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Abstract
Multi-pushdown systems are a standard model for concurrent recursive programs, but they have an
undecidable reachability problem. Therefore, there have been several proposals to underapproximate
their sets of runs so that reachability in this underapproximation becomes decidable. One such
underapproximation that covers a relatively high portion of runs is scope boundedness. In such a run,
after each push to stack i, the corresponding pop operation must come within a bounded number of
visits to stack i.

In this work, we generalize this approach to a large class of infinite-state systems. For this,
we consider the model of valence systems, which consist of a finite-state control and an infinite-
state storage mechanism that is specified by a finite undirected graph. This framework captures
pushdowns, vector addition systems, integer vector addition systems, and combinations thereof. For
this framework, we propose a notion of scope boundedness that coincides with the classical notion
when the storage mechanism happens to be a multi-pushdown.

We show that with this notion, reachability can be decided in PSPACE for every storage
mechanism in the framework. Moreover, we describe the full complexity landscape of this problem
across all storage mechanisms, both in the case of (i) the scope bound being given as input and
(ii) for fixed scope bounds. Finally, we provide an almost complete description of the complexity
landscape if even a description of the storage mechanism is part of the input.
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1 Introduction

Multi-pushdown systems are a natural model for recursive programs with threads that
communicate via shared memory. Unfortunately, even safety verification (state reachability) is
undecidable for this model [21]. However, by considering underapproximations of the set of all
executions, it is still possible to discover safety violations. The first such underapproximation
in the literature was bounded context switching [20]. Here, one only considers executions that
switch between threads a bounded number of times. In terms of multi-pushdown systems,
this places a bound on the number of times we can switch between stacks.

One underapproximation that covers a relatively large portion of all executions and still
permits decidable reachability is scope-boundedness as proposed by La Torre, Napoli, and
Parlato [23, 25]. Here, instead of bounding the number of context switches across the entire
run, we bound the number of context switches per letter on a stack (i.e. procedure execution).
More precisely, whenever we push a letter on some stack i, then we can switch back to stack
i at most k times before we have to pop that letter again. This higher coverage of runs
comes at the cost of higher complexity: While reachability with bounded context switching
is NP-complete [12, 20], the scope-bounded reachability problem is PSPACE-complete (if the
number of pushdowns or the scope bound is part of the input) [25].
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29:2 Scope-Bounded Valence Systems

Aside from multi-pushdown systems, there is a wide variety of other infinite-state models
that are used to model program behaviours. For these, reachability problems are also
sometimes undecidable or have prohibitively high complexity. For example, vector addition
systems with states (VASS) is one of the most prominent models for concurrent systems,
but its reachability problem has non-elementary complexity [8]. This raises the question
of whether underapproximations for multi-pushdown systems can be interpreted in other
infinite-state systems and what complexity would ensue.

The notion of bounded context switching has recently been generalized to a large class of
infinite-state systems [19], in the framework of valence systems over graph monoids. These
consist of a finite-state control that has access to a storage mechanism. The shape of this
storage mechanism is described by a finite, undirected graph. By choosing an appropriate
graph, one can realize many infinite-state models. Examples include (multi-)pushdown
systems, VASS, integer VASS, but also combinations thereof, such as pushdown VASS [17]
and sequential recursive Petri nets [16]. Under this notion, bounded context reachability is
in NP for each graph, and thus each storage mechanism in the framework [19]. Moreover,
the paper [19] presents some subclasses of graphs for which bounded context reachability has
lower complexity (NL or P). However, the exact complexity of reachability under bounded
context switching remains open in many cases, such as the path with four nodes [19].

Contribution. We present an abstract notion of scope-bounded runs for valence systems over
graph monoids. As we show, this notion always leads to a reachability problem decidable
in PSPACE. In particular, our notion applies to all infinite-state models mentioned above.
Moreover, applied to multi-pushdown systems, it coincides with the notion of La Torre,
Napoli, and Parlato.

We also obtain an almost complete complexity landscape of scope-bounded reachability.
First, we show that if both (i) the graph Γ describing the storage mechanism and (ii) the
scope bound k are part of the input, the problem is PSPACE-complete. Second, we study
how the complexity depends on the employed storage mechanism. We show that for each
Γ, the problem is either NL-complete, P-complete, or PSPACE-complete, depending on Γ
(Corollary 4.2). Since the complexity drops below PSPACE only in extremely restricted cases,
we also study the setting where the scope bound k is fixed. In this case, we show that the
problem is either NL-complete or P-complete, depending on Γ (Corollary 4.4).

Finally, applying scope-boundedness to classes of infinite-state systems requires under-
standing the complexity if Γ is drawn from an infinite class of graphs. For example, for each
fixed dimension d, there is a graph Γd such that valence automata over Γd correspond to
VASS of dimension d. The class of all VASS (of arbitrary dimension), however, corresponds
to valence automata over all cliques. Thus, we also study scope-bounded reachability if Γ is
restricted to a class of graphs G. Under a mild assumption on G, we again obtain a complexity
trichotomy of NL-, P-, or PSPACE-completeness, both for k as input (Theorem 4.1) and for
fixed k (Theorem 4.3). In fact, all results mentioned above follow from these general results.

Related work. Similar in spirit to our work are the lines of research on systems with bounded
tree-width by Madhusudan and Parlato [18] and on bounded split-width by Aiswarya [6]. In
these settings, the storage mechanism is represented as a class of possible matching relations on
the positions of a computation. Then, under the assumption that the resulting behavior graphs
have bounded tree-width or split-width, respectively, there are general decidability results.
In particular, decidability of scope-bounded reachability in multi-pushdown systems has been
deduced via tree-width [26] and via split-width [7]. Different from underapproximations based
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on bounded tree-width or split-width, our framework includes multi-counter systems (such as
VASS or integer VASS), but also counters nested in stacks. While VASS can be seen as special
cases of multi-pushdown systems, our framework allows us, e.g. to study the complexity
of scope-bounded reachability if the storage mechanism is restricted to multi-counters. On
the other hand, while tree-width and split-width can be considered for queues [18, 1], they
cannot be realized as storage mechanisms in valence systems.

Furthermore, after their introduction [23] scope-bounded multi-pushdown systems have
been studied in terms of accepted languages [24], temporal logic model checking [26, 3].
Moreover, scope-boundedness has been studied in the timed setting [2],[4].

Over the last decade, the framework of valence automata over graph monoids has
been used to study how several types of analysis are impacted by the choice of storage
mechanism. For example: For which storage mechanisms (i) can silent transitions be
algorithmically eliminated? [27]; (ii) do we have a Parikh’s theorem [5], (iii) is (general)
reachability decidable [31]; (iv) is first-order logic with reachability decidable? [10]; (v) can
downward closures be computed effectively? [28].

Details of all proofs can be found in the full version of the paper.

2 Preliminaries

In this section, we recall the basics of valence systems over graph monoids [29].

