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Abstract
We compare, in terms of expressive power, two notions of automata recognizing finite N-free pomsets:
branching automata by Lodaya and Weil [7, 8, 9, 10] and pomset automata by Kappé, Brunet, Luttik,
Silva and Zanasi [5]. In the general case, they are equivalent. We also consider sub-classes of both
kind of automata that we prove equivalent.
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1 Introduction

Automata are among the main tools in theoretical computer science. They are at the center
of a large number of theoretical results and practical applications. Among them, let us cite
as examples pattern matching, lexical analysis in compilers, and model-checking. In the
latter, automata are used both for modeling sequential processes and to represent logical
specifications. A state of an automaton represents a state of the system that is modeled, and
transitions are used to change from states to states when an event occurs or an instruction is
executed.

Inputs of automata as they were originally defined by Kleene [6] are finite words, that
naturally model finite totally ordered sequences of events. Mainly motivated by the use of
automata as a key argument in decidability algorithms in formal logic and circuits modeling,
automata have quickly been extended to more complex inputs, such as for example infinite
(ω) and transfinite words, terms, finite and infinite trees.

In this paper we focus on automata for languages of finite series-parallel pomsets. In-
formally speaking, a pomset is a word in which the total ordering of elements is not required.
When A is an alphabet, finite words over A are the elements freely generated by A in the
variety of monoids, and finite series-parallel pomsets over A are the elements freely generated
by A in the variety of algebras (X, ·, ∥), with (X, ·) a monoid and (X, ∥) a commutative
monoid. Series-parallel pomsets have natural applications in computer science: when words
are though of as traces of sequential executions of programs, series-parallel pomsets are traces
of concurrent programs in which concurrency relies of the fork/join principle: a process forks
into several concurrent parallel processes, waits for all of them to end their executions, and
then continues its run. The class of series-parallel pomsets have an interesting characterisation
in terms of sub-ordering: it coincides with that of N-free pomsets [11, 12].

In [7, 8, 9, 10], Lodaya and Weil introduced a class of automata on finite N-free pomsets,
named branching automata, that extends Kleene automata with two kinds of unlabeled
transitions: the fork and join transitions. A fork transition splits a path into several paths
that run in parallel. When they are all finished, those parallel paths are grouped together
with a join transition that goes into a single state. This join transition can be any of the
join transitions: it does not depend on the definition of the branching automata, but must
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be chosen consistently with the definition of a path; in particular it may not be unique, and
may not exist. Lodaya and Weil defined rational expressions for this class, and studied the
algebraic counterpart of branching automata.

Kappé, Brunet, Luttik, Silva and Zanasi [5] introduced another class of automata on
finite N-free pomsets, named pomset automata. Their approach is an extension of Kleene
automata by an additional kind of transitions that split a path into several paths that run in
parallel, and define also the destination state to reach when all those parallel paths terminate.
Whereas in the definition of branching automata the fork transition that starts parallel paths
and the join transition that ends are not linked, both the start and the end are defined by the
same transition in pomset automata. In the general case, languages of pomset automata are
those of context-free grammars. Assuming a restriction on the definition of pomset automata,
their languages are precisely the series-parallel rational languages, which are defined similarly
to the usual rational languages of finite words with additional parallel product and a parallel
iteration.

In this paper we compare branching and pomset automata. We first slightly generalize
the original definition of branching automata by allowing the empty pomset in parallel parts
of paths, and show that this corresponds to remove a condition on the rational expressions
of the Kleene-like theorem of Lodaya and Weil. Under this generalisation, languages of
branching automata are exactly the languages of context-free grammars. As a consequence,
they are also exactly the languages of pomset automata. We finally characterize the sub-class
of branching automata corresponding to series-parallel rational languages. All results are
effective.

2 Notation and basic definitions

Let E be a set. We denote by P(E), P+(E) and M>1(E) respectively the set of subsets
of E, the set of non-empty subsets of E and the set of multi-subsets of E with at least two
elements. For any integer n, the set {1, . . . , n} is denoted [n] and the group of permutations
of [n] by Sn. The cardinality of E is denoted by |E|. When c = (x, y) is a pair, we denote by
π1(c) = x and π2(c) = y.

An alphabet is a set A whose elements are named letters. Since in this paper all alphabets
are finite and non-empty we will omit to mention it. Pomsets (partially ordered multi-sets) are
a generalization of words [2, 3, 13]. A labeled poset (P, <P , ρP ) over an alphabet A consists
of a set P , a partial ordering <P of the elements of P and a labeling map ρP : P → A. For
simplicity we often denote (P, <P , ρP ) by P . Two labeled posets (P, <P , ρP ) and (Q, <Q, ρQ)
are isomorphic if there is a bijection from P to Q that preserves and reflects both labeling
and ordering. A pomset P over A is (a representative of) an isomorphism class of labeled
posets over A. The width of P is the maximal size of an antichain of P . Observe that the
finite pomsets of width 1 correspond precisely to the usual finite words: finite totally ordered
sequences of letters. The unique empty pomset is denoted by ϵ, and the unique pomset
consisting of only one element labeled by a ∈ A is simply denoted a. Since in this paper all
labeled posets and pomsets are finite we omit to say it by now.

