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Abstract
We study stochastic zero-sum games on graphs, which are prevalent tools to model decision-making in
presence of an antagonistic opponent in a random environment. In this setting, an important question
is the one of strategy complexity: what kinds of strategies are sufficient or required to play optimally
(e.g., randomization or memory requirements)? Our contributions further the understanding of
arena-independent finite-memory (AIFM) determinacy, i.e., the study of objectives for which memory
is needed, but in a way that only depends on limited parameters of the game graphs. First, we
show that objectives for which pure AIFM strategies suffice to play optimally also admit pure
AIFM subgame perfect strategies. Second, we show that we can reduce the study of objectives for
which pure AIFM strategies suffice in two-player stochastic games to the easier study of one-player
stochastic games (i.e., Markov decision processes). Third, we characterize the sufficiency of AIFM
strategies through two intuitive properties of objectives. This work extends a line of research started
on deterministic games in [7] to stochastic ones.
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1 Introduction

Controller synthesis consists, given a system, an environment, and a specification, in au-
tomatically generating a controller of the system that guarantees the specification in the
environment. This task is often studied through a game-theoretic lens: the system is a
game, the controller is a player, the uncontrollable environment is its adversary, and the
specification is a game objective [45]. A game on graph consists of a directed graph, called
an arena, partitioned into two kinds of vertices: some of them are controlled by the system
(called player 1) and the others by the environment (called player 2). Player 1 is given a

© Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 26; pp. 26:1–26:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2823-0911
https://orcid.org/0000-0001-5834-1068
https://doi.org/10.4230/LIPIcs.CONCUR.2021.26
https://arxiv.org/abs/2102.10104
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Arena-Independent Finite-Memory Determinacy in Stochastic Games

game objective (corresponding to the specification) and must devise a strategy (corresponding
to the controller) to accomplish the objective or optimize an outcome. The strategy can be
seen as a function that dictates the decisions to make in order to react to every possible chain
of events. In case of uncertainty in the system or the environment, probability distributions
are often used to model transitions in the game graph, giving rise to the stochastic game
model. We study here stochastic turn-based zero-sum games on graphs [29], also called
perfect-information stochastic games. We also discuss the case of deterministic games, which
can be seen as a subcase of stochastic games in which only Dirac distributions are used in
transitions.

Strategy complexity. A common question underlying all game objectives is the one of
strategy complexity: how complex must optimal strategies be, and how simple can optimal
strategies be? For each distinct game objective, multiple directions can be investigated, such
as the need for randomization [19] (must optimal strategies make stochastic choices?), the
need for memory [33, 34, 7] (how much information about the past must optimal strategies
remember?), or what trade-offs exist between randomization and memory [16, 26, 41].
With respect to memory requirements, three cases are typically distinguished: memoryless-
determined objectives, for which memoryless strategies suffice to play optimally; finite-
memory-determined objectives, for which finite-memory strategies suffice (memory is then
usually encoded as a deterministic finite automaton); and objectives for which infinite memory
is required. High memory requirements (such as exponential memory and obviously infinite
memory) are a major drawback when it comes to implementing controllers; hence specific
approaches are often developed to look for simple strategies (e.g., [30]).

Many classical game objectives (reachability [29], Büchi and parity [22], discounted
sum [48], energy [10]. . . ) are memoryless-determined, both in deterministic and stochastic
arenas. Nowadays, multiple general results allow for a more manageable proof for most
of these objectives: we mention [35, 4, 1] for sufficient conditions in deterministic games,
and [31, 32] for similar conditions in one-player and two-player stochastic games. One
milestone for memoryless determinacy in deterministic games was achieved by Gimbert and
Zielonka [33], who provide two characterizations of it: the first one states two necessary and
sufficient conditions (called monotony and selectivity) for memoryless determinacy, and the
second one states that memoryless determinacy in both players’ one-player games suffices
for memoryless determinacy in two-player games (we call this result the one-to-two-player
lift). Together, these characterizations provide a theoretical and practical advance. On the
one hand, monotony and selectivity improve the high-level understanding of what conditions
well-behaved objectives verify. On the other hand, only having to consider the one-player
case thanks to the one-to-two-player lift is of tremendous help in practice. A generalization
of the one-to-two-player lift to stochastic games was shown also by Gimbert and Zielonka in
an unpublished paper [34] and is about memoryless strategies that are pure (i.e., not using
randomization).

The need for memory. Recent research tends to study increasingly complex settings – such
as combinations of qualitative/quantitative objectives or of behavioral models – for which finite
or infinite memory is often required; see examples in deterministic games [17, 50, 12, 8, 14],
Markov decision processes – i.e., one-player stochastic games [46, 47, 24, 3, 11], or stochastic
games [28, 18, 25, 23, 40]. Motivated by the growing memory requirements of these endeavors,
research about strategy complexity often turns toward finite-memory determinacy. Proving
finite-memory determinacy is sometimes difficult (already in deterministic games, e.g., [6]),
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and as opposed to memoryless strategies, there are few widely applicable results. We
mention [38], which provides sufficient conditions for finite-memory determinacy in Boolean
combinations of finite-memory-determined objectives in deterministic games. Results for
multi-player non-zero-sum games are also available [37].

Arena-independent finite-memory. A middle ground between the well-understood mem-
oryless determinacy and the more puzzling finite-memory determinacy was proposed for
deterministic games in [7]: an objective is said to admit arena-independent finite-memory
(AIFM) strategies if a single finite memory structure suffices to play optimally in any arena.
In practice, this memory structure may depend on parameters of the objective (for instance,
largest weight, number of priorities), but not on parameters intrinsically linked to the arena
(e.g., number of states or transitions). AIFM strategies include as a special case memoryless
strategies, since they can be implemented with a trivial memory structure with a single state.

AIFM strategies have a remarkable feature: in deterministic arenas, AIFM generalizations
of both characterizations from [33] hold, including the one-to-two-player lift [7]. From a
practical point of view, it brings techniques usually linked to memoryless determinacy to
many finite-memory-determined objectives. The aim of this article is to show that this also
holds true in stochastic arenas.