Graph Monoids. This class of monoids accommodate a variety of storage mechanisms.
They are defined by undirected graphs without parallel edges Γ = (V, I) where V is a finite
set of vertices and I ⊆ {e ⊆ V | 1 ≤ |e| ≤ 2} is a finite set of undirected edges, which
can be self-loops. Thus, if {v} ∈ I, we say that v is looped; otherwise, v is unlooped. The
edge relation is also called an independence relation. We also write uIv for {u, v} ∈ I. A
subset U ⊆ V is a clique if uIv for any two distinct u, v ∈ U . If in addition, all v ∈ U

are looped, then U is a looped clique. If U is a clique and all v ∈ U are unlooped, then U

is an unlooped clique. We say that U ⊆ V is an anti-clique if we do not have uIv for any
distinct u, v ∈ U . Given the graph, we define a monoid as follows. We have the alphabet
XΓ = {v+, v− | v ∈ V }, where we write xIy for x, y ∈ XΓ if for some u, v ∈ V , we have
x ∈ {u+, u−}, y ∈ {v+, v−}, x ≠ y, and uIv. Moreover, ≡Γ is the smallest congruence on
X∗

Γ with v+v− ≡Γ ε for v ∈ V and xy ≡Γ yx for xIy. Here, ε denotes the empty word. Thus,
if v has a self-loop, then v−v+ ≡Γ ε. We define the monoid MΓ := X∗

Γ/ ≡Γ.

Valence Systems. Graph monoids are used in valence systems, which are finite automata
whose edges are labeled with elements of a monoid. Then, a run is considered valid if the
product of the monoid elements is the neutral element. Here, we only consider the case
where the monoid is of the form MΓ, so we define the concept directly for graphs.

Given a graph Γ, a valence system A over Γ consists of a finite set of states Q, and a
finite transition relation →⊆ Q × X∗

Γ × Q. A configuration of A is a tuple (q, w) where q ∈ Q,
w ∈ X∗

Γ is the sequence of storage operations executed so far. From a configuration (q1, u),
on a transition q1

v→ q2, we reach the configuration (q2, uv). A run of A is a sequence of
transitions. The reachability problem in valence systems is the following: Given states qinit
and qfin, is there a run from (qinit , ε) that reaches (qfin, w) for some w ∈ X∗

Γ with w ≡Γ ε?
Many classical storage types can be realized with graph monoids. Consider Γ̄3 = (V, I)

in Figure 1. We have I = {{a, c}, {b, c}, {c}}. For w ∈ X∗
Γ̄3

we have w ≡Γ̄3
ε if and only if

two conditions are met: First, if we project to {a+, a−, b+, b−}, then the word corresponds
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29:4 Scope-Bounded Valence Systems

to a sequence of push- and pop-operations that transform the empty stack into the empty
stack. Here, x+ corresponds to pushing x, and x− to popping x, for x ∈ {a, b}. Second, the
number of c+ is the same as the number of c− in w. Thus, valence automata over Γ̄3 can be
seen as pushdown automata that have access to a Z-valued counter. Similarly, the storage
mechanism of Γ2 in Figure 1 is a stack, where each stack entry is not a letter, but contains
two N-valued counters. A push (c+) starts a new stack entry and a pop (c−) is only possible
if the topmost two counters are zero. For more examples and explanation, see [30].

▶ Example 2.1 (Example storage mechanisms). Let us mention a few particular (classes of)
graphs and how they correspond to infinite-state systems. In the following, the direct product
of two graphs Γ and ∆ is the graph obtained by taking the disjoint union of Γ and ∆ and
adding an edge between each vertex from Γ and each vertex from ∆.

Pushdown For s ∈ N, let Ps be the graph on s vertices without edges. Then valence
automata over Ps correspond to pushdown systems with s stack symbols.

Multi-pushdown Let MPr,s be the direct product of r disjoint copies of Ps. Then valence
systems over MPr,s correspond to multi-pushdown systems with r stacks, each of which
has s stack symbols. In Figure 1, the induced subgraph of graph Γ1 on {b1, b2, b3, c1, c2, c3}
represents MP2,3.

VASS If UCd is an unlooped clique with d vertices, then valence systems over UCd correspond
to d-dimensional vector addition systems with states.

Integer VASS If LCd is a looped clique with d vertices, then valence systems over LCd

correspond to d-dimensional integer VASS.
Pushdown VASS If UC−

d is the graph obtained from UCd+2 by removing a single edge, then
valence systems over UC−

d correspond to d-dimensional pushdown VASS.

3 Scope-bounded runs in valence systems

In this section, we introduce our notion of bounded scope to valence systems over arbitrary
graph monoids. For each of the used concepts, we will explain how they relate to the existing
notion of scope-boundedness for multi-pushdown systems. Fixing Γ = (V, I) as before, first
we introduce some preliminary notations and definitions.

Dependent sets and contexts. Recall that valence systems over the graph MPr,s realize
a storage consisting of r pushdowns, each with s stack symbols. The graph MPr,s is a
direct product of r-many disjoint anti-cliques, each with s vertices. Here, each anti-clique
corresponds to a pushdown with s stack symbols: For a vertex v in such an anti-clique, the
symbol v+ is the push operation for this stack symbol, and v− is its pop operation.

In a multi-pushdown system, a run is naturally decomposed into contexts, where each
context is a sequence of operations belonging to one stack. In [19], the notion of context
was generalized to valence systems as follows. A set U ⊆ V is called dependent if it does
not contain distinct vertices u1, u2 ∈ V such that u1Iu2. A set of operations Y ⊆ XΓ is
dependent if its underlying set of vertices {v ∈ V | v+ ∈ Y or v− ∈ Y } is dependent. A
computation is called dependent if the set of operations occurring in it is dependent. A
dependent computation is also called a context. In Γ1 of Figure 1, contexts can be formed
over {b1, b2, b3}, {c1, c2, c3} and {a}.
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Figure 1 The storage mechanism of Γ1 is 2 stacks and one partially blind counter. Symbols of
the same stack are weakly dependent. In the storage mechanism of Γ2, a, b, c are weakly dependent.

Context decomposition. Note that a word w ∈ X∗
Γ need not have a unique decomposition

into contexts. For example, for Γ2 in Figure 1, the word a+c+b+ can be decomposed as
(a+c+)b+ and as a+(c+b+). Therefore, we now define a canonical decomposition into contexts,
which decomposes the word from left to right. Formally, the canonical context decomposition
of a computation w ∈ X+

Γ (that is, |w| > 0) is defined inductively. If w is over a dependent
set of operations, then w is a single context. Otherwise, find the maximal, non-empty prefix
w1 of w over a dependent set of operations. The canonical decomposition of w into contexts
is then w = w1w2 . . . wm where w2 . . . wm is the decomposition of the remaining word into
contexts. In the following, unless explicitly specified otherwise, when we mention the contexts
of a word, we always mean those in the canonical decomposition. Observe that in the case of
MPr,s, this is exactly the decomposition into contexts of multi-pushdown systems.

Reductions. Given a computation w = a1 · · · an where each ai ∈ XΓ, we identify each
operation ai with its position. We denote by w[i] the ith operation of w, hence w[i] = ai. A
reduction of w is a finite sequence of applications of the following rewriting rules.

