
Separating Sessions Smoothly
Simon Fowler #

University of Glasgow, UK

Wen Kokke #

The University of Edinburgh, UK

Ornela Dardha #

University of Glasgow, UK

Sam Lindley #

The University of Edinburgh, UK

J. Garrett Morris #

The University of Iowa, Iowa City, IA, USA

Abstract
This paper introduces Hypersequent GV (HGV), a modular and extensible core calculus for functional
programming with session types that enjoys deadlock freedom, confluence, and strong normalisation.
HGV exploits hyper-environments, which are collections of type environments, to ensure that struc-
tural congruence is type preserving. As a consequence we obtain a tight operational correspondence
between HGV and HCP, a hypersequent-based process-calculus interpretation of classical linear logic.
Our translations from HGV to HCP and vice-versa both preserve and reflect reduction. HGV scales
smoothly to support Girard’s Mix rule, a crucial ingredient for channel forwarding and exceptions.

2012 ACM Subject Classification Software and its engineering → Functional languages; Theory of
computation → Linear logic

Keywords and phrases session types, hypersequents, linear lambda calculus

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.36

Related Version Extended Version: https://arxiv.org/abs/2105.08996

Funding Work supported by EPSRC grants EP/K034413/1 (ABCD), EP/T014628/1 (STARDUST),
EP/L01503X/1 (CDT PPar), ERC Consolidator Grant 682315 (Skye), UKRI Future Leaders
Fellowship MR/T043830/1 (EHOP), a UK Government ISCF Metrology Fellowship grant, EU
HORIZON 2020 MSCA RISE project 778233 (BehAPI), and NSF grant CCF-2044815.

Acknowledgements We thank the anonymous reviewers for their helpful comments and suggestions.

1 Introduction

Session types [18, 45, 19] are types used to verify communication protocols in concurrent
and distributed systems: just as data types rule out dividing an integer by a string, session
types rule out sending along an input channel. Session types originated in process calculi,
but there is a gap between process calculi, which model the evolving state of concurrent
systems, and the descriptions of these systems in typical programming languages. This paper
addresses two foundations for session types: (1) a session-typed concurrent lambda calculus
called GV [30], intended to be a modular and extensible basis for functional programming
languages with session types; and, (2) a session-typed process calculus called CP [51], with a
propositions-as-types correspondence to classical linear logic (CLL) [17].

Processes in CP correspond exactly to proofs in CLL and deadlock freedom follows from
cut-elimination for CLL. However, while CP is strongly tied to CLL, at the same time it
departs from π-calculus. Independent π-calculus features can only appear in combination in

© Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 36; pp. 36:1–36:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:simon.fowler@glasgow.ac.uk
https://orcid.org/0000-0001-5143-5475
mailto:wen.kokke@ed.ac.uk
mailto:ornela.dardha@glasgow.ac.uk
https://orcid.org/0000-0001-9927-7875
mailto:sam.lindley@ed.ac.uk
mailto:garrett-morris@uiowa.edu
https://orcid.org/0000-0002-3992-1080
https://doi.org/10.4230/LIPIcs.CONCUR.2021.36
https://arxiv.org/abs/2105.08996
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Separating Sessions Smoothly

CP: CP combines name restriction with parallel composition ((νx)(P ∥ Q)), corresponding
to CLL’s cut rule, and combines sending (of bound names only) with parallel composition
(x[y].(P ∥ Q)), corresponding to CLL’s tensor rule. This results in a proliferation of process
constructors and prevents the use of standard techniques from concurrency theory, such
as labelled-transition semantics and bisimulation, since the expected transitions give rise
to ill-typed terms: for example, we cannot write the expected transition rule for output,
x[y].(P ∥ Q) x[y]−−→ P ∥ Q, since P ∥ Q is not a valid CP process. A similar issue arises
when attempting to design a synchronisation transition rule for bound output; see [27]
for a detailed discussion. Inspired by Carbone et al. [10] who used hypersequents [4] to
give a logical grounding to choreographic programming languages [33], Hypersequent CP
(HCP) [26, 27, 34] restores the independence of these features by factoring out parallel
composition into a standalone construct while retaining the close correspondence with
CLL proofs. HCP typing reasons about collections of processes using collections of type
environments (or hyper-environments).

GV extends linear λ-calculus with constants for session-typed communication. Following
Gay and Vasconcelos [16], Lindley and Morris [30] describe GV’s semantics by combining
a reduction relation on single terms, following standard λ-calculus rules, and a reduction
relation on concurrent configurations of terms, following standard π-calculus rules. They then
give a semantic characterisation of deadlocked processes, an extrinsic [42] type system for
configurations, and show that well-typed configurations are deadlock-free. There is, however,
a large fly in this otherwise smooth ointment: process equivalence does not preserve typing.
As a result, it is not enough for Lindley and Morris to show progress and preservation for well-
typed configurations; instead, they must show progress and preservation for all configurations
equivalent to well-typed configurations. This not only complicates the metatheory of GV,
but the burden is inherited by any effort to build on GV’s account of concurrency [14].

In this paper, we show that using hyper-environments in the typing of configurations
enables a metatheory for GV that, compared to that of Lindley and Morris, is simpler, is
more general, and as a result is easier to use and easier to extend. Hypersequent GV (HGV)
repairs the treatment of process equivalence – equivalent configurations are equivalently
typeable – and avoids the need for formal gimmickry connecting name restriction and parallel
composition. HGV admits standard semantic techniques for concurrent programs: we use
bisimulation to show that our translations both preserve and reflect reduction, whereas
Lindley and Morris show only that their translations between GV and CP preserve reduction
as well as resorting to weak explicit substitutions [28]. HGV is also more easily extensible:
we outline three examples, including showing that HGV naturally extends to disconnected
sets of communication processes, without any change to the proof of deadlock freedom, and
that it serves as a simpler foundation for existing work on exceptions in GV [14].

Contributions. The paper contributes the following:
Section 3 introduces Hypersequent GV (HGV), a modular and extensible core calculus
for functional programming with session types which uses hyper-environments to ensure
that structural congruence is type preserving.
Section 4 shows that every well-typed GV configuration is also a well-typed HGV
configuration, and every tree-structured HGV configuration is equivalent to a well-typed
GV configuration.
Section 5 gives a tight operational correspondences between HGV and HCP via translations
in both directions that preserve and reflect reduction.
Section 6 demonstrates the extensibility of HGV through: (1) unconnected processes, (2)
a simplified treatment of forwarding, and (3) an improved foundation for exceptions.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 36:3

Section 2 reviews GV and its metatheory, Section 7 discusses related work, and Section 8
concludes and discusses future work.

2 The Equivalence Embroglio

GV programs are deadlock free, which GV ensures by restricting process structures to trees. A
process structure is an undirected graph where nodes represent processes and edges represent
channels shared between the connected nodes. Session-typed programs with an acyclic
process structure are deadlock-free by construction. We illustrate this with a session-typed
vending machine example written in GV.

▶ Example 2.1. Consider the session type of a vending machine below, which sells candy
bars and lollipops. If the vending machine is free, the customer can press 1⃝ to receive a
candy bar or 2⃝ to receive a lollipop. If the vending machine is busy, the session ends.

VendingMachine ≜ ⊕
{

Free : & { 1⃝ : !CandyBar.end!, 2⃝ : !Lollipop.end!}
Busy : end!

}

The customer’s session type is dual: where the vending machine sends a CandyBar, the
customer receives a CandyBar, and so forth. Figure 1 shows the vending machine and
customer as a GV program with its process structure.

let vendingMachine = λs.

let s = select Free s in

let s = offer s

{
1⃝ 7→ send candyBar
2⃝ 7→ send lollipop

}
close s

in let customer = λs.

offer s

Free 7→ let s = select 1⃝ s in

let (cb, s) = recv s in
wait s; eat cb

Busy 7→ wait s; hungry

in let s = fork (λs.vendingMachine s)
in customer s

(a) Vending machine and customer as a GV program.

vendingMachine

customer

s

s

(b) Process structure of Figure 1a.

