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Abstract
In this work we devise the first efficient deterministic algorithm for approximating ω(N) – the
number of prime factors of an integer N ∈ N, given in addition oracle access to Euler’s Totient
function Φ(·). We also show that the algorithm can be extended to handle a more general class of
additive functions that “depend solely on the exponents in the prime factorization of an integer”1. In
particular, our result gives the first algorithm that approximates ω(N) without necessarily factoring
N . Indeed, all the previously known algorithms for computing or even approximating ω(N) entail
factorization of N , and therefore are either randomized [12, 9] or require the Generalized Riemann
Hypothesis (GRH) [10].

Our approach combines an application of Coppersmith’s method for finding non-trivial factors
of integers whose prime factors satisfy certain “relative size” conditions of [11], together with a new
upper bound on Φ(N) in terms of ω(N) which could be of independent interest.

2012 ACM Subject Classification Mathematics of computing → Number-theoretic computations;
Theory of computation → Problems, reductions and completeness; Theory of computation →
Computational complexity and cryptography

Keywords and phrases Euler’s Totient Function, Integer Factorization, Number of Prime Factors,
Derandomization

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.17

Acknowledgements The authors would like to thank the anonymous referees for their detailed
comments and suggestions on the previous version of the paper.

1 Introduction

The Fundamental Theorem of Arithmetic states that each N ∈ N admits a unique factorization
into a product of powers of prime numbers N = pα1

1 · . . . · pαk

k . The integer factorization
problem asks to compute those prime factors given N as an input. In addition to being a
central problem in algorithmic number theory, integer factorization has a direct application
to cryptography as all known approaches to break the RSA cryptosystem involve integer
factorization. Indeed, there is no known efficient algorithm for the problem and it is believed to
be computationally hard. In light of this hardness, a large body of work [10, 4, 14, 8, 11, 6, 7]
has been dedicated to the study of the computational complexity of integer factorization when
in addition the algorithm is given oracle access to some function f : N → N that provides
“useful information” about N . On the practical side, oracles can model extra information on
N obtained by means of side-channel attacks.

One such line of work considers integer factorization algorithms that are given oracle
access to Euler’s Totient function Φ(·) (see Definition 12 for a formal definition). In a seminal
work [10], Miller has shown that one can efficiently factor integers with an oracle to Φ. More

1 This class and terminology were introduced and studied by Shallit & Shamir in [13].
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17:2 Approximating the Number of Prime Factors

precisely, the result is an efficient deterministic factorization algorithm, however its correctness
relies on the Generalized Riemann Hypothesis (GRH). Subsequently, Long [9] and Rabin [12]
replaced the GRH assumption with randomness, thus obtaining (unconditional) efficient
randomized factorization algorithms. It has since been an open question to derandomize
these algorithms unconditionally. In this paper we make another step towards the resolution
of this problem.

1.1 Previous Results
Landau [8] and Woll [14] have shown that one can efficiently compute the square-free part of
an integer2 given an oracle access to Φ(·). Building on this result, Z̀ralek [15] and later on
Hittmeir & Pomykała [6] achieved another milestone by exhibiting a reduction of integer
factorization to the computation of Φ in deterministic subexponential-time. Morain et al. [11]
applied Coppersmith’s method (see e.g. [5]) to find non-trivial factors of integers whose
prime factors satisfy certain “relative size” conditions.

1.2 Our Results
We take a slightly different approach: can we learn some “useful information” about N ,
given oracle access to Φ(·)? Formally, given an integer N ∈ N as an input, we would like to
compute f(N) for some “interesting” function f : N → N that can be efficiently computed
given the complete factorization of N . A particular example of such a function is ω(N),
which is defined as the number of prime factors of N . Our main result is an approximation
algorithm for ω(N).

▶ Theorem 1. There exist an efficient deterministic algorithm that given N ∈ N as an input,
outputs an integer L satisfying: ω(N) ≤ L ≤ 3ω(N), given in addition oracle access to Φ(·).

