
Isomorphism Testing Parameterized by Genus and
Beyond
Daniel Neuen #

CISPA Helmholtz Center for Information Security,
Saarland Informatics Campus, Saarbrücken, Germany

Abstract

We present an isomorphism test for graphs of Euler genus g running in time 2O(g4 log g)nO(1). Our
algorithm provides the first explicit upper bound on the dependence on g for an fpt isomorphism
test parameterized by the Euler genus of the input graphs. The only previous fpt algorithm runs in
time f(g)n for some function f (Kawarabayashi 2015). Actually, our algorithm even works when the
input graphs only exclude K3,h as a minor. For such graphs, no fpt isomorphism test was known
before.

The algorithm builds on an elegant combination of simple group-theoretic, combinatorial, and
graph-theoretic approaches. In particular, we introduce (t, k)-WL-bounded graphs which provide a
powerful tool to combine group-theoretic techniques with the standard Weisfeiler-Leman algorithm.
This concept may be of independent interest.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Graph algorithms analysis; Mathematics of computing → Graphs and surfaces

Keywords and phrases graph isomorphism, fixed-parameter tractability, Euler genus, Weisfeiler-
Leman algorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.72

Related Version Full Version: https://arxiv.org/abs/2106.14869

Funding Research supported by the European Research Council (ERC) consolidator grant No. 725978
SYSTEMATICGRAPH.

1 Introduction

Determining the computational complexity of the Graph Isomorphism Problem is a long-
standing open question in theoretical computer science (see, e.g., [13]). The problem is
easily seen to be contained in NP, but it is neither known to be in PTIME nor known to be
NP-complete. In a breakthrough result, Babai [1] recently obtained a quasipolynomial-time
algorithm for testing isomorphism of graphs (i.e., an algorithm running in time nO((log n)c)

where n denotes the number of vertices of the input graphs, and c is a constant), achieving
the first improvement over the previous best algorithm running in time nO(

√
n/ log n) [3] in

over three decades. However, it remains wide open whether GI can be solved in polynomial
time.

In this work, we are concerned with the parameterized complexity of isomorphism testing.
While polynomial-time isomorphism tests are known for a large variety of restricted graph
classes (see, e.g., [4, 7, 9, 11, 18, 24]), for several important structural parameters such as
maximum degree or the Hadwiger number1, it is still unknown whether isomorphism testing
is fixed-parameter tractable (i.e., whether there is an isomorphism algorithm running in time
f(k)nO(1) where k denotes the graph parameter in question, n the number of vertices of the

1 The Hadwiger number of a graph G is the maximum number h such that Kh is a minor of G.

© Daniel Neuen;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 72; pp. 72:1–72:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.neuen@cispa.saarland
https://orcid.org/0000-0002-4940-0318
https://doi.org/10.4230/LIPIcs.ESA.2021.72
https://arxiv.org/abs/2106.14869
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Isomorphism Testing Parameterized by Genus and Beyond

input graphs, and f is some function). On the other hand, there has also been significant
progress in recent years. In 2015, Lokshtanov et al. [17] obtained the first fpt isomorphism
test parameterized by the tree-width k of the input graph running in time 2O(k5 log k)n5. This
algorithm was later improved by Grohe et al. [8] to a running time of 2O(k·(log k)c)n3 (for
some constant c). In the same year, Kawarabayashi [14] obtained the first fpt isomorphism
test parameterized by the Euler genus g of the input graph running time f(g)n for some
function f . While Kawarabayashi’s algorithm achieves optimal dependence on the number
of vertices of the input graphs, it is also extremely complicated and it provides no explicit
upper bound on the function f . Indeed, the algorithm spans over multiple papers [14, 15, 16]
and builds on several deep structural results for graphs of bounded genus.

In this work, we present an alternative isomorphism test for graphs of Euler genus g

running in time 2O(g4 log g)nO(1). In contrast to Kawarabayashi’s algorithm, our algorithm
does not require any deep graph-theoretic insights, but rather builds on an elegant combination
of well-established and simple group-theoretic, combinatorial, and graph-theoretic ideas. In
particular, this enables us to provide the first explicit upper bound on the dependence on
g for an fpt isomorphism test. Actually, the only property our algorithm exploits is that
graphs of genus g exclude K3,h as a minor for h ≥ 4g + 3 [25]. In other words, our main
result is an fpt isomorphism test for graphs excluding K3,h as a minor.

▶ Theorem 1. The Graph Isomorphism Problem for graphs excluding K3,h as a minor can
be solved in time 2O(h4 log h)nO(1).

For this class of graphs, the best existing algorithm runs in time nO((log h)c) for some
constant c [21], and no fpt isomorphism test was known prior to this work.

For the algorithm, we combine different approaches to the Graph Isomorphism Problem.
On a high-level, our algorithm follows a simple decomposition strategy which decomposes
the input graph G into pieces such that the interplay between the pieces is simple. The main
idea is to define the pieces in such a way that, after fixing a small number of vertices, the
automorphism group of G restricted to a piece D ⊆ V (G) is similar to the automorphism
group of a graph of maximum degree 3. This allows us to test isomorphism between
the pieces using the group-theoretic graph isomorphism machinery dating back to Luks’s
polynomial-time isomorphism test for graphs of bounded maximum degree [18].

In order to capture the restrictions on the automorphism group, we introduce the notion of
(t, k)-WL-bounded graphs which generalize so-called t-CR-bounded graphs. The class of t-CR-
bounded graphs was originally defined by Ponomarenko [23] and was recently rediscovered in
[21, 10, 22] in a series of works eventually leading to an algorithm testing isomorphism of
graphs excluding Kh as a topological subgraph in time nO((log h)c). Intuitively speaking, a
graph G is t-CR-bounded if an initially uniform vertex-coloring χ can be turned into a discrete
coloring (i.e., a coloring where every vertex has its own color) by repeatedly (a) applying
the standard Color Refinement algorithm, and (b) splitting all color classes of size at most
t. We define (t, k)-WL-bounded graphs in the same way, but replace the Color Refinement
algorithm by the well-known Weisfeiler-Leman algorithm of dimension k (see, e.g., [5, 12]).
Maybe surprisingly, this natural extension of t-CR-bounded has not been considered so far in
the literature, and we start by building a polynomial-time isomorphism test for such graphs
using the group-theoretic methods developed by Luks [18] as well as a simple extension due
to Miller [20]. Actually, it turns out that isomorphism of (t, k)-WL-bounded graphs can even
be tested in time nO(k·(log t)c) using recent extensions [21] of Babai’s quasipolynomial-time
isomorphism test. However, since we only apply these methods for t = k = 2, there is no
need for our algorithm to rely on such sophisticated subroutines.

D. Neuen 72:3

Now, as the main structural insight, we prove that each 3-connected graph G that
excludes K3,h as a minor admits (after fixing 3 vertices) an isomorphism-invariant rooted tree
decomposition (T, β) such that the adhesion width (i.e., the maximal intersection between
two bags) is bounded by h. Additionally, each bag β(t), t ∈ V (T), can be equipped with a set
γ(t) ⊆ β(t) of size |γ(t)| ≤ h4 such that, after fixing all vertices in γ(t), G restricted to β(t) is
(2, 2)-WL-bounded. Given such a decomposition, isomorphisms can be computed by a simple
bottom-up dynamic programming strategy along the tree decompositions. For each bag,
isomorphism is tested by first individualizing all vertices from γ(t) at an additional factor of
|γ(t)|! = 2O(h4 log h) in the running time. Following the individualization of these vertices, our
algorithm can then simply rely on a polynomial-time isomorphism test for (2, 2)-WL-bounded
graphs. Here, we incorporate the partial solutions computed in the subtree below the current
bag via a simple gadget construction.

To compute the decomposition (T, β), we also build on the notion of (2, 2)-WL-bounded
graphs. Given a set X ⊆ V (G), we define the (2, 2)-closure to be the set D = clG2,2(X) of all
vertices appearing in a singleton color class after artificially individualizing all vertices from
X, and performing the (2, 2)-WL procedure. As one of the main technical contributions,
we can show that the interplay between D and its complement in G is simple (assuming
G excludes K3,h as a minor). To be more precise, building on various properties of the
2-dimensional Weisfeiler-Leman algorithm, we show that |NG(Z)| < h for every connected
component Z of G − D. This allows us to choose D = clG2,2(X) as the root bag of (T, β) for
some carefully chosen set X, and obtain the decomposition (T, β) by recursion.