Let (P, <P , ρP ) and (Q, <Q, ρQ) be two disjoint pomsets over respectively A and A′. The
parallel product of P and Q, denoted P ∥ Q, is the pomset (P ∪ Q, <P ∪ <Q, ρP ∪ ρQ) over
A ∪ A′. The sequential product of P and Q, denoted by P · Q or PQ for simplicity, is the
pomset (P ∪ Q, <P ∪ <Q ∪P × Q, ρP ∪ ρQ) over A ∪ A′. Observe that the parallel product is
an associative and commutative operation on pomsets, whereas the sequential product does
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not commute (but is associative). The parallel and sequential products can be generalized
to finite sequences of pomsets. Let (Pi)i≤n be a finite sequence of pomsets. We denote by∏

i≤n Pi = P0 · · · · · Pn and ∥i≤n Pi = P0 ∥ · · · ∥ Pn.
The class of series-parallel pomsets over A, denoted SP (A), is defined as the smallest class

containing ϵ and a for all a ∈ A, and closed under finite parallel and finite sequential product.
It is well known that this class corresponds precisely to the class of N-free pomsets [11, 12]
over A, in which the exact ordering relation between any four elements x1, x2, x3, x4 cannot
be x1 < x2, x3 < x2 and x3 < x4. We write SP +(A) for SP (A) − {ϵ}. Note that for every
pomset P of SP (A) exactly one of the following is true: (i) P = ϵ, (ii) P = a ∈ A, (iii)
P = RS or (iv) P = R ∥ S for some non-empty pomsets R, S.

A language of SP (A) is a sub-class of SP (A). Sequential and parallel products are
extended from pomsets to languages of pomsets in the usual way: when L and L′ are
languages of pomsets and op is either the sequential or the parallel product, then L op L′ =
{P op P ′ : P ∈ L, P ′ ∈ L′}.

Let A and B be two alphabets, P ∈ SP (A), L ⊆ SP (B) and ξ ∈ A. The language of
SP (A \ {ξ} ∪ B) consisting of the pomset P in which each element labeled by the letter ξ is
non-uniformly replaced by a pomset of L is denoted by L◦ξP . By non-uniformly we mean that
the elements labeled by ξ may be replaced by different elements of L. This substitution L◦ξ

is the homomorphism from (SP (A), ∥,
∏

) into the power-set algebra (P(SP (A ∪ B)), ∥,
∏

)
with ξ 7→ L and a 7→ a for all a ∈ A \ {ξ}. Formally:

L ◦ξ ϵ = {ϵ}

L ◦ξ a =
{

{a} if a ∈ A \ {ξ}
L if a = ξ

L ◦ξ (P1 · P2) = (L ◦ξ P1) · (L ◦ξ P2)
L ◦ξ (P1 ∥ P2) = (L ◦ξ P1) ∥ (L ◦ξ P2)

This operation can again be extended from pomsets to languages of pomsets by L′ ◦ξ L =
∪P ∈LL′ ◦ξ P .

▶ Example 1. Let B = {a, b}, A = B ∪ {ξ}, P = b ∥ (ξ · ξ) ∈ SP (A) and L = {a ∥ b, b · a} ⊆
SP (B). Then L ◦ξ P = {b ∥ ((a ∥ b) · (a ∥ b)), b ∥ ((b · a) · (b · a)), b ∥ ((a ∥ b) · (b · a)), b ∥
((b · a) · (a ∥ b))}.

We also set

L∗ξ = ∪
i∈N

Liξ with L0ξ = {ξ} and L(i+1)ξ = ( ∪
j≤i

Ljξ) ◦ξ L

L∗ = {
∏
i<n

Pi : n ∈ N, Pi ∈ L for each i < n} L+ = L∗ \ {ϵ}

Assuming ξ is not used in L, we use the following abbreviation:

L⊛ = {ϵ} ◦ξ (L ∥ ξ)∗ξ = {∥i<n Pi : n ∈ N, Pi ∈ L for each i < n} (1)

and L⊕ = L⊛ \ {ϵ}. L∗ and L+ are the sequential iterations of L whereas L⊛ and L⊕ are its
parallel iterations.

FSTTCS 2021
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3 Branching Automata

Branching automata are a generalization of usual Kleene automata. They were introduced by
Lodaya and Weil [7, 8, 9, 10]. A branching automaton is a tuple A = (Q, A, E, I, F ) where
Q is a finite set of states, A is an alphabet, I ⊆ Q is the set of initial states, F ⊆ Q the
set of final states, and E is the finite set of transitions of A. The set of transitions of E is
partitioned into E = (Eseq, Efork, Ejoin):

Eseq ⊆ Q × A × Q contains the sequential transitions, which are usual transitions of
Kleene automata;
Efork ⊆ Q × M>1(Q) and Ejoin ⊆ M>1(Q) × Q are respectively the sets of fork and join
transitions.

Sequential transitions (p, a, q) ∈ Q × A × Q are sometimes denoted by p
a→ q. The arity of a

fork (resp. join) transition (p, R) ∈ Q × M>1(Q) (resp. (R, q) ∈ M>1(Q) × Q) is |R|. Here
the source of a sequential or fork transition is p and the destination of a sequential or join
transition is q.