Contributions. We provide an overview of desirable properties of objectives in which pure
AIFM strategies suffice to play optimally in stochastic games, and tools to study them.
This entails: (a) a proof of a specific feature of objectives for which pure AIFM strategies
suffice to play optimally: for such objectives, there also exist pure AIFM subgame perfect
(SP) strategies (Theorem 7), which is a stronger requirement than optimality; (b) a more
general one-to-two-player lift: we show the equivalence between the existence of pure AIFM
optimal strategies in two-player games for both players and the existence of pure AIFM
optimal strategies in one-player games, thereby simplifying the proof of memory requirements
for many objectives (Theorem 8); (c) two intuitive conditions generalizing monotony and
selectivity in the stochastic/AIFM case, which are equivalent to the sufficiency of pure
AIFM strategies to play optimally in one-player stochastic arenas (Theorem 13) for all
objectives that can be encoded as real payoff functions. In practice, (c) can be used to prove
memory requirements in one-player arenas, and then (b) can be used to lift these to the
two-player case.

These results reinforce both sides on the frontier between AIFM strategies and general
finite-memory strategies: on the one hand, objectives for which pure AIFM strategies suffice
indeed share interesting properties with objectives for which pure memoryless strategies
suffice, rendering their analysis easier, even in the stochastic case; on the other hand, our
novel result about SP strategies does not hold for (arena-dependent) finite-memory strategies,
and therefore further distinguishes the AIFM case from the finite-memory case.

The one-to-two-player lift for pure AIFM strategies in stochastic games is not surprising,
as it holds for pure memoryless strategies in stochastic games [34], and for AIFM strategies
in deterministic games [7]. However, although the monotony/selectivity characterization is
inspired from the deterministic case [33, 7], it had not been formulated for stochastic games,
even in the pure memoryless case – its proof involves new technical difficulties to which our
improved understanding of subgame perfect strategies comes in handy.

All our results are about the optimality of pure AIFM strategies in various settings: they
can be applied in an independent way for deterministic games and for stochastic games, and
they can also consider optimality under restriction to different classes of strategies (allowing
or not the use of randomization and infinite memory).
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The proof technique for the one-to-two-player lift shares a similar outline in [33, 34, 7]
and in this paper: it relies on an induction on the number of edges in arenas to show the
existence of memoryless optimal strategies. This edge-induction technique is frequently used
in comparable ways in other works about memoryless determinacy [35, 31, 32, 18]. In the
AIFM case, the extra challenge consists of applying such an induction to the right set of
arenas in order for a result about memoryless strategies to imply something about AIFM
strategies. Work in [7] paved the way to neatly overcome this technical hindrance and we
were able to factorize the main argument in Lemma 6.

Applicability. Let us discuss objectives that admit, or not, pure AIFM optimal strategies in
stochastic arenas.

Objectives for which AIFM optimal strategies exist include the aforementioned memoryless-
determined objectives [29, 22, 48, 10], as explained earlier. Such objectives could already
be studied through the lens of a one-to-two-player lift [34], but our two other main results
also apply to these.
Pure AIFM optimal strategies also exist in lexicographic reachability-safety games [23,
Theorem 4]: the memory depends only on the number of targets to visit or avoid, but
not on parameters of the arena (number of states or transitions).
Muller objectives whose probability must be maximized [15] also admit pure AIFM
optimal strategies: the number of memory states depends only on the colors and on the
Muller condition.
In general, every ω-regular objective admits pure AIFM optimal strategies, as it can
be seen as a parity objective (for which pure memoryless strategies suffice) after taking
the product of the game graph with a deterministic parity automaton accepting the
objective [42, 20]. This parity automaton can be taken as an arena-independent memory
structure. It is therefore possible to use our results to investigate precise memory
bounds in stochastic games for multiple ω-regular objectives which have been studied
in deterministic games or in one-player stochastic games: generalized parity games [21],
lower- and upper-bounded energy games [5], some window objectives [13, 11], weak parity
games [49].
There are objectives for which finite-memory strategies suffice for some player, but with
an underlying memory structure depending on parameters of the arena (an example is
provided by the Gain objective in [40, Theorem 6]). Many objectives also require infinite
memory, such as generalized mean-payoff games [18] (both in deterministic and stochastic
games) and energy-parity games (only in stochastic games [17, 39]). Our characterizations
provide a more complete understanding of why AIFM strategies do not suffice.

Deterministic and stochastic games. There are natural ways to extend classical objectives
for deterministic games to a stochastic context: typically, for qualitative objectives, a natural
stochastic extension is to maximize the probability to win. Still, in general, memory require-
ments may increase when switching to the stochastic context. To show that understanding
the deterministic case is insufficient to understand the stochastic case, we outline three
situations displaying different behaviors.

As mentioned above, for many classical objectives, memoryless strategies suffice both in
deterministic and in stochastic games.
AIFM strategies may suffice both for deterministic and stochastic games, but with a
difference in the size of the required memory structure. One such example is provided by
the weak parity objective [49], for which memoryless strategies suffice in deterministic
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games, but which requires memory in stochastic games (this was already noticed in [34,
Section 4.4]). Yet, it is possible to show that pure AIFM strategies suffice in stochastic
games using the results from our paper. This shows that to go from the deterministic to
the stochastic case, a “constant” increase in memory may be necessary and sufficient.
There are also objectives for which memoryless strategies suffice in deterministic games,
but even AIFM strategies do not suffice in stochastic games. One such example consists
in maximizing the probability to obtain a non-negative discounted sum (which is different
from maximizing the expected value of the discounted sum, for which memoryless strategies
suffice, as is shown in [48]).

Formal proofs for these last two examples are provided in the full version [9]. These three
situations further highlight the significance of establishing results about memory requirements
in stochastic games, even for objectives whose deterministic version is well-understood.

Outline. We introduce our framework and notations in Section 2. We discuss AIFM
strategies and tools to relate them to memoryless strategies in Section 3, which allows us to
prove our result about subgame perfect strategies. The one-to-two-player lift is presented in
Section 4, followed by the one-player characterization in Section 5. Due to a lack of space,
we choose to focus on Section 5 and only sketch Section 4; the complete proofs and technical
details are found in the full version of the article [9].

2 Preliminaries

Let C be an arbitrary set of colors.

Arenas. For a measurable space (Ω, F) (resp. a finite set Ω), we write Dist(Ω, F) (resp.
Dist(Ω)) for the set of probability distributions on (Ω, F) (resp. on Ω). For Ω a finite set and
µ ∈ Dist(Ω), we write Supp(µ) = {ω ∈ Ω | µ(ω) > 0} for the support of µ.