2 Preliminaries

2.1 Graphs
A graph is a pair G = (V (G), E(G)) consisting of a vertex set V (G) and an edge set E(G).
All graphs considered in this paper are finite and simple (i.e., they contain no loops or
multiple edges). Moreover, unless explicitly stated otherwise, all graphs are undirected. For
an undirected graph G and v, w ∈ V (G), we write vw as a shorthand for {v, w} ∈ E(G).
The neighborhood of a vertex v ∈ V (G) is denoted by NG(v). The degree of v, denoted by
degG(v), is the number of edges incident with v, i.e., degG(v) = |NG(v)|. For X ⊆ V (G), we
define NG(X) := (

⋃
v∈X NG(v)) \ X. If the graph G is clear from context, we usually omit

the index and simply write N(v), deg(v) and N(X). We write Kℓ,h to denote the complete
bipartite graph on ℓ vertices on the left side and h vertices on the right side. For two sets
A, B ⊆ V (G), we denote by EG(A, B) := {vw ∈ E(G) | v ∈ A, w ∈ B}. Also, G[A, B]
denotes the graph with vertex set A ∪ B and edge set EG(A, B). Moreover, G[A] := G[A, A]
denotes the induced subgraph on A, and G − A the subgraph induced by the complement
of A, that is, the graph G − A := G[V (G) \ A]. For F ⊆ E(G), we also define G − F to be
the graph obtained from G by removing all edges contained in F (the vertex set remains
unchanged). A graph H is a subgraph of G, denoted by H ⊆ G, if V (H) ⊆ V (G) and
E(H) ⊆ E(G). A graph H is a minor of G if H can be obtained from G by deleting vertices
and edges, as well as contracting edges. The graph G excludes H as a minor if it does not
have a minor isomorphic to H.

An isomorphism from G to a graph H is a bijection φ : V (G) → V (H) that respects
the edge relation, that is, for all v, w ∈ V (G), it holds that vw ∈ E(G) if and only if
φ(v)φ(w) ∈ E(H). Two graphs G and H are isomorphic, written G ∼= H, if there is
an isomorphism from G to H. We write φ : G ∼= H to denote that φ is an isomorphism

ESA 2021

72:4 Isomorphism Testing Parameterized by Genus and Beyond

from G to H. Also, Iso(G, H) denotes the set of all isomorphisms from G to H. The
automorphism group of G is Aut(G) := Iso(G, G). Observe that, if Iso(G, H) ̸= ∅, it holds
that Iso(G, H) = Aut(G)φ := {γφ | γ ∈ Aut(G)} for every isomorphism φ ∈ Iso(G, H).

A vertex-colored graph is a tuple (G, χV) where G is a graph and χV : V (G) → C is a
mapping into some set C of colors, called vertex-coloring. Similarly, an arc-colored graph is a
tuple (G, χE), where G is a graph and χE : {(u, v) | {u, v} ∈ E(G)} → C is a mapping into
some color set C, called arc-coloring. Observe that colors are assigned to directed edges, i.e.,
the directed edge (v, w) may obtain a different color than (w, v). We also consider vertex-
and arc-colored graphs (G, χV , χE) where χV is a vertex-coloring and χE is an arc-coloring.
Typically, C is chosen to be an initial segment [n] := {1, . . . , n} of the natural numbers. To
be more precise, we generally assume that there is a linear order on the set of all potential
colors which, for example, allows us to identify a minimal color appearing in a graph in a
unique way. Isomorphisms between vertex- and arc-colored graphs have to respect the colors
of the vertices and arcs.

2.2 Weisfeiler-Leman Algorithm
The Weisfeiler-Leman algorithm, originally introduced by Weisfeiler and Leman in its 2-
dimensional version [28], forms one of the most fundamental subroutines in the context of
isomorphism testing.

Let χ1, χ2 : V k → C be colorings of k-tuples, where C is a finite set of colors. We say χ1
refines χ2, denoted χ1 ⪯ χ2, if χ1(v̄) = χ1(w̄) implies χ2(v̄) = χ2(w̄) for all v̄, w̄ ∈ V k. The
colorings χ1 and χ2 are equivalent, denoted χ1 ≡ χ2, if χ1 ⪯ χ2 and χ2 ⪯ χ1.

We describe the k-dimensional Weisfeiler-Leman algorithm (k-WL) for all k ≥ 1. For an
input graph G let χk

(0)[G] : (V (G))k → C be the coloring where each tuple is colored with the
isomorphism type of its underlying ordered subgraph. More precisely, χk

(0)[G](v1, . . . , vk) =
χk

(0)[G](v′
1, . . . , v′

k) if and only if, for all i, j ∈ [k], it holds that vi = vj ⇔ v′
i = v′

j and
vivj ∈ E(G) ⇔ v′

iv
′
j ∈ E(G). If the graph is equipped with a coloring the initial coloring

χk
(0)[G] also takes the input coloring into account. More precisely, for a vertex-coloring χV ,

it additionally holds that χV (vi) = χV (v′
i) for all i ∈ [k]. And for an arc-coloring χE , it is

the case that χE(vi, vj) = χE(v′
i, v′

j) for all i, j ∈ [k] such that vivj ∈ E(G).
We then recursively define the coloring χk

(i)[G] obtained after i rounds of the algorithm.

For k ≥ 2 and v̄ = (v1, . . . , vk) ∈ (V (G))k let χk
(i+1)[G](v̄) :=

(
χk

(i)[G](v̄), Mi(v̄)
)

where

Mi(v̄) :=
{{(

χk
(i)[G](v̄[w/1]), . . . , χk

(i)[G](v̄[w/k])
) ∣∣∣ w ∈ V (G)

}}
and v̄[w/i] := (v1, . . . , vi−1, w, vi+1, . . . , vk) is the tuple obtained from v̄ by replacing the i-th
entry by w (and {{. . . }} denotes a multiset). For k = 1 the definition is similar, but we only
iterate over neighbors of v, i.e., χ1

(i+1)[G](v) :=
(

χ1
(i)[G](v), Mi(v)

)
where

Mi(v) :=
{{

χ1
(i)[G](w)

∣∣∣ w ∈ NG(v)
}}

.

By definition, χk
(i+1)[G] ⪯ χk

(i)[G] for all i ≥ 0. Hence, there is a minimal i∞ such that
χk

(i∞)[G] ≡ χk
(i∞+1)[G] and for this i∞ the coloring χk

WL[G] := χk
(i∞)[G] is the k-stable coloring

of G. The k-dimensional Weisfeiler-Leman algorithm takes as input a (vertex- or arc-)colored
graph G and returns (a coloring that is equivalent to) χk

WL[G]. This can be implemented in
time O(nk+1 log n) (see [12]).

D. Neuen 72:5

2.3 Group Theory
We introduce the group-theoretic notions required in this work. We refer to [26, 6] for further
background.

Permutation groups. A permutation group acting on a set Ω is a subgroup Γ ≤ Sym(Ω) of
the symmetric group. The size of the permutation domain Ω is called the degree of Γ. If
Ω = [n], then we also write Sn instead of Sym(Ω). For γ ∈ Γ and α ∈ Ω we denote by αγ

the image of α under the permutation γ. For A ⊆ Ω and γ ∈ Γ let Aγ := {αγ | α ∈ A}. The
set A is Γ-invariant if Aγ = A for all γ ∈ Γ. For a partition P of Ω let Pγ := {Aγ | A ∈ P}.
Observe that Pγ is again a partition of Γ. We say P is Γ-invariant if Pγ = P for all γ ∈ Γ.

For A ⊆ Ω and a bijection θ : Ω → Ω′ we denote by θ[A] the restriction of θ to the domain
A. For a Γ-invariant set A ⊆ Ω, we denote by Γ[A] := {γ[A] | γ ∈ Γ} the induced action of Γ
on A, i.e., the group obtained from Γ by restricting all permutations to A. More generally, for
every set Λ of bijections with domain Ω, we denote by Λ[A] := {θ[A] | θ ∈ Λ}. Similarly, for a
partition P of Ω, we denote by θ[P] : P → P ′ the mapping defined via θ(A) := {θ(α) | α ∈ A}
for all A ∈ P. As before, Λ[P] := {θ[P] | θ ∈ Λ}.