Figure 1 Example program with process structure.

GV establishes the restriction to tree-structured processes by restricting the primitive
for spawning processes. In GV, fork has type (S ⊸ end!) ⊸ S. It takes a closure of type
S ⊸ end! as an argument, creates a channel with endpoints of dual types S and S, spawns
the closure as a new process by supplying one of the endpoints as an argument, and then
returns the other endpoint. In essence, fork is a branching operation on the process structure:
it creates a new node connected to the current node by a single edge. Linearity guarantees
that the tree structure is preserved, even in the presence of higher-order channels.

Lindley and Morris [30] introduce a semantics for GV, which evaluates programs embedded
in process configurations, consisting of embedded programs, flagged as main (•) or child (◦)
threads, ν-binders to create new channels, and parallel compositions:

C, D ::= • M | ◦ M | (νx)C | (C ∥ D)

CONCUR 2021

36:4 Separating Sessions Smoothly

They introduce these process configurations together with a standard structural congru-
ence, which allows, amongst other things, the reordering of processes using commut-
ativity (C ∥ C′ ≡ C′ ∥ C), associativity (C ∥ (C′ ∥ C′′) ≡ (C ∥ C′) ∥ C′′), and scope extrusion
(C ∥ (νx)C′ ≡ (νx)(C ∥ C′) if x /∈ fv(C)). They guarantee acyclicity by defining an extrinsic
type system for configurations. In particular, the type system requires that in every parallel
composition C ∥ D, C and D must have exactly one channel in common, and that in a name
restriction (νx)C, channel x cannot be used until it is shared across a parallel composition.

These restrictions are sufficient to guarantee deadlock freedom. Unfortunately, they are
not preserved by process equivalence. As Lindley and Morris write, (noting that their name
restrictions bind channels rather than endpoint pairs, and their (νxy) abbreviates (νx)(νy)):

Alas, our notion of typing is not preserved by configuration equivalence. For example,
assume that Γ ⊢ (νxy)(C1 ∥ (C2 ∥ C3)), where x ∈ fv(C1), y ∈ fv(C2), and x, y ∈ fv(C3).
We have that C1 ∥ (C2 ∥ C3) ≡ (C1 ∥ C2) ∥ C3, but Γ ⊬ (νxy)((C1 ∥ C2) ∥ C3), as both x

and y must be shared between the processes C1 ∥ C2 and C3.

As a result, standard notions of progress and preservation are not enough to guarantee
deadlock freedom, as reduction sequences could include equivalence steps from well-typed to
non-well-typed terms! Instead, they must prove a stronger result:

▶ Theorem 3 (Lindley and Morris [30]). If Γ ⊢ C, C ≡ C′, and C′ −→ D′, then there exists D
such that D ≡ D′ and Γ ⊢ D.

This is not a one-time cost: languages based on GV must either also give up on type
preservation for structural congruence [14] or admit deadlocks [20, 46].

3 Hypersequent GV

We present Hypersequent GV (HGV), a linear λ-calculus extended with session types and
primitives for session-typed communication. HGV shares its syntax and static typing with
GV, but uses hyper-environments for runtime typing to simplify and generalise its semantics.

Types, terms, and static typing. Types (T , U) comprise a unit type (1), an empty type
(0), product types (T × U), sum types (T + S), linear function types (T ⊸ U), and session
types (S).

T , U ::= 1 | 0 | T × U | T + U | T ⊸ U | S S ::= !T.S | ?T.S | end! | end?

Session types (S) comprise output (!T.S: send a value of type T , then behave like S), input
(?T.S: receive a value of type T , then behave like S), and dual end types (end! and end?).
The dual endpoints restrict process structure to trees [51]; conflating them loosens this
restriction to forests [3]. We let Γ, ∆ range over type environments.

The terms and typing rules are given in Figure 2. The linear λ-calculus rules are standard.
Each communication primitive has a type schema: link takes a pair of compatible endpoints
and forwards all messages between them; fork takes a function, which is passed one endpoint
(of type S) of a fresh channel yielding a new child thread, and returns the other endpoint (of
type S); send takes a pair of a value and an endpoint, sends the value over the endpoint,
and returns an updated endpoint; recv takes an endpoint, receives a value over the endpoint,
and returns the pair of the received value and an updated endpoint; and wait synchronises
on a terminated endpoint of type end?. Output is dual to input, and end! is dual to end?.
Duality is involutive, i. e., S = S.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 36:5

Typing rules for terms Γ ⊢ M : T

TM-Var

x : T ⊢ x : T

TM-Const

· ⊢ K : T

TM-Lam
Γ, x : T ⊢ M : U

Γ ⊢ λx.M : T ⊸ U

TM-App
Γ ⊢ M : T ⊸ U ∆ ⊢ N : T

Γ, ∆ ⊢ M N : U

TM-Unit

· ⊢ () : 1

TM-LetUnit
Γ ⊢ M : 1 ∆ ⊢ N : T

Γ, ∆ ⊢ let () = M in N : T

TM-Pair
Γ ⊢ M : T ∆ ⊢ N : U

Γ, ∆ ⊢ (M, N) : T × U

TM-LetPair
Γ ⊢ M : T × T ′ ∆, x : T , y : T ′ ⊢ N : U

Γ, ∆ ⊢ let (x, y) = M in N : U

TM-Absurd
Γ ⊢ M : 0

Γ ⊢ absurd M : T

TM-Inl
Γ ⊢ M : T

Γ ⊢ inl M : T + U

TM-Inr
Γ ⊢ M : U

Γ ⊢ inr M : T + U

TM-CaseSum
Γ ⊢ L : T + T ′ ∆, x : T ⊢ M : U ∆, y : T ′ ⊢ N : U

Γ, ∆ ⊢ case L {inl x 7→ M ; inr y 7→ N} : U

Type schemas for communication primitives K : T

link : S × S ⊸ end!

fork : (S ⊸ end!) ⊸ S

send : T × !T.S ⊸ S

recv : ?T.S ⊸ T × S

wait : end? ⊸ 1

Duality S

!T.S = ?T.S ?T.S = !T.S end! = end? end? = end!

Figure 2 HGV, duality and typing rules for terms.

We write M ; N for let () = M in N , let x = M in N for (λx.N) M , λ().M for λz.z; M ,
and λ(x, y).M for λz.let (x, y) = z in M . We write K : T for · ⊢ K : T in typing derivations.
▶ Remark 3.1. We include link because it is convenient for the correspondence with CP,
which interprets CLL’s axiom as forwarding. We can encode link in GV via a type directed
translation akin to CLL’s identity expansion.

Configurations and runtime typing. Process configurations (C, D, E) comprise child threads
(◦ M), the main thread (• M), link threads (x z↔y), name restrictions ((νxy)C), and parallel
compositions (C ∥ D). We refer to a configuration of the form ◦M or x

z↔y as an auxiliary
thread, and a configuration of the form •M as a main thread. We let A range over auxiliary
threads and T range over all threads (auxiliary or main).

ϕ ::= • | ◦ C, D, E ::= ϕ M | x
z↔y | C ∥ D | (νxy)C

The configuration language is reminiscent of π-calculus processes, but has some non-standard
features. Name restriction uses double binders [49] in which one name is bound to each
endpoint of the channel. Link threads [31] handle forwarding. A link thread x

z↔y waits for
the thread connected to z to terminate before forwarding all messages between x and y.