We consider stochastic games played by two players, called P1 (for player 1) and P2 (for
player 2), who play in a turn-based fashion on arenas. A (two-player stochastic turn-based)
arena is a tuple A = (S1, S2, A, δ, col), where: S1 and S2 are two disjoint finite sets of
states, respectively controlled by P1 and P2 – we denote S = S1 ⊎ S2; A is a finite set of
actions; δ : S × A → Dist(S) is a partial function called probabilistic transition function;
col : S × A → C is a partial function called coloring function. For a state s ∈ S, we write
A(s) for the set of actions that are available in s, that is, the set of actions for which δ(s, a)
is defined. For s ∈ S, function col must be defined for all pairs (s, a) such that a is available
in s. We require that for all s ∈ S, A(s) ̸= ∅ (i.e., arenas are non-blocking).

For s, s′ ∈ S and a ∈ A(s), we denote δ(s, a, s′) instead of δ(s, a)(s′) for the probability to
reach s′ in one step by playing a in s, and we write (s, a, s′) ∈ δ if and only if δ(s, a, s′) > 0.
An interesting subclass of (stochastic) arenas is the class of deterministic arenas: an arena
A = (S1, S2, A, δ, col) is deterministic if for all s ∈ S, a ∈ A(s), |Supp(δ(s, a))| = 1.

A play of A is an infinite sequence of states and actions s0a1s1a2s2 . . . ∈ (SA)ω such that
for all i ≥ 0, (si, ai+1, si+1) ∈ δ. A prefix of a play is an element in S(AS)∗ and is called a
history; the set of all histories starting in a state s ∈ S is denoted Hists(A, s). For S′ ⊆ S, we
write Hists(A, S′) for the unions of Hists(A, s) over all states s ∈ S′. For ρ = s0a1s1 . . . ansn

a history, we write out(ρ) for sn. For i ∈ {1, 2}, we write Histsi(A, s) and Histsi(A, S′) for
the corresponding histories ρ such that out(ρ) ∈ Si. For s, s′ ∈ S, we write Hists(A, s, s′) for
the histories in Hists(A, s) such that out(ρ) = s′.
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We write ĉol for the extension of col to histories and plays: more precisely, for a history
ρ = s0a1s1 . . . ansn, ĉol(ρ) is the finite sequence col(s0, a1) . . . col(sn−1, an) ∈ C∗; for π =
s0a1s1a2s2 . . . a play, ĉol(π) is the infinite sequence col(s0, a1)col(s1, a2) . . . ∈ Cω.

A one-player arena of Pi is an arena A = (S1, S2, A, δ, col) such that for all s ∈ S3−i,
|A(s)| = 1. A one-player arena corresponds to a Markov decision process (MDP) [44, 2].

An initialized arena is a pair (A, Sinit) such that A is an arena and Sinit is a non-empty
subset of the states of A, called the set of initial states. We assume w.l.o.g. that all states of
A are reachable from Sinit following transitions with positive probabilities in the probabilistic
transition function of A. In case of a single initial state s ∈ S, we write (A, s) for (A, {s}).

We will consider classes (sets) of initialized arenas, which are usually denoted by the letter
A. Typical classes that we will consider consist of all one-player or two-player, deterministic
or stochastic initialized arenas. We use initialized arenas throughout the paper for technical
reasons, but our results can be converted to results using the classical notion of arena.

Memory. We define a notion of memory based on complete deterministic automata on
colors. The goal of using colors instead of states/actions for transitions of the memory
is to define memory structures independently of arenas. A memory skeleton is a tuple
M = (M, minit, αupd) where M is a set of memory states, minit ∈ M is an initial state and
αupd : M × C → M is an update function. We add the following constraint: for all finite
sets of colors B ⊆ C, the number of states reachable from minit with transitions provided by
αupd|M×B is finite (where αupd|M×B is the restriction of the domain of αupd to M × B).

Memory skeletons with a finite state space are all encompassed by this definition, but
this also allows some skeletons with infinitely many states. For example, if C = N, the
tuple (N, 0, (m, n) 7→ max{m, n}), which remembers the largest color seen, is a valid memory
skeleton: for any finite B ⊆ C, we only need to use memory states up to max B. However,
the tuple (N, 0, (m, n) 7→ m + n) remembering the current sum of colors seen is not a memory
skeleton, as infinitely many states are reachable from 0, even if only B = {1} can be used.
We denote α̂upd : M × C∗ → M for the natural extension of αupd to finite sequences of colors.

Let M1 = (M1, m1
init, α1

upd) and M2 = (M2, m2
init, α2

upd) be memory skeletons. Their prod-
uct M1⊗M2 is the memory skeleton (M, minit, αupd) with M = M1×M2, minit = (m1

init, m2
init),

and, for all m1 ∈ M1, m2 ∈ M2, c ∈ C, αupd((m1, m2), c) = (α1
upd(m1, c), α2

upd(m2, c)). The
update function of the product simply updates both skeletons in parallel.

Strategies. Given an initialized arena (A = (S1, S2, A, δ, col), Sinit) and i ∈ {1, 2}, a
strategy of Pi on (A, Sinit) is a function σi : Histsi(A, Sinit) → Dist(A) such that for all
ρ ∈ Histsi(A, Sinit), Supp(σi(ρ)) ⊆ A(out(ρ)). For i ∈ {1, 2}, we denote by ΣG

i (A, Sinit) the
set of all strategies of Pi on (A, Sinit).

A strategy σi of Pi on (A, Sinit) is pure if for all ρ ∈ Histsi(A, Sinit), |Supp(σi(ρ))| = 1. If
a strategy is not pure, then it is randomized. A strategy σi of Pi on (A, Sinit) is memoryless
if for all ρ, ρ′ ∈ Histsi(A, Sinit), out(ρ) = out(ρ′) implies σi(ρ) = σi(ρ′). A pure memoryless
strategy of Pi can be simply specified as a function Si → A. A strategy σi of Pi on
(A, Sinit) is finite-memory if it can be encoded as a Mealy machine Γ = (M, αnxt), with
M = (M, minit, αupd) a memory skeleton and αnxt : Si × M → Dist(A) being the next-action
function, which is such that for s ∈ Si, m ∈ M , Supp(αnxt(s, m)) ⊆ A(s). Strategy σi is
encoded by Γ if for all histories ρ ∈ Histsi(A, Sinit), σi(ρ) = αnxt(out(ρ), α̂upd(minit, ĉol(ρ))).
If σi can be encoded as a Mealy machine (M, αnxt), we say that σi is based on (memory) M.
If σi is based on M and is pure, then the next-action function can be specified as a function
Si × M → A. Memoryless strategies correspond to finite-memory strategies based on the
trivial memory skeleton Mtriv = ({minit}, minit, (minit, c) 7→ minit) that has a single state.
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We denote by ΣPFM
i (A, Sinit) (resp. ΣP

i (A, Sinit), ΣGFM
i (A, Sinit), ΣG

i (A, Sinit)) the set of
pure finite-memory (resp. pure, finite-memory, general) strategies of Pi on (A, Sinit). A type
of strategies is an element X ∈ {PFM, P, GFM, G} corresponding to these subsets.