Groups with restricted composition factors. We shall be interested in a particular subclass
of permutation groups, namely groups with restricted composition factors. Let Γ be a group.
A subnormal series is a sequence of subgroups Γ = Γ0 ≥ Γ1 ≥ · · · ≥ Γk = {id} such that Γi is
a normal subgroup of Γi−1 for all i ∈ [k]. The length of the series is k and the groups Γi−1/Γi

are the factor groups of the series, i ∈ [k]. A composition series is a strictly decreasing
subnormal series of maximal length. For every finite group Γ all composition series have the
same family (considered as a multiset) of factor groups (cf. [26]). A composition factor of a
finite group Γ is a factor group of a composition series of Γ.

▶ Definition 2. For d ≥ 2 let Γ̂d denote the class of all groups Γ for which every composition
factor of Γ is isomorphic to a subgroup of Sd. A group Γ is a Γ̂d-group if it is contained in
the class Γ̂d.

Let us point out the fact that there are two similar classes of groups usually referred by
Γd in the literature. The first is the class denoted by Γ̂d here originally introduced by Luks
[18], while the second one, for example used in [2], in particular allows composition factors
that are simple groups of Lie type of bounded dimension.

Group-Theoretic Tools for Isomorphism Testing. In this work, the central group-theoretic
subroutine is an isomorphism test for hypergraphs where the input group is a Γ̂d-group. Two
hypergraphs H1 = (V1, E1) and H2 = (V2, E2) are isomorphic if there is a bijection φ : V1 → V2
such that E ∈ E1 if and only if Eφ ∈ E2 for all E ∈ 2V1 (where Eφ := {φ(v) | v ∈ E} and
2V1 denotes the power set of V1). We write φ : H1 ∼= H2 to denote that φ is an isomorphism
from H1 to H2. Consistent with previous notation, we denote by Iso(H1, H2) the set of
isomorphisms from H1 to H2. More generally, for Γ ≤ Sym(V1) and a bijection θ : V1 → V2,
we define IsoΓθ(H1, H2) := {φ ∈ Γθ | φ : H1 ∼= H2}. In this work, we define the Hypergraph
Isomorphism Problem to take as input two hypergraphs H1 = (V1, E1) and H2 = (V2, E2), a
group Γ ≤ Sym(V1) and a bijection θ : V1 → V2, and the goal is to compute a representation2

of IsoΓθ(H1, H2). The following algorithm forms a crucial subroutine.

2 While IsoΓθ(H1, H2) may be exponentially large, it can be represented by a single isomorphism
φ ∈ IsoΓθ(H1, H2) and a generating set for AutΓ(H1) := IsoΓ(H1, H1). For general background on how
to perform computations on permutation groups, I refer to [27].

ESA 2021

72:6 Isomorphism Testing Parameterized by Genus and Beyond

▶ Theorem 3 (Miller [20]). Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs and
let Γ ≤ Sym(V1) be a Γ̂d-group and θ : V1 → V2 a bijection. Then IsoΓθ(H1, H2) can be
computed in time (n + m)O(d) where n := |V1| and m := |E1|.

▶ Theorem 4 (Neuen [21]). Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs and
let Γ ≤ Sym(V1) be a Γ̂d-group and θ : V1 → V2 a bijection. Then IsoΓθ(H1, H2) can be
computed in time (n + m)O((log d)c) for some constant c where n := |V1| and m := |E1|.

Observe that both algorithms given by the two theorems tackle the same problem. The
second algorithm is asymptotically much faster, but it is also much more complicated and
the constant factors in the exponent of the running time are likely to be much higher. Since
this paper only applies either theorem for d = 2, it seems to be preferable to use the first
algorithm. Indeed, the first result is a simple extension of Luks’s well-known isomorphism
test for bounded-degree graphs [18], and thus the underlying algorithm is fairly simple. For
all these reasons, we mostly build on Theorem 3. However, for future applications of the
techniques presented in this work, it might be necessary to build on Theorem 4 to benefit
from the improved run time bound. For this reason, we shall provide variants of our results
building on Theorem 4 wherever appropriate.

3 Allowing Weisfeiler and Leman to Split Small Color Classes

In this section, we introduce the concept of (t, k)-WL-bounded graphs and provide a
polynomial-time isomorphism test for such graphs for all constant values of t and k. The
final fpt isomorphism test for graphs excluding K3,h as a minor builds on this subroutine for
t = k = 2.

The concept of (t, k)-WL-bounded graphs is a natural extension of t-CR-bounded graphs
which were already introduced by Ponomarenko in the late 1980’s [23] and which were
recently rediscovered in [21, 10, 22]. Intuitively speaking, a graph G is t-CR-bounded, t ∈ N,
if an initially uniform vertex-coloring χ (i.e., all vertices receive the same color) can be turned
into the discrete coloring (i.e., each vertex has its own color) by repeatedly

performing the Color Refinement algorithm (expressed by the letters “CR”), and
taking a color class [v]χ := {w ∈ V (G) | χ(w) = χ(v)} of size |[v]χ| ≤ t and assigning
each vertex from the class its own color.

A very natural extension of this idea to replace the Color Refinement algorithm by the
Weisfeiler-Leman algorithm for some fixed dimension k. This leads us to the notion of
(t, k)-WL-bounded graphs (the letters “CR” are replaced by “k-WL”). In particular, (t, 1)-
WL-bounded graphs are exactly the t-CR-bounded graphs. Maybe surprisingly, it seems that
this simple extension has not been considered so far in the literature.

▶ Definition 5. A vertex- and arc-colored graph G = (V, E, χV , χE) is (t, k)-WL-bounded if
the sequence (χi)i≥0 reaches a discrete coloring where χ0 := χV ,

χ2i+1(v) := χk
WL[V, E, χ2i, χE](v, . . . , v)

and

χ2i+2(v) :=
{

(v, 1) if |[v]χ2i+1 | ≤ t

(χ2i+1(v), 0) otherwise

for all i ≥ 0.
Also, for the minimal i∞ ≥ 0 such that χi∞ ≡ χi∞+1, we refer to χi∞ as the (t, k)-WL-

stable coloring of G and denote it by χ(t,k)-WL[G].

D. Neuen 72:7

At this point, the reader may wonder why (χi)i≥0 is chosen as a sequence of vertex-
colorings and not a sequence of colorings of k-tuples of vertices (since k-WL also colors
k-tuples of vertices). While such a variant certainly makes sense, it still leads to the same
class of graphs. Let G be a graph and let χ := χk

WL[G]. The main insight is that, if there is
some color c ∈ im(χ) for which |χ−1(c)| ≤ t, then there is also a color c′ ∈ im(χ) for which
|χ−1(c′)| ≤ t and χ−1(c′) ⊆ {(v, . . . , v) | v ∈ V (G)}. In other words, one can not achieve any
additional splitting of color classes by also considering non-diagonal color classes.

We also need to extend several notions related to t-CR-bounded graphs. Let G be a
graph and let X ⊆ V (G) be a set of vertices. Let χ∗

V : V (G) → C be the vertex-coloring
obtained from individualizing all vertices in the set X, i.e., χ∗

V (v) := (v, 1) for v ∈ X and
χ∗

V (v) := (0, 0) for v ∈ V (G) \ X. Let χ := χ(t,k)-WL[G, χ∗
V] denote the (t, k)-WL-stable

coloring with respect to the input graph (G, χ∗
V). We define the (t, k)-closure of the set X

(with respect to G) to be the set

clGt,k(X) := {v ∈ V (G) | |[v]χ| = 1} .

Observe that X ⊆ clGt,k(X). For v1, . . . , vℓ ∈ V (G) we also use clGt,k(v1, . . . , vℓ) as a shorthand
for clGt,k({v1, . . . , vℓ}). If the input graph is equipped with a vertex- or arc-coloring, all
definitions are extended in the natural way.

Now, we concern ourselves with designing a polynomial-time isomorphism test for (t, k)-
WL-bounded graphs. Actually, we shall prove a slightly stronger result which turns out
to be useful later on. The main idea for the algorithm is to build a reduction to the
isomorphism problem for (t, 1)-WL-bounded graphs for which such results are already known
[23, 21]. Indeed, isomorphism of (t, 1)-WL-bounded graphs can be reduced to the Hypergraph
Isomorphism Problem for Γ̂t-groups. Since one may be interested in using different subroutines
for solving the Hypergraph Isomorphism Problem for Γ̂t-groups (see the discussion at the
end of Section 2.3), the main result is stated via an oracle for the Hypergraph Isomorphism
Problem on Γ̂t-groups.

