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Abstract
PPAD and PLS are successful classes that capture the complexity of important game-theoretic
problems. For example, finding a mixed Nash equilibrium in a bimatrix game is PPAD-complete, and
finding a pure Nash equilibrium in a congestion game is PLS-complete. Many important problems,
such as solving a Simple Stochastic Game or finding a mixed Nash equilibrium of a congestion
game, lie in both classes. It was strongly believed that their intersection, PPAD ∩ PLS, does not
have natural complete problems. We show that it does: any problem that lies in both classes
can be reduced in polynomial time to the problem of finding a stationary point of a continuously
differentiable function on the domain [0, 1]2. Thus, as PPAD captures problems that can be solved
by Lemke-Howson type complementary pivoting algorithms, and PLS captures problems that can
be solved by local search, we show that PPAD ∩ PLS exactly captures problems that can be solved
by Gradient Descent.

This is joint work with John Fearnley, Paul Goldberg, and Alexandros Hollender. It appeared at
STOC’21, where it was given a Best Paper Award [4].
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1 Talk summary

This talk is about the computational complexity of Gradient Descent, one of the oldest and
most widely-used algorithmic approaches to doing optimisation. The approach dates all the
way back to an 1847 paper of Cauchy.

When Gradient Descent is constrained to a bounded domain, there are not one but two
reasons why it must terminate at an approximate stationary point or boundary point where
the gradient is trying to take it outside the domain:

We are always going downhill, altitude must “bottom out”. This puts the search for a
solution in the complexity class PLS (polynomial local search).
Gradient Descent maps any point to a nearby point in the direction of the negative
gradient. Brouwer’s Fixed Point Theorem guarantees that such a mapping has a point
mapped to itself. This puts the search for a solution in the complexity class PPAD.

PPAD and PLS correspond to existence-of-solution proof principles that guarantee solutions,
but in a computationally-inefficient way. Both classes have become successful through the
fact that they have been shown to exactly characterise the complexity of important problems.
Our main result shows that the Gradient Descent solution-existence principle tastefully
combines the PLS principle with the PPAD principle:
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5:2 The Complexity of Gradient Descent

We show how to efficiently reduce any problem that is in both PPAD and PLS to the
problem of finding a stationary point of a continuously differentiable function from
[0, 1]2 to [0, 1].

This is the first natural problem to be shown complete for PPAD ∩ PLS. Our results also
imply that the class CLS (Continuous Local Search) [2] – which was defined by Daskalakis
and Papadimitriou as a more “natural” counterpart to PPAD ∩ PLS and contains many
interesting problems – is itself equal to PPAD ∩ PLS.

Our result has been used to show that computing a mixed equilibrium of a congestion game
is also complete for PPAD ∩ PLS [1], and, as we discuss in [4], it opens up the possibility of
PPAD ∩ PLS hardness for other important problems, such as finding Tarski fixed points [3,6]
or finding solutions that are guaranteed to exist by the Colorful Carathéodory theorem [7].
Several of the other problems in the original CLS paper [2], such as the P-matrix Linear
Complementarity Problem and finding the fixed point of (piecewise linear) Contraction map,
have unique solutions. For these problems, we believe that another class, called UEOPL, for
Unique End of Potential Line, is more likely than PPAD ∩ PLS to be the correct class to
capture their complexity [5].
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