We now turn to the definition of paths in A. We give two definitions, namely b-paths and
b*-paths, which are not equivalent: paths labeled by ϵ are allowed in the latter but not in
the former. As we will see, considering ϵ as a possible label for paths changes the expressive
power of branching automata.

3.1 b-regular and b-rational languages
We recall in this section the original definitions and basic results from Lodaya and Weil.

We define the relation →
A

⊆ Q × SP +(A) × Q as the smallest relation satisfying:

1. p
a→
A

q if and only if (p, a, q) ∈ E;

2. if p
P→
A

q and q
Q→
A

r then p
P Q→
A

r;

3. for all integer n > 1, if pi
Pi→
A

qi for all i ∈ [n], (p, {p1, . . . , pn}) ∈ Efork, ({q1, . . . , qn}, q) ∈

Ejoin then p
∥i∈[n]Pi→

A
q.

If p
P→
A

q we say that there is a b-path from p to q labeled by P in A.

A b-path is an equivalence class of (finite) terms over X = {p
a→
A

q : (p, a, q) ∈ E} using (2)
and (3) in the definition above as composition rules, in which terms are equivalent up to the
associativity of (2) and to the ordering of the multi-sets {p1, . . . , pn} and {q1, . . . , qn} in the
fork and join transitions of (3). Thus, the signature of terms is X ∪ {·} ∪n>1 Efork,n × Ejoin,n,
where elements of X are symbols of arity 0, · has arity 2, and the elements of Efork,n × Ejoin,n,
pairs of a fork and a join transition of same arity n, have arity n. When Rule (3) is used to
form a term t from n terms using fork and join transitions f and j we say that t is a parallel
term rooted by (f, j). When Rule 2 is used to form t from two terms then t is sequential.
Each term or b-path t naturally evaluates into a unique p

P→
A

q (in this case t is from p to q

labeled by P in A). Reciprocally, each element of →
A

is the evaluation of at least one term
(or b-path). We denote by t′ ⪯ t (resp. t′ ≺ t) when t′ is a (resp. strict) sub-term of the
term t. A term t uses a transition u if u is a sequential transition used to form t or u is a
fork or a join transition and there is some t′ ⪯ t rooted by some (f, j) with either f = u or
j = u. It uses a state q if q appear in a transition used in t. Let f and j be respectively a
fork and a join transition. A term t uses (f, j) at the upper level if there is some t′ ⪯ t rooted
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by (f, j) and if t′ ⪯ t′′ ⪯ t for some t′′ rooted by some (f ′, j′) then t′′ is t′. It uses (f, j) at
a sequential level if there are some t′′ ⪯ t′ ⪯ t with t′′ rooted by (f, j) and t′ a sequential
term. Observe that two terms of the same b-path p use exactly the same transitions and
states, which allows us to say that p uses a transition u (or a state r) if there is some term
(or equivalently, if all terms) of p that uses u (or r). The same remark applies for pairs of
fork and join transitions used at the upper level or at a sequential level, and can be used to
naturally qualify a b-path to be parallel or sequential.

Set Lp,q = {P ∈ SP +(A) : p
P→
A

q}. The language of A is L(A) = ∪(i,f)∈I×F Li,f . We call
b-automaton a branching automaton equipped with the notion of b-path above. A language
L ⊆ SP +(A) is b-regular if L is the language of some b-automaton.

The class of b-rational languages of SP +(A) is the smallest containing ∅, {a} for all
a ∈ A, and closed under the operations of Sb = {∪, ·,+ , ∥, ◦ξ,∗ξ }, provided that
▶ Condition 1. In L∗ξ any element labeled by ξ in some P ∈ L is incomparable with another
element of P .
In particular, Condition 1 excludes from the b-rational languages those of the form (aξb)∗ξ =
{anξbn : n ∈ N}, for example.

Let S be a set of functions of arity > 0 on languages. A S-rational expression e is a
well-formed term of signature {∅}∪A∪S denoting a language L(e). The b-rational expressions
are the Sb-rational expressions (verifying Condition 1).

▶ Theorem 2 ([7]). A language of SP +(A) is b-regular if and only if it is b-rational.

Condition 1 is mandatory in the proof of Theorem 2. That ϵ is forbidden in labels for the
parallel composition of b-paths (in Item 3 of the definition of →

A
each Pi is different from ϵ)

is also mandatory.

3.2 b*-regular and b*-rational languages
In this section we slightly modify the definition of a b-path by allowing ϵ as a label, in
particular in parallel parts.

We define the relation →
A

⊆ Q × SP (A) × Q as the smallest relation satisfying:

1. p
ϵ→
A

p for all p ∈ Q;

2. p
a→
A

q if and only if (p, a, q) ∈ E;

3. if p
P→
A

q and q
Q→
A

r then p
P Q→
A

r;

4. for all integer n > 1, if pi
Pi→
A

qi for all i ∈ [n], (p, {p1, . . . , pn}) ∈ Efork, ({q1, . . . , qn}, q) ∈

Ejoin then p
∥i∈[n]Pi→

A
q.