▶ Theorem 6. Let G1, G2 be two vertex- and arc-colored graphs and let χi := χ(t,k)-WL[Gi].
Also let Pi = {[v]χi

| v ∈ V (Gi)} be the partition into color classes of χi. Then Pφ
1 = P2 for

all φ ∈ Iso(G1, G2).
Moreover, using oracle access to the Hypergraph Isomorphism Problem for Γ̂t-groups, in

time nO(k) one can compute a Γ̂t-group Γ ≤ Sym(P1) and a bijection θ : P1 → P2 such that

Iso(G1, G2)[P1] ⊆ Γθ.

In particular, Aut(G1)[P1] ∈ Γ̂t.

▶ Corollary 7. Let G1, G2 be two (t, k)-WL-bounded graphs. Then a representation for
Iso(G1, G2) can be computed in time nO(k·(log t)c) for some absolute constant c.

4 Structure Theory and Small Color Classes

Having established the necessary tools, we can now turn to the isomorphism test for graphs
excluding K3,h as a minor. We start by giving a high-level overview on the algorithm.
The main idea is to build on the isomorphism test for (2, 2)-WL-bounded graphs described
in the last section. Let G1 and G2 be two (vertex- and arc-colored) graphs that exclude
K3,h as a minor. Using well-known reduction techniques building on isomorphism-invariant
decompositions into triconnected3 components (see, e.g., [11]), we may assume without loss
of generality that G1 and G2 are 3-connected.

3 A triconnected component is either 3-connected or a cycle.

ESA 2021

72:8 Isomorphism Testing Parameterized by Genus and Beyond

The algorithm starts by individualizing three vertices. To be more precise, the algorithm
picks three distinct vertices v1, v2, v3 ∈ V (G1) and iterates over all choices of potential images
w1, w2, w3 ∈ V (G2) under some isomorphism between G1 and G2. Let X1 := {v1, v2, v3}
and X2 := {w1, w2, w3}. Also, let Di := clGi

2,2(Xi) denote the (2, 2)-closure of Xi, i ∈ {1, 2}.
Observe that Di is defined in an isomorphism-invariant manner given the initial choice of Xi.
Building on Theorems 3 and 6 it can be checked in polynomial time whether G1 and G2 are
isomorphic restricted to the sets D1 and D2.

Now, the central idea is to follow a decomposition strategy. Let Zi
1, . . . , Zi

ℓ denote the
vertex sets of the connected components of Gi − Di, and let Si

j := NGi(Zi
j) for j ∈ [ℓ] and

i ∈ {1, 2}. We recursively compute isomorphisms between all pairs of graphs Gi[Zi
j ∪ Si

j] for
all j ∈ [ℓ] and i ∈ {1, 2}. To be able to determine whether all these partial isomorphisms can
be combined into a global isomorphism, the crucial insight is that |Si

j | < h for all j ∈ [ℓ] and
i ∈ {1, 2}.

▶ Lemma 8. Let G be a graph that excludes K3,h as a minor. Also let X ⊆ V (G) and define
D := clG2,2(X). Let Z be a connected component of G − D. Then |NG(Z)| < h.

Indeed, this lemma forms one of the main technical contributions of the paper. I remark
that similar statements are exploited in [10, 21, 22] eventually leading to an isomorphism test
running in time nO((log h)c) for all graphs excluding Kh as a topological subgraph. However,
all these variants require the (t, k)-closure to be taken for non-constant values of t (i.e.,
t = Ω(h)). For the design of an fpt-algorithm, this is infeasible since we can only afford to
apply Theorem 6 for constant values of t and k (since Di might be equal to V (Gi)).

The lemma above implies that the interplay between Di and V (Gi) \ Di is simple which
allows for a dynamic programming approach. To be more precise, we can recursively list
all elements of the set Iso((Gi[Zi

j ∪ Si
j], Si

j), (Gi′ [Zi′

j′ ∪ Si′

j′], Si′

j′))[Si
j] for all j, j′ ∈ [ℓ] and

i, i′ ∈ {1, 2} (i.e., we list all bijections σ : Si
j → Si′

j′ that can be extended to an isomorphism
between the corresponding subgraphs). To incorporate this information, we extend the graph
Gi[Di] by simple gadgets obtaining graphs Hi that are (2, 2)-WL-bounded and such that
G1 ∼= G2 if and only if H1 ∼= H2. (For technical reasons, the algorithm does not exactly
implement this strategy, but closely follows the general idea.)

In order to realize this recursive strategy, it remains to ensure that the algorithm makes
progress when performing a recursive call. Actually, this turns out to be a non-trivial task.
Indeed, it may happen that Di = Xi, there is only a single component Zi

1 of Gi − Di, and
NGi

(Zi
1) = Di. To circumvent this problem, the idea is to compute an isomorphism-invariant

extension γ(Xi) ⊋ Xi such that |γ(Xi)| ≤ h4. Assuming such an extension can be computed,
we simply extend the set Xi until the algorithm arrives in a situation where the recursive
scheme discussed above makes progress. Observe that this is guaranteed to happen as soon
as |Xi| ≥ h building on Lemma 8. Also note that we can still artificially individualize all
vertices from Xi at a cost of 2O(h4 log h) (since any isomorphism can only map vertices from
X1 to vertices from X2).

To compute the extension, we exploit the fact that Gi is (h − 1, 1)-WL-bounded by [21,
Corollary 24] (after individualizing 3 vertices). Simply speaking, for every choice of three
distinct vertices in Xi, after individualizing these vertices and performing the 1-dimensional
Weisfeiler-Leman algorithm, we can identify a color class of size at most h − 1 to be added
to the set Xi. Overall, assuming |Xi| ≤ h, this gives an extension γ(Xi) of size at most
h + h3(h − 1) ≤ h4.

D. Neuen 72:9

This completes the description of the general strategy. In the following sections, we
provide more detailed arguments. We first provide a sketch on the proof of Lemma 8 in
the next section. Afterwards, we compute the entire decompositions of the input graphs in
Section 6. Finally, the dynamic programming strategy along the computed decompositions is
implemented in Section 7.

5 Finding Disjoint and Connected Subgraphs

In this section, we give some details on the proof of Lemma 8. Let us start by introducing
some additional notation for the 2-dimensional Weisfeiler-Leman algorithm.

Let G be a graph and let χ := χ2
WL[G] be the coloring computed by the 2-dimensional

Weisfeiler-Leman algorithm. We denote by CV = CV (G, χ) := {χ(v, v) | v ∈ V (G)} the set
of vertex colors under the coloring χ. Also, for c ∈ CV , Vc := {v ∈ V (G) | χ(v, v) = c}
denotes the set of all vertices of color c. Moreover, we define the graph G[[χ]] with vertex set
V (G[[χ]]) := CV (G, χ) and edges E(G[[χ]]) := {c1c2 | ∃v1 ∈ Vc1 , v2 ∈ Vc2 : v1v2 ∈ E(G)}.

The next lemma builds the main technical step in the proof of Lemma 8.

▶ Lemma 9. Let G be a graph and let χ be a 2-stable coloring. Suppose that G[[χ]] is
connected and |Vc| ≥ 3 for every c ∈ CV . Then there are vertex-disjoint, connected subgraphs
H1, H2, H3 ⊆ G such that V (Hr) ∩ Vc ̸= ∅ for all r ∈ {1, 2, 3} and c ∈ CV .

Proof Idea. Let F be a spanning tree of G[[χ]] and fix an arbitrary root node c0 ∈ V (F) = CV .
On a high-level, the graphs H1, H2, H3 are constructed in a top-to-bottom fashion along the
tree F . To start, let us select three arbitrary distinct vertices v1, v2, v3 ∈ Vc0 and add vr

to the graph Hr. Now, let d be a color which is already covered (i.e., Vd ∩ Hr ≠ ∅ for all
r ∈ {1, 2, 3}), and let c be a child of d which is not covered. Consider the graph G[Vd, Vc]. Let
vr ∈ Vd ∩ V (Hr) for r ∈ {1, 2, 3}. If there are vertices w1, w2, w3 ∈ Vc such that vrwr ∈ E(G)
then we can simply add vertex wr as well as the edge vrwr to Hr in order to cover the color
class Vc. Assuming we can always find such vertices, this strategy can be repeated going
down the tree F until all color classes are covered.

