acquire lockstamps. As with Algorithm 1, we maintain the following
variables. For each thread t and lock ℓ, we will maintain variables Ct and Lℓ that take values
from the space of all lockstamps. We also additionally maintain an integer variable pℓ for
each lock ℓ that stores the index (or relative position) of the earliest (according to the trace
order ≤σ

tr) release event of lock ℓ in the trace suffix seen so far. Initially, we set Ct and Lm to
λℓ · ∞, for each thread t and lock m. Further, for each lock m, we set pm to nm + 1, where
nm is the number of release events of m in the trace; this can be obtained in a linear scan
(or by reading the value of pm at the end of a run of Algorithm 1). We traverse the events in
reverse, and perform updates to the data structures as described in Algorithm 4, by invoking
the appropriate handler based on the thread and operation of the event e = ⟨t, op⟩ being
visited. At the end of each handler, we assign the lockstamp RelLSσ

e to the event e.

Algorithm 4 Assigning release lockstamps to events in the trace. Events are processed in
reverse order.

1 acquire(t, ℓ):
2 Lℓ ← Ct

3 RelLSσ
e ← Ct

4 release(t, ℓ):
5 pℓ ← pℓ − 1
6 Ct ← Ct[ℓ 7→ pℓ] ⊓ Lℓ

7 RelLSσ
e ← Ct

8 read(t, x):
9 RelLSσ

e ← Ct

10 write(t, x):
11 RelLSσ

e ← Ct

Let us now state the correctness of Algorithm 1 and Algorithm 4.

▶ Lemma 14. On input trace σ, Algorithm 1 and Algorithm 4 correctly compute the lockstamps
AcqLSσ

e and RelLSσ
e respectively for each event e ∈ Eventsσ.

Proof Sketch. We focus on the correctness proof of Algorithm 1; the proof for Algorithm 4
is similar. The proof relies on the invariant maintained by Algorithm 1 the variables Ct, Lℓ

and pℓ for each thread t and lock ℓ, which we state next. Let π be the prefix of the trace
processed at any point in the algorithm. Let Cπ

t , Lπ
ℓ and pπ

ℓ be the values of the variables
Ct, Lℓ and pℓ after processing the prefix π. Then, the following invariants are true:

Cπ
t = AcqLSπ

eπ
t

= AcqLSσ
eπ

t
, where eπ

t is the last event in π performed by thread t

Lπ
ℓ = AcqLSπ

eπ
ℓ

= AcqLSσ
eπ

ℓ
, where eπ

ℓ is the last acquire event on lock ℓ in π.
pπ

ℓ = posπ
ℓ (eπ

ℓ), where eπ
ℓ is the last acquire event on lock ℓ in π.

These invariants can be proved using a straightforward induction on the length of the trace,
each time noting the definition of ≤σ

HB. ◀

▶ Lemma 15. For a trace with N events and L locks, Algorithm 1 and Algorithm 4 both
take O(T · L) time.

Proof. We focus on Algorithm 1; the analysis for Algorithm 4 is similar. At each acquire
event, the algorithm spends O(1) time for updating pℓ, O(L) time for doing the ⊔ operation,
and O(L) time for the copy operation (‘AcqLSσ

e ← Ct’). For a release event, we spend O(L)
for the two copy operations. At read and write events, we spend O(L) for copy operations.
This gives a total time of O(N · L). ◀

▶ Lemma 12. A trace σ has an HB-race iff there is pair of consecutive conflicting events in
σ that is an HB-race. Moreover, σ has at most O(N) many consecutive conflicting pairs of
events.

R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:21

Proof. We first prove that if there is a an HB-race in σ, then there is a pair of consecutive
conflicting events that is in HB-race. Consider the first HB-race, i.e., an HB-race (e1, e2)
such that for every other HB-race (e′

1, e
′
2), either e2 ≤σ

tr e
′
2 or e2 = e′

2 and e′
1 ≤σ

tr e1. We
remark that such a race (e1, e2) exists if σ has any HB-race. We now show that (e1, e2)
are a consecutive conflicting pair (on variable x). Assume on the contrary that there is an
event f ∈Writesσ(x) such that e1 <

σ
tr f <

σ
tr e2. If either (e1, f) or (f, e2) is an HB-race, then

this contradicts our assumption that (e1, e2) is the first HB-race in σ. Thus, e1 ≤σ
HB f and

f ≤σ
HB e2, which gives e1 ≤σ

HB e2, another contradiction.
We now turn our attention to the number of consecutive conflicting events in σ. For every

read or write event e2, there is at most one write event e1 such that (e1, e2) is a consecutive
conflicting pair (namely the latest conflicting write event before e2). Further, for every read
event e1, there is at most one write event e2 such that (e1, e2) is a consecutive conflicting
pair (namely the earliest conflicting write event after e1). This gives at most 2N consecutive
conflicting pairs of events. ◀

Let us now state the correctness of Algorithm 2.