Configuration typing departs from GV [30], exploiting hypersequents [4] to recover
modularity and extensibility. Inspired by HCP [34, 27, 26], configurations are typed under
a hyper-environment, a collection of disjoint type environments. We let G, H range over
hyper-environments, writing ∅ for the empty hyper-environment, G ∥ Γ for disjoint extension
of G with type environment Γ, and G ∥ H for disjoint concatenation of G and H.

CONCUR 2021

36:6 Separating Sessions Smoothly

Typing rules for configurations G ⊢ C : R

TC-New
G ∥ Γ, x : S ∥ ∆, y : S ⊢ C : R

G ∥ Γ, ∆ ⊢ (νxy)C : R

TC-Par
G ⊢ C : R H ⊢ D : R′

G ∥ H ⊢ C ∥ D : R ⊓ R′

TC-Main
Γ ⊢ M : T

Γ ⊢ • M : • T

TC-Child
Γ ⊢ M : end!

Γ ⊢ ◦ M : ◦

TC-Link

x : S, y : S, z : end? ⊢ x
z↔y : ◦

Configuration types

R ::= ◦ | • T

Configuration type combination R ⊓ R′

• T ⊓ ◦ = • T ◦ ⊓ • T = • T ◦ ⊓ ◦ = ◦

Figure 3 HGV, typing rules for configurations.

Structural congruence C ≡ D

SC-ParAssoc C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E
SC-NewComm (νxy)(νzw)C ≡ (νzw)(νxy)C
SC-ScopeExt (νxy)(C ∥ D) ≡ C ∥ (νxy)D, if x, y /∈ fv(C)

SC-ParComm C ∥ D ≡ D ∥ C
SC-NewSwap (νxy)C ≡ (νyx)C
SC-LinkComm x

z↔y ≡ y
z↔x

Configuration reduction C −→ D

E-Reify-Fork F [fork V] −→ (νxx′)(F [x] ∥ ◦ (V x′)), where x, x′ fresh
E-Reify-Link F [link (x, y)] −→ (νzz′)(x z↔y ∥ F [z′]), where z, z′ fresh

E-Comm-Link (νzz′)(νxx′)(x z↔y ∥ ◦ z′ ∥ ϕ M) −→ ϕ (M{y/x′})
E-Comm-Send (νxy)(F [send (V, x)] ∥ F ′[recv y]) −→ (νxy)(F [x] ∥ F ′[(V, y)])
E-Comm-Close (νxy)(◦ y ∥ F [wait x]) −→ F [()]

E-Res
C −→ C′

(νxy)C −→ (νxy)C′

E-Par
C −→ C′

C ∥ D −→ C′ ∥ D

E-Equiv
C ≡ C′ C′ −→ D′ D′ ≡ D

C −→ D

E-Lift-M
M −→M M ′

F [M] −→ F [M ′]

Figure 4 HGV, configuration reduction.

The typing rules for configurations are given in Figure 3. Rules TC-New and TC-Par are
key to deadlock freedom: TC-New joins two disjoint configurations with a new channel, and
merges their type environments; TC-Par combines two disjoint configurations, and registers
their disjointness by separating their type environments in the hyper-environment. Rules
TC-Main, TC-Child, and TC-Link type main, child, and link threads, respectively; all three
require a singleton hyper-environment. A configuration has type ◦ if it has no main thread,
and • T if it has a main thread of type T . The configuration type combination operator
ensures that a well-typed configuration has at most one main thread.

Operational semantics. HGV values (U , V , W), evaluation contexts (E), and term reduc-
tion rules (−→M) define a standard call-by-value, left-to-right evaluation strategy. A closed
term either reduces to a value or is blocked on a communication action.

Figure 4 gives the configuration reduction rules. Thread contexts (F) extend evaluation
contexts to threads, i. e., F ::= ϕ E. The structural congruence rules are standard apart from
SC-LinkComm, which ensures links are undirected, and SC-NewSwap, which swaps names in

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 36:7

double binders. The concurrent behaviour of HGV is given by a nondeterministic reduction
relation (−→) on configurations. The first two rules, E-Reify-Fork and E-Reify-Link, create
child and link threads, respectively. The next three rules, E-Comm-Link, E-Comm-Send, and
E-Comm-Close perform communication actions. The final four rules enable reduction under
name restriction and parallel composition, rewriting by structural congruence, and term
reduction in threads. Two rules handle links: E-Reify-Link creates a new link thread x

z↔y

which blocks on z of type end?, one endpoint of a fresh channel. The other endpoint, z′ of
type end!, is placed in the evaluation context of the parent thread. When z′ terminates a
child thread, E-Comm-Link performs forwarding by substitution.

Choice. Internal and external choice are encoded with sum types and session delegation [22,
13]. Prior encodings of choice in GV [30] are asynchronous. To encode synchronous choice
we add a dummy synchronisation before exchanging the value of sum type, as follows:

S ⊕ S′ ≜ !1.!(S1 + S2).end!

S & S′ ≜ ?1.?(S1 + S2).end?

⊕{} ≜ !1.!0.end!

&{} ≜ ?1.?0.end?

select ℓ ≜ λx.

(
let x = send ((), x) in
fork (λy.send (ℓ y, x))

)
offer L {inl x 7→ M ; inr y 7→ N}

≜
let ((), z) = recv L in let (w, z) = recv z

in wait z; case w {inl x 7→ M ; inr y 7→ N}

offer L {} ≜
let ((), c) = recv L in let (z, c) = recv c

in wait c; absurd z

HGV enjoys type preservation, deadlock freedom, confluence, and strong normalisation
(details in the extended version). Here we outline where the metatheory diverges from GV.

Preservation. Hyper-environments enable type preservation under structural congruence,
which significantly simplifies the metatheory compared to GV.

▶ Theorem 3.2 (Preservation).
1. If G ⊢ C : R and C ≡ D, then G ⊢ D : R.
2. If G ⊢ C : R and C −→ D, then G ⊢ D : R.

Abstract process structures. Unlike in GV, in HGV we cannot rely on the fact that exactly
one channel is split over each parallel composition. Instead, we introduce the notion of an
abstract process structure (APS). An APS is a graph defined over a hyper-environment G
and a set of undirected pairs of co-names (a co-name set) N drawn from the names in G.
The nodes of an APS are the type environments in G. Each edge is labelled by a distinct
co-name pair {x1, x2} ∈ N , such that x1 : S ∈ Γ1 and x2 : S ∈ Γ2.

▶ Example 3.3. Let G = Γ1 ∥ Γ2 ∥ Γ3, where Γ1 = x : S1, y : S2, Γ2 = x′ : S1, z : T , and
Γ3 = y′ : S2, and suppose N = {{x, x′}, {y, y′}}. The APS for G and N is illustrated below.

Γ1

Γ2 Γ3

{x, x′} {y, y′}

{{x, x′}, {y, y′}}

A key feature of HGV is a subformula principle, which states that all hyper-environments
arising in the derivation of an HGV program are tree-structured. We write Tree(G, N) to
denote that the APS for G with respect to N is tree-structured. An HGV program • M has

CONCUR 2021

36:8 Separating Sessions Smoothly

a single type environment, so is tree-structured; the same goes for child and link threads.
Read bottom-up TC-New and TC-Par preserve tree structure (see the extended version for
formal statements), which is illustrated by the following two pictures.

G
N

Γ ∆

N ⊎ {{z, z′}, {x, y}}

{z, z′}

{x, y}

G
N

Γ, ∆

{z, z′}

N ⊎ {{z, z′}}

G

H

N1

N2

G

H

N1

N2

N1 ⊎ N2 ⊎ {{x, x′}}

{x, x′}

Tree canonical form. We now define a canonical form for configurations that captures
the tree structure of an APS. Tree canonical form enables a succinct statement of open
progress (Lemma 3.8) and a means for embedding HGV in GV (Lemma 4.5).