▶ Remark 2. Although, ω(N) ≤ log N , computing the actual value of ω(N) is believed to be
as hard as factoring N (see e.g. [3, 1]).
▶ Remark 3. Our result is non-trivial when ω(N) = O(1) or more generally, when ω(N) =
o(log log N).
To put our result in context, consider a decision version of the problem: given N ∈ N and
oracle access to Φ(·) (as before), decide if ω(N) = k for a fixed k ∈ N. For k = 1 the
problem corresponds to primality testing, which can trivially be solved given Φ(N) since
Φ(N) = N − 1 if and only if N is prime3. The case k = 2 is handled by a falklore result (See
Lemma 13 for more details). For k ≥ 3 the problem is still open.
It is also important to point out that one of the results of [6] provides an efficient deterministic
factorization algorithm for N with ω(N) = O(1), if in addition the algorithm given the
prime factorization of Φ(N). To the best of our knowledge, there is no known efficient
deterministic algorithm to compute the prime factorization of Φ(N), even given oracle access
to Φ(·).

In [13], Shallit & Shamir introduced and studied the class of functions that “depend solely
on the exponents in the prime factorization of an integer” (exponent-dependent functions,
for short). They also showed that d(N) - the number of positive divisors of N , is complete
for this class under deterministic Turing reductions. More formally,

2 See definition 10 for a formal definition.
3 The breakthrough result of [2] gives an efficient deterministic primality test without Φ(N).
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▶ Lemma 4 ([13]). Let f : N → N be an exponent-dependent function that can be efficiently
(and deterministically) computed given the factorization of N . Then there exists an efficient
deterministic algorithm that given N ∈ N as an input, outputs f(N), given in addition oracle
access to d(·).

We observe that Φ(N) together with ω(N) are hard for the class of exponent-dependent
functions.

▶ Observation 5. For f : N → N as above, there exists a deterministic algorithm that given
N ∈ N as an input, outputs f(N), given in addition oracle access to Φ(·) and ω(·).

As an important corollary, we obtain that if one can compute ω(N) exactly, given oracle
access to Φ(·) then Φ(·) is (by itself) hard for the class of exponent-dependent functions.
Such a result would constitute another important milestone on route to derandomization of
the results of [10, 12, 9]. We show that a similar statement holds w.r.t approximations for
additive functions: i.e. f(N · M) = f(N) + f(M) for coprime M and N (see Definition 14
for more details).

▶ Theorem 6. Let f : N → N be an additive exponent-dependent function that can be
efficiently (and deterministically) computed given the factorization of N . Then there exist
an efficient deterministic algorithm that given N ∈ N as an input, outputs an integer L

satisfying: f(N) ≤ L ≤ 3f(N), given in addition oracle access to Φ(·).

As an instantiation, we obtain an approximation algorithm for Ω(N) - the number of
prime factors of N with multiplicity (see Example 15 for more details).

▶ Corollary 7. There exist an efficient deterministic algorithm that given N ∈ N as an input,
outputs an integer L satisfying: Ω(N) ≤ L ≤ 3Ω(N), given in addition oracle access to Φ(·).

Finally, we note that our main result is obtained using the following new upper bound on
Φ(N) in terms of ω(N) which could be of independent interest.

▶ Theorem 8. Let N ∈ N and let k = ω(N). Then Φ(N) ≤
(

k
√

N − 1
)k

.

1.3 Techniques
In this section we give the outline of the proof of our main result.

First, we give a new upper bound on Φ(N) in terms of k = ω(N). Next, we show that
there exists an efficient procedure that finds a non-trivial factor of N , if N has a “small” factor.
Alternatively, if the procedure fails, then N cannot have a small factor. We complement this
result by showing that if N still satisfies the upper bound for a “much” larger value of k then
N must have a small factor.

Based on the above, our main algorithm operates as follows: given N ∈ N it first attempts
to find a non-trivial factor D of N . If it succeeds, then the algorithm proceeds recursively on
N/D and D. Otherwise (i.e. if the procedure fails), as discussed above, N cannot have a
small factor. This, in turn, implies that the largest value of k satisfying the upper bound
cannot be “much larger” than ω(N) as otherwise N must have had a small factor.

1.4 Organization
The paper is organized as follows: we start by some basic definitions and notations in Section
2. In that section we also prove Observation 5 and Theorem 6 as these follow immediately
from the definitions. In Section 3 we give our main algorithm and a new upper bound on
Φ(N) in terms of ω(N), thus proving Theorems 1 and 8. We show some numerical examples
in Section 4. Finally, we conclude with discussion and open questions in Section 5.