The notions of b*-path, b*-automaton, b*-regularity, etc. are defined similarly as
in Section 3.1 by a replacement of the relation →

A
with the definition above. As in b-

automata, there is no ϵ-transition in a b*-automaton. However, p
ϵ→
A

q with p ̸= q is

possible using Item 4 with pi
ϵ→
A

qi and pi = qi for all i ∈ [n]. In a b*-automaton, we have

Lp,q = {P ∈ SP (A) : p
P→
A

q} and L(A) = ∪(i,f)∈I×F Li,f . Note that because of Item 1 in the

definition of the relation →
A

above, there are b*-paths of the form p
ϵ→
A

p that do not use any
transition. Such b*-paths are named trivial. A b*-path t uses a pair (f, j) of a fork and
a join transition at a sequential level if there are some t′′ ⪯ t′ ⪯ t with t′′ rooted by (f, j)
and t′ of the form t′ = t′

1 · t′
2 with t′

1, t′
2 both non-trivial.

FSTTCS 2021



37:6 Branching Automata and Pomset Automata

▶ Example 3. Let A = {a, b, c}, L = {ancbn : n ≥ 0}, and A be the b*-automaton pictured
in Figure 1. Then L(A) = L. Note that L is not b-regular, thus the class of b-regular

1start 2 3 4

5

a

c

c b

1 2 1 2 1 2 3 4 3 4 3 4

5

5

a a a c b b b

Figure 1 On the top, a b*-automaton A with L(A) = {ancbn : n ≥ 0}. The only fork transition
is (2, {1, 5}), the only join transition ({4, 5}, 3), the only initial state is 1 and the only final state 4.
At the bottom, a representation of a b*-path labeled by aaacbbb.

languages is strictly included into the class of b*-regular ones.

A (pomset) context-free grammar, or CFG for short, G = (T, N, S, R) is given by finite
sets T of terminals, N of non-terminals, R of rules (or productions) and an axiom S ∈ N .
Rules are of the form X → u with X ∈ N and u a finite term built from N ∪ T ∪ {ϵ} with
the sequential and parallel products as operations. The language L(G) of G is defined with
the axiom S as a start symbol as usual.

▶ Theorem 4. A language of SP (A) is context-free if and only if it is b*-regular.

Proof. First consider a language L ⊆ SP (A) with L = L(G) for some context-free grammar
G = (T, N, S, R). Up to usual transformations, we may assume that there there is at most
one production whose right member is ϵ, if there is such a production it is S → ϵ, and that
the axiom S does not appear in any of the right member of the productions in R. For each
rule X → u ∈ R, X ∈ N , build a b*-automaton AX→u on the alphabet T ∪ N such that
L(AX→u) = {u}. For each X ∈ N , build a b*-automaton AX from the disjoint union of all
AX→u, X → u ∈ R. Now build a b*-automaton AG such that L = L(AG) as follows. For
all X ∈ N \ {S}, take 2 copies AX,1 and AX,2 of AX . Consider the disjoint union AG of
AS and of all b*-automata AX,i, x ∈ N , i ∈ [2]. For each transition t = (p, X, q), X ∈ N ,
in AS or AY,i, Y ̸= X, i ∈ [2], add a new state t, a fork transition (p, {s, t}) for each initial
state s of AX,1, and a join transition ({s′, t}, q) for each final state s′ of AX,1. Remove the
transition t. For each transition t = (p, X, q), X ∈ N , in AX,i, i ∈ [2], add a new state t, a
fork transition (p, {s, t}) for each initial state s of AX,j , j ̸= i, and a join transition ({s′, t}, q)
for each final state s′ of AX,j . Remove the transition t. The initial and final states of AG

are taken from AS . The accepting b*-paths of AG are precisely those of AS is which each
use of a transition (p, X, q), X ∈ N , is replaced by an accepting path of AX . Immediately,
we get L(AG) = L(G).

Let us turn to the other direction. Consider a b*-automaton A, and for each pair (p, q)
of its states consider the language Lp,q of the labels of b*-paths from p to q. Following a
McNaughton-Yamada like construction, we build a finite system S of equalities where each
Lp,q is expressed as a term depending of the Lr,s, the letters of the alphabet, union, parallel
and sequential composition. We refer to [7, Proof of Theorem 6] for the construction of
such S. The system S can be easily transformed into a CFG G with L(G) = L(A). ◀
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As a consequence, the class of b*-regular languages of SP (A) is not closed under boolean
operations, whereas the class of b-regular languages of SP +(A) is [1].

The class of b*-rational languages of SP (A) is the smallest containing ∅, {a} for all
a ∈ A, and closed under Sb∗ = {∪, ·,∗ , ∥, ◦ξ,∗ξ }. This definition is the same as b-rational
languages, except that sequential iteration + has been replaced by ∗ and thus ϵ is taken into
consideration, and that the restriction expressed by Condition 1 has been removed.

▶ Example 5. The language L of Example 3 is given by the b*-rational expression L =
c ◦ξ (aξb)∗ξ.

Observe that the usual Kleene rational languages of A∗ are a particular case of the
b*-rational languages of SP (A), in which the operators ∥, ◦ξ and ∗ξ are not allowed. The
class of commutative rational languages of A⊛ (or over A), which is the smallest containing
∅, {a} for all a ∈ A, and closed under ∪, ∥ and ⊛, is also a particular case of the b*-rational
languages of SP (A) (recall Equalities (1)).