▶ Definition 3.4 (Tree canonical form). A configuration C is in tree canonical form if it can
be written: (νx1y1)(A1 ∥ · · · ∥ (νxnyn)(An ∥ ϕN) · · ·) where xi ∈ fv(Ai) for 1 ≤ i ≤ n.

▶ Theorem 3.5 (Tree canonical form). If Γ ⊢ C : R, then there exists some D such that
C ≡ D and D is in tree canonical form.

▶ Lemma 3.6. If Γ1 ∥ · · · ∥ Γn ⊢ C : R, then there exist R1, . . . , Rn and D1, . . . , Dn such
that R = R1 ⊓ · · · ⊓ Rn and C ≡ D1 ∥ · · · ∥ Dn and Γi ⊢ Di : Ri for each i.

It follows from Theorem 3.5 and Lemma 3.6 that any well-typed HGV configuration can
be written as a forest of independent configurations in tree canonical form.

Progress and Deadlock Freedom.

▶ Definition 3.7 (Blocked thread). We say that thread T is blocked on variable z, written
blocked(T , z), if either: T = ◦ z; T = x

z↔y, for some x, y; or T = F [N] for some F , where
N is send (V, z), recv z, or wait z.

We let Ψ range over type environments containing only session-typed variables, i. e., Ψ ::= · |
Ψ, x : S, which lets us reason about configurations that are closed except for runtime names.
Using Lemma 3.6 we obtain open progress for configurations with free runtime names.

▶ Lemma 3.8 (Open Progress). Suppose Ψ ⊢ C : T where C = (νx1y1)(A1 ∥ · · · ∥
(νxnyn)(An ∥ ϕN) · · ·) is in tree canonical form. Either C −→ D for some D, or:

1. For each Ai (1 ≤ i ≤ n), blocked(Ai, z) for some z ∈ {xi} ∪ {yj | 1 ≤ j < i} ∪ fv(Ψ)
2. Either N is a value or blocked(ϕN, z) for some z ∈ {yi | 1 ≤ i ≤ n} ∪ fv(Ψ)
For closed configurations, we obtain a tighter result. If a closed configuration cannot reduce,
then each auxiliary thread must either be a value, or be blocked on its neighbouring endpoint.

Finally, for ground configurations, where the main thread does not return a runtime name
or capture a runtime name in a closure, we obtain a yet tighter result, global progress, which
implies deadlock freedom [8].

▶ Definition 3.9 (Ground configuration). A configuration C is a ground configuration if
· ⊢ C : T , C is in canonical form, and T does not contain session types or function types.

▶ Theorem 3.10 (Global progress). Suppose C is a ground configuration. Either there exists
some D such that C −→ D, or C = •V for some value V .

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 36:9

Typing rules for configurations Γ ⊢GV C : T

TG-New
Γ, ⟨x, y⟩ : S♯ ⊢GV C : R

Γ ⊢GV (νxy)C : R

TG-Connect1
Γ1, x : S ⊢GV C : R

Γ2, y : S ⊢GV D : R′

Γ1, Γ2, ⟨x, y⟩ : S♯ ⊢GV C ∥ D : R ⊓ R′

TG-Connect2
Γ1, y : S ⊢GV C : R

Γ2, x : S ⊢GV D : R′

Γ1, Γ2, ⟨x, y⟩ : S♯ ⊢GV C ∥ D : R ⊓ R′

TG-Child
Γ ⊢GV M : end!

Γ ⊢GV ◦M : ◦

TG-Main
Γ ⊢GV M : T

Γ ⊢GV •M : • T

TG-Link

x : S, y : S, z : end? ⊢GV x
z↔y : ◦

Figure 5 GV, typing rules for configurations.

4 Relation between HGV and GV

In this section, we show that well-typed GV configurations are well-typed HGV configurations,
and well-typed HGV configurations with tree structure are well-typed GV configuration.

GV. HGV and GV share a common term language and reduction semantics, so only differ
in their runtime typing rules. Figure 5 gives the runtime typing rules for GV. We adapt the
rules to use a double-binder formulation to concentrate on the essence of the relationship
with HGV, but it is trivial to translate GV with single binders into GV with double binders.

We require a pseudo-type S♯, which types un-split channels. Un-split channels cannot
appear in terms. Rule TG-New types a name restriction (νxy)C, adding ⟨x, y⟩ : S♯ to the
type environment, which along with TG-Connect1 and TG-Connect2 ensures that a session
channel of type S will be split into endpoints x and y over a parallel composition, in turn
enforcing a tree process structure. The remaining typing rules are as in HGV.

Embedding GV into HGV. Every well-typed open GV configuration is also a well-typed
HGV configuration.

▶ Definition 4.1 (Flattening). Flattening, written ↓ , converts GV type environments and
HGV hyper-environments into HGV environments.

↓ · = ·
↓ (Γ, ⟨x, x′⟩ : S♯) = ↓ Γ, x : S, x′ : S

↓ (Γ, x : T) = ↓ Γ, x : T

↓∅ = ∅
↓ (G ∥ Γ) = ↓ G, Γ

▶ Definition 4.2 (Splitting). Splitting converts GV typing environments into hyper-environ-
ments. Given channels {⟨xi, x′

i⟩ : S♯
i }i∈1..n in Γ, a hyper-environment G is a splitting of

Γ if ↓ G = ↓ Γ and ∃Γ1, . . . , Γn+1 such that G = Γ1 ∥ · · · ∥ Γn+1, and Tree(G, {{x1, x′
1}, . . . ,

{xn, x′
n}}).

A well-typed GV configuration is typeable in HGV under a splitting of its type environment.

▶ Theorem 4.3 (Typeability of GV configurations in HGV). If Γ ⊢GV C : R, then there exists
some G such that G is a splitting of Γ and G ⊢ C : R.

▶ Example 4.4. Consider a configuration where a child thread pings the main thread:

(νxy)(◦ (send (ping, x)) ∥ • (let ((), y) = recv y in wait y))

CONCUR 2021

36:10 Separating Sessions Smoothly

We can write a GV typing derivation as follows:
x : !1.end!, ping : 1 ⊢GV ◦ (send (ping, x)) : ◦ y : ?1.end? ⊢GV • (let ((), y) = recv y in wait y) : • 1

⟨x, y⟩ : !1.end!
♯, ping : 1 ⊢GV (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : 1

ping : 1 ⊢GV (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : 1
The corresponding HGV derivation is:

x : !1.end!, ping : 1 ⊢ ◦ (send (ping, x)) : ◦ y : ?1.end? ⊢ • (let ((), y) = recv y in wait y) : • 1
x : !1.end!, ping : 1 ∥ y : ?1.end? ⊢ (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : • 1

ping : 1 ⊢ (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : • 1

Note that x : !1.end!, ping : 1 ∥ y : ?1.end? is a splitting of ⟨x, y⟩ : (!1.end!)♯, ping : 1.

Translating HGV to GV. As we saw in §2, unlike in HGV, equivalence in GV is
not type-preserving. It follows that HGV types strictly more processes than GV.
Let us revisit Lindley and Morris’ example from §1 (adapted to use double-binders),
where Γ1, Γ2, Γ3 ⊢GV (νxx′)(νyy′)(C ∥ (D ∥ E)) : R1 ⊓ R2 ⊓ R3 with Γ1, x : S ⊢GV C : R1,
Γ2, y : S′ ⊢GV D : R2, and Γ3, x′ : S, y′ : S′ ⊢GV E : R3.