FSTTCS 2021



17:4 Approximating the Number of Prime Factors

2 Preliminaries

Let P denote the set of all primes. The Fundamental Theorem of Arithmetic states that
each integer N ∈ N has a unique prime factorization. That is, N can be uniquely written as

N =
k∏

i=1
pαi

i such that for all i: pi ∈ P and αi ∈ N.

▶ Definition 9 (Roughness). Let r ∈ N. A number N ∈ N is called r-rough if all its prime
factors are greater then or equal to r. That is, ∀i : pi ≥ r.

▶ Definition 10 (Radicals). We define the square-free part or radical of N as rad(N) ∆=
k∏

i=1
pi.

N is called square-free or radical iff ∀i : αi = 1. In other words, N is radical iff N = rad(N).
We define the set SQF ⊆ N as the set of all square-free integers.

▶ Definition 11 (Square-free decomposition). A square-free decomposition of N ∈ N is a
factorization of N as N = N1

1 N2
2 N3

3 . . . N ℓ
ℓ such that gcd(Ni, Nj) = 1 and Ni ∈ SQF.

By The Fundamental Theorem of Arithmetic, each integer admits a unique square-free
decomposition. Furthermore, observe that ℓ ≤ log N . In addition, rad(N) = N1N2N3 · · · Nℓ.

▶ Definition 12 (Euler’s Totient Function). Φ(N) : N → N is defined as Φ(N) ∆=
k∏

i=1
pαi−1

i ·

(pi − 1).

▶ Lemma 13. Below are some useful properties and facts.

1. Φ(N) ≤ N − 1. Equality holds if and only if N is prime.

2. Φ(N)
N

= Φ(rad(N))
rad(N) .

3. Folklore: Let N be a product of two distinct primes N = pq. There exists an algorithm
that given N and Φ(N), outputs p and q, in time polylog(N).
A sketch of the proof appears in Section A.

4. [14, 8]: There exists an algorithm that given N and oracle access to Φ(·), outputs the
square-free decomposition of N , in time polylog(N).

▶ Definition 14 ([13]). We call a function f : N → C exponent-dependent if it depends
solely on the exponents in the prime factorization N .
In addition, we say that f is additive, if f(N · M) = f(N) + f(M) for all coprime N, M ∈ N.

▶ Example 15. Prominent examples include the following functions.

1. Ω(N) ∆=
k∑

i=1
αi - the number of prime factors of N with multiplicity.

2. ω(N) ∆= k - the number of prime factors of N without multiplicity.
3. µ : N → {−1, 0, 1} - Möbius Function:

µ(N) =
{

0 if N is not square-free
(−1)k if N is a product of k (distinct) primes

4. d(N) ∆=
k∏

i=1
(αi + 1) - the number of positive divisors of N .

Here, Ω(N) and ω(N) are additive.
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We remark that there is no known polynomial-time algorithm for computing any of the
above functions. Indeed, they are believed to be as hard as (complete) integer factorization
[3, 1]. Several relations between these (and other) functions have been established in
[10, 13, 4, 14, 8, 11]. In particular, in [13] it was shown that d(N) is complete for the class
of exponent-dependent functions under Turing reductions, by showing that an oracle to
d(·) can be used to compute e(N) ∆= {α1, . . . , αk} - the multiset of exponents in the prime
factorization of N . We observe that e(N) can be easily constructed from a square-free
decomposition of an integer N , given oracle access to ω(·).

▶ Observation 16. Let N = N1
1 N2

2 N3
3 · · · N ℓ

ℓ be the square-free decomposition of N . Then
e(N) = {(i, ω(Ni)) | ω(Ni) > 0}. That is, e(N) contains all the values w(Ni) greater than
0, where each w(Ni) appears i times.

Observation 5 follows by combining the above observation with Part 4 of Lemma 13. The
following is another observation immediate from the definition.

▶ Observation 17. Let N = N1
1 N2

2 N3
3 · · · N ℓ

ℓ be the square-free decomposition of N and let

f : N → N be an exponent-dependent additive function. Then f(N) =
ℓ∑

i=1
ω(Ni) · f(2i).