▶ Theorem 6. A language of SP (A) is b*-regular if and only if it is b*-rational.

Proof. First we build a b*-automaton Ae from a b*-rational expression e such that L(Ae) =
L(e). Using Theorem 4 it suffices to build a CFG G from e, such that L(G) = L(e). This is
done by induction over e. For the cases where e has one of the form e = ∅, e = {ϵ}, e = {a}
with a ∈ A, e = e1 ∪ e2, e = e1 · e2, e = e1 ∥ e2, e = f∗, the CFG is directly obtained using
the induction hypothesis and usual techniques, so we focus on e = e1 ◦ξ e2 and e = f∗ξ. First
assume e = e1 ◦ξ e2 and that by induction hypothesis we have two CFG Gi = (A, Ni, Si, Ri)
with L(Gi) = L(ei), i ∈ [2]. Build G = (A, N1 ∪N2 ∪{Xξ}, S2, R1 ∪R ∪{Xξ → ξ, Xξ → S1})
in which Xξ ̸∈ N1 ∪ N2 is a new non-terminal and R is R2 is which every occurrence of the
terminal ξ has been replaced by Xξ. Then L(G) = L(e1 ◦ξ e2). Assume now e = f∗ξ for some
b*-rational expression f and let Gf = (A, Nf , Sf , Rf ) be the CFG build from f by induction
hypothesis. Let G = (A, Nf , Sf , R ∪ {Sf → ξ}) where R is Rf is which every occurrence of
the terminal ξ has been replaced by Sf . Then L(G) = L(f∗ξ).

Now let A be a b*-automaton. The proof that L(A) is b*-rational uses exactly the same
arguments as those of the direction from left to right of Theorem 2. ◀

We will need later the following particular form of branching automata, adapted from [7]
to our case. A b*-automaton A is misbehaved if it has a fork transition (p, {p1, . . . , pn}) such
that pj

P→
A

f for some j ∈ [n], P and final state f , or if it has a join transition ({p1, . . . , pn}, p)

such that i
P→
A

pj for some j ∈ [n], P and initial state i. If A is not misbehaved then it is
behaved.

▶ Proposition 7. For every b*-automaton A there is a behaved b*-automaton B such that
L(A) = L(B).

Proof. For each fork transition f = (p, {p1, . . . , pn}) we take n copies (Af,i)i∈[n] of A. The
b*-automaton B is the disjoint union of these copies with another copy A0. Delete all the
fork and join transitions from A0. For each fork transition f = (p, {p1, . . . , pn}) of A, we add
to B a fork transition (p, {p1, . . . , pn}) where p is taken in A0 and for all i ∈ [n], pi is taken
in Af,i. For each join transition j = ({q1, . . . , qn}, q), we add all the possible join transitions
simulating j where q is taken in A0 and all the qi are taken in the different copies (Aj,i)i∈[n].
It can be verified that if the initial and final states of B are those of A taken in A0, then B
is behaved and that L(B) = L(A). ◀

The definitions and results about behaveness also trivially apply to b-automata.

FSTTCS 2021
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4 Pomset Automata

Pomset automata are also a generalization of usual Kleene automata, introduced by Kappé,
Brunet, Luttik, Silva and Zanasi [5]. A pomset automaton is a tuple A = (Q, A, E, {i}, F )
where Q is a finite set of states, A is an alphabet, i is the initial state, F ⊆ Q the set of final
states, and E forms the transitions of A. The transitions E consists in two functions:

Eseq : Q×A → Q is the sequential transition function, as for usual transitions in complete
deterministic Kleene automata;
Epar : Q × Q × Q → Q is the parallel transition function.

We define the relation →
A

⊆ Q × SP (A) × Q as the smallest relation satisfying:

1. p
ϵ→
A

p;

2. p
a→
A

Eseq(p, a);

3. if p
P→
A

q and q
Q→
A

r then p
P Q→
A

r;

4. if p
P→
A

q ∈ F and r
Q→
A

s ∈ F then t
P ∥Q→

A
Epar(t, p, r).

When presenting a pomset automaton A, we may define the transition function only partially
and implicitely assume the existence of an additional sink state ⊥ (if ⊥ P→

A
q for some P then

q = ⊥) and a final state ⊤ such that all transitions from ⊤ go to ⊥.
If p

P→
A

q we say that there is a p-path from p to q labeled by P in A. We call p-automaton
a pomset automaton equipped with the notion of p-path defined as in Section 3.1 but with
the relation →

A
above. The language of A is L(A) = {P ∈ SP (A) : i

P→
A

q for some q ∈ F}. A
language L ⊆ SP (A) is p-regular if L is the language of some p-automaton.

▶ Example 8. A p-automaton with same language as the b*-automaton of Example 3 is
pictured in Figure 2. For simplicity we do not consider the states ⊥ and ⊤.

1start 2 3 4

6
7

a

c

b

1 2

1

6

2
1

6

7
3 4

3 4a

a

c

b

b

Figure 2 On the left, a p-automaton A with L(A) = {ancbn : n ≥ 0}. The parallel transition
function is Epar : (2, 1, 6) → 3, the only initial state is 1 and the final states are 4,6,7. On the right,
a representation of a p-path labeled by aacbb.