Outcomes. Let (A = (S1, S2, A, δ, col), Sinit) be an initialized arena. When both players
have decided on a strategy and an initial state has been chosen, the generated object is a
(finite or countably infinite) Markov chain, which induces a probability distribution on the
plays. For strategies σ1 of P1 and σ2 of P2 on (A, Sinit) and s ∈ Sinit, we denote Pσ1,σ2

A,s for
the probability distribution on plays induced by σ1 and σ2, starting from state s.

We define F to be the smallest σ-algebra on Cω generated by the set of all cylinders
on C. In particular, every probability distribution Pσ1,σ2

A,s naturally induces a probability
distribution over (Cω, F) through the ĉol function, which we denote Pcσ1,σ2

A,s .

Preferences. To specify each player’s objective, we use the general notion of preference
relation. A preference relation ⊑ (on C) is a total preorder over Dist(Cω, F). The idea is
that P1 favors the distributions in Dist(Cω, F) that are the largest for ⊑, and as we are
studying zero-sum games, P2 favors the distributions that are the smallest for ⊑. For ⊑ a
preference relation and µ, µ′ ∈ Dist(Cω, F), we write µ ⊏ µ′ if µ ⊑ µ′ and µ′ ̸⊑ µ.

Depending on the context, it might not be necessary to define a preference relation as
total: it is sufficient to order distributions that can arise as an element Pσ1,σ2

A,s . For example,
in the specific case of deterministic games in which only pure strategies are considered, all
distributions that arise are always Dirac distributions on a single infinite word in Cω. In this
context, it is therefore sufficient to define a total preorder over all Dirac distributions (which
we can then see as infinite words, giving a definition of preference relation similar to [33, 7]).
We give some examples to illustrate our notion of preference relation.

▶ Example 1. We give three examples corresponding to three different ways to encode
preference relations. First, a preference relation can be induced by an event W ∈ F
called a winning condition, which consists of infinite sequences of colors. The objective
of P1 is to maximize the probability that the event W happens. An event W naturally
induces a preference relation ⊑W such that for µ, µ′ ∈ Dist(Cω, F), µ ⊑W µ′ if and only
if µ(W ) ≤ µ′(W ). For C = N, we give the example of the weak parity winning condition
Wwp [49], defined as Wwp = {c1c2 . . . ∈ Cω | maxj≥1 cj exists and is even}. In finite arenas,
the value maxj≥1 cj always exists, as there are only finitely many colors that appear. This is
different from the classical parity condition, which requires the maximal color seen infinitely
often to be even, and not just the maximal color seen.

A preference relation can also be induced by a Borel (real) payoff function f : Cω → R.
For example, if C = R and λ ∈ (0, 1), a classical payoff function [48] is the discounted
sum Discλ, defined for c1c2 . . . ∈ Cω as Discλ(c1c2 . . .) = limn

∑n
i=0 λi · ci+1. The goal of

P1 is to maximize the expected value of f , which is defined for a probability distribution
µ ∈ Dist(Cω, F) as Eµ[f ] =

∫
f dµ. A payoff function f naturally induces a preference relation

⊑f : for µ1, µ2 ∈ Dist(Cω, F), µ1 ⊑f µ2 if and only if Eµ1 [f ] ≤ Eµ2 [f ]. Payoff functions are
more general than winning conditions: for W a winning condition, the preference relation
induced by the indicator function of W corresponds to the preference relation induced by W .

It is also possible to specify preference relations that cannot be expressed as a payoff
function. An example is given in [27]: we assume that the goal of P1 is to see color c ∈ C

with probability precisely 1
2 . We denote the event of seeing color c as ♢c ∈ F . Then for

µ, µ′ ∈ Dist(Cω, F), µ ⊑ µ′ if and only if µ(♢c) ̸= 1
2 or µ′(♢c) = 1

2 . ⌟
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A (two-player stochastic turn-based zero-sum) initialized game is a tuple G = (A, Sinit, ⊑),
where (A, Sinit) is an initialized arena and ⊑ is a preference relation.

Optimality. Let G = (A, Sinit, ⊑) be an initialized game and X ∈ {PFM, P, GFM, G} be a
type of strategies. For s ∈ Sinit, σ1 ∈ ΣX

1 (A, Sinit), we define

UColX⊑(A, s, σ1) = {µ ∈ Dist(Cω, F) | ∃ σ2 ∈ ΣX
2 (A, s), Pcσ1,σ2

A,s ⊑ µ}.

The set UColX⊑(A, s, σ1) corresponds to all the distributions that are at least as good for P1
(w.r.t. ⊑) as a distribution that P2 can induce by playing a strategy σ2 of type X against σ1;
this set is upward-closed w.r.t. ⊑. For σ1, σ′

1 ∈ ΣX
1 (A, Sinit), we say that σ1 is at least as good

as σ′
1 from s ∈ Sinit under X strategies if UColX⊑(A, s, σ1) ⊆ UColX⊑(A, s, σ′

1). This inclusion
means that the best replies of P2 against σ′

1 yield an outcome that is at least as bad for
P1 (w.r.t. ⊑) as the best replies of P2 against σ1. We can define symmetrical notions for
strategies of P2.

Let G = (A, Sinit, ⊑) be an initialized game and X ∈ {PFM, P, GFM, G} be a type of
strategies. A strategy σi ∈ ΣX

i (A, Sinit) is X-optimal in G if it is at least as good under X
strategies as any other strategy in ΣX

i (A, Sinit) from all s ∈ Sinit.
When the considered preference relation ⊑ is clear, we often talk about X-optimality in an

initialized arena (A, Sinit) to refer to X-optimality in the initialized game (A, Sinit, ⊑). Given a
preference relation, a class of arenas, and a type of strategies, our goal is to understand what
kinds of strategies are sufficient to play optimally. In the following definition, abbreviations
AIFM and FM stand respectively for arena-independent finite-memory and finite-memory.