(R1) w′.w[x].w[y].w′′ 7→red w′w′′, applicable if w[x] = o+, w[y] = o− for some o.
(R2) w′.w[x].w[y].w′′ 7→red w′w′′, applicable if w[x] = o−, w[y] = o+ for some oIo.
(R3) w′.w[x].w[y].w′′ 7→red w′w[y]w[x]w′′, applicable if w[x]Iw[y].
Reducing a word u to a word v using these rules is denoted by u

∗7→red v. A reduction of
w = a1 . . . an ∈ X∗

Γ to ε is the same as the free reduction of the sequence a1, a2, . . . , an. For
any computation w ∈ X∗

Γ, we have w ≡Γ ε iff w admits a reduction to ε [29, Equation (8.2)].
Assume that π = w

∗7→red ε is a reduction that transforms w into ε. The relation Rπ

relates positions of w which cancel in π:

w[x]Rπw[y] if w′.w[x].w[y].w′′ 7→red w′.w′′ or w′.w[y].w[x].w′′ 7→red w′.w′′ is used in π

Greedy reductions. A word w ∈ X∗
Γ is called irreducible if neither of the rules R1 and R2

is applicable in w. A reduction π : w
∗7→red ε is called greedy if it begins with a sequence of

applications of R1 and R2 for each context so that the resulting context is irreducible. Note
that every word w with w ≡Γ ε has a greedy reduction: One can first (greedily) apply R1
and R2 until each context is irreducible. Since the resulting word w′ still satisfies w′ ≡Γ ε,
there exists a reduction w′ ∗7→red ε. In total, this yields a greedy reduction.

Weak dependence. In the case of Γ = MPr,s, we know that any two vertices u, v are either
dependent (i.e. belong to the same pushdown) or Γ is the direct product of graphs Γu and
Γv such that u belongs to Γu and v belongs to Γv. This means, two operations that are not
dependent can, inside every computation, be moved past each other without changing the
effect on the stacks. This is not the case in general graphs. In Γ2 in Figure 1, the vertices
a and b are not dependent, but in the computation acb, they cannot be moved past each
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29:6 Scope-Bounded Valence Systems

other, because none of them commutes with c. We therefore need the additional notion of
weak dependence. We say that two vertices u, v ∈ V are weakly dependent if there is a path
between them in the complement of the graph. Here, the complement of a graph Γ = (V, I)
is obtained by complementing the independence relation (v1Iv2 in Γ iff we do not have v1Iv2
in the complement of Γ). Equivalently, u and v are not weakly dependent if Γ is the direct
product of graphs Γu and Γv such that u belongs to Γu and v belongs to Γv. As observed
above, Γ2 shows that in general, weakly dependent vertices need not be dependent.

It can be seen that weak dependence is an equivalence relation on the set of vertices V ,
where the equivalence classes are the connected components in the complement of Γ. Note
that all operations inside a context must belong to the same weak dependence class. We
therefore say that two contexts c1, c2 are weakly dependent if their operations belong to the
same weakly dependent equivalence class. Equivalently, two contexts are weakly dependent
if all their letters are pairwise weakly dependent. In particular, weak dependency is an
equivalence relation on contexts also. Let us denote the weak dependence equivalence relation
by ∼W and by [ ]∼W

the set of all equivalence classes induced by ∼W .

Scope bounded runs. We now define the notion of bounded scope computations. We first
phrase the classical notion1 of scope-boundedness [25] in our framework. If Γ = MPr,s, then
w ∈ X∗

Γ is considered k-scope bounded if there is a reduction π for w such that in between
any two symbols w[i] and w[j] related in Rπ, at most k contexts visit the same anti-clique
of w[i] and w[j]. Note that in MPr,s, for every reduction, there is a greedy reduction that
induces the same relation Rπ. Indeed, any applications of R1 and R2 that are applicable
in a context at the start will eventually be made anyway: In MPr,s, if a word reduces to ε,
then every position has a uniquely determined “partner position” with which is cancels in
every possible reduction. Therefore, we generalize scope boundedness as follows2.

▶ Definition 3.1 (Scope Bounded Computations). Consider a computation w ∈ X+
Γ . We

say w is k-scoped if there is a greedy reduction π = w
∗7→red ε such that in between any two

symbols w[i] and w[j] related by Rπ, at most k − 1 contexts between w[i] and w[j] belong to
the same weak dependence class as w[i] and w[j].

By sc(w), we denote the smallest number k so that w is k-scoped. Note that there is such
a k if and only if w ≡Γ ε. Thus, if w ̸≡Γ ε, we set sc(w) = ∞. In the example in Figure 1
(graph Γ1) the computation w = b+

1 (c+
2 a+c+

1 a+c−
1 a−c−

2 a−)mb−
1 is 3-scoped for all values of

m, even though the number of context switches grows with m.

Interaction distance. We make the notion of scope bound more formal using the notion of
interaction distance. Given a computation w ∈ X+

Γ . Let c1c2 . . . cn be the canonical decompos-
ition of w into contexts. We say that two contexts ci, cj with i < j have an interaction distance
K if there are K −1 contexts between ci and cj which are weakly dependent with ci. Consider
the computation b+

1 (a+c+
1 )m1b+

2 (a+c+
2 )m2b+

3 (a+c+
3 )m3b−

3 (c−
3 a−)m3b−

2 (c−
2 a−)m2b−

1 (c−
1 a−)m1 .

Each differently colored sequence is a context. The interaction distance between b+
1 and b−

1
is 5, since the weakly dependent contexts strictly between them are b+

2 , b+
3 , b−

3 , b−
2 .

1 The conference version [22] contains a slightly more restrictive definition. We follow the journal
version [25].

2 Another natural notion of scope-boundedness can be obtained by dropping the greediness condition.
Hence, we would ask for a reduction π such that between any two Rπ-related positions, there are at
most k − 1 contexts in the same weak dependence class. We expect that with this notion, Theorems 4.1
and 4.3 would still hold, but this would require changes to the algorithms.
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Thus, w is k-scoped if and only if there is a greedy reduction π : w 7→red ε such that
whenever w[i]Rπw[j], then the contexts of w[i] and w[j] have interaction distance at most k.

The following is the central decision problem studied in this paper.

The Bounded Scope Reachability Problem(BSREACH)
Given: Graph Γ, scope bound k, valence system A over Γ, initial state qinit , final
state qfin
Decide: Is there a run from (qinit , ε) to (qfin, w), for some w ∈ X∗

Γ with sc(w) ≤ k?

Thus, in BSREACH, both Γ and k are part of the input. We also consider versions where
certain parameters are fixed: If Γ is fixed, we denote the problem by BSREACH(Γ). If Γ is
part of the input, but can be drawn from a class G of graphs, we write BSREACH(G). Finally,
if we fix k, we use a subscript k, resulting in the problems BSREACHk, BSREACHk(Γ),
BSREACHk(G).

Deciding whether there is a run (qinit , ε) to (qfin, w) with w ≡Γ ε corresponds to general
configuration reachability [28]. Hence, we consider the scope-bounded version of configuration
reachability.

Strongly Induced Subgraphs. When we study decision problems for valence systems over
graph monoids, then typically, if ∆ is an induced subgraph of Γ, then a problem instance for
∆ can trivially be reduced to an instance over Γ. Here, induced subgraph means that ∆ can
be embedded into Γ so that there is an edge in ∆ iff there is one in Γ.