▶ Lemma 16. For a trace σ, Algorithm 2 reports a race iff σ has an HB-race.

Proof Sketch. The proof relies on the following straightforward invariants; we skip their
proofs as they are straightforward. In the following, eπ

x is the last event with op(eπ
x) = w(x)

in a trace π.
After processing the prefix π of σ, tw

x = tid(eπ
x) and Wx = RelLSσ

eπ
x
.

After processing the prefix π of σ, the set Sx is {(tid(e),RelLSσ
e) | e ∈ Readsπ(x), eπ

x ≤π
tr e}.

The rest of the proof follows from Lemma 11 and Lemma 12. ◀

Let us now characterize the time complexity of Algorithm 2.

▶ Lemma 17. On an input trace with N events and L locks, Algorithm 2 runs in time
O(N · L).

Proof Sketch. Each pair (t, L) of thread identifier and lockstamp is added atmost once in
some set Sx (for some x). Also, each such pair is also compared against another timestamp
atmost once. Each comparison of timestamps take O(L) time. This gives a total time of
O(N · L). ◀

▶ Theorem 4. Deciding whether σ has an HB race can be done in time O(N ·min(T ,L)).

Proof. We focus on proving that there is an O(N ·L) time algorithm, as the standard vector-
clock algorithm [19] for checking for an HB-race runs in O(N · T) time. Our algorithm’s
correctness is stated in Lemma 14 and Lemma 16 and its total running time is O(N · L)
(Lemma 17 and Lemma 15). ◀

B.2 Proofs from Section 3.2
▶ Theorem 1. For any ϵ > 0, there is no algorithm that detects even a single HB race that
involves a read in time O(N 2−ϵ), unless the OV hypothesis fails.

Proof. Consider a pair of events w(z) from the d threads t(x, i), i ∈ [d], and r(z) ∈ ty for
some x, i, y. We have w(z) ≤σ

HB r(z) iff there is some path from w(z) to r(z) in Gσ
HB. As w(z)

and r(z) are in different threads, such a path can only be through lock events in a sequence
of threads such that the first and last threads are t(x, i) for some i ∈ [d] and ty, and every
consecutive pair of threads in the sequence holds a common lock. Now all the locks in ty
are l(y, i) for all i where y[i] = 1. Consider the lock corresponding to any i ∈ [d]. The only

CONCUR 2021

16:22 Dynamic Data-Race Detection Through the Fine-Grained Lens

thread t(x′, i) that also holds this lock corresponds to the last x′ such that x′[i] = 1. The
only other lock held by t(x′, i) is li. If w(z) is in t(x′, i), we are done. Otherwise the only
common lock between these threads t(x′, i) and those of w(z) can be one of the li. The
threads of w(z) contain all li where x[i] = 1. Hence, for there to be a common lock between
these threads, there must be at least one i such that x′[i] = 1 and x[i] = 1. As this thread
also has the lock l(y, i), y[i] is also 1.

Thus, there is a path from w(z) to r(z) if and only if there is at least one i ∈ [d] such
that x[i] = y[i] = 1, hence x and y are not orthogonal. A pair of orthogonal vectors of OV
thus corresponds to a write-read HB-race in the reduced trace.

Finally we turn our attention to the complexity. In time O(n · d), we have reduced an OV
instance to determining whether there is a write-read HB race in a trace of N = O(nd) events.
If there was a sub-quadratic i.e. O((n · d)(2−ϵ)) = n(2−ϵ) · poly(d) algorithm for detecting a
write-read HB race, then this would also solve OV in n(2−ϵ) · poly(d) time, refuting the OV
hypothesis. ◀

▶ Lemma 13. FO(∀∃∃) reduces to MCONN on a graph G with O(n) nodes in O(n2) time.

Proof. For intuition, assume the first order property is on an undirected graph with n

variables and m edges. Let the property be specified in quantified 3-DNF form with a
constant number of predicates, i.e., ϕ = ∀x∃y∃z (ψ1 ∨ ψ2 ∨ . . . ψk), where x, y, z represent
nodes of the graph, and each ψi is a conjunction of 3 variables representing edges of the
graph, for example e(x, y) ∧ ¬e(y, z) ∧ e(x, z). The property is then true if and only if some
predicate is satisfied, which is true if all of its variables are satisfied (e(x, y) is satisfied when
edge (x, y) is in the graph). Denote the graph on which ϕ is defined by H(I, J), where I and
J are respectively the sets of nodes and edges of H.