Theorem 6 follows by combining the above with Part 4 of Lemma 13 and Theorem 24.

▶ Lemma 18. We have three inequalities that will be used in the later sections.

1. AM-GM Inequality. Let x1, . . . , xm ≥ 0: Then the arithmetic mean is greater then or
equal to the geometric mean of these numbers:

x1 + · · · + xm

m
≥ m

√
x1 · · · xm.

2. Multivariate Bernoulli Inequality. Let 0 ≤ ε1, . . . , εm ≤ 1, then it follows that
m∏

i=1
(1 − εi) ≥ 1 −

m∑
i=1

εi

3. For any positive integer k, and 0 ≤ x ≤ 1
2k

and ℓ ≥ 2k, we have

(1 − x)ℓ ≤ 1 − kx.

Proof. We will show the proof of Part 3 of Lemma 18. Since 1 − x is less then 1 and ℓ ≥ 2k,
then (1 − x)ℓ ≤ (1 − x)2k, we now only need to show that (1 − x)2k ≤ 1 − kx. We know that
(1−x)2k is a convex function on [0, 1] because the second derivative 2k(2k −1)(1−x)2k−2 > 0.
In addition, it is clear that both side of the inequality is evaluated to be 1 at x = 0, and the
first derivative of (1 − x)2k is less then the first derivative of 1 − kx at x = 0. Therefore, we
only need to show (1 − x)2k ≤ 1 − kx is established at x = 1

2k
, which is

(
1 − 1

2k

)2k

≤ e−1 ≤ 1
2 = 1 − k · 1

2k
.

We can see that when k goes from 1 to infinity, the left hand side approached to 1/e from
the bottom, so it is always less then 1/2. ◀

FSTTCS 2021



17:6 Approximating the Number of Prime Factors

3 Algorithm and Technical Results

In this section we prove our main result (Theorem 1) and give a new upper bound on Φ(N)
in terms of ω(N), thus proving Theorem 8. We first give the upper bound for the case of
square-free integers.

▶ Lemma 19. Let N ∈ SQF and let k = ω(N). Then Φ(N)
N

≤
(

1 − 1
k
√

N

)k

Proof. Let N = p1 · · · pk. Then by applying AM-GM inequality (Lemma 18) we get:

(
Φ(N)

N

)1/k

= k

√√√√ k∏
i=1

(
1 − 1

pi

)
≤

k∑
i=1

(
1 − 1

pi

)
k

= 1− 1
k

k∑
i=1

1
pi

≤ 1− k

√√√√ k∏
i=1

1
pi

= 1− 1
k
√

N
.

◀

Next, we extend the upper bound to arbitrary N . Theorem 8 follows from the next
corollary.

▶ Corollary 20. Let N ∈ N and let k = ω(N). Then Φ(N)
N

≤

(
1 − 1

k
√

rad(N)

)k

≤(
1 − 1

k
√

N

)k

Proof. Apply Lemma 19 on rad(N) together with Lemma 13, Part 2. ◀

Next, we show that there exists an efficient procedure that finds a non-trivial factor of N ,
if N has a small factor. Alternatively, if the procedure fails, then N cannot have a small
factor. Our result relies on the following result of [11] that uses Coppersmith’s method to
find non-trivial factors of integers whose prime factors satisfy certain relative size conditions.

▶ Lemma 21 ([11]). Suppose ω(N) ≥ 3 and there exists 1 ≤ r < ω(N) such that

αr ≥ 2
ω(N)∑

i=r+1
αi,

where αi
∆= logN (pi). Then there exists an algorithm that given N and Φ(N) recovers the

factor D =
r∏

i=1
pi, in time polylog(N).

▶ Theorem 22. Let N ∈ SQF and suppose N has a factor smaller then N
1

3ω(N)−1 . Then
there exists an algorithm that given N and Φ(N) as input, finds a non-trivial factor of N , in
time polylog(N).