▶ Definition 2. Let ⊑ be a preference relation, A be a class of initialized arenas, X ∈
{PFM, P, GFM, G} be a type of strategies, and M be a memory skeleton. We say that pure
AIFM strategies suffice to play X-optimally in A for P1 if there exists a memory skeleton
M such that for all (A, Sinit) ∈ A, P1 has a pure strategy based on M that is X-optimal in
(A, Sinit). We say that pure FM strategies suffice to play X-optimally in A for P1 if for all
(A, Sinit) ∈ A, there exists a memory skeleton M such that P1 has a pure strategy based on
M that is X-optimal in (A, Sinit).

Since memoryless strategies are a specific kind of finite-memory strategies based on the
same memory skeleton Mtriv, the sufficiency of pure memoryless strategies is equivalent
to the sufficiency of pure strategies based on Mtriv, and is therefore a specific case of the
sufficiency of pure AIFM strategies. Notice the difference between the order of quantifiers
for AIFM and FM strategies: the sufficiency of pure AIFM strategies implies the sufficiency
of pure FM strategies, but the opposite is false in general (an example is given in [17]).

▶ Example 3. Let us reconsider the weak parity winning condition Wwp introduced in
Example 1: the goal of P1 is to maximize the probability that the greatest color seen
is even. To play optimally in any stochastic game, it is sufficient for both players to
remember the largest color already seen, which can be implemented by the memory skeleton
Mmax = (N, 0, (m, n) 7→ max{m, n}). As explained above, this memory skeleton has an
infinite state space, but as there are only finitely many colors in every (finite) arena, only a
finite part of the skeleton is sufficient to play optimally in any given arena. The size of the
skeleton used for a fixed arena depends on the appearing colors, but for a fixed number of
colors, it does not depend on parameters of the arena (such as its state and action spaces).
Therefore pure AIFM strategies suffice to play optimally for both players, and more precisely
pure strategies based on Mmax suffice for both players. ⌟
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We define a second stronger notion related to optimality of strategies, which is the notion
of subgame perfect strategy: a strategy is subgame perfect in a game if it reacts optimally to
all histories consistent with the arena, even histories not consistent with the strategy itself,
or histories that only a non-rational adversary would play [43]. This is a desirable property
of strategies that is stronger than optimality, since a subgame perfect strategy is not only
optimal from the initial position, but from any arbitrary stage (subgame) of the game. In
particular, if an opponent plays non-optimally, an optimal strategy that is not subgame
perfect does not always fully exploit the advantage that the opponent’s suboptimal behavior
provides, and may yield a result that is not optimal when starting in a subgame. We first
need extra definitions.

For w ∈ C∗, µ ∈ Dist(Cω, F), we define the shifted distribution wµ as the distribution
such that for an event E ∈ F , wµ(E) = µ({w′ ∈ Cω | ww′ ∈ E}).

For (A, Sinit) an initialized arena, for σi ∈ ΣG
i (A, Sinit), and for ρ = s0a1s1 . . . ansn ∈

Hists(A, Sinit), we define the shifted strategy σi[ρ] ∈ ΣG
i (A, out(ρ)) as the strategy such that,

for ρ′ = snan+1sn+1 . . . amsm ∈ Histsi(A, out(ρ)), σi[ρ](ρ′) = σi(s0a1s1 . . . amsm).
For ⊑ a preference relation and w ∈ C∗, we define the shifted preference relation ⊑[w] as

the preference relation such that for µ, µ′ ∈ Dist(Cω, F), µ ⊑[w] µ′ if and only if wµ ⊑ wµ′.

▶ Definition 4. Let G = (A, Sinit, ⊑) be an initialized game and X ∈ {PFM, P, GFM, G} be a
type of strategies. A strategy σi ∈ ΣX

i (A, Sinit) is X-subgame perfect (X-SP) in G if for all ρ ∈
Hists(A, Sinit), shifted strategy σi[ρ] is X-optimal in the initialized game (A, out(ρ), ⊑[ĉol(ρ)]).

Strategies that are X-SP are in particular X-optimal; the converse is not true in general.

3 Coverability and subgame perfect strategies

In this section, we establish a key tool (Lemma 6) which can be used to reduce questions
about the sufficiency of AIFM strategies in reasonable classes of initialized arenas to the
sufficiency of memoryless strategies in a subclass. We then describe the use of this lemma to
obtain our first main result (Theorem 7), which shows that the sufficiency of pure AIFM
strategies implies the existence of pure AIFM SP strategies. Technical details are in [9].

▶ Definition 5. An initialized arena ((S1, S2, A, δ, col), Sinit) is covered by memory skeleton
M = (M, minit, αupd) if there exists a function ϕ : S → M such that for all s ∈ Sinit,
ϕ(s) = minit, and for all (s, a, s′) ∈ δ, αupd(ϕ(s), col(s, a)) = ϕ(s′).

The coverability property means that it is possible to assign a unique memory state
to each arena state such that transitions of the arena always update the memory state in
a way that is consistent with the memory skeleton. A covered initialized arena carries in
some way already sufficient information to play with memory M without actually using
memory – using the memory skeleton M would not be more powerful than using no memory
at all. This property is linked to the classical notion of product arena with M: a strategy
based on M corresponds to a memoryless strategy in a product arena (e.g., [7, Lemma 1]
and [9]). For our results, coverability is a key technical definition, as the class of initialized
arenas covered by a memory skeleton is sufficiently well-behaved to support edge-induction
arguments, whereas it is difficult to perform such techniques directly on the class of product
arenas: removing a single edge from a product arena makes it hard to express as a product
arena, whereas it is clear that coverability is preserved. Every initialized arena is covered by
Mtriv, which is witnessed by the function ϕ associating minit to every state.

Definitions close to our notion of coverability by M were introduced for deterministic
arenas in [36, 7]. The definition of adherence with M in [36, Definition 8.12] is very similar,
but does not distinguish initial states from the rest (neither in the arena nor in the memory
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skeleton). Our property of (A, Sinit) being covered by M is also equivalent to A being both
prefix-covered and cyclic-covered by M from Sinit [7]. Distinguishing both notions gives
insight in [7] as they are used at different places in proofs (prefix-covered along with monotony,
and cyclic-covered along with selectivity). Here, we opt for a single concise definition.

The following lemma sums up our practical use of the idea of coverability.