The structurally-equivalent term (νxx′)(νyy′)((C ∥ D) ∥ E) is not typeable in GV, since
we cannot split both channels over a single parallel composition:

Γ1, Γ2, x : S ̸⊢GV C ∥ D : R1 ⊓ R2 Γ3, x′ : S, ⟨y, y′⟩ : S′♯ ̸⊢GV E : R3

Γ1, Γ2, Γ3, ⟨x, x′⟩ : S♯, ⟨y, y′⟩ : S′♯ ̸⊢GV (C ∥ D) ∥ E : R1 ⊓ R2 ⊓ R3

Γ1, Γ2, Γ3, ⟨x, x′⟩ : S♯ ̸⊢GV (νyy′)((C ∥ D) ∥ E) : R1 ⊓ R2 ⊓ R3

Γ1, Γ2, Γ3 ̸⊢GV (νxx′)(νyy′)((C ∥ D) ∥ E) : R1 ⊓ R2 ⊓ R3

However, we can type this process in HGV:

Γ1, x : S ⊢ C : R1 Γ2, y : S′ ⊢ D : R2

Γ1, x : S ∥ Γ2, y : S′ ⊢ C ∥ D : R1 ⊓ R2 Γ3, x′ : S, y′ : S′ ⊢ E : R3

Γ1, x : S ∥ Γ2, y : S′ ∥ Γ3, x′ : S, y′ : S′ ⊢ (C ∥ D) ∥ E : R1 ⊓ R2 ⊓ R3

Γ1, x : S ∥ Γ2, Γ3, x′ : S ⊢ (νyy′)((C ∥ D) ∥ E) : R1 ⊓ R2 ⊓ R3

Γ1, Γ2, Γ3 ⊢ (νxx′)(νyy′)((C ∥ D) ∥ E) : R1 ⊓ R2 ⊓ R3

Although HGV types more processes, every well-typed HGV configuration typeable under
a singleton hyper-environment Γ is equivalent to a well-typed GV configuration, which we
show using tree canonical forms.

▶ Lemma 4.5. Suppose Γ ⊢ C : R where C is in tree canonical form. Then, Γ ⊢GV C : R.

▶ Remark 4.6. It is not the case that every HGV configuration typeable under an arbitrary
hyper-environment H is equivalent to a well-typed GV configuration. This is because
open HGV configurations can form forest process structures, whereas (even open) GV
configurations must form a tree process structure.
Since we can write all well-typed HGV configurations in canonical form, and HGV tree
canonical forms are typeable in GV, it follows that every well-typed HGV configuration
typeable under a single type environment is equivalent to a well-typed GV configuration.

▶ Corollary 4.7. If Γ ⊢ C : R, then there exists some D such that C ≡ D and Γ ⊢GV D : R.

5 Relation between HGV and HCP

In this section, we explore two translations, from HGV to HCP and from HCP to HGV,
together with their operational correspondences.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 36:11

Typing rules for processes P ⊢ G

TP-Link

x↔Ay ⊢ x : A, y : A⊥

TP-New
P ⊢ G ∥ Γ, x : A ∥ ∆, y : A⊥

(νxy)P ⊢ G ∥ Γ, ∆

TP-Par
P ⊢ G Q ⊢ H
P ∥ Q ⊢ G ∥ H

TP-Halt

0 ⊢ ∅

TP-Close
P ⊢ ∅

x[].P ⊢ x : 1

TP-Wait
P ⊢ Γ

x().P ⊢ Γ, x : ⊥

TP-Send
P ⊢ Γ, y : A ∥ ∆, x : B

x[y].P ⊢ Γ, ∆, x : A ⊗ B

TP-Recv
P ⊢ Γ, y : A, x : B

x(y).P ⊢ Γ, x : A ` B

TP-Offer-Absurd

x ▷ {} ⊢ Γ, x : ⊤

TP-Select-Inl
P ⊢ Γ, x : A

x ◁ inl.P ⊢ Γ, x : A ⊕ B

TP-Select-Inr
P ⊢ Γ, x : B

x ◁ inr.P ⊢ Γ, x : A ⊕ B

TP-Offer
P ⊢ Γ, x : A Q ⊢ Γ, x : B

x ▷ {inl : P ; inr : Q} ⊢ Γ, x : A & B

Duality A⊥

(A ⊗ B)⊥ = A⊥ ` B⊥

(A ` B)⊥ = A⊥ ⊗ B⊥
(1)⊥ = ⊥
(⊥)⊥ = 1

(A ⊕ B)⊥ = A⊥ & B⊥

(A & B)⊥ = A⊥ ⊕ B⊥
(0)⊥ = ⊤
(⊤)⊥ = 0

Figure 6 HCP, duality and typing rules for processes.

Hypersequent CP. HCP [34, 27] is a session-typed process calculus with a correspondence
to CLL, which exploits hypersequents to fix extensibility and modularity issues with CP.

Types (A, B) consist of the connectives of linear logic: the multiplicative operators (⊗,
`) and units (1, ⊥) and the additive operators (⊕, &) and units (0, ⊤).

A, B ::= 1 | ⊥ | 0 | ⊤ | A ⊗ B | A ` B | A ⊕ B | A & B

Type environments (Γ, ∆) associate names with types. Hyper-environments (G, H) are
collections of type environments. The empty type environment and hyper-environment are
written · and ∅, respectively. Names in type and hyper-environments must be unique and
environments may be combined, written Γ, ∆ and G ∥ H, only if they are disjoint.

Processes (P , Q) are a variant of the π-calculus with forwarding [44, 6], bound output [44],
and double binders [49]. The syntax of processes is given by the typing rules (Figure 6),
which are standard for HCP [34, 27]: x↔y forwards messages between x and y; (νxy)P
creates a channel with endpoints x and y, and continues as P ; P ∥ Q composes P and Q in
parallel; 0 is the terminated process; x[y].P creates a new channel, outputs one endpoint
over x, binds the other to y, and continues as P ; x(y).P receives a channel endpoint, binds it
to y, and continues as P ; x[].P and x().P close x and continue as P ; x ◁ inl.P and x ◁ inr.P
make a binary choice; x ▷ {inl : P ; inr : Q} offers a binary choice; and x ▷ {} offers a nullary
choice. As HCP is synchronous, the only difference between x[y].P and x(y).P is their
typing (and similarly for x[].P and x().P). We write unbound send as x⟨y⟩.P (short for
x[z].(y↔z ∥ P)), and synchronisation as x̄.P (short for x[z].(z[].0 ∥ P)) and x.P (short for
x(z).z().P). Duality is standard and is involutive, i. e., (A⊥)⊥ = A.

We define a standard structural congruence (≡) similar to that of HGV, i. e., parallel
composition is commutative and associative, we can commute name restrictions, swap the
order of endpoints, swap links, and have scope extrusion (similar to Figure 4).

CONCUR 2021

36:12 Separating Sessions Smoothly

Action rules

Act-Pref
π.P

π−→ P

Act-Link1

x↔y
x↔y−→ 0

Act-Link2

x↔y
y↔x−→ 0

Act-Off-Inl
x ▷ {inl : P ; inr : Q} x▷inl−→ P

Act-Off-Inr
x ▷ {inl : P ; inr : Q} x▷inr−→ Q

Communication Rules

Tau-Alp
P

α−→ P ′

P
τ−→ P ′

Tau-Bet
P

β−→ P ′

P
τ−→ P ′

Alp-Link
P

x↔z−→ P ′

(νxy)P α−→ P ′{z/y}

Bet-Send
P

x[x′]∥y(y′)−→ P ′

(νxy)P β−→ (νxy)(νx′y′)P ′

Bet-Close
P

x[]∥y()−→ P ′

(νxy)P β−→ P ′

Bet-Inl
P

x◁inl∥y▷inl−→ P ′

(νxy)P β−→ (νxy)P ′

Bet-Inr
P

x◁inr∥y▷inr−→ P ′

(νxy)P β−→ (νxy)P ′

Structural Rules

Str-Res
P

ℓ−→ P ′ x, y ̸∈ fn(ℓ)

(νxy)P ℓ−→ (νxy)P ′

Str-Par1

P
ℓ−→ P ′ bn(ℓ) ∩ fn(Q) = ∅

P ∥ Q
ℓ−→ P ′ ∥ Q

Str-Par2

Q
ℓ−→ Q′ bn(ℓ) ∩ fn(P) = ∅

P ∥ Q
ℓ−→ P ∥ Q′

Str-Syn
P

ℓ−→ P ′ Q
ℓ′

−→ Q′ bn(ℓ) ∩ bn(ℓ′) = ∅

P ∥ Q
ℓ∥ℓ′
−→ P ′ ∥ Q′

Figure 7 HCP, label transition semantics.