Proof. Let N = p1 · · · pk with p1 > p2 > . . . > pk, and ω(N) is hence equal to k. Observe
that the premises of the claim are equivalent to pk ≤ N

1
3k−1 , namely αk ≤ 1

3k−1 . It is
sufficient to show that N satisfies that premises of Lemma 21. We suppose for contradiction
that for all 1 ≤ r ≤ k − 1,

αr < 2
k∑

i=r+1
αi. (1)
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We claim that it implies that for all 1 ≤ i ≤ k − 2, we have αk−i < 2 · 3i−1 · αk. We prove
this by induction. The base case αk−1 < 2αk follows directly from Equation 1 when we set
r = k − 1. Now, assume that for all 1 ≤ i ≤ m, αk−i < 2 · 3i−1 · αk is established, then for
i = m + 1 we have:

αk−m−1 < 2
k∑

i=k−m

αi < 2
[

m∑
i=1

(
2 · 3i−1 · αk

)
+ αk

]
= 2

[
2 · 3m − 1

3 − 1 + 1
]

αk = 2 · 3m · αk.

Therefore,

1 = α1 + · · · + αk < 2
(
3k−2 + 3k−1 + . . . + 1

)
αk + αk =

(
2 · 3k−1 − 1

3 − 1 + 1
)

αk = 3k−1 · αk ≤ 1

leading to a contradiction. ◀

We complement the above result by showing that (under certain technical conditions) if N

satisfies the bound of Lemma 19 with a value of k “much” larger then ω(N) then N must
have a small factor.

▶ Lemma 23. Let N ∈ SQF and suppose that N is (2ω(N))-rough. Furthermore, suppose
that Φ(N)1/ℓ ≤ N1/ℓ − 1 for some ℓ ≥ 2ω(N). Then N has a factor smaller then N1/ℓ.

Proof. As before, let N = p1 · · · pk with p1 > · · · > pk so ω(N) = k. By the premises,
pk ≥ 2k. Next, since Φ(N)1/ℓ ≤ N1/ℓ − 1 we have

Φ(N)
N

≤
(

1 − 1
N1/ℓ

)ℓ

.

By the Multivariate Bernoulli Inequality in Lemma 18 part 2, we have

Φ(N)
N

≥ 1 −
k∑

i=i

1
pi

≥ 1 − k

pk
.

Therefore, by combining the above we obtain:(
1 − k

pk

)1/ℓ

≤ 1 − 1
N1/ℓ

.

By Lemma 18 part 3, since 1
pk

≤ 1
2k and ℓ ≥ 2k we have that:

1 − 1
pk

≤
(

1 − k

pk

)1/ℓ

.

Therefore,

1 − 1
pk

≤ 1 − 1
N1/ℓ

=⇒ pk ≤ N1/ℓ. ◀

Given N ∈ N, our main algorithm operates as follows: first, it invokes the procedure in
Theorem 22 attempting to find a non-trivial factor D of N . If it succeeds, then the algorithm
proceeds recursively on N/D and D. Otherwise (i.e. if the procedure fails), as discussed
above, N cannot have a small factor. This, in turn, implies that the largest value of k

satisfying the bound in Lemma 19 has to be at most 3ω(N) as otherwise, by Lemma 23 N

must have had a small factor.

FSTTCS 2021



17:8 Approximating the Number of Prime Factors

▶ Theorem 24. There exist an algorithm that given N ∈ SQF as an input, outputs an integer
L satisfying: ω(N) ≤ L ≤ 3ω(N), given in addition oracle access to Φ(·), in time polylog(N).
The description of the algorithm is given below in Algorithm 1.

Algorithm 1 Approximation of number of factors (ANF).

1 Function: ANF(N)
Input: N ∈ SQF and oracle access to Φ(·).
Output: An integer L satisfying: ω(N) ≤ L ≤ 3ω(N).
// N is prime

2 if Φ(N) = N − 1 then return 1;
3 if N has 2 prime factors then return 2; / Invoking the algorithm from Lemma 13

Part 3.
4 for M = 1 to 2 log N do
5 if M | N then return ANF(M) + ANF(N/M);
6 Invoke the algorithm from Theorem 22 on N and Φ(N). Let D be the output;
7 if D | N then return ANF(D) + ANF(N/D);

// Otherwise:

8 L = max
ℓ

Φ(N) ≤
(
N1/ℓ − 1

)ℓ;

9 return L;

Proof. The proof is by induction on ω(N). The base cases, i.e. ω(N) = 1, 2, follow from
Lemma 13, Parts 1 and 3. Now suppose ω(N) ≥ 3. We consider a few cases.