▶ Lemma 6. Let ⊑ be a preference relation, M be a memory skeleton, and X ∈ {PFM, P, GFM,

G} be a type of strategies. Let A be the class of one-player or two-player, stochastic or
deterministic initialized arenas. Then, P1 has an X-optimal (resp. X-SP) strategy based on
M in all initialized arenas in A if and only if P1 has a memoryless X-optimal (resp. X-SP)
strategy in all initialized arenas covered by M in A.

We now state one of our main results, which shows that the sufficiency of pure strategies
based on the same memory skeleton M implies that pure SP strategies based on M exist.

▶ Theorem 7. Let ⊑ be a preference relation, M be a memory skeleton, and X ∈ {PFM, P,

GFM, G} be a type of strategies. Let A be the class of one-player or two-player, stochastic or
deterministic initialized arenas. If P1 has pure X-optimal strategies based on M in initialized
arenas of A, then P1 has pure X-SP strategies based on M in initialized arenas of A.

Proof sketch. By Lemma 6, we can prove instead that P1 has a pure memoryless X-SP
strategy in every initialized arena covered by M, based on the hypothesis that P1 has a pure
memoryless X-optimal strategy in every initialized arena covered by M. For (A, Sinit) ∈ A

covered by M, P1 has a pure memoryless X-optimal strategy σ0
1 . If this strategy is not X-SP,

there must be a prefix ρ ∈ Hists(A, Sinit) such that σ0
1 is not X-optimal in (A, out(ρ), ⊑[ĉol(ρ)]).

Then, we extend (A, Sinit) by adding a “chain” of states with colors ĉol(ρ) up to out(ρ), and
add as an initial state the first state of this chain. This new arena is still covered by M, thus
P1 has a pure memoryless X-optimal strategy in this arena that is now X-optimal after seeing ρ.
If this strategy is not X-SP, we keep iterating our reasoning. This iteration necessarily ends,
as we consider finite arenas, on which there are finitely many pure memoryless strategies. ◀

This result shows a major distinction between the sufficiency of AIFM strategies and
the more general sufficiency of FM strategies: if a player can always play optimally with
the same memory, then SP strategies may be played with the same memory as optimal
strategies – if a player can play optimally but needs arena-dependent finite memory, then
infinite memory may still be required to obtain SP strategies. One such example is provided
in [38, Example 16] for the average-energy games with lower-bounded energy in deterministic
arenas: P1 can always play optimally with pure finite-memory strategies [6, Theorem 13],
but infinite memory is needed for SP strategies. As will be further explained later, we will
also use Theorem 7 to gain technical insight in the proof of the main result of Section 5.

4 One-to-two-player lift

Our goal in this section is to expose a practical tool to help study the memory requirements
of two-player stochastic (or deterministic) games. This tool consists in reducing the study of
the sufficiency of pure AIFM strategies for both players in two-player games to one-player
games. We first state our result, and we then explain how it relates to similar results from
the literature and sketch its proof. A slightly generalized result with a more fine-grained
quantification on the classes of initialized arenas is in [9], with the complete proof.
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▶ Theorem 8 (Pure AIFM one-to-two-player lift). Let ⊑ be a preference relation, M1 and
M2 be two memory skeletons, and X ∈ {PFM, P, GFM, G} be a type of strategies. Let A be
the class of all initialized stochastic or deterministic arenas.

Assume that in all initialized one-player arenas of P1 in A, P1 can play X-optimally with
a pure strategy based on M1, and in all initialized one-player arenas of P2 in A, P2 can play
X-optimally with a pure strategy based on M2. Then in all initialized two-player arenas in
A, both players have a pure X-SP strategy based on M1 ⊗ M2.

The practical usage of this result can be summed up as follows: to determine whether
pure AIFM strategies are sufficient for both players in stochastic (resp. deterministic) arenas
to play X-optimally, it is sufficient to prove it for stochastic (resp. deterministic) one-player
arenas. Our theorem deals in a uniform manner with stochastic and deterministic arenas,
under different types of strategies. Studying memory requirements of one-player arenas is
significantly easier than doing so in two-player arenas, as a one-player arena can be seen as a
graph (in the deterministic case) or an MDP (in the stochastic case). Still, we bring more
tools to study memory requirements of one-player arenas in Section 5.

Theorem 8 generalizes known one-to-two-player lifts: for pure memoryless strategies in
deterministic [33] and stochastic [34] games, and for pure AIFM strategies in deterministic
games [7]. Very briefly, our proof technique consists in extending the lift for pure memoryless
strategies in stochastic games [34] in order to deal with initialized arenas. Then, we show
that this pure memoryless one-to-two-player lift can be applied to the class of initialized
arenas covered by M1 ⊗ M2 (using an edge-induction technique), and Lemma 6 permits to
go back from pure memoryless strategies to pure strategies based on M1 ⊗ M2. Thanks to
Theorem 7, we also go further in our understanding of the optimal strategies: we obtain the
existence of X-SP strategies instead of the seemingly weaker existence of X-optimal strategies.

5 AIFM characterization

For this section, we fix ⊑ a preference relation, X ∈ {PFM, P, GFM, G} a type of strategies,
and M = (M, minit, αupd) a memory skeleton. We distinguish two classes of initialized arenas:
the class AD

P1
of all initialized one-player deterministic arenas of P1, and the class AS

P1
of all

initialized one-player stochastic arenas of P1. A class of arenas will therefore be specified
by a letter Y ∈ {D, S}, which we fix for the whole section. Our aim is to give a better
understanding of the preference relations for which pure strategies based on M suffice to
play X-optimally in AY

P1
, by characterizing it through two intuitive conditions. All definitions

and proofs are stated from the point of view of P1. As we only work with one-player arenas
in this section, we abusively write Pσ1

A,s and Pcσ1
A,s for the distributions on plays and colors

induced by a strategy σ1 of P1 on (A, s), with the unique, trivial strategy for P2.
For A ∈ AY

P1
and s a state of A, we write [A]Xs = {Pcσ1

A,s | σ1 ∈ ΣX
1 (A, s)} for the set of

all distributions over (Cω, F) induced by strategies of type X in A from s.
For m1, m2 ∈ M , we write Lm1,m2 = {w ∈ C∗ | α̂upd(m1, w) = m2} for the language

of words that are read from m1 up to m2 in M. Such a language can be specified by the
deterministic automaton that is simply the memory skeleton M with m1 as the initial state
and m2 as the unique final state. We extend the shifted distribution notation to sets of
distributions: for w ∈ C∗, for Λ ⊆ Dist(Cω, F), we write wΛ for the set {wµ | µ ∈ Λ}.