So suppose that there are no such vertices w1, w2, w3. By Hall’s Marriage Theorem, this
means there is a set V ′ ⊆ {v1, v2, v3} such that |N(V ′) ∩ Vc| < |V ′|. Since χ is 2-stable, we
get that |N(v) ∩ Vc| = |N(v′) ∩ Vc| for all v, v′ ∈ Vd. Together, this means there is some
δ ∈ {1, 2} such that |N(v) ∩ Vc| = δ for all v ∈ Vd.

First, suppose that δ = 1. Then G[Vd, Vc] is isomorphic to a disjoint union of ℓ stars
K1,h, for some ℓ ≥ 3 and h ≥ 2. In this situation, it is possible to contract the connected
components of G[Vd, Vc] to single vertices, and proceed by induction. At this point, we
crucially exploit that using the 2-dimensional Weisfeiler-Leman algorithm allows us to show
that all color classes in the contracted graph still have size at least 3 (such a statement
is not true when using the Color Refinement algorithm). By induction, we obtain graphs
H ′

1, H ′
2, H ′

3. To obtain the original graphs, we simply uncontract any contracted vertices
contained in H ′

1, H ′
2, H ′

3.
In the other case, we have δ = 2. Let us partition Vd into c-twin-classes where vertices

v, v′ ∈ Vd are declared to be c-twins if N(v) ∩ Vc = N(v′) ∩ Vc. If there are at least 3 twin-
classes, then it is again possible to contract the twin-classes to single vertices and proceed
by induction. Here, the crucial observation is that the c-twin-classes are non-trivial since
|N(V ′)∩Vc| < |V ′| for some set V ′ ⊆ {v1, v2, v3}. The critical case occurs if there are exactly
2 twin-classes meaning that G[Vd, Vc] is isomorphic to a disjoint union of 2 copies of K2,h,
for some h ≥ 3 (in this case |Vc| = 4). Now, the basic idea is to ensure that v1, v2, v3 cover

ESA 2021

72:10 Isomorphism Testing Parameterized by Genus and Beyond

both connected components (which means there are vertices w1, w2, w3 as above). However,
this additional requirement comes with severe additional complications. First, information
of this type needs to be propagated up the tree (i.e., vertices in the root color class may
already need to be chosen appropriately to avoid problematic situations later on). But much
more problematically, each child of c may add a different restriction which all need to be
met at the same time. Here, we again crucially rely on the 2-dimensional Weisfeiler-Leman
algorithm to show that all requirements can indeed be met at the same time. Unfortunately,
this comes at the price that each vertex of Vd has to be contained in one of the graphs Hr,
r ∈ {1, 2, 3} (this allows us to choose different triples (v1, v2, v3) for different children of d).
To ensure that Hr remains connected, we introduce a second type of restriction that is passed
down the tree, and which ensures that all vertices from Vd, which are added to Hr, end up
in the same connected component of Hr. By carefully implementing the induction, it can be
shown that all these additional requirements can indeed by realized. ◀

Proof of Lemma 8. Let χ be a 2-stable coloring such that |[v]χ| = 1 for all v ∈ D and
|[w]χ| ≥ 3 for all w ∈ V (G) \ D. Suppose towards a contradiction that |NG(Z)| ≥ h, and
pick v1, . . . , vh ∈ NG(Z) to be distinct vertices. Let C := {χ(v, v) | v ∈ Z} be the set of
vertex colors appearing in the set Z. Note that (G[[χ]])[C] is connected, and |Vc| ≥ 3 for all
c ∈ C. Let W := {w ∈ V (G) | χ(w, w) ∈ C}. Observe that W ∩ D = ∅. By Lemma 9, there
are connected, vertex-disjoint subgraphs H1, H2, H3 ⊆ G[W] such that V (Hr) ∩ Vc ̸= ∅ for
all r ∈ {1, 2, 3} and c ∈ C.

Now let i ∈ [h]. Since vi ∈ NG(Z) there is some vertex wi ∈ Z ⊆ W such that
viwi ∈ E(G). Let ci := χ(wi, wi). Observe that ci ∈ C. Also, Vci

⊆ NG(vi) since |[vi]χ| = 1
and χ is 2-stable. This implies that NG(vi) ∩ V (Hr) ̸= ∅ for all r ∈ {1, 2, 3}, because
V (Hr) ∩ Vci

̸= ∅. But this results in a minor isomorphic to K3,h with vertices v1, . . . , vh on
the right side, and vertices V (H1), V (H2), V (H3) on the left side. ◀

Besides Lemma 8, we also require a second tool which is used to define the extension sets
γ(Xi) which we needed to ensure the recursive algorithm makes progress.

▶ Lemma 10. Let G be a graph that excludes K3,h as a minor. Also let X ⊆ V (G) and
define D := clGh−1,1(X). Let Z be a connected component of G − D. Then |NG(Z)| < 3.

The lemma essentially follows from [21, Lemma 23]. For the sake of completeness and
due to its simplicity, a complete proof is still given below.

Proof. Let χ be a 1-stable coloring such that |[v]χ| = 1 for all v ∈ D and |[w]χ| ≥ h for all
w ∈ V (G)\D. Suppose towards a contradiction that |NG(Z)| ≥ 3, and pick v1, v2, v3 ∈ NG(Z)
to be distinct vertices. Let C := {χ(v) | v ∈ Z}, and define H to be the graph with V (H) := C

and

E(H) := {c1c2 | ∃v1 ∈ χ−1(c1), v2 ∈ χ−1(v2) : v1v2 ∈ E(G)}.

Let T be a spanning tree of H. Also, for each i ∈ {1, 2, 3}, fix a color ci ∈ C such that
NG(vi)∩χ−1(ci) ̸= ∅. Let T ′ be the induced subtree obtained from T by repeatedly removing
all leaves distinct from c1, c2, c3. Finally, let T ′′ be the tree obtained from T ′ by adding
three fresh vertices v1, v2, v3 where vi is connected to ci. Observe that v1, v2, v3 are precisely
the leaves of T ′′. Now, T ′′ contains a unique node c of degree three (possibly c = ci for
some i ∈ {1, 2, 3}). Observe that |χ−1(c)| ≥ h. We define Ci to be the set of all internal
vertices which appear on the unique path from vi to c in the tree T ′′. Finally, define
Ui := {vi} ∪

⋃
c′∈Ci

χ−1(c′).

D. Neuen 72:11

Since χ is 1-stable and |[vi]χ| = 1 we get that G[Ui] is connected for all i ∈ {1, 2, 3}. Also,
EG(Ui, {w}) ̸= ∅ for all w ∈ χ−1(c) and i ∈ {1, 2, 3}. But this provides a minor isomorphic
to K3,h with vertices U1, U2, U3 on the left side and the vertices from χ−1(c) on the right
side. ◀

6 A Decomposition Theorem

Next, we use the insights gained in the last section to prove a decomposition theorem for
graphs that exclude K3,h as a minor. In the following, all tree decompositions are rooted,
i.e., there is a designated root node and we generally assume all edges to be directed away
from the root.

▶ Theorem 11. Let h ≥ 3. Let G be a 3-connected graph, and suppose S ⊆ V (G) such that
(A) G − E(S, S) excludes K3,h as a minor,
(B) 3 ≤ |S| ≤ h,
(C) G − S is connected, and
(D) S = NG(V (G) \ S).
Then there is a (rooted) tree decomposition (T, β) of G, a function γ : V (T) → 2V (G), and a
vertex-coloring λ such that

(I) |V (T)| ≤ 2 · |V (G)|,
(II) the adhesion width of (T, β) is at most h − 1,

(III) for every t ∈ V (T) with children t1, . . . , tℓ, one of the following options holds:
a. β(t) ∩ β(ti) ̸= β(t) ∩ β(tj) for all distinct i, j ∈ [ℓ], or
b. β(t) = β(t) ∩ β(ti) for all i ∈ [ℓ],

(IV) S ⊊ γ(r) where r denotes the root of T ,
(V) |γ(t)| ≤ h4 for every t ∈ V (T),

(VI) β(t) ∩ β(s) ⊆ γ(t) ⊆ β(t) for all t ∈ V (T) \ {r}, where s denotes the parent of t, and
(VII) β(t) ⊆ cl(G,λ)

2,2 (γ(t)) for all t ∈ V (T).
Moreover, the decomposition (T, β), the function γ, and the coloring λ can be computed in
polynomial time, and the output is isomorphism-invariant with respect to (G, S, h).

Proof. We give an inductive construction for the tree decomposition (T, β) as well as the
function γ and the coloring λ. We start by arguing how to compute the set γ(r).