It is to notice that the transitions in branching automata are in the definition given by
relations, whereas the transitions in pomset automata are functions. However, this does
not mean that p

P→
A

r and p
P→
A

s implies r = s in a p-automaton A: consider for example
that A may have different p-paths starting from a state q and labeled with P = a ∥ b ∥ c:
one composing p-paths p1

a→
A

p2 and p3
b∥c→
A

p4 using a transition (p, p1, p3) → r, and another

composing some q1
a∥b→
A

q2 and q3
c→
A

q4 using a transition (p, q1, q3) → s.

▶ Theorem 9 ([5]). A language of SP (A) is context-free if and only if it is p-regular.
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As an immediate corollary of Theorems 4 and 9, b*-automata and p-automata have the
same expressive power:

▶ Corollary 10. A language of SP (A) is b*-regular if and only if it is p-regular.

5 Series-parallel rational languages

The class of series-parallel rational languages of SP (A) is the smallest containing ∅, {a}
for all a ∈ A, and closed under Ssp = {∪, ·,∗ , ∥,⊛ }. As a consequence of Equalities (1), any
series-parallel rational language of SP (A) is also b*-rational, and any series-parallel rational
language of SP +(A) (ϵ not considered) is also b-rational. As noticed in the conclusion of [8],
the inclusion is strict, since for example a ◦ξ (a ∥ (aξ))∗ξ is b-rational but not series-parallel
rational.

In the conclusion of [9] the authors left open the question of a necessary and sufficient
condition on a b-automaton A for L(A) to be series-parallel rational. We answer this question
in this section with b*-automata. The result also applies to b-automata, provided that ϵ is
not taken into consideration on both automata and rational expressions sides (for example ⊛

and ∗ have to be replaced by respectively ⊕ and + in the definition of series-parallel rationality
above).

A language is series-parallel regular if it is the language of some b*-automaton A verifying
Condition 2 below.

▶ Condition 2. There is no b*-path p rooted by some pair (f, j) of a fork and a join transition,
such that p uses (f, j) at a sequential level.

Whether a b*-automaton verifies Condition 2 or not is decidable using methods similar
to those developed in [10].

▶ Theorem 11. A language L of SP (A) is series-parallel regular if and only if it is series-
parallel rational.

Proof. From right to left we proceed by induction over a series-parallel rational expression e

with L = L(e). Since the construction given in the proof of Proposition 7 preserves Condition 2
we may assume that b*-automata constructed at induction steps are behaved. The cases
where e has an elementary form, or e = e1 ∪ e2 for some e1, e2 are as usual in automata
theory. Assume e = e1 · e2; by induction hypothesis we have behaved b*-automata A1 and
A2 for respectively e1 and e2. Consider the disjoint union A of A1 and A2. For each final
state f of A1, initial state i of A2 and sequential or fork transition t of source i, duplicate t

by replacing the source i with f . The initial states of the resulting b*-automaton are those
of A1. The final states are those of A2 and in addition the final states of A1 when ϵ ∈ L(A2).
Assume now e = e′∗ and let A′ be a behaved b*-automaton for e′. For each final state
f , initial state i, sequential and fork transition t of source i, duplicate t by replacing the
source i with f . The initial states are those of A′, the final states are those of A′ plus the
initial states. When e = e1 ∥ e2 the construction is the disjoint union of A1 and A2 with
a unique initial new state i, a unique final new state f , for each initial states i1 and i2 of
respectively A1 and A2 a new normal fork transition (i, {i1, i2}), for each final states f1 and
f2 of respectively A1 and A2 a new join transition ({f1, f2}, f). Assume finally e = e′⊛.
We build from A′ a b*-automaton A for e as follows. Let T be the set of all sequential or
join transitions whose destination is a final state of A′. Let A′

0 and A′
t, t ∈ T , be copies

of A′. We build A from the disjoint union of these copies. Add two new states i and f .
For each initial state i′ (resp. final state f ′) of A′

0 add a fork transition (i, {i, i′}) (resp. a
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37:10 Branching Automata and Pomset Automata

join transition ({f ′, f}, f)). For each t ∈ T duplicate each sequential and fork transition of
source i′ taken in A′

t by replacing the source i′ with i. Duplicate t ∈ T in At by replacing
the destination f ′ with f . For each sequential transition (i′, a, f ′) add (i, a, f). The unique
initial state of A is i, and its final states are i and f .

We now prove that the language of some b*-automaton A = (Q, A, E, I, F ) verifying
Condition 2 is series-parallel rational. We adapt the McNaughton-Yamada construction of
a rational expression from an automaton (see [7, Section 4.2] for the case of b-automata).
When p, q ∈ Q, D, D′ ⊆ Efork × Ejoin, (f, j) ∈ Efork × Ejoin, denote by:

Lp,q = {P ∈ SP (A) : p
P→
A

q};

LD,D′

p,q is the set of labels of b*-paths from p to q that can use only pairs of fork and join
transitions from D at the upper level and from D′ at a sequential level;
L(D′, f, j) is the set of label of b*-paths rooted by (f, j) that can use only pairs of fork
and join transitions from D′ at a sequential level.