We define the labelled transition system for HCP as a subsystem of that of Kokke et
al. [26], omitting delayed actions. Labels ℓ represent the actions a process can take. Prefixes
π are a convenient subset which can be written as prefixes to processes, i. e., π.P . The label
τ represents internal actions. We distinguish two subtypes of internal actions: α represents
only the evaluation of links as renaming, and β represents only communication.

π ::= x[y] | x[] | x(y) | x() | x ◁ inl | x ◁ inr
ℓ := π | x↔y | x ▷ inl | x ▷ inr | τ | α | β

We let ℓx range over labels on x: x↔y, x[y], x[], etc. Labelled transition ℓ−→ is defined
in Figure 7. We write ℓ−→ ℓ′

−→ for the composition of ℓ−→ and ℓ′

−→, ℓ−→+ for the transitive
closure of ℓ−→, and ℓ−→⋆ for the reflexive-transitive closure. We write bn(ℓ) and fn(ℓ) for the
bound and free names contained in ℓ, respectively.

The behavioural theory for HCP follows Kokke et al. [26], except that we distinguish two
subrelations to bisimilarity, following the subtypes of internal actions.

▶ Definition 5.1 (Strong bisimilarity). A relation R on processes is a strong bisimulation
if P R Q implies that if P

ℓ−→ P ′, then Q
ℓ−→ Q′ for some Q′ such that P ′ R Q′. Strong

bisimilarity is the largest relation ∼ that is a strong bisimulation.

▶ Definition 5.2 (Saturated transition). The ℓ-saturated transition relation, for ℓ ∈ {α, β, τ},
is the smallest relation =⇒ℓ such that: P

ℓ=⇒ℓ P for all P ; and if P
ℓ=⇒ℓ P ′, P ′ ℓ′

−→ Q′, and
Q′ ℓ=⇒ℓ Q, then P

ℓ′

=⇒ℓ Q. Saturated transition, with no qualifier, refers to the τ -saturated
transition relation, and is written =⇒.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 36:13

▶ Definition 5.3 (Bisimilarity). A relation R on processes is an ℓ-bisimulation, for ℓ ∈
{α, β, τ}, if P R Q implies that if P

ℓ′

=⇒ℓ P ′, then Q
ℓ′

=⇒ℓ Q′ for some Q′ such that P ′ R Q′.
The ℓ-bisimilarity relation is the largest relation ≈ℓ that is an ℓ-bisimulation. Bisimilarity,
with no qualifier, refers to τ -bisimilarity, and is written ≈.

▶ Lemma 5.4. Structural congruence, strong bisimilarity and the various forms of (weak)
bisimilarity are in the expected relation, i. e., ≡ ⊊ ∼, ∼ ⊊ ≈, ≈α, ≈β. Furthermore, bisimil-
arity is the union of α-bisimilarity and β-bisimilarity, i. e., ≈ = ≈α ∪ ≈β.

Translating HGV to HCP. We factor the translation from HGV to HCP into two translations:
(1) a translation into HGV∗, a fine-grain call-by-value [29] variant of HGV, which makes
control flow explicit; and (2) a translation from HGV∗ to HCP.

HGV∗. We define HGV∗ as a refinement of HGV in which any non-trivial term must be
named by a let binding before being used. While let is syntactic sugar in HGV, it is part
of the core language in HGV∗. Correspondingly, the reduction rule for let follows from the
encoding in HGV, i. e.let x = V in M −→M M{V/x}.

Terms L, M, N ::= V | let x = M in N | V W

| let () = V in M | let (x, y) = V in M

| absurd V | case V {inl x 7→ M ; inr y 7→ N}
Values V , W ::= x | K | λx.M | () | (V, W) | inl V | inr V

Evaluation contexts E ::= □ | let x = E in M

We can naively translate HGV to HGV∗ (L·M) by let-binding each subterm in a value
position, e.g., Linl MM = let z = LMM in inl z. Such a translation is given in the extended
version; standard techniques can be used to avoid administrative redexes [40, 11].

HGV∗ to HCP. The translation from HGV∗ to HCP is given in Figure 8. All control flow
is encapsulated in values and let-bindings. We define a pair of translations on types, T·U and
V·W, such that TTU = VTW⊥. We extend these translations pointwise to type environments
and hyper-environments. We define translations on configurations (J·Kc

r), terms (J·Km
r) and

values (J·Kv
r), where r is a fresh name denoting a special output channel over which the

process sends a ping once it has reduced to a value, and then sends the value.
We translate an HGV sequent G ∥ Γ ⊢ C : T as JCKc

r ⊢ TGU ∥ TΓU, r : 1 ⊗ TTU⊥, where Γ
is the type environment corresponding to the main thread. The translation of a value JV Kv

r

immediately pings the output channel r to announce that it is a value. The translation of a
let-binding Jlet w = M in NKm

r first evaluates M to a value, which then pings the internal
channel x/x′ and unblocks the continuation x.JNKm

r .

▶ Lemma 5.5 (Substitution). If M is a well-typed term with w ∈ fv(M), and V is a well-typed
value, then (νww′)(JMKm

r ∥ JV Kv
w′) ≈α JM{V/w}Km

r .

▶ Theorem 5.6 (Operational Correspondence). If C is a well-typed configuration:

1. if C −→ C′, then JCKc
r

β=⇒ JC′Kc
r; and

2. if JCKc
r

β−→ P , then there exists a C′ such that C −→ C′ and P ≈ JC′Kc
r.

CONCUR 2021

36:14 Separating Sessions Smoothly

Translation on types TTU and VTW

T!T.SU = TTU⊥ ⊗ TSU
T?T.SU = TTU⊥ ` TSU

Tend!U = 1
Tend?U = ⊥

TTU = VTW⊥,

if T is not a session type

VT × UW = VTW ⊗ VUW
VT + UW = VTW ⊕ VUW

V1W = 1
V0W = 0

VT ⊸ UW = VTW⊥ ` (1 ⊗ VUW)
VSW = TSU⊥

Translation on configurations and terms JCKc
r, JV Kv

r, and JMKm
r

J◦ MKc
r = (νyy′)(JMKm

y ∥ y′.y′[].0)
J• MKc

r = JMKm
r

J(νxx′)CKc
r = (νxx′)JCKc

r

J C ∥ DKc
r = JCKc

r ∥ JDKc
r

Jx z↔yKc
r = z̄.z().x↔y

JxKv
r = r↔x

Jλx.MKv
r = r(x).JMKm

r

J()Kv
r = r[].0

J(V, W)Kv
r = r[x].(JV Kv

x ∥ JW Kv
r)

Jinl V Kv
r = r ◁ inl.JV Kv

r

Jinr V Kv
r = r ◁ inr.JV Kv

r

JV W Km
r = (νxx′)(νyy′)(y⟨x⟩.r↔y ∥ JV Kv

y′ ∥ JW Kv
x′)

Jlet () = V in MKm
r = (νxx′)(x().JMKm

r ∥ JV Kv
x′)

Jlet (x, y) = V in MKm
r = (νyy′)(y(x).JMKm

r ∥ JV Kv
y′)

Jcase V {inl x 7→ M ; inr y 7→ N}Km
r = (νxx′)(x ▷ {inl : JMKm

r ; inr : JN{x/y}Km
r } ∥ JV Kv

x′)
Jabsurd V Km

r = (νxx′)(x ▷ {} ∥ JV Kv
x′)

Jlet x = M in NKm
r = (νxx′)(x.JNKm

r ∥ JMKm
x′)

JV Km
r = r̄.JV Kv

r

JlinkKv
r = r(y).y(x).r̄.r().x↔y

JforkKv
r = r(x).r̄.x⟨r⟩.x.x[].0

JsendKv
r = r(y).y(x).y⟨x⟩.r̄.r↔y

JrecvKv
r = r(x).x(y).r̄.r⟨y⟩.r↔x

JwaitKv
r = r(x).x().r̄.r[].0

Figure 8 Translation from HGV∗ to HCP.