Given ⊑ a preference relation, we also extend ⊑ to sets of distributions: for Λ1, Λ2 ⊆
Dist(Cω, F), we write Λ1 ⊑ Λ2 if for all µ1 ∈ Λ1, there exists µ2 ∈ Λ2 such that µ1 ⊑ µ2;
we write Λ1 ⊏ Λ2 if there exists µ2 ∈ Λ2 such that for all µ1 ∈ Λ1, µ1 ⊏ µ2. Notice that
¬(Λ1 ⊑ Λ2) is equivalent to Λ2 ⊏ Λ1. If Λ1 is a singleton {µ1}, we write µ1 ⊑ Λ2 for
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{µ1} ⊑ Λ2 (and similarly for Λ2, and similarly using ⊏). Notice that µ1 ⊑ µ2 is equivalent
to {µ1} ⊑ {µ2}, so this notational shortcut is sound. For two initialized arenas (A1, s1) and
(A2, s2), the inequality [A1]Xs1

⊑ [A2]Xs2
means that for every strategy on (A1, s1), there is a

strategy on (A2, s2) that induces a distribution that is at least as good.
For two arenas A1 and A2 with disjoint state spaces, if s1 and s2 are two states controlled

by P1 that are respectively in A1 and A2 with disjoint sets of available actions, we write
(A1, s1) ⊔ (A2, s2) for the merged arena in which s1 and s2 are merged, and everything else is
kept the same. The merged state which comes from the merge of s1 and s2 is usually called
t. Formally, let A1 = (S1

1 , S1
2 , A1, δ1, col1), A2 = (S2

1 , S2
2 , A2, δ2, col2), s1 ∈ S1

1 , and s2 ∈ S2
1 .

We assume that S1 ∩ S2 = ∅ and that A(s1) ∩ A(s2) = ∅. We define (A1, s1) ⊔ (A2, s2)
as the arena (S1, S2, A, δ, col) with S1 = S1

1 ⊎ S2
1 ⊎ {t} \ {s1, s2}, S2 = S1

2 ⊎ S2
2 ; we define

A(t) = A1(s1) ⊎ A2(s2) and for i ∈ {1, 2}, δ(t, a) = δi(t, a) and col(t, a) = coli(t, a) if
a ∈ A(si); all the other available actions, transitions and colors are kept the same as in
the original arenas (with transitions going to s1 or s2 being directed to t). A symmetrical
definition can be written if s1 and s2 are both controlled by P2.

We can now present the two properties of preference relations at the core of our character-
ization. These properties are called X-Y-M-monotony and X-Y-M-selectivity; they depend
on a type of strategies X, a type of arenas Y, and a memory skeleton M. The first appearance
of the monotony (resp. selectivity) notion was in [33], which dealt with deterministic arenas
and memoryless strategies; their monotony (resp. selectivity) is equivalent to our P-D-Mtriv-
monotony (resp. P-D-Mtriv-selectivity). In [7], these definitions were generalized to deal with
the sufficiency of strategies based on M in deterministic arenas; their notion of M-monotony
(resp. M-selectivity) is equivalent to our P-D-M-monotony (resp. P-D-M-selectivity).

▶ Definition 9 (Monotony). We say that ⊑ is X-Y-M-monotone if for all m ∈ M , for all
(A1, s1), (A2, s2) ∈ AY

P1
, there exists i ∈ {1, 2} s.t. for all w ∈ Lminit,m, w[A3−i]Xs3−i

⊑ w[Ai]Xsi
.

The crucial part of the definition is the order of the last two quantifiers: of course, given
a w ∈ Lminit,m, as ⊑ is total, it will always be the case that w[A1]Xs1

⊑ w[A2]Xs2
or that

w[A2]Xs2
⊑ w[A1]Xs1

. However, we ask for something stronger: it must be the case that the
set of distributions w[Ai]Xsi

is preferred to w[A3−i]Xs3−i
for any word w ∈ Lminit,m.

The original monotony definition [33] states that when presented with a choice once
among two possible continuations, if a continuation is better than the other one after some
prefix, then this continuation is also at least as good after all prefixes. This property is not
sufficient for the sufficiency of pure memoryless strategies as it does not guarantee that if the
same choice presents itself multiple times in the game, the same continuation should always
be chosen, as alternating between both continuations might still be beneficial in the long
run – this is dealt with by selectivity. If memory M is necessary to play optimally, then it
makes sense that there are different optimal choices depending on the current memory state
and that we should only compare prefixes that reach the same memory state. The point of
taking into account a memory skeleton M in our definition of X-Y-M-monotony is to only
compare prefixes that are read up to the same memory state from minit.

▶ Definition 10 (Selectivity). We say that ⊑ is X-Y-M-selective if for all m ∈ M , for
all (A1, s1), (A2, s2) ∈ AY

P1
such that for i ∈ {1, 2}, ĉol(Hists(Ai, si, si)) ⊆ Lm,m, for all

w ∈ Lminit,m, w[(A1, s1) ⊔ (A2, s2)]Xt ⊑ w[A1]Xs1
∪ w[A2]Xs2

(where t comes from the merge of
s1 and s2).

Our formulation of the selectivity concept differs from the original definition [33] and
its AIFM counterpart [7] in order to take into account the particularities of the stochastic
context, even if it can be proven that they are equivalent in the pure deterministic case. The
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idea is still the same: the original selectivity definition states that when presented with a
choice among multiple possible continuations after some prefix, if a continuation is better
than the others, then as the game goes on, if the same choice presents itself again, it is
sufficient to always pick the same continuation to play optimally; there is no need to alternate
between continuations. This property is not sufficient for the sufficiency of pure memoryless
strategies as it does not guarantee that for all prefixes, the same initial choice is always the
one we should commit to – this is dealt with by monotony. The point of memory skeleton
M in our definition is to guarantee that every time the choice is presented, we are currently
in the same memory state.

An interesting property is that both notions are stable by product with a memory skeleton:
if ⊑ is X-Y-M-monotone (resp. X-Y-M-selective), then for all memory skeletons M′, ⊑ is
also X-Y-(M ⊗ M′)-monotone (resp. X-Y-(M ⊗ M′)-selective). The reason is that in each
definition, we quantify universally over the class of all prefixes w that reach the same memory
state m; if we consider classes that are subsets of the original classes, then the definition still
holds. This property matches the idea that playing with more memory is never detrimental.