A rational expression for L∅,D′

p,q is found as for automata on words since no fork and join
transitions are allowed. Otherwise, D ̸= ∅ and since A verifies Condition 2:

Lp,q =L
Efork×Ejoin,Efork×Ejoin
p,q

LD,D′
p,q =

⋃
(f,j)∈D∩D′

(
LD\{(f,j)},D′

p,q ∪ L
D\{(f,j)},D′

p,π1(f) (L(D′, f, j)LD\{(f,j)},D′

π2(j),π1(f) )∗L
D\{(f,j)},D′

π1(f),q

)
⋃

(f,j)∈D
π1(f)=p

π2(j)=q

(
LD\{(f,j)},D′

p,q ∪ L(D′, f, j)
)

L(D′, f, j) =
⋃

σ∈Sk

∥
i∈[k]

L
Efork×Ejoin,D′\{(f,j)}
ri,sσi

where f and j have the form f = (r, {r1, . . . , rk}) and j = ({s1, . . . , sk}, s) in the last equality.
The above equalities form a system of equations where the unknowns are the LD,D′

p,q , D ≠ ∅,
and the L∅,D′

p,q are the constants. First observe that when D ̸= ∅, LD,∅
p,q depends only of the

LD′,∅
p′,q′ , D′ ⊂ D or D′ = Efork × Ejoin. The only operations involved in the equalities for the

LD,∅
p,q are ∪ and ∥. The system of equations is solved as usual using substitutions and ⊛ is

used to resolve circular substitutions. ◀

A similar result holds for p-automata [5] A. In A, define ⪯ as the smallest preorder on
states such that Eseq(q, a) ⪯ q, Epar(q, r, s) ⪯ q, and if Epar(q, r, s) ̸= ⊥ then r, s ⪯ q. Set
also p ≺ q if and only if p ⪯ q and q ̸⪯ p. Say that A is well-nested if each state q verifies
exactly one of the following properties:
1. r, s ≺ q for all states r, s with Epar(q, r, s) ̸= ⊥;
2. q ∈ F , Eseq(q, a) = ⊥ for all a, and if Epar(q, r, s) ̸= ⊥ then Epar(q, r, s) = ⊤, s = q and

r ≺ q.

▶ Theorem 12 ([5]). A language L of SP (A) is series-parallel rational if and only if there
is a well-nested p-automaton A with L = L(A).

We now show that a very similar characterisation also exists for b*-automata to have
them correspond to series-parallel rational languages. For every b*-automaton there is a
b*-automaton with the same language and with all its fork and join transitions of arity 2. We
assume here that all fork and join transitions of b*-automata are of arity 2. In a b*-automaton
A, define ⪯f as the smallest preorder on states such that
1. if p →

A
q then q ⪯f p;

2. if (p, {p1, p2}) ∈ Efork then p1, p2 ⪯f p;
3. if ({q1, q2}, q) ∈ Ejoin then q1, q2 ⪯f q.
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Set p ≺f q if and only if p ⪯f q and q ̸⪯f p. Define ⪯j and ≺j similarly, by replacing Item 1
above by: if p →

A
q then p ⪯f q. Observe that if there is a b*-path p →

A
q then r ⪯f p and

r ⪯j q for all states r used in the b*-path.
A fork transition (p, {p1, p2}) (resp. join transition ({p1, p2}, p)) is normal if p1, p2 ̸= p.

It is recursive otherwise. A state p is normal when all the fork transitions (p, {p1, p2}) and
join transitions ({p1, p2}, p) verify p1, p2 ≺f p and p1, p2 ≺j p. It is fork recursive when all
the conditions below are verified:

there is some recursive fork transition (p, {p, p′}), and in this case p′ ≺f p and p′ ≺j p for
all such transitions;
for all normal fork transition (p, {p1, p2}) then p1, p2 ≺f p and p1, p2 ≺j p;
for all normal fork transition (p, {p1, p2}) and join transition ({q1, q2}, q), when p1 →

A
q1

and p2 →
A

q2 then q ≺f p;
for all sequential transition (p, a, q) then q ≺f p;
there is no transition of the form (q, a, p) or ({p1, p2}, p).

It is join recursive when all the conditions below are verified:
there is some recursive join transition ({p, p′}, p), and in this case p′ ≺f p and p′ ≺j p for
all such transitions;
for all normal join transition ({p1, p2}, p) then p1, p2 ≺f p and p1, p2 ≺j p;
for all normal fork transition (q, {q1, q2}) and join transition ({p1, p2}, p), when q1 →

A
p1

and q2 →
A

p2 then q ≺j p;
for all sequential transition (q, a, p) then q ≺j p;
there is no transition of the form (p, a, q) or (p, {p1, p2}).

Then A is well-nested if each state as a unique classification as normal, fork recursive
or join recursive, and, when x = (p, {p1, p2}) and y = ({q1, q2}, q) are a fork and a join
transition and pi →

A
qi, i ∈ [2], then x, y are both recursive, or both normal.

▶ Proposition 13. For every well-nested b*-automaton A there is a behaved and well-nested
b*-automaton B such that L(A) = L(B), and the initial and final states of B are normal.

Proof. It suffices to check that the construction of the proof of Proposition 7 preserves
well-nestedness, and that in the copy A0 all states are normal. ◀

▶ Theorem 14. A language L of SP (A) is series-parallel rational if and only if there is a
well-nested b*-automaton A with L = L(A).