This is not necessarily the case for BSREACH: An induced subgraph might decompose into
different weak dependence classes than Γ. Therefore, we use a stronger notion of embedding.
We say that Γ′ = (V ′, I ′) is a strongly induced subgraph of Γ = (V, I) if there is an injective
map ι : V → V ′ such that for any u, v ∈ V , we have (i) uIv iff ι(u)I ′ι(v) and (ii) u ∼W v iff
ι(u) ∼W ι(v). For example, the graph Γ consisting of two adjacent vertices (without loops)
is an induced subgraph of Γ2 in Figure 1. However, Γ is not a strongly induced subgraph of
Γ2: In Γ2, a and b are weakly dependent, whereas the vertices of Γ are not.

Neighbor Antichains. Let Γ = (V, I) be a graph. In our algorithms, we will need to store
information about a dependent set U ⊆ V from which we can conclude whether for another
dependent set U ′ ⊆ V , we have UIU ′; that is, for all u ∈ U, u′ ∈ U ′, uIu′. To estimate the
required information, we use the notion of neighbor antichains. Let Γ = (V, I) be a graph.
Given v ∈ V , let N(v) represent the neighbors of v, that is N(v) = {u ∈ V | uIv}. We define
a quasi-ordering on V as follows. For u, v ∈ V , we have u ≤ v if N(u) ⊆ N(v). It is possible
that for distinct, u, v ∈ V we have u ≤ v and v ≤ u and thus ≤ is not necessarily a partial
order. In the following, we will assume that the graphs Γ are always equipped with some
linear order ≪ on V . For example, one can just take the order in which the vertices appear
in a description of Γ. Using ≪, we can turn ≤ into a partial order, which is easier to use
algorithmically: We set u ⪯ v if and only if u ≤ v and u ≪ v.

Now, given U ⊆ V , let min U = {u ∈ U | ∀v ∈ U \ {u}, v ̸⪯ u} and max U = {u ∈ U |
∀v ∈ U \ {u}, u ̸⪯ v} denote the minimal and maximal elements of U , respectively.

▶ Lemma 3.2. For sets U, U ′ ⊆ V , UIU ′ if and only if (min U)I(min U ′).

Since min U and min U ′ are antichains w.r.t. ⪯, if we bound the size of such antichains
in our graph Γ, we bound the amount of information needed to store to determine whether
UIU ′. We call a subset A ⊆ V a neighbor antichain if (i) A is dependent (i.e. an anti-clique,
no edges between any two vertices of A) and (ii) A is an antichain with respect to ⪯. For the
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29:8 Scope-Bounded Valence Systems

graph Γ1 in Figure 1, each vertex is a neighbor antichain, while for Γ1, each {a, bi, cj} is a
neighbor antichain for all i, j. By τ(Γ), we denote the maximal size of a neighbor antichain
in Γ. Thus τ(Γ1) = 1, τ(Γ1) = 3. We say that a class G of graphs is neighbor antichain
bounded if there is a number t such that τ(Γ) ≤ t for every graph Γ in G.

For example, the class of graphs G consisting of bipartite graphs Bn with nodes {ui, vi |
i ∈ {1, . . . , n}}, where {ui, vj} is an edge iff i ̸= j, is not neighbor antichain bounded.

4 Main results

In this section, we present the main results of this work. If both the graph and the scope
bound k are part of the input, the bounded scope reachability problem is PSPACE-complete
(as we will show in Theorem 4.1). Since graph monoids provide a much richer class of storage
mechanisms than multi-pushdowns, this raises the question of how the complexity is affected
if the storage mechanism (i.e. the graph) is drawn from a subclass of all graphs.

▶ Theorem 4.1 (Scope bound in input). Let G be a class of graphs. Then BSREACH(G) is
1. NL-complete if the graphs in G have at most one vertex,
2. P-complete if every graph in G is an anti-clique and G contains a graph with ≥ 2 vertices,
3. PSPACE-complete otherwise.

▶ Corollary 4.2. Let Γ be a graph. Then BSREACH(Γ) is
1. NL-complete if Γ has at most one vertex,
2. P-complete if Γ is an anti-clique with ≥ 2 vertices,
3. PSPACE-complete otherwise.

Fixed scope bound. We notice that the problem BSREACH(G) is below PSPACE only for
severely restricted classes G, where bounded scope reachability degenerates into ordinary
reachability in pushdown automata or one-counter automata. Therefore, we also study the
setting where the scope bound k is fixed. However, our result requires two assumptions on
the graph class G. The first assumption is that G be closed under taking strongly induced
subgraphs. This just rules out pathological exceptions: otherwise, it could be that there
are hard instances for BSREACHk that only occur embedded in extremely large graphs in G,
resulting in lower complexity. In other words, we restrict our attention to the cases where
an algorithm for G also has to work for strongly induced subgraphs. For each individual
graph, this is always the case: if ∆ is a strongly induced subgraph of Γ, then BSREACHk(∆)
trivially reduces to BSREACHk(Γ).

Our second assumption is that G be neighbor antichain bounded. This is a non-trivial
assumption that still covers many interesting types of infinite-state systems from the literature.
For example, every graph mentioned in Example 2.1 has neighbor antichains of size at most 1.
In particular, our result still generalizes the case of multi-pushdown systems.

Moreover, consider the graphs SCm for m ∈ N, where (i) SC0 is a single unlooped vertex,
(ii) SC2m+1 is obtained from SC2m by adding a new vertex adjacent to all existing vertices,
and (iii) SC2m+2 is obtained from SC2m+1 by adding an isolated unlooped vertex. Then
neighbor antichains in SCm are of size at most 1. Furthermore, using reductions from [31,
Proposition 3.6], it follows that whenever reachability for valence systems over Γ is decidable,
then this problem reduces in polynomial time to reachability over some SCm. Whether
reachability is decidable for the graphs SCm remains an open problem [31]. Thus the graphs
SCm form an extremely expressive class that is still neighbor antichain bounded.
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▶ Theorem 4.3 (Fixed scope bound). Let G be closed under strongly induced subgraphs and
neighbor antichain bounded. For every k ≥ 1, the problem BSREACHk(G) is
1. NL-complete if G consists of cliques of bounded size,
2. P-complete if G contains some graph that is not a clique, and the size of cliques in G is

bounded,
3. PSPACE-complete otherwise.

In Theorem 4.3, we do not know if one can lift the restriction of neighbor antichain
boundedness. In Section 8, we describe a class of graphs that is closed under strongly induced
subgraphs, but we do not know the exact complexity of BSREACHk(G).

Theorem 4.3 allows us to deduce the complexity of BSREACHk(Γ) for every Γ.

▶ Corollary 4.4. Let Γ be a graph. Then for every k ≥ 1, the problem BSREACHk(Γ) is
1. NL-complete if Γ is a clique,
2. P-complete otherwise.

Proof. Apply Theorem 4.3 to the class consisting of Γ and its strongly induced subgraphs. ◀

Discussion of results. In the case of multi-pushdown systems, La Torre, Napoli, and
Parlato [25] show that scope-bounded reachability belongs to PSPACE, and is PSPACE-hard
if either the number of stacks or the scope bound k is part of the input. Our results complete
the picture in several ways. If k is part of the input, then PSPACE-hardness even holds if we
have two N-valued counters instead of stacks (Theorem 4.1). Moreover, hardness also holds
when we have two Z-valued counters (which often exhibit lower complexities [14]). Moreover,
we determine the complexity the case that both k and the number s of stacks is fixed.