▷ Claim 12. Let v1, v2, v3 ∈ S be three distinct vertices, and define χ := χ1
WL[G, S, v1, v2, v3].

Then there exists some v ∈ V (G) \ S such that |[v]χ| < h.

Proof. Let H := (G − (S \ {v1, v2, v3})) − E({v1, v2, v3}, {v1, v2, v3}). It is easy to see that
χ|V (H) is 1-stable for the graph H. Observe that H − {v1, v2, v3} = G − S is connected.
Suppose there is no vertex v ∈ V (G)\S such that |[v]χ| < h. Then χ is (h−1)-CR-stable which
implies that clGh−1,1(v1, v2, v3) = {v1, v2, v3}. On the other hand, Z := V (H) \ {v1, v2, v3}
induces a connected component of H − {v1, v2, v3}, and NH(Z) = {v1, v2, v3} since S =
NG(V (G) \ S). But this contradicts Lemma 10. ◁

Let v1, v2, v3 ∈ S be distinct. We define χ[v1, v2, v3] := χ1
WL[G, S, v1, v2, v3]. Also, let

c[v1, v2, v3] denote the unique color such that
1. c[v1, v2, v3] /∈ {χ[v1, v2, v3](v) | v ∈ S}, and
2. |(χ[v1, v2, v3])−1(c[v1, v2, v3])| ≤ h − 1

ESA 2021

72:12 Isomorphism Testing Parameterized by Genus and Beyond

and which is minimal with respect to the linear order on the colors in the image of χ[v1, v2, v3].
Let γ(v1, v2, v3) := (χ[v1, v2, v3])−1(c[v1, v2, v3]). Observe that γ(v1, v2, v3) is defined in an
isomorphism-invariant manner given (G, S, h, v1, v2, v3). Now, define

γ(r) := S ∪
⋃

v1,v2,v3∈S distinct
γ(v1, v2, v3).

Clearly, γ(r) is defined in an isomorphism-invariant manner given (G, S, h). Moreover,

|γ(r)| ≤ |S| + |S|3 · (h − 1) ≤ |S|3 · h ≤ h4.

Finally, define β(r) := clG2,2(γ(r)).
Let Z1, . . . , Zℓ be the connected components of G − β(r). Also, let Si := NG(Zi) and Gi

be the graph obtained from G[Si ∪ Zi] by turning Si into a clique, i ∈ [ℓ]. We have |Si| < h

by Lemma 8. Also, |Si| ≥ 3 and Gi is 3-connected since G is 3-connected. Clearly, Gi − Si

is connected and Si = NGi
(V (Gi) \ Si). Finally, Gi − E(Si, Si) excludes K3,h as a minor

because G − E(S, S) excludes K3,h as a minor.
We wish to apply the induction hypothesis to the triples (Gi, Si, h). If |V (Gi)| = |V (G)|

then ℓ = 1 and S ⊊ Si. In this case the algorithm still makes progress since the size of S can
be increased at most h − 3 times.

By the induction hypothesis, there are tree decompositions (Ti, βi) of Gi and functions
γi : V (Ti) → 2V (Gi) satisfying Properties I - VII. We define (T, β) to be the tree decomposition
where T is obtained from the disjoint union of T1, . . . , Tℓ by adding a fresh root vertex r

which is connected to the root vertices of T1, . . . , Tℓ. Also, β(r) is defined as above and
β(t) := βi(t) for all t ∈ V (Ti) and i ∈ [ℓ]. Finally, γ(r) is again defined as above, and
γ(t) := γi(t) for all t ∈ V (Ti) and i ∈ [ℓ].

The algorithm clearly runs in polynomial time and the output is isomorphism-invariant
(the coloring λ is defined below). We need to verify that Properties I - VII are satisfied.
Using the comments above and the induction hypothesis, it is easy to verify that Properties
II, IV, V and VI are satisfied.

For Property VII it suffices to ensure that cl(Gi,λ)
2,2 (γ(t)) ⊆ cl(G,λ)

2,2 (γ(t)). Towards this
end, it suffices to ensure that λ(v) ̸= λ(w) for all v ∈ β(r) and w ∈ V (G) \ β(r). To ensure
this property holds on all levels of the tree, we can simply define λ(v) := {distT (r, t) | t ∈
V (T), v ∈ β(t)}.

Next, we modify the tree decomposition in order to ensure Property III. Consider a node
t ∈ V (T) with children t1, . . . , tℓ. We say that ti ∼ tj if β(t) ∩ β(ti) = β(t) ∩ β(tj). Let
A1, . . . , Ak be the equivalence classes of the equivalence relation ∼. For every i ∈ [k] we
introduce a fresh node si. Now, every tj ∈ Ai becomes a child of si and si becomes a child
of t. Finally, we set β(si) = γ(si) := β(t) ∩ β(tj) for some tj ∈ Ai. Observe that after this
modification, Properties II and IV - VII still hold.

Finally, it remains to verify Property I. Before the modification described in the last
paragraph, we have that |V (T)| ≤ |V (G)|. Since the modification process at most doubles
the number of nodes in T , the bound follows. ◀

7 An FPT Isomorphism Test for Graphs of Small Genus

Building on the decomposition theorem given in the last section, we can now prove the main
result of this paper.

▶ Theorem 13. Let G1, G2 be two (vertex- and arc-colored) graphs that exclude K3,h as a
minor. Then one can decide whether G1 is isomorphic to G2 in time 2O(h4 log h)nO(1).

D. Neuen 72:13

Proof Idea. Suppose Gi = (V (Gi), E(Gi), χi
V , χi

E) for i ∈ {1, 2}. Using standard reduction
techniques (see, e.g., [11]) we may assume without loss generality that G1 and G2 are 3-
connected. Pick an arbitrary set S1 ⊆ V (G1) such that |S1| = 3 and G1 −S1 is connected. For
every S2 ⊆ V (G2) such that |S2| = 3 and G2 − S2 is connected, the algorithm tests whether
there is an isomorphism φ : G1 ∼= G2 such that Sφ

1 = S2. Observe that Si = NGi
(V (Gi) \ Si)

for both i ∈ {1, 2} since G1 and G2 are 3-connected. This implies that the triple (Gi, Si, h)
satisfies the requirements of Theorem 11. Let (Ti, βi) be the tree decomposition, γi : V (Ti) →
2V (Gi) be the function, and λi be the vertex-coloring computed by Theorem 11 on input
(Gi, Si, h).

Now, the basic idea is compute isomorphisms between (G1, S1) and (G2, S2) using dynamic
programming along the tree decompositions. More precisely, we aim at recursively computing
the set

Λ := Iso((G1, λ1, S1), (G2, λ1, S2))[S1]

(here, Iso((G1, λ1, S1), (G2, λ1, S2)) denotes the set of isomorphisms φ : G1 ∼= G2 which
additionally respect the vertex-colorings λi and satisfy Sφ

1 = S2). Throughout the recursive
algorithm, we maintain the property that |Si| ≤ h. Also, we may assume without loss of
generality that Si is λi-invariant (otherwise, we replace λi by λ′

i defined via λ′
i(v) := (1, λi(v))

for all v ∈ Si, and λ′
i(v) := (0, λi(v)) for all v ∈ V (Gi) \ Si).

Let ri denote the root node of Ti. Let ℓ denote the number of children of ri in
the tree Ti (if the number of children is not the same, the algorithm concludes that
Iso((G1, λ1, S1), (G2, λ1, S2)) = ∅). Let ti

1, . . . , ti
ℓ be the children of ri in Ti, i ∈ {1, 2}.

For i ∈ {1, 2} and j ∈ [ℓ] let V i
j denote the set of vertices appearing in bags below (and

including) ti
j . Also let Si

j := βi(ri) ∩ βi(ti
j) be the adhesion set to the j-th child, and define

Gi
j := Gi[V i

j]. Finally, let T i
j denote the subtree of Ti rooted at node ti

j , and βi
j := βi|V (T i

j
),

γi
j := γi|V (T i

j
) and λi

j := λi|V i
j
.

For every i, i′ ∈ {1, 2}, and every j, j′ ∈ [ℓ], the algorithm recursively computes the set

Λi,i′

j,j′ := Iso((Gi
j , λi

j , Si
j), (Gi′

j′ , λi′

j′ , Si′

j′))[Si
j].