Translating HCP to HGV. We cannot translate HCP processes to HGV terms directly:
HGV’s term language only supports fork (see the extended version for further discussion), so
there is no way to translate an individual name restriction or parallel composition. However,
we can still translate HCP into HGV via the composition of known translations.

HCP into CP We must first reunite each parallel composition with its corresponding name
restriction, i. e., translate to CP using the disentanglement translation shown by Kokke et
al. [27, Lemma 4.7]. The result is a collection of independent CP processes.

CP into GV Next, we can translate each CP process into a GV configuration using (a variant
of) Lindley and Morris’ translation [30, Figure 8].

GV into HGV Finally, we can use our embedding of GV into HGV (Theorem 4.3) to obtain
a collection of well-typed HGV configurations, which can be composed using TC-Par to
result in a single well-typed HGV configuration.

The translation from HCP into CP and the embedding of GV into HGV preserve and
reflect reduction. However, Lindley and Morris’s original translation from CP to GV preserves
but does not reflect reduction due to an asynchronous encoding of choice. By adapting their
translation to use a synchronous encoding of choice (Section 3), we obtain a translation from
CP to GV that both preserves and reflects reduction. Thus, composing all three translations
together we obtain a translation from HCP to HGV that preserves and reflects reduction.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 36:15

6 Extensions

In this section, we outline three extensions to HGV that exploit generalising the tree structure
of processes to a forest structure. Full details are given in the extended version. These
extensions are of particular interest since HGV already supports a core aspect of forest
structure, enabling its full utilisation merely through the addition of a structural rule. In
contrast, to extend GV with forest structure one must distinguish two distinct introduction
rules for parallel composition [30]. Other extensions to GV such as shared channels [30],
polymorphism [32], and recursive session types [31] adapt to HGV almost unchanged.

From trees to forests. The TC-Mix structural rule allows two type environments Γ1, Γ2
to be split by a hyper-environment separator without a channel connecting them. Mix [17]
may be interpreted as concurrency without communication [30, 3].

TC-Mix
G ∥ Γ1 ∥ Γ2 ⊢ C : T

G ∥ Γ1, Γ2 ⊢ C : T

A simpler link. Consider threads L = F [link (x, y)], M , N , where L connects to M by x

and to N by y.

L

M N

{x, x′} {y, y′}

−→

L

M N
{y, y′}

The result of link reduction has forest structure. Well-typed closed programs in both GV
and HGV must always maintain tree structure. Different versions of GV do so in various
unsatisfactory ways: one is pre-emptive blocking [30], which breaks confluence; another is
two stage linking (Figure 4), which defers forwarding via a special link thread [31]. With
TC-Mix, we can adjust the type schema for link to (S × S) ⊸ 1 and use the following rule.

E-Link-Mix (νxx′)(F [link (x, y)] ∥ ϕN) −→ F [()] ∥ ϕN{y/x′}

This formulation enables immediate substitution, maximimising concurrency.

Exceptions. In order to support exceptions in the presence of linear endpoints [14, 35]
we must have a way of cancelling an endpoint (cancel : S ⊸ 1). Cancellation generates
a special zapper thread (x) which severs a tree topology into a forest as in the following
example.

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥ •(cancel x; wait y))

• (cancel x; wait y)

◦ x′ ◦ y′

−→

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥ x ∥ •((); wait y)

 x

◦ x′

• ((); wait y)

◦ y′

7 Related work

Session Types and Functional Languages. HGV traces its origins to a line of work initiated
by Gay and collaborators [15, 48, 50, 16]. This family of calculi builds session types directly
into a lambda calculus. Toninho et al. [47] take an alternative approach, stratifying their

CONCUR 2021

36:16 Separating Sessions Smoothly

system into a session-typed process calculus and a separate functional calculus. There are
many pragmatic embeddings of session type systems in existing functional programming
languages [36, 41, 43, 21, 38, 24]. A detailed survey is given by Orchard & Yoshida [37].

Propositions as Sessions. When Girard introduced linear logic [17] he suggested a con-
nection with concurrency. Abramsky [1] and Bellin and Scott [5] give embeddings of linear
logic proofs in π-calculus, where cut reduction is simulated by π-calculus reduction. Both
embeddings interpret tensor as parallel composition. The correspondence with π-calculus
is not tight in that these systems allow independent prefixes to be reordered. Caires and
Pfenning [7] give a propositions as types correspondence between dual intuitionistic linear
logic and a session-typed π-calculus called πDILL. They interpret tensor as output. The
correspondence with π-calculus is tight in that independent prefixes may not be reordered.
With CP [51], Wadler adapts πDILL to classical linear logic. Aschieri and Genco [2] give an
interpretation of classical multiplicative linear logic as concurrent functional programs. They
interpret ` as parallel composition, and the connection to session types is less direct.

Priority-based Calculi. Systems such as πDILL, CP, and GV (and indeed HCP and HGV)
ensure deadlock freedom by exploiting the type system to statically impose a tree structure
on the communication topology – there can be at most one communication channel between
any two processes. Another line of work explores a more liberal approach to deadlock freedom
enabling some cyclic communication topologies, where deadlock freedom is guaranteed via
priorities, which impose an order on actions. Priorites were introduced by Kobayashi and
Padovani [23, 39] and adopted by Dardha and Gay [12] in Priority CP (PCP) and Kokke
and Dardha in Priority GV (PGV) [25].

8 Conclusion and future work

HGV exploits hypersequents to resolve fundamental modularity issues with GV. As a
consequence, we have obtained a tight operational correspondence between HGV and HCP.
HGV is a modular and extensible core calculus for functional programming with binary
session types. In future we intend to further exploit hypersequents in order to develop a
modular and extensible core calculus for functional programming with multiparty session
types. We would then hope to exhibit a similarly tight operational correspondence between
this functional calculus and a multiparty variant of CP [9].

References
1 Samson Abramsky. Proofs as processes. Theoretical Computer Science, 135(1):5–9, 1994.
2 Federico Aschieri and Francesco A. Genco. Par means parallel: multiplicative linear logic

proofs as concurrent functional programs. Proc. ACM Program. Lang., 4(POPL):18:1–18:28,
2020.

3 Robert Atkey, Sam Lindley, and J. Garrett Morris. Conflation confers concurrency. In A List
of Successes That Can Change the World, volume 9600 of Lecture Notes in Computer Science,
pages 32–55. Springer, 2016.

4 Arnon Avron. Hypersequents, logical consequence and intermediate logics for concurrency.
Ann. Math. Artif. Intell., 4:225–248, 1991.

5 Gianluigi Bellin and Philip J. Scott. On the pi-calculus and linear logic. Theoretical Computer
Science, 135(1):11–65, 1994.

6 Michele Boreale. On the expressiveness of internal mobility in name-passing calculi. Theoretical
Computer Science, 195(2):205–226, March 1998. doi:10.1016/s0304-3975(97)00220-x.

https://doi.org/10.1016/s0304-3975(97)00220-x

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 36:17

7 Luìs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In Proc.
of CONCUR, volume 6269 of LNCS, pages 222–236. Springer, 2010.