Our results can also be interpreted in terms of vector addition systems with states (VASS).
In the case of VASS (i.e. unlooped cliques), our results imply that scope-bounded reachability
is PSPACE-complete if either (i) the number d of counters or (ii) the scope-bound k are part
of the input (and d ≥ 2). The same is true if we have integer VASS [14] (looped cliques).

Thus, for VASS, scope-bounding reduces the complexity of reachability from at least
non-elementary [8] to PSPACE. Interestingly, for two counters, the complexity goes up from
NL for general reachability [11] to PSPACE. For integer VASS, we go up from NP for general
reachability [14] and for a fixed number of counters even from NL [13], to PSPACE.

Note that we obtain a much more complete picture compared to what is known for
bounded context switching [19]. There, even the complexity for many individual graphs is
not known. Moreover, the case of fixed context bounds has not been studied in the case of
bounded context switching.

5 Block decompositions

In this section, we lay the foundation for our decision procedure in Section 6. We show that
in every scope-bounded run w, each context can be decomposed into a bounded number of
“blocks”, which will guarantee that w can be reduced to ε by way of “block-wise” reductions.
In our algorithms, this will allow us to abstract from each block (which can have unbounded
length) by a finite amount of data. This is similar to the block decomposition in [19].

Let w ∈ X∗
Γ such that w ≡Γ ε with a reduction π. We call a decomposition w = w1 · · · wm

a block decomposition if it refines the canonical context decomposition3 and for each wi, there
is a wj such that Rπ relates every position in wi with a position in wi itself or in wj . Here,
we do not rule out i = j: A block may itself reduce to ε.

3 In other words, each context in w consists of a contiguous subset of the factors w1, . . . , wm.

CONCUR 2021
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Figure 2 Context and block decomposition for a computation over Γ2 in Figure 1. The blue and
red lined rectangles are the two contexts. The color filled rectangles represent blocks, with partner
cancelling blocks having the same color filling.

Free reductions. Block decompositions are closely related to free reductions. Let w1, . . . , wm

be a sequence of computations in X∗
Γ. A free reduction is a finite sequence of applications

of the rewriting rules below to consecutive entries of the sequence so that w1, . . . , wm gets
transformed into the empty sequence.

(FR1) wi, wj 7→free ε if wiwj ≡Γ ε

(FR2) wi, wj 7→free wj , wi if wiIwj

(FR3) wi 7→free ŵi if wi
∗7→red ŵi using rules R1 and R2

We say that w1, . . . , wn is freely reducible if it admits a free reduction to the empty sequence.
As in [19], we have:

▶ Proposition 5.1. If the decomposition w = w1 · · · wm refines the context decomposition,
then it is a block decomposition if and only if the sequence w1, . . . , wm is freely reducible.

The main result of this section is that in a scope-bounded run, there exists a block
decomposition with a bounded number of factors in each context.

▶ Theorem 5.2. Let w ∈ X∗
Γ with sc(w) ≤ k. Then, there exists a block decomposition of w

such that each context splits into at most 2k blocks.

Let us sketch the proof. The block decomposition is obtained by scanning each context c

from left to right. As long as there is another context c′ such that all symbols either cancel
inside c or with a symbol in c′, we add symbols to the current block. When we encounter a
symbol that cancels with a position outside of c and c′, we start a new block. We show that
this yields a block decomposition (see Figure 2 for an example) and with arguments similar
to [19], one can show that it results in at most 2k blocks per context.

6 Decision procedure

In this section, we present the algorithms for the upper bounds of Theorems 4.1 and 4.3.

Block abstractions. The algorithm for bounded context switching in [19] abstracts each
block by a non-deterministic automaton. This approach uses polynomial space per block,
which would not be a problem for our PSPACE algorithm. However, for our P and NL
algorithms, this would require too much space. Therefore, we begin with a new notion of
“block abstraction”, which is more space efficient.

Let w = w1 · · · wm be a block decomposition for a run of a valence system A. Then it
follows from Proposition 5.1 that there are words ŵ1, . . . , ŵm such that wi

∗7→red ŵi for each i

such that the sequence ŵ1, . . . , ŵm can be reduced to the empty sequence using the rewriting
rules FR1 and FR2. For each i, we store (i) the states occupied at the beginning and end of
wi, (ii) its first operation f ∈ XΓ in wi, (iii) a non-deterministically chosen operation o ∈ XΓ
occurring in wi, and (iv) sets Umin

i and Umax
i , such that every maximal vertex occurring in wi
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is contained in Umax
i and every minimal vertex occurring in ŵi is contained in Umin

i . In this
case, we will say that the block abstraction “represents” the word ŵi. Thus, a block abstration
is a tuple N = (q1, q2, f, o, Umin , Umax ), where q1, q2 are states in A, f, o ∈ XΓ are symbols,
and Umin , Umax ⊆ V are neighbor antichains. Note that for every set B ⊆ V , the sets min B

and max B are neighbor antichains. Formally, we say that N = (q1, q2, f, o, Umin , Umax )
represents û ∈ X∗

Γ if there is a word u ∈ X∗
Γ such that (i) u

∗7→red û, (ii) u is read on
some path from q1 to q2, (iii) u begins with f , (iv) o occurs in u, (iv) the set of vertices
B occurring in u is a dependent set, (v) we have max B ⊆ Umax , and (vi) min B̂ ⊆ Umin ,
where B̂ is the set of vertices occurring in û. Then, L(N) denotes the set of all words
represented by N . We say that two block abstractions N = (q1, q2, f, o, Umin , Umax ) and
N ′ = (q′

1, q′
2, f ′, o′, U ′min , U ′max ) are dependent if Umax ∪ U ′max is a dependent set.

Context abstractions. Similarly, we will also need to abstract contexts. For this, we need
to abstract each of its blocks. In addition, we need to store the whole context’s first symbol
(f) and some non-deterministically chosen other symbol (o). These additional symbols
will be used to verify that we correctly guessed the canonical context decomposition of w.
Thus, a context abstraction is a tuple C = (N1, . . . , N2k, f, o), where N1, . . . , N2k are pairwise
dependent block abstractions, and f and o are symbols. We say that a context abstraction
C = (N1, . . . , N2k, f, o) is independent with a context abstraction C′ = (N ′

1, . . . , N ′
2k, f ′, o′) if

(i) f ′Io and (ii) for some i ∈ {1, . . . , 2k}, the block abstraction Ni = (qi
1, qi

2, fi, oi, Umin
i , Umax

i )
satisfies o = oi. Intuitively, this means if we have a word represented by C′ and then append
a word represented by C, then these words will be the contexts in the canonical context
decomposition.

In our algorithms, we will need to check whether a block decomposition admits a free
reduction. This means, we need to check whether the words represented by block abstractions
can cancel (to apply rule FR1) or commute (to apply FR2). Let us see how to do this. We say
that the block abstractions N = (q1, q2, f, o, Umin , Umax ) and N ′ = (q′

1, q′
2, f ′, o′, U ′min , U ′max )

commute if Umin IU ′min . Note that if N and N ′ commute, then uIu′ for every u ∈ L(N) and
u′ ∈ L(N ′). We need an analogous condition for cancellation. We say that N and N ′ cancel
if there are words u ∈ L(N) and u′ ∈ L(N ′) such that uu′ ≡Γ ε. This allows us to define an
analogue of free reductions on block abstractions.