1. N has a factor M ≤ 2 log N .
Observe that M, N/M ∈ SQF. In addition, as ω(N) = ω(M) + ω(N/M) we have that
ω(M), ω(N/M) < ω(N). Therefore, by the induction hypothesis:

ω(M) ≤ ANF(M) ≤ 3ω(M) and ω(N/M) ≤ ANF(N/M) ≤ 3ω(N/M).

Consequently:

ANF(N) = ANF(M) + ANF(N/M) ≤ 3ω(M) + 3ω(N/M) ≤ 3ω(M) · 3ω(N/M) = 3ω(N).

and

ANF(N) = ANF(M) + ANF(N/M) ≥ ω(M) + ω(N/M) = ω(N).

2. The algorithm from Theorem 22 produces a factor D such that D | N .
The claim follows by repeating the argument from the previous case.

3. L < 2ω(N). Then clearly, L ≤ 3ω(N).
4. W.l.o.g none of the above conditions hold.

As ω(N) ≤ log N and N has no factors less then 2 log N , it follows that N is (2ω(N))-
rough. By Lemma 23, N has a factor smaller then N1/L. On the other hand, by
Theorem 22, N has no factors smaller then N

1
3ω(N)−1 . Consequently, L ≤ 3ω(N)−1 ≤

3ω(N).
Finally, by Lemma 19: ω(N) ≤ L. ◀

Theorem 1 follows by combining the above Theorem with Part 4 of Lemma 13.
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4 Examples

We use Algorithm 1 (ANF) to find an upper bound for the number of prime factors of a
square-free integer N , given in addition Φ(N).

4.1 Example 1
Let us find the number of prime factors of

N = 50000000479987 = 3005349551 × 127 × 131,

where α1 = 0.691869, α2 = 0.154557, α3 = 0.153574. The algorithm will first find that it
does not satisfy the base case, then iterate from M = 1 to 2 log N(= 91). After that, it will
invoke the algorithm from Theorem 22, since α1 ≥ 2(α2 + α3). That algorithm will return
p1 = 3005349551. Then it will return ANF(16637) + ANF(3005349551) = 3, since both will
satisfy the base cases.

4.2 Example 2
We will find the number of prime factors of

N = 504203634089 = 389 × 331 × 283 × 137 × 101,

where α1 = 0.221314, α2 = 0.215322, α3 = 0.209508, α4 = 0.182585, α5 = 0.171271. The
algorithm will first find that it does not satisfy the base case, then iterate from M = 1 to
2 log N(= 54). Since none of M -s divides N , it will then invoke the algorithm from Theorem
22. As no 1 ≤ r < 5 satisfies

αr ≥ 2
5∑

i=r+1
αi,

the algorithm will compute the approximation: i.e. return the largest ℓ satisfying Φ(N)1/ℓ ≤
N1/ℓ − 1. As Φ(N) = 491059008000, the algorithm outputs L = 6 < 35.

5 Discussion & Open Questions

In this paper we give the first efficient deterministic algorithm that approximates ω(N),
given oracle access to Φ(·). In addition, in our approach we attempt to compute/approximate
ω(N) “directly” rather than factoring N first (although we may eventually end up succeeding
to factor N). Below are some open questions.

The immediate open question is, of course, to compute ω(N) exactly or at least improve
the approximation ratio. As was noted, we believe that the exact computation of ω(N),
given oracle access to Φ(·), would constitute an important milestone. See discussion after
Observation 5 for more details.
Can we extend this result to other “interesting” functions that can be efficiently computed
given the complete factorization of N?
In particular, can we devise an efficient algorithm for computing the Möbius function
µ(N)? Given the results of [8, 14], this would be equivalent to determining the parity of
ω(N).

FSTTCS 2021
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A Missing Proofs

Sketch of the proof of Part 4 of Lemma 13. Consider the following quadratic equation

f(x) ∆= x2 − (N − Φ(N) + 1)x + N = 0.

Observe that f(x) = (x − p)(x − q). Hence, the solutions of the equation are exactly p

and q. ◀
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