We argue how to compute the set Λ. Building on Theorem 11, Item III, we may assume that
(a) Si

j ̸= Si
j′ for all distinct j, j′ ∈ [ℓ] and i ∈ {1, 2}, or

(b) β(ri) = Si
j for all j ∈ [ℓ] and i ∈ {1, 2}

(if r1 and r2 do not satisfy the same option, then Iso((G1, λ1, S1), (G2, λ1, S2)) = ∅).
We first cover Option b. In this case |β(ri)| = |Si

j | ≤ h − 1 by Theorem 11, Item II. The
algorithm iterates over all bijections σ : β(r1) → β(r2). Now,

σ ∈ Iso((G1, λ1, S1), (G2, λ1, S2))[β(r1)] ⇔ ∃ρ ∈ Sym([ℓ]) ∀j ∈ [ℓ] : σ ∈ Λ1,2
j,ρ(j).

To test whether σ satisfies the right-hand side condition, the algorithm constructs an auxiliary
graph Hσ with vertex set V (Hσ) := {1, 2} × [ℓ] and edge set

E(Hσ) := {(1, j)(2, j′) | σ ∈ Λ1,2
j,j′}.

Observe that Hσ is bipartite with bipartition ({1} × [ℓ], {2} × [ℓ]). Now,

σ ∈ Iso((G1, λ1, S1), (G2, λ1, S2))[β(r1)] ⇔ Hσ has a perfect matching.

It is well-known that the latter can be checked in polynomial time. This completes the
description of the algorithm in case Option b is satisfied.

ESA 2021

72:14 Isomorphism Testing Parameterized by Genus and Beyond

Next, suppose Option a is satisfied. Here, the central idea is to construct auxiliary vertex-
and arc-colored graphs Hi = (V (Hi), E(Hi), µi

V , µi
E) and sets Ai ⊆ V (Hi) such that

1. βi(ri) ⊆ Ai and Ai ⊆ clHi
2,2(γi(ri)), and

2. Iso(H1, H2)[S1] = Iso(H1[A1], H2[A2])[S1] = Λ.
Towards this end, we set

V (Hi) := V (Gi) ⊎ {(Si
j , γ) | j ∈ [ℓ], γ ∈ Λi,i

j,j}

and

E(Hi) := E(Gi) ∪ {(Si
j , γ)v | j ∈ [ℓ], γ ∈ Λi,i

j,j , v ∈ Si
j}.

Also, we set

Ai := β(ri) ∪ {(Si
j , γ) | j ∈ [ℓ], γ ∈ Λi,i

j,j}.

The main idea is to use the additional vertices attached to the set Si
j to encode the isomorphism

type of the graph (Gi
j , λi

j , Si
j). This information is encoded by the vertex- and arc-coloring

building on sets Λi,i′

j,j′ already computed above. Let S := {Si
j | i ∈ {1, 2}, j ∈ [ℓ]}, and define

Si
j ∼ Si′

j′ if Λi,i′

j,j′ ̸= ∅. Observe that ∼ is an equivalence relation. Let {P1, . . . , Pk} be the
partition of S into the equivalence classes. We set

µi
V (v) := (0, χi

V (v), λi(v))

for all v ∈ Si,

µi
V (v) := (1, χi

V (v), λi(v))

for all v ∈ γi(ri) \ Si,

µi
V (v) := (2, χi

V (v), λi(v))

for all v ∈ βi(ri) \ γi(ri),

µi
V (v) := (3, χi

V (v), λi(v))

for all v ∈ V (Gi) \ βi(ri), and

µi
V (Si

j , γ) := (4, q, q)

for all q ∈ [k], Si
j ∈ Pq, and γ ∈ Λi,i

j,j . For every q ∈ [k] fix some i(q) ∈ {1, 2} and j(q) ∈ [ℓ]
such that S

i(q)
j(q) ∈ Pq (i.e., for each equivalence class, the algorithm fixes one representative).

Also, for every q ∈ [k] and Si
j ∈ Pq, fix a bijection σi

j ∈ Λi(q),i
j(q),j such that σ

i(q)
j(q) is the identity

mapping. Finally, for q ∈ [k], fix a numbering S
i(q)
j(q) = {uq

1, . . . , uq
s(q)}.

With this, we are ready to define the arc-coloring µi
E . First, we set

µi
E(v, w) := (0, χi

E(v, w))

for all vw ∈ E(Gi). Next, consider an edge (Si
j , γ)v where j ∈ [ℓ], γ ∈ Λi,i

j,j , and v ∈ Si
j .

Suppose Si
j ∈ Pq. We set

µi
E(v, (Si

j , γ)) = µi
E((Si

j , γ), v) := (1, c)

for the unique c ∈ [s(q)] such that

v = (uq
c)σi

jγ .

D. Neuen 72:15

This completes the description of the graphs Hi and the sets Ai, i ∈ {1, 2}. It can be
checked that Properties 1 and 2 are satisfied (see the full version for details).

Now, recall that the algorithm aims at computing the set Λ. Building on Property 2,
we can simply compute Iso(H1[A1], H2[A2])[S1]. Towards this end, the algorithm iterates
through all bijections τ : γ1(r1) → γ2(r2), and wishes to test whether there is an isomorphism
φ ∈ Iso(H1[A1], H2[A2]) such that φ[γ1(r1)] = τ . Note that, since γi(ri) is µi

V -invariant, it
now suffices to solve this latter problem.

So fix a bijection τ : γ1(r1) → γ2(r2) (if |γ1(r1)| ≠ |γ2(r2)| then the algorithm returns
Λ = ∅). Let µ∗

1(v) := (1, v) for all v ∈ γ1(r1), µ∗
1(v) := (0, µ1

V) for all v ∈ V (H1) \ γ1(r1), and
µ∗

2(v) := (1, τ−1(v)) for all v ∈ γ2(r2) and µ∗
2(v) := (0, µ2

V) for all v ∈ V (H2) \ γ2(r2).
Intuitively speaking, µ∗

1 and µ∗
2 are obtained from µ1

V and µ2
V by individualizing all

vertices from γ1(r1) and γr(r2) according to the bijection τ . Now, we can apply Theorem 6
on input graph H∗

1 = (H1, µ∗
1) and H∗

2 = (H2, µ∗
2), and parameters t = k := 2.

Building on Property 1, we obtain a Γ̂2-group Γ ≤ Sym(A1) and a bijection θ : A1 → A2
such that Iso(H∗

1 [A1], H∗
2 [A2]) ⊆ Γθ. Now, we can determine whether H∗

1 [A1] ∼= H∗
2 [A2]

using Theorem 3. Using Property 2, this provides the answer to whether τ [S1] ∈ Λ (recall
that S1 ⊆ γ1(r1) by Theorem 11, Items IV and VI).

Overall, this completes the description of the algorithm. It only remains to analyse its
running time. Let n denote the number of vertices of G1 and G2.

The algorithm iterates over at most n3 choices for the initial set S2, and computes the
decompositions (Ti, βi), the functions γi, and the colorings λi in polynomial time. For the
dynamic programming tables, the algorithm needs to compute O(n2) many Λ-sets (using
Theorem 11, Item I), each of which contains at most h! = 2O(h log h) many elements by
Theorem 11, Item II. Hence, it remains to analyse the time required to compute the set Λ
given the Λi,i′

j,j′-sets. For Option b, this can clearly be done in time 2O(h log h)nO(1).
So consider Option a. The graph Hi can clearly be computed in time polynomial in its

size. We have that |V (Hi)| = 2O(h log h)n. Afterwards, the algorithm iterates over |γ1(r1)|!
many bijections τ . By Theorem 11, Item V, we have that |γ1(r1)|! = 2O(h4 log h). For each
bijection, the algorithm then requires polynomial computation time by Theorems 6 and 3.
Overall, this proves the bound on the running time. ◀

▶ Remark 14. The algorithm from the last theorem can be extended in two directions. First,
if one of the input graphs does not exclude K3,h as a minor, it can modified to either correctly
conclude that G1 has a minor isomorphic to K3,h, or to correctly decide whether G1 is
isomorphic to G2. Indeed, the only part of the algorithm that exploits that the input graphs
do not have minor isomorphic to K3,h is the computation of the tree decompositions (Ti, βi)
from Theorem 11. In turn, this theorem only exploits forbidden minors via Lemmas 8 and 10.
An algorithm can easily detect if one of the implications of those two statements is violated,
in which case it can infer the existence of a minor K3,h.

Secondly, using standard reduction techniques (see, e.g., [19]), one can also compute a
representation of the set of all isomorphisms Iso(G1, G2) in the same time.