▶ Definition 6.1. A free reduction on a sequence N1, . . . , Nm of block abstractions is a
sequence of operations
(FRA1) Ni, Nj →free ε, if Ni and Nj cancel
(FRA2) Ni, Nj →free Nj , Ni, if Ni and Nj commute.

Together with Lemma 3.2, the following lemma allows us to verify the steps in a free
reduction on block abstractions.

▶ Lemma 6.2. Given Γ, a valence system over Γ, and block abstractions N1 and N2, one
can decide in P whether N1 and N2 cancel. If Γ is a clique, this can be decided in NL.

Given block abstractions N1 and N2, (i) first perform saturation [19], obtaining irreducible
blocks. Saturation can be implemented using reachability in a one counter automaton, known
to be NL-complete [9], (ii) second, construct a pushdown automaton that is non-empty if
and only if the saturated N1 and N2 cancel. Emptiness of pushdown automata is decidable
in P. If Γ is a clique, then the pushdown automaton uses only a single stack symbol. Hence,
we only need a one-counter automaton, for which emptiness is decidable in NL [9]. This
yields the two upper bounds claimed in Lemma 6.2.

CONCUR 2021
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Reduction to a Reachability Graph. In all our algorithms, we reduce BSREACH for a
valence system A over Γ to reachability in a finite graph R. For the PSPACE algorithm, we
argue that each node of R requires polynomially many bits and the edge relation can be
decided in PSPACE. For the P and the NL algorithm, we argue that R is polynomial in size.
Moreover, for the P algorithm, we compute R in polynomial time. For the NL algorithm, we
show that the edge relation of R can be decided in NL.

The vertices of R maintain k context abstractions (hence 2k2 block abstractions) per weak
dependence class. Let d ≤ |V | be the number of weak dependence classes. The idea behind
this choice of vertices is to build up a computation w from left to right, by guessing k context
abstractions (Cγ

1 , Cγ
2 , · · · , Cγ

k ) per equivalence class γ which forms the “current window” of
w. The initial vertex consists of k tuples (E , . . . , E) per weak dependence equivalence class,
where E is a placeholder representing a cancelled block or an empty block. An edge is added
from a vertex v1 to a vertex v2 in the graph when the left most context in v1 corresponding
to an equivalence class γ cancels out completely, and v2 is obtained by appending a fresh
context abstraction Cγ

y to v1. Indeed if w is k scope bounded, then the blocks of the first
context abstraction Cγ

1 must cancel out with blocks from the remaining context abstractions
Cγ

2 , · · · , Cγ
k using the free reduction rules discussed above. We can guess an equivalence class

γ whose context abstraction Cγ
1 cancels out, and extend w by guessing the next context

abstraction Cγ
y in the same equivalence class. An edge between two vertices in R represents

an extension of w where a new context of an appropriate equivalence class is added, after
the leftmost context has cancelled out using some free reduction rules.

For a weak dependence class, we refer to the tuple of k contexts of interest as a configuration.
Thus, a vertex in R consists of d configurations. As discussed earlier in section 6, we represent
the 2k2 blocks in each configuration using block abstractions.

▶ Definition 6.3. Given a weak dependence class γ ∈ [ ]∼W
, a configuration of γ is a k-tuple

of the form sγ = (Cγ
1 , Cγ

2 , · · · , Cγ
k ), where each Cγ

c for 1 ≤ c ≤ k is a context abstraction.

As mentioned above, in slight abuse of terminology, in case of cancellation in free reductions,
we also allow E as a placeholder for cancelled contexts.

Intuitively, the configuration tracks the remaining non-cancelled blocks of the last k

contexts of this weak dependence class along with their relative positions in their contexts.

▶ Definition 6.4. A vertex in the graph R has the form (sγ1 , . . . , sγd
|i, q) where (i) γ1, . . . , γd

are the distinct equivalence classes in [ ]∼W
, (ii) each sγj

is a configuration, (iii) i ∈ {1, · · · , d}
is the current weak dependence class we are on, and (iv) q is the last state occurring in sγi

.

Here, if sγi
consists just of E , then the last condition is satisfied automatically.

▶ Definition 6.5. For γ ∈ [ ]∼W
, a configuration s′

γ is one-step reachable from a configuration
sγ = (Cγ

1 , . . . , Cγ
k ) iff there exists some context abstraction C and a sequence of free reduction

operations on the sequence of block abstractions

Nγ1
1 , . . . , Nγ1

2k , Nγ2
1 , . . . , Nγ2

2k , . . . Nγk
1 , . . . , Nγk

2k , N1, . . . , N2k

resulting in the new sequence (placing E in a position if the block was cancelled due to the
free reduction rules; otherwise we keep the same block abstraction)

N ′γ1
1 , . . . , N ′γ1

2k , N ′γ2
1 , . . . , N ′γ2

2k , . . . N ′γk
1 , . . . , N ′γk

2k , N
′γ(k+1)
1 , . . . , N

′γ(k+1)
2k

such that N ′γ1
ℓ = E, for all ℓ ∈ {1, . . . , 2k}, and

(
C′γ

2 , C′γ
3 , · · · , C′γ

k , C′γ
k+1

)
= s′

γ, where
C′γ

ℓ = (N ′γℓ
1 , N ′γℓ

2 , · · · , N ′γℓ
2k , fγℓ, oγℓ) for ℓ ∈ {1, . . . , k + 1}, and N1, . . . , N2k are the block

abstractions in C. In this case, we write sγ
C−→ s′

γ .
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In short, we can go from sγ to s′
γ in one step if we can add some context abstraction to

sγ so that using free reduction steps, we can reach s′
γ along with clearing the oldest context.

We are now ready to define the edge relation of R.

▶ Definition 6.6. There is an edge in R from a vertex v = (sγ1 , . . . , sγd
|j, q) to a vertex

v′ iff there is some i ∈ {1, . . . , d} and a configuration s′
γi

such that (i) sγi

C′

−→ s′
γi

for some
context abstraction C′ such that C′ is independent with the last context abstraction C of sγj

and (ii) q is the first state in C′ and (iii) v′ = (sγ1 , . . . , sγi−1 , s′
γi

, sγi+1 , . . . , sγd
|i, q′), where

q′ is the last state of C′.

Since a context is a maximal dependent sequence, this check suffices to guarantee
independence of words represented by C′ and C.

As mentioned above, our algorithm reduces scope-bounded reachability to reachability
between two nodes in R. Details can be found in the full version.

Complexity. We turn to the upper bounds in Theorems 4.1 and 4.3. Asymptotically, a
block abstraction requires log |Q| + 2t · log |V | bits, where t is an upper bound on the size
of neighbor antichains. Per context, we store 2k block abstractions and two symbols. Let
d be the number of weak dependence classes. In a node of R, we store k contexts per
weak dependence class, a number in {1, . . . , d}, and a state. Hence, asymptotically, we need
M = dk2(log |Q| + t · log |V |) + log d + log |Q| bits per node of R. To simulate the free
reduction, we only need a constant multiple of this. We can thus decide reachability in R in
PSPACE.