The instance of MCONN is constructed given H and ϕ as follows. Construct a (2k + 2)-
partite graphG(V,E) by first creating 2k+2 copies of I.Denote these copies by S, Yi, Zi, T, i ∈
[k], and the copy of each node x ∈ I in any part, say S, by x(S). ψi = (e1 ∧ e2 ∧ e3) is
encoded by connecting the sets (S, Yi) to represent e1, (Yi, Zi) for e2 and (Zi, T) for e3 as
follows. If ei is of the form e(x, y) (and not its negation), then draw a copy of H between
its corresponding sets, say S and Yi without loss of generality. That is, for every x, y,

(x, y) ∈ J ⇔ (x(S), y(Yi)) ∈ E. If on the other hand ei is of the form ¬e(x, y) then connect
a copy of the complement of H, i.e., (x, y) /∈ J ⇔ (x(S), y(Yi)) ∈ E.

Finally define |I| pairs (x(S), x(T)) as the (s, t) pairs for MCONN.
We now prove this reduction is correct. First, assume ϕ is true. Then for every node x,

there exist nodes y, z such that some predicate is true. If ψi is the predicate that is satisfied
for some node u, then there is a path between u(S) and u(T) through the parts S, Yi, Zi and
T as follows. As the first variable is satisfied, then if it is e(x, y), then (x, y) ∈ J, and x(S)
is connected to y(Yi), and if it is ¬e(x, y), then (x, y) /∈ J and again x(S) is connected to
y(Yi). Similarly, y(Yi) is connected to z(Zi), and z(Zi) to x(T). These edges form a 3 length
path between x(S) and x(T).

Now consider the reverse case, and assume the MCONN problem is true, that is , there is
a path between every (x(S), x(T)) pair. Note that the construction of edges in G is such
that any path from x(S) to x(T) has to be a 3 length path, connecting the copy of x in S

to its copy in some Yi, from this Yi to its corresponding Zi, and from Zi to T. Also, this
path exists only if all variables of the corresponding ψi are true. Hence, as there is a path
between every pair (x(S), x(T)), and one pair is defined for every variable x, some predicate
is satisfied for every x. Thus ϕ is also true.

Finally, the time of the reduction is equal to the size of G. This is 2k + 2 = O(1) graphs,
each of which is either H or its complement. Hence |G| = O(m+n+(n2−m)+n) = O(n2). ◀

R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:23

▶ Theorem 3. For any ϵ > 0, if there is an algorithm for detecting any HB race in time
O(N 1+ϵ), then there is an algorithm for FO(∀∃∃) formulas in time O(m1+ϵ).

Proof. We first reduce the instance of FO(∀∃∃) to MCONN as in the proof of Lemma 13.
Let G(V,E) be the multi-partite graph for MCONN and S, T the first and last parts of nodes
of G. We add a sufficient number of nodes, referred as dummy nodes, to make G sparse. Let
every node x of V \T correspond to a distinct thread tx and form one write access event to a
distinct variable vx in the thread. Let each node t in T also correspond to a write access
event of the variable corresponding to the copy of t in S, and be in a new thread. Define
|E| locks, and for every edge (a, b) ∈ E, let the events corresponding to va and vb hold the
lock l(a,b) corresponding to (a, b). The trace σ for first lists all threads corresponding to the
dummy nodes in some fixed arbitrary order, then the threads corresponding to nodes in S,

followed by those in each Yi, followed by those in each Zi, in a fixed arbitrary order, and
finally those in T .

This reduction is seen to be correct by observing that G was modified to be the transitive
reduction graph of σ, and the only HB-race events can be the pairs of write events corres-
ponding to the pairs of nodes given as input to MCONN. Thus, each pair of events does not
form an HB-race if and only if G has a path between its corresponding pair of nodes.

To analyze the time of the reduction, first we see that the size of σ is the size of G,
with dummy nodes added to have n = O(n2), and hence O(n2). There are O(n2) variables,
locks and threads in σ. If deciding if the given trace has an HB-race has an O((n2)1+ϵ)
time algorithm, then FO(∀∃∃) can be solved in O(n2+ϵ′) time, which is O(m1+ϵ′) time for
properties on dense structures. ◀

Due to space constraints, we include the remaining proofs of the Theorems from Sections 4
and 5 in the full paper [22].

CONCUR 2021

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Concurrent Program Executions and Data Races
	2.2 Notions of Dynamic Data Races
	2.3 Fine-Grained Complexity and Popular Hypotheses

	3 Happens-Before Races
	3.1 Algorithm for HB Races
	3.2 Hardness Results for HB

	4 Synchronization-Preserving Races
	5 Violations of the Locking Discipline
	5.1 Lock-Cover Races
	5.2 Lock-Set Races

	6 Conclusion
	A Fine-grained Complexity
	B Proofs of Section 3
	B.1 Proofs from Section 3.1
	B.2 Proofs from Section 3.2