Since every graph of Euler genus g excludes K3,4g+3 as a minor [25], we obtain the
following corollary.

▶ Corollary 15. Let G1, G2 be two (vertex- and arc-colored) graphs of Euler genus at most g.
Then one can decide whether G1 is isomorphic to G2 in time 2O(g4 log g)nO(1).

ESA 2021

72:16 Isomorphism Testing Parameterized by Genus and Beyond

8 Conclusion

We presented an isomorphism test for graphs excluding K3,h as a minor running in time
2O(h4 log h)nO(1). For this, we provided a polynomial-time isomorphism algorithm for (t, k)-
WL-bounded graphs and argued that graphs excluding K3,h as a minor can be decomposed
into parts that are (2, 2)-WL-bounded after individualizing a small number of vertices.

Still, several questions remain open. Probably one of the most important questions in the
area is whether isomorphism testing for graphs excluding Kh as a minor is fixed-parameter
tractable with parameter h. As graphs of bounded genus form an important subclass of
graphs excluding Kh as a minor, the techniques developed in this paper might also prove
helpful in resolving this question.

As an intermediate step, one can also ask for an isomorphism test for graphs excluding
Kℓ,h as a minor running in time f(h, ℓ)ng(ℓ) for some functions f, g. Observe that this paper
provides such an algorithm for ℓ = 3. Indeed, combining ideas from [10, 22] with the approach
taken in this paper, it seems the only hurdle towards such an algorithm is a generalization
of Lemma 9. Given a connected graph G for which |Vc| ≥ ℓ for all c ∈ CV (G, χ2

WL[G]), is
it always possible to find vertex-disjoint, connected subgraphs H1, . . . , Hℓ ⊆ G such that
V (Hr) ∩ Vc ̸= ∅ for all r ∈ [ℓ] and c ∈ CV (G, χ2

WL[G])?
As another intermediate problem, one can also consider the class Gh of all graphs G for

which there is a set X ⊆ V (G) of size |X| ≤ h such that G − X is planar. Is isomorphism
testing fixed-parameter tractable on Gh parameterized by h?

References
1 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel

Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697.
ACM, 2016. doi:10.1145/2897518.2897542.

2 László Babai, Peter J. Cameron, and Péter P. Pálfy. On the orders of primitive groups with
restricted nonabelian composition factors. J. Algebra, 79(1):161–168, 1982. doi:10.1016/
0021-8693(82)90323-4.

3 László Babai, William M. Kantor, and Eugene M. Luks. Computational complexity and the
classification of finite simple groups. In 24th Annual Symposium on Foundations of Computer
Science, Tucson, Arizona, USA, 7-9 November 1983, pages 162–171. IEEE Computer Society,
1983. doi:10.1109/SFCS.1983.10.

4 Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on
partial k-trees. J. Algorithms, 11(4):631–643, 1990. doi:10.1016/0196-6774(90)90013-5.

5 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.

6 John D. Dixon and Brian Mortimer. Permutation Groups, volume 163 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1996. doi:10.1007/978-1-4612-0731-3.

7 Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. SIAM J. Comput., 44(1):114–159, 2015. doi:10.1137/
120892234.

8 Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An improved iso-
morphism test for bounded-tree-width graphs. ACM Trans. Algorithms, 16(3):34:1–34:31,
2020. doi:10.1145/3382082.

9 Martin Grohe and Pascal Schweitzer. Isomorphism testing for graphs of bounded rank width.
In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1010–1029. IEEE
Computer Society, 2015. doi:10.1109/FOCS.2015.66.

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1016/0021-8693(82)90323-4
https://doi.org/10.1016/0021-8693(82)90323-4
https://doi.org/10.1109/SFCS.1983.10
https://doi.org/10.1016/0196-6774(90)90013-5
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/978-1-4612-0731-3
https://doi.org/10.1137/120892234
https://doi.org/10.1137/120892234
https://doi.org/10.1145/3382082
https://doi.org/10.1109/FOCS.2015.66

D. Neuen 72:17

10 Martin Grohe, Daniel Wiebking, and Daniel Neuen. Isomorphism testing for graphs excluding
small minors. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, Durham, NC, USA, November 16-19, 2020, pages 625–636. IEEE, 2020. doi:10.1109/
FOCS46700.2020.00064.

11 John E. Hopcroft and Robert Endre Tarjan. Isomorphism of planar graphs. In Raymond E.
Miller and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of
Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 131–152.
Plenum Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_13.

12 Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph can-
onization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris
Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81. Springer New
York, New York, NY, 1990. doi:10.1007/978-1-4612-4478-3_5.

13 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

14 Ken-ichi Kawarabayashi. Graph isomorphism for bounded genus graphs in linear time. CoRR,
abs/1511.02460, 2015. arXiv:1511.02460.

15 Ken-ichi Kawarabayashi and Bojan Mohar. Graph and map isomorphism and all polyhedral
embeddings in linear time. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008,
pages 471–480. ACM, 2008. doi:10.1145/1374376.1374443.

16 Ken-ichi Kawarabayashi, Bojan Mohar, Roman Nedela, and Peter Zeman. Automorphism
groups of maps in linear time. CoRR, abs/2008.01616, 2020. arXiv:2008.01616.

17 Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. SIAM J.
Comput., 46(1):161–189, 2017. doi:10.1137/140999980.

18 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
J. Comput. Syst. Sci., 25(1):42–65, 1982. doi:10.1016/0022-0000(82)90009-5.

19 Rudolf Mathon. A note on the graph isomorphism counting problem. Inf. Process. Lett.,
8(3):131–132, 1979. doi:10.1016/0020-0190(79)90004-8.

20 Gary L. Miller. Isomorphism of graphs which are pairwise k-separable. Inf. Control., 56(1/2):21–
33, 1983. doi:10.1016/S0019-9958(83)80048-5.

21 Daniel Neuen. Hypergraph isomorphism for groups with restricted composition factors. In
Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium
on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken,
Germany (Virtual Conference), volume 168 of LIPIcs, pages 88:1–88:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.88.

22 Daniel Neuen. Isomorphism testing for graphs excluding small topological subgraphs. CoRR,
abs/2011.14730, 2020. arXiv:2011.14730.

23 Ilia N. Ponomarenko. The isomorphism problem for classes of graphs. Dokl. Akad. Nauk SSSR,
304(3):552–556, 1989.

24 Ilia N. Ponomarenko. The isomorphism problem for classes of graphs closed under contraction.
Journal of Soviet Mathematics, 55(2):1621–1643, June 1991. doi:10.1007/BF01098279.

25 Gerhard Ringel. Das geschlecht des vollständigen paaren graphen. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 28(3):139–150, October 1965. doi:10.
1007/BF02993245.

26 Joseph J. Rotman. An Introduction to the Theory of Groups, volume 148 of Graduate
Texts in Mathematics. Springer-Verlag, New York, fourth edition, 1995. doi:10.1007/
978-1-4612-4176-8.

ESA 2021

https://doi.org/10.1109/FOCS46700.2020.00064
https://doi.org/10.1109/FOCS46700.2020.00064
https://doi.org/10.1007/978-1-4684-2001-2_13
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/1511.02460
https://doi.org/10.1145/1374376.1374443
http://arxiv.org/abs/2008.01616
https://doi.org/10.1137/140999980
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1016/0020-0190(79)90004-8
https://doi.org/10.1016/S0019-9958(83)80048-5
https://doi.org/10.4230/LIPIcs.ICALP.2020.88
http://arxiv.org/abs/2011.14730
https://doi.org/10.1007/BF01098279
https://doi.org/10.1007/BF02993245
https://doi.org/10.1007/BF02993245
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/978-1-4612-4176-8

72:18 Isomorphism Testing Parameterized by Genus and Beyond

27 Ákos Seress. Permutation Group Algorithms, volume 152 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2003. doi:10.1017/CBO9780511546549.

28 Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the
algebra which appears therein. NTI, Series 2, 1968. English translation by Grigory Ryabov
available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

https://doi.org/10.1017/CBO9780511546549
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Weisfeiler-Leman Algorithm
	2.3 Group Theory

	3 Allowing Weisfeiler and Leman to Split Small Color Classes
	4 Structure Theory and Small Color Classes
	5 Finding Disjoint and Connected Subgraphs
	6 A Decomposition Theorem
	7 An FPT Isomorphism Test for Graphs of Small Genus
	8 Conclusion