▶ Proposition 6.7. BSREACH is in PSPACE.

We now look at the upper bounds for the first and second cases of Theorem 4.3.

▶ Proposition 6.8. Let G be a class of graphs that is closed under strongly induced subgraphs
and neighbor antichain bounded. If G consists of cliques of bounded size, then for each k ≥ 1,
the problem BSREACHk(G) belongs to NL.

Proof. Our assumptions imply that d ≤ |V |, t, and k are bounded. Thus M is at most
logarithmic in the input. Moreover, we can simulate free reductions using logarithmic space,
because checking whether two block abstractions cancel can be done in NL by Lemma 6.2. ◀

▶ Proposition 6.9. Let G be a class of graphs that is closed under strongly induced subgraphs
and neighbor antichain bounded. If the size of cliques in G is bounded, then for every k ≥ 1,
the problem BSREACHk(G) belongs to P.

Proof. First observe that as in Proposition 6.8, the parameters d, t, and k are bounded. To
see this for d, let ℓ be an upper bound on the size of cliques in G. Then, every graph Γ in G
can have at most ℓ weak dependence classes: Otherwise, Γ would have a clique with ℓ + 1
nodes as a strongly induced subgraph, and thus G would contain a clique with ℓ + 1 nodes.
Hence, d is bounded and for a node in R, we need only logarithmic space. Moreover, by
Lemma 6.2, we can verify a free reduction step in P. ◀

Special Graphs. We turn to the NL and P upper bounds for Theorem 4.1. In each case,
all graphs are anti-cliques. Thus, every run has a single context and BSREACH reduces to
membership for pushdown automata, which is in P. If there is just one vertex, we can even
obtain a one-counter automaton, for which emptiness is in NL [9].

▶ Proposition 6.10. If G is the class of anti-cliques, then BSREACH(G) is in P. Moreover,
if Γ has only one vertex, then BSREACH(Γ) is in NL.

CONCUR 2021
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7 Hardness

In this section, we show the hardness results of Theorems 4.1 and 4.3.

▶ Proposition 7.1. If Γ is not a clique, then BSREACHk(Γ) is P-hard for each k ≥ 1.

This uses standard techniques. If a valence system uses only the two non-adjacent vertices
in Γ, then scope-bounded reachability is the same as ordinary reachability. If both vertices
are looped, then this is the rational subset membership problem for a free group of rank 2,
for which P-hardness was observed in [15, Theorem III.4]. If at least one vertex is unlooped,
a standard encoding yields a reduction from emptiness of pushdown automata.

Two adjacent vertices. Our second hardness proof shows PSPACE-hardness in Theorem 4.1.

▶ Proposition 7.2. If Γ has two adjacent nodes, then BSREACH(Γ) is PSPACE-hard.

For the proof of Proposition 7.2, we employ the model of bounded queue automata. A
bounded queue automaton (BQA) is a tuple A = (Q, n, T, q0, qf ), where (i) Q is a finite set of
states, (ii) n ∈ N is the queue length, given in unary, (iii) T is its set of transitions, (iv) q0 ∈ Q

is its initial state, and (iv) qf ⊆ Q is its final state. A configuration of a BQA is a pair
(q, w) ∈ Q × {0, 1}n. A transition is of the form (q, x, y, q′), where q, q′ ∈ Q and x, y ∈ {0, 1}.
We write (q, w) → (q′, w′) if there is a transition (q, x, y, q′) such that (i) w has prefix x and
(ii) removing x from the left and appending y on the right yields w′. The reachability problem
for BQA is the following: Given a bounded queue automaton (Q, n, T, q0, qf ), is it true that
(q0, 0n) ∗−→ (qf , 0n)? It is straightforward to simulate a linear bounded automaton using a
bounded queue automaton and vice-versa, hence reachability for BQA is PSPACE-complete.

General idea and challenge. Let us first assume that the nodes u and v in Γ are not weakly
dependent. The initial approach for Proposition 7.2 is to encode the queue content in the
current window of k = n contexts. In each context, we encode a 0-bit using an occurrence
of the letter u+ that can only be cancelled with a future u−. We call this a 0-context.
Likewise, a 1-bit is encoded by two occurrences of u, which we call a 1-context. Therefore,
we abbreviate 0 = u+ and 1 = u+u+. We also have the right inverses 0̄ = u− and 1̄ = u−u−.
To start a new context, we multiply v+v− and use the abbreviation ∥ = v+v−. With this
encoding, it is easy to check that the oldest context is a 0-context: Just multiply 0̄ = u−

and then start a new context using ∥ = v+v−. This can only succeed if the oldest context
encodes a 0: If it had encoded a 1, there would be another occurrence of u+ that can never
be cancelled.

However, it is not so easy to check that the oldest context is a 1-context. One could
multiply with 1̄∥ = u−u−v+v−, but this can succeed even if the oldest context is a 0-context:
Indeed, the first occurrence of u− can cancel with the u+ in the oldest context c, but the
second u− could cancel with u+ in a context to the right of c.

Solution. We overcome this as follows. Instead of one context per bit, we use three contexts.
To encode a 0 in the queue, we use a 0-context, a 1-context, and another 1-context, resulting
in the string 011. To encode a 1, we do the same with the bit string 100. Then, we use the
above approach to check for 011 or 100: Since a successful check for a 0-context guarantees
that there was a 0-context, checking for 0, 1, 1 guarantees that the oldest context is a 0-context,
thus the three oldest contexts must carry 011. When we check for 1, 0, 0, then among the
three oldest contexts, at least two are 0-contexts, hence the three oldest contexts carry 100.
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Let us calculate the required scope bound to implement this idea. Since we only use
the operations u+, u−, v+, v−, we only have u-contexts (consisting of u+, u−) and v-contexts
(consisting of v+, v−). When we read the oldest bit in the queue, we produce three new
u-contexts (separated by v-contexts). Then, we need to write a new bit in the queue, which
requires another three u-contexts (separated by v-contexts). The interaction distance to the
oldest u-context that is part of the leftmost queue bit is always k = 3(2n − 1): The oldest bit
is encoded using three u-contexts. For each further queue entry i ∈ {2, . . . , n}, we have three
u-contexts that were used to read an even older bit, and then three u-contexts that encode
the i-th bit in the queue. In total, this yields 3(1 + 2(n − 1)) = 3(2n − 1) many u-contexts.

To initialize the queue, we use t0 = (0∥1∥1∥)(e∥e∥e∥0∥1∥1∥)n−1. Here, e = u+u− is a
“gap context” that ensures that the leftmost bit has interaction distance exactly k = 3(2n−1)
from the right end of t0. Thus, t0 puts n copies of the bit string 011, plus n−1 gap contexts into
our window of k = 3(2n − 1) contexts. To simulate a transition (p, x, y, p′), we check that x is
the bit encoded by the three oldest contexts. Afterwards, we put the new bit y into the queue.
Therefore, if x = 0, define the triple (x1, x2, x3) = (0̄, 1̄, 1̄); if x = 1, let (x1, x2, x3) = (1̄, 0̄, 0̄).
Moreover, if y = 0, then let (y1, y2, y3) = (0, 1, 1); if y = 1, then let (y1, y2, y3) = (1, 0, 0).
Then we use the string tx,y = x1∥x2∥x3∥y1∥y2∥y3∥. Finally, to check that the encoded
queue content consists entirely of 0’s, we use tf = (0̄∥1̄∥1̄∥)(e∥e∥e∥0̄∥1̄∥1̄∥)n−1. With this
encoding, it is straightforward to translate a BQA into a valence system over Γ.