Combined together, it is intuitively reasonable that X-Y-M-monotony and X-Y-M-
selectivity are equivalent to the sufficiency of pure strategies based on M to play X-optimally
in AY

P1
: monotony tells us that when a single choice has to be made given a state of the

arena and a memory state, the best choice is always the same no matter what prefix has
been seen, and selectivity tells us that once a good choice has been made, we can commit to
it in the future of the game. We formalize this idea in Theorem 13. First, we add an extra
restriction on preference relations which is useful when stochasticity is involved.

▶ Definition 11 (Mixing is useless). We say that mixing is useless for ⊑ if for all sets I at
most countable, for all positive reals (λi)i∈I such that

∑
i∈I λi = 1, for all families (µi)i∈I ,

(µ′
i)i∈I of distributions in Dist(Cω, F), if for all i ∈ I, µi ⊑ µ′

i, then
∑

i∈I λiµi ⊑
∑

i∈I λiµ
′
i.

That is, if we can write a distribution as a convex combination of distributions, then it is
never detrimental to improve a distribution appearing in the convex combination.

▶ Remark 12. All preference relations encoded as Borel real payoff functions (as defined in
Example 1) satisfy this property (it is easy to show the property for indicator functions,
and we can then extend this fact to all Borel functions thanks to properties of the Lebesgue
integral). The third preference relation from Example 1 (reaching c ∈ C with probability
precisely 1

2 ) does not satisfy this property: if µ1(♢c) = 0, µ′
1(♢c) = 1

2 , and µ2(♢c) = 1, we
have µ1 ⊏ µ′

1 and µ2 ⊑ µ2, but 1
2 µ′

1 + 1
2 µ2 ⊏ 1

2 µ1 + 1
2 µ2. In deterministic games with pure

strategies, only Dirac distributions on infinite words occur as distributions induced by an
arena and a strategy, so the requirement that mixing is useless is not needed. ⌟

▶ Theorem 13. Assume that no stochasticity is involved (that is, X ∈ {P, PFM} and Y = D),
or that mixing is useless for ⊑. Then pure strategies based on M suffice to play X-optimally
in all initialized one-player arenas in AY

P1
for P1 if and only if ⊑ is X-Y-M-monotone and

X-Y-M-selective.

Proof sketch. We sketch both directions of the proof (available in [9]). The proof of the
necessary condition of Theorem 13 is the easiest direction. The main idea is to build the
right arenas (using the arenas occurring in the definitions of monotony and selectivity) so
that we can use the hypothesis about the existence of pure X-optimal strategies based on M
to immediately deduce X-Y-M-monotony and X-Y-M-selectivity. It is not necessary that
mixing is useless for ⊑ for this direction of the equivalence.
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For the sufficient condition, we first reduce as usual the statement to the existence of
pure memoryless strategies in covered initialized arenas, using Lemma 6. We proceed with
an edge-induction in these arenas (as for Theorem 8). The base case is trivial (as in an
arena in which all states have a single available action, there is a single strategy which is
pure and memoryless). For the induction step, we take an initialized arena (A′, Sinit) ∈ AY

P1

covered by M, and we pick a state t with (at least) two available actions. A memory state
ϕ(t) is associated to t thanks to coverability. We consider arenas (A′

a, Sinit) obtained from
(A′, Sinit) by leaving a single action a available in t, to which we can apply the induction
hypothesis and obtain a pure memoryless X-optimal strategy σa

1 . It is left to prove that
one of these strategies is also X-optimal in (A′, Sinit); this is where X-Y-M-monotony and
X-Y-M-selectivity come into play.

The property of X-Y-M-monotony tells us that one of these subarenas (A′
a∗ , Sinit) is

preferred to the others w.r.t. ⊑ after reading any word in Lminit,ϕ(t). We now want to use
X-Y-M-selectivity to conclude that there is no reason to use actions different from a∗ when
coming back to t, and that σa∗

1 is therefore also X-optimal in (A′, Sinit). To do so, we take
any strategy σ1 ∈ ΣX

1 (A′, s) for s ∈ Sinit and we condition distribution Pσ1
A′,s over all the ways

it reaches (or not) t, which gives a convex combination of probability distributions. We want
to state that once t is reached, no matter how, switching to strategy σa∗

1 is always beneficial.
For this, we would like to use X-subgame-perfection of σa∗

1 rather than simply X-optimality:
this is why in the actual proof, our induction hypothesis is about X-SP strategies and not
X-optimal strategies. Luckily, Theorem 7 indicates that requiring subgame perfection is
not really stronger than what we want to prove. We then use that mixing is useless for ⊑
(Definition 11) to replace all the parts that go through t in the convex combination by a
better distribution induced by σa∗

1 from t. ◀

The literature provides some sufficient conditions for preference relations to admit pure
memoryless optimal strategies in one-player stochastic games (for instance, in [31]). Here,
we obtain a full characterization when mixing is useless for ⊑ (in particular, this is a full
characterization for Borel real payoff functions), which can deal not only with memoryless
strategies, but also with the more general AIFM strategies. It therefore provides a more
fundamental understanding of preference relations for which AIFM strategies suffice or do
not suffice. In particular, there are examples in which the known sufficient conditions are
not verified even though pure memoryless strategies suffice (one such example is provided
in [10]), and that is for instance where our characterization can help.

It is interesting to relate the concepts of monotony and selectivity to other properties
from the literature to simplify the use of our characterization. For instance, if a real payoff
function f : Cω → R is prefix-independent,1 then it is also X-Y-M-monotone for any X, Y,
and M; therefore, the sufficiency of pure AIFM strategies immediately reduces to analyzing
selectivity.

6 Conclusion

We have studied stochastic games and gave an overview of desirable properties of preference
relations that admit pure arena-independent finite-memory optimal strategies. Our analysis
provides general tools to help study memory requirements in stochastic games, both with one
player (Markov decision processes) and two players, and links both problems. It generalizes
both work on deterministic games [33, 7] and work on stochastic games [34].

1 A function f : Cω → R is prefix-independent if for all w ∈ C∗, for all w′ ∈ Cω, f(ww′) = f(w′).
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A natural question that remains unsolved is the link between memory requirements of
a preference relation in deterministic and in stochastic games; our results can be called
independently to study both problems, but do not describe a bridge to go from one to
the other yet. Also, our results can only be used to show the optimality of pure strategies
with some fixed memory, but in some cases, using randomized strategies allows for lesser
memory requirements [16, 41]. Investigating whether extensions to our results dealing with
randomized strategies hold would therefore be valuable.
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