8 Marco Carbone, Ornela Dardha, and Fabrizio Montesi. Progress as compositional lock-freedom.
In Proc. of COORDINATION, volume 8459 of Lecture Notes in Computer Science, pages
49–64. Springer, 2014. doi:10.1007/978-3-662-43376-8_4.

9 Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler.
Coherence generalises duality: A logical explanation of multiparty session types. In CONCUR,
volume 59 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

10 Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. Choreographies, logically. Distrib-
uted Comput., 31(1):51–67, 2018.

11 Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen. On one-pass CPS transformations. J.
Funct. Program., 17(6):793–812, 2007.

12 Ornela Dardha and Simon J. Gay. A new linear logic for deadlock-free session-typed processes.
In Proc. of FoSSaCS, volume 10803 of LNCS, pages 91–109. Springer, 2018.

13 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. Inf. Comput.,
256:253–286, 2017.

14 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: session types without tiers. Proc. ACM Program. Lang., 3(POPL):28:1–28:29,
2019.

15 Simon J. Gay and Rajagopal Nagarajan. Intensional and extensional semantics of dataflow
programs. Formal Aspects of Computing, 15(4):299–318, 2003.

16 Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session types.
Journal of Functional Programming, 20(1):19–50, 2010.

17 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
18 Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of Lecture Notes in

Computer Science, pages 509–523. Springer, 1993.
19 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and

type discipline for structured communication-based programming. In Proc. of ESOP, volume
1381 of LNCS, pages 122–138. Springer, 1998.

20 Atsushi Igarashi, Peter Thiemann, Yuya Tsuda, Vasco T. Vasconcelos, and Philip Wadler.
Gradual session types. J. Funct. Program., 29:e17, 2019.

21 Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session type inference in Haskell. In Proc. of
PLACES, volume 69 of EPTCS, pages 74–91, 2010. doi:10.4204/EPTCS.69.6.

22 Naoki Kobayashi. Type systems for concurrent programs. In Bernhard K. Aichernig and Tom
Maibaum, editors, Formal Methods at the Crossroads. From Panacea to Foundational Support:
10th Anniversary Colloquium of UNU/IIST, the International Institute for Software Technology
of The United Nations University, Lisbon, Portugal, March 18-20, 2002. Revised Papers, pages
439–453. Springer Berlin Heidelberg, 2003. doi:10.1007/978-3-540-40007-3_26.

23 Naoki Kobayashi. A new type system for deadlock-free processes. In Proc. of CONCUR,
volume 4137 of LNCS, pages 233–247. Springer, 2006.

24 Wen Kokke and Ornela Dardha. Deadlock-free session types in linear Haskell. CoRR,
abs/2103.14481, 2021. Accepted for publication at the Haskell Symposium 2021. arXiv:
2103.14481.

25 Wen Kokke and Ornela Dardha. Prioritise the best variation. In FORTE, volume 12719 of
Lecture Notes in Computer Science, pages 100–119. Springer, 2021.

26 Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Better late than never: A fully-abstract
semantics for classical processes. PACMPL, 3(POPL), 2019.

27 Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Taking linear logic apart. In Thomas
Ehrhard, Maribel Fernández, Valeria de Paiva, and Lorenzo Tortora de Falco, editors, Proceed-
ings Joint International Workshop on Linearity & Trends in Linear Logic and Applications,
Oxford, UK, 7-8 July 2018, volume 292 of Electronic Proceedings in Theoretical Computer
Science, pages 90–103. Open Publishing Association, 2019.

CONCUR 2021

https://doi.org/10.1007/978-3-662-43376-8_4
https://doi.org/10.4204/EPTCS.69.6
https://doi.org/10.1007/978-3-540-40007-3_26
http://arxiv.org/abs/2103.14481
http://arxiv.org/abs/2103.14481

36:18 Separating Sessions Smoothly

28 Jean-Jacques Lévy and Luc Maranget. Explicit substitutions and programming languages. In
Foundations of Software Technology and Theoretical Computer Science, 1999, volume 1738 of
LNCS. Springer, 1999. doi:10.1007/3-540-46691-6_14.

29 Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value
programming languages. Inf. Comput., 185(2):182–210, 2003.

30 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In Jan Vitek,
editor, Programming Languages and Systems, pages 560–584. Springer Berlin Heidelberg, 2015.

31 Sam Lindley and J. Garrett Morris. Talking bananas: Structural recursion for session types.
SIGPLAN Not., 51(9):434–447, 2016. doi:10.1145/3022670.2951921.

32 Sam Lindley and J. Garrett Morris. Lightweight functional session types. In Simon Gay and
Antonio Ravara, editors, Behavioural Types: from Theory to Tools, chapter 12, pages 265–286.
River publishers, 2017.

33 Fabrizio Montesi. Choreographic Programming. PhD thesis, IT University of Copenhagen,
2013.

34 Fabrizio Montesi and Marco Peressotti. Classical transitions. CoRR, abs/1803.01049, 2018.
arXiv:1803.01049.

35 Dimitris Mostrous and Vasco T. Vasconcelos. Affine sessions. Log. Methods Comput. Sci.,
14(4), 2018.

36 Matthias Neubauer and Peter Thiemann. An implementation of session types. In Proc.
of PADL, volume 3057 of Lecture Notes in Computer Science, pages 56–70. Springer, 2004.
doi:10.1007/978-3-540-24836-1_5.

37 Dominic Orchard and Nobuko Yoshida. Session types with linearity in Haskell. Behavioural
Types: from Theory to Tools, page 219, 2017.

38 Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In Proc. of
POPL, pages 568–581. ACM, 2016. doi:10.1145/2837614.2837634.

39 Luca Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In Proc. of CSL-LICS,
pages 72:1–72:10. ACM, 2014.

40 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125–159, 1975.

41 Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In Proc. of
Haskell. ACM, 2008. doi:10.1145/1411286.1411290.

42 John C. Reynolds. The meaning of types—from intrinsic to extrinsic semantics. Technical
Report RS-00-32, BRICS, 2000.

43 Matthew Sackman and Susan Eisenbach. Session types in Haskell: Updating message passing
for the 21st century. Unpublished manuscript, 2008.

44 Davide Sangiorgi. π-calculus, internal mobility, and agent-passing calculi. Theoretical Computer
Science, 167(1-2):235–274, 1996. doi:10.1016/0304-3975(96)00075-8.

45 Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its
typing system. In Proc. of PARLE, volume 817 of LNCS, pages 398–413. Springer, 1994.

46 Peter Thiemann and Vasco T. Vasconcelos. Label-dependent session types. Proceedings of the
ACM on Programming Languages, 4(POPL):1–29, 2020.

47 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and
sessions: A monadic integration. In ESOP, volume 7792 of Lecture Notes in Computer Science,
pages 350–369. Springer, 2013.

48 Vasco Vasconcelos, Antonio Ravara, and Simon J. Gay. Session types for functional multith-
reading. In CONCUR, volume 3170 of LNCS, pages 497–511. Springer, 2004.

49 Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.
50 Vasco Thudichum Vasconcelos, Simon J. Gay, and Antonio Ravara. Type checking a mul-

tithreaded functional language with session types. Theor. Comput. Sci., 368(1-2):64–87,
2006.

51 Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):384–418,
2014.

https://doi.org/10.1007/3-540-46691-6_14
https://doi.org/10.1145/3022670.2951921
http://arxiv.org/abs/1803.01049
https://doi.org/10.1007/978-3-540-24836-1_5
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1016/0304-3975(96)00075-8

	1 Introduction
	2 The Equivalence Embroglio
	3 Hypersequent GV
	4 Relation between HGV and GV
	5 Relation between HGV and HCP
	6 Extensions
	7 Related work
	8 Conclusion and future work