Note that if u and v are weakly dependent, then the same construction works, except that
we have to set k = 6(2n − 1), because now the v-contexts ∥ = v+v− between two u-contexts
count towards the interaction distance.

Unbounded cliques. We turn to PSPACE-hardness in Theorem 4.3.

▶ Proposition 7.3. Suppose G be either the class of unlooped cliques or the class of looped
cliques. Then for every k ≥ 1, the problem BSREACHk(G) is PSPACE-hard.

Here it is convenient to reduce from bit vector automata, whose configuration consists
of a state and a bit vector. In each step, they can read and modify one of the bits. A bit
vector automaton (BVA) is a tuple (Q, n, T, q0, qf ), where (i) Q is a finite set of states, (ii) n

is the vector length, given in unary, (iii) a set T of transitions, (iv) q0 ∈ Q is its initial
state, and (v) qf ∈ Q is its final state. A transition is of the form (p, i, x, y, q) with p, q ∈ Q,
i ∈ {0, . . . , n}, and x, y ∈ {0, 1}. It checks that i-th bit is currently x, and sets the i-th bit
to y. Thus, a configuration of a bit vector automaton is a pair (q, w) ∈ Q × {0, 1}n. By ∗−→,
we denote the reachability relation. The reachability problem for BVA asks, given a BVA
(Q, n, T, q0, qf ), is it true that (q0, 0n) ∗−→ (qf , 0n)? Again, a simulation of linear bounded
automata is straightforward and this problem is PSPACE-complete.

Proof of Proposition 7.3. Let A = (Q, n, T, q0, qf ) be a BVA. Moreover, depending on
whether G is the class of looped or unlooped cliques, let Γ = (V, I) be either a looped or an
unlooped clique with 2n vertices, so let V = {ai, bi | i ∈ {1, . . . , n}}. Our construction does
not depend on whether Γ is looped or unlooped and we will show that it is correct in either
case. We first illustrate the idea for maintaining a single bit using the vertices ai, bi. To ease
notation, we now write v for v+ and v̄ for v− when v ∈ V . Consider the string

w = (ar1
i bib̄iā

s1
i bib̄i)(aiāibib̄i)k(ar2

i bib̄iā
s2
i bib̄i) · · · (aiāibib̄i)k(arm

i bib̄iā
sm
i bib̄i).

Moreover, assume that for each j = 1, . . . , m, we have rj , sj ∈ {k, 3k}. We think of a
rj

i bib̄i

as an operation that stores 0 if rj = k and stores 1 if rj = 3k. We think of ā
sj

i bib̄i as a read
operation, where again sj = k stands for 0 and sj = 3k stands for 1. Here, the purpose of
bib̄i is to start a new context (since Γ is a clique). Moreover, each factor (aiāibib̄i)k produces
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k contexts in the weak dependence class of ai, where each context contains aiāi. This means,
each factor (aiāibib̄i)k enforces an interaction distance of k + 1 between ā

sj

i and a
rj+1
i , and

thus prevents them from canceling with each other.
We claim that sc(w) ≤ k if and only if each read operation reads the bit that was stored

before. In other words, we have sc(w) ≤ k if and only if rj = sj for each j ∈ {1, . . . , m}.
Moreover, this is true regardless of whether Γ is looped or unlooped. For the “if”, note that
each a

rj

i can cancel with ā
sj

i and in every other context, every letter (ai, āi, bi, b̄i) can cancel
with its direct neighbor. Conversely, suppose rj ̸= sj for some j. If rj = 3k and sj = k, then
the context a

rj

i = a3k
i sees only 3k − 1 occurrences of āi in contexts at interaction distance

≤ k: First, the context āsi
i = āk

i yields k occurrences. The other 2k − 1 contexts are of the
form aiāi and each provides one occurrence of āi. In total, we have k + 2k − 1 = 3k − 1. It
is thus impossible to cancel every letter in a

rj

i . The case rj = k and sj = 3k is symmetric.
This proves our claim. Using this encoding, it is now straightforward to simulate n bits. ◀

Propositions 7.1–7.3 complete our proofs: Theorem 4.1 follows from Propositions 7.1, 7.2,
6.7, and 6.10. Theorem 4.3 follows from Propositions 7.1, 7.3, and 6.7–6.9.

8 Conclusion

We have introduced a notion of scope-bounded reachability for valence systems over graph
monoids. In the special case of graphs that correspond to multi-pushdowns, this notion
coincides with the original notion of scope-boundedness introduced by La Torre, Napoli, and
Parlato [25]. We have shown that with this notion, scope-bounded reachability is decidable
in PSPACE, even if the graph and the scope bound k are part of the input.

In addition, we have studied the complexity of the problem under four types of restrictions:
(i) k and the graph are part of the input, and the graph is drawn from some class G of graphs,
(Theorem 4.1), (ii) k is part of the input and the graph is fixed (Corollary 4.2), (iii) k is fixed
and the graph is drawn from some class G of graphs that is neighbor antichain bounded and
closed under strongly induced subgraphs (Theorem 4.3) and (iv) k is fixed and the graph
is fixed (Corollary 4.4). We have completely determined the complexity landscape in the
situations (i)–(iv): In every case, we obtain NL-, P-, or PSPACE-completeness. These results
settle the complexity of scope-bounded reachability for most types of infinite-state systems
that fit in the framework of valence systems and have been considered in the literature.

Open Problem: Dropping neighbor antichain boundedness. We leave open what complex-
ities can arise if in case (iii) above, we drop the assumption of neighbor antichain boundedness.
In other words: k is fixed and the graph comes from a class G that is closed under strongly
induced subgraphs. For all we know, it is possible that there are classes G for which the
problem is neither NL-, nor P-, nor PSPACE-complete.

For example, for each n ≥ 0, consider the bipartite graph Bn with nodes {ui, vi | i ∈
{1, . . . , n}}, where {ui, vj} is an edge if and only if i ≠ j. Moreover, let G be the class of
graphs containing Bn for every n ∈ N and all strongly induced subgraphs. Observe that
the cliques in G have size at most 2: Bn is bipartite and thus every clique in Bn has size
at most 2. Moreover, the graphs Bn have neighbor antichains of unbounded size: The set
{u1, . . . , un} is a neighbor antichain in Bn.

We currently do not know the exact complexity of BSREACHk(G). By Theorem 4.3, the
problem is P-hard and in PSPACE. Intuitively, our P upper bound does not apply because in
each node of R, one would have to remember n bits in order to keep enough information
about commutation of blocks: For a subset S ⊆ {1, . . . , n}, let uS be the product of all
u+

1 , . . . , u+
n , where we only include u+

i if i ∈ S. Then uSv+
j ≡ v+

j uS if and only if j /∈ S.
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