Proof. The implication from left to right is by induction over a series-parallel rational
expression e for L. The steps are the same as in the proof of Theorem 11 (it suffices to check
that the constructions preserve well-nestedness).

For the implication from right to left we show that a well-nested b*-automaton A verifies
Condition 2, and the conclusion follows by Theorem 11. Assume by contradiction that A
does not verify Condition 2, ie. it has a b*-path p rooted by some pair (f, j) of a pair
and a join transition such that p uses (f, j) at a sequential level. Let f = (r, {r1, r2}) and
j = ({s1, s2}, s). Take a term t which is a representative of p: there are some t′′ ⪯ t′ ⪯ t with
t′′ rooted by (f, j) and t′ of the form t′ = t′

1 · t′
2 with t′

1, t′
2 both non-trivial. Consider t as a

tree. In this tree, consider the path α from the root node n of t to the root node n′ of the
sub-tree t′′. This path goes through the root node n′′ of the sub-tree t′, that we may consider
the first one along α such that t′ = t′

1 · t′
2 for some non-trivial t′

1, t′
2. The term t has the form

(f, j)(t1, t2), with ti a b*-path ri →
A

si, i ∈ [2]. Either the root node of t1 or of t2 belongs to

FSTTCS 2021



37:12 Branching Automata and Pomset Automata

α, say wlog. t1. If r1 ≺f r or s1 ≺j s we get a contradiction since x ⪯f r1 and x ⪯j s1 for
all states x used in t1, and thus for x = r. Thus r1 = r and s1 = s. This reasoning is true
for all nodes of α between n and n′. Thus t′

1 and t′
2 are respectively non-trivial b*-paths

r →
A

x and x →
A

s for some x, that can not use recursive fork or join transitions at the upper
level, since there is no fork recursive state y and state y′ such that y′ →

A
y, and there is no

join recursive state y and state y′ such that y →
A

y′. Thus x ≺f r and x ≺j s. For all states
y used in t′

1 it holds y ⪯f r, and for all states y used in t′
2 we have y ⪯j s. Assume first

t′′ is a sub-term of t′
2. Then we have z ⪯f x for all states z appearing in t′

2, in particular
r ⪯f x, which is a contradiction. Thus t′′ is a sub-term of t′

1. We have z ⪯j x for all states z

appearing in t′
1, in particular s ⪯j x, which is again a contradiction. ◀

▶ Example 15. Figure 3 represents a well-nested b*-automaton A obtained by induction
on the series-parallel rational expression e = ((a ∥ b)∗)⊛ following the steps of the proof of
Theorem 14. Note that it is misbehaved since for example 1 is initial, 1

a∥b→
A

8 and because of
the join transition ({2′, 8}, 8). The only fork recursive state is 1, the only join recursive state
is 8, and all other states are normal.

2

3

4

5

6

71start 8

2′

3′

4′

5′

6′

7′

a

b

a

b

3 5 2 7 1

4 6 8

3′ 5′ 2′ 7′

4′ 6′

3 5 2 7 1

4 6 8

3′ 5′ 2′ 7′

4′ 6′

Figure 3 On the left, a well-nested b*-automaton A with L(A) = ((a ∥ b)∗)⊛. It has 6 fork
transitions f1 = (1, {3, 4}), f2 = (1, {1, 2′}), f3 = (2, {3, 4}), f4 = (7, {3, 4}), f5 = (2′, {3′, 4′}),
f6 = (7′, {3′, 4′}), 4 join transitions j1 = ({5, 6}, 8), j2 = ({7′, 8}, 8), j3 = ({5, 6}, 7), j4 = ({2′, 8}, 8),
j5 = ({5′, 6′}, 7′). On the right top, a diagram of the preorder ⪯f over the states of A. On the right
bottom, a diagram of ⪯j .

6 Conclusion

We have compared branching versus p-automata. When they are defined in the most general
manner, they have the same expressive power which corresponds to that of context-free
grammars, or equivalently, to series-parallel rational expressions with additional L ◦ξ L′

and L∗ξ operations that enable respectively substitutions and iterated substitutions. As
consequences of the equivalence between b*-automata and context-free grammars questions
such as ”Is a b*-regular language b-regular, or series-parallel rational?” are undecidable.
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We also gave characterizations on branching automata to have them exactly as expressive
as series-parallel rational expressions, answering of question of [9]; a similar restriction
(well-nestedness) was already known for p-automata [5]. All the results are effective. Series-
rational languages are defined similarly to series-parallel languages without the ability to
iterate parallelism (ie. series-rational expressions are series-parallel expressions without
L⊛). They have been investigated in [9] for branching automata and in [4] for p-automata.
Corresponding automata have the fork-acyclicity property, ie. they can not use a transition
that splits an execution flow into several parallel flows f1, . . . , fn into the fi’s again. The
following diagram sums-up those results:

b*-rational
b*-regular
p-regular

context-free

b-rational
b-regular

series-parallel rational
b-regular ∩ Condition 2
b*-regular ∩ well-nested
p-regular ∩ well-nested

series-rational
b-regular ∩ fork-acyclic
p-regular ∩ fork-acyclic

⊋ ⊋ ⊋
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