
One-Way Functions and a Conditional Variant of
MKTP
Eric Allender #Ñ

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Mahdi Cheraghchi #Ñ

Department of EECS, University of Michigan, Ann Arbor, MI, USA

Dimitrios Myrisiotis # Ñ

Department of Computing, Imperial College London, London, UK

Harsha Tirumala # Ñ

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Ilya Volkovich # Ñ

Computer Science Department, Boston College, Chestnut Hill, MA, USA

Abstract
One-way functions (OWFs) are central objects of study in cryptography and computational complexity
theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case hardness of
computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs. It remained
an open problem to establish such an equivalence for the average-case hardness of some natural
NP-complete problem. In this paper, we make progress on this question by studying a conditional
variant of the Minimum KT-complexity Problem (MKTP), which we call McKTP, as follows.
1. First, we prove that if McKTP is average-case hard on a polynomial fraction of its instances,

then there exist OWFs.
2. Then, we observe that McKTP is NP-complete under polynomial-time randomized reductions.
3. Finally, we prove that the existence of OWFs implies the nontrivial average-case hardness of

McKTP.
Thus the existence of OWFs is inextricably linked to the average-case hardness of this NP-complete
problem. In fact, building on recently-announced results of Ren and Santhanam [28], we show that
McKTP is hard-on-average if and only if there are logspace-computable OWFs.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of com-
putation → Problems, reductions and completeness; Theory of computation → Cryptographic
primitives

Keywords and phrases Kolmogorov complexity, KT Complexity, Minimum KT-complexity Problem,
MKTP, Conditional KT Complexity, Minimum Conditional KT-complexity Problem, McKTP,
one-way functions, OWFs, average-case hardness, pseudorandom generators, PRGs, pseudorandom
functions, PRFs, distinguishers, learning algorithms, NP-completeness, reductions

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.7

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/009/

Funding Eric Allender : Partially supported by NSF Grants CCF-1909216 & CCF-1909683.
Mahdi Cheraghchi: Mahdi Cheraghchi’s research was partially supported by the National Science
Foundation under Grant No. CCF-2006455.
Dimitrios Myrisiotis: This work was partly carried out during a visit of Dimitrios Myrisiotis to
DIMACS, with support from the Special Focus on Lower Bounds in Computational Complexity
funded under NSF Grant CCF-1836666.
Harsha Tirumala: Harsha Tirumala was partially supported by NSF Grant CCF-1909216 and by
the Simons Collaboration on Algorithms and Geometry.

© Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 7; pp. 7:1–7:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:allender@cs.rutgers.edu
https://people.cs.rutgers.edu/~allender/
https://orcid.org/0000-0002-0650-028X
mailto:mahdich@umich.edu
https://mahdi.ch/
https://orcid.org/0000-0001-8957-0306
mailto:d.myrisiotis17@ic.ac.uk
https://dimyrisiotis.github.io/
https://orcid.org/0000-0001-9585-1227
mailto:hs675@scarletmail.rutgers.edu
https://sites.google.com/view/harsha-srimath-tirumala/
https://orcid.org/0000-0002-4600-3675
mailto:ilya.volkovich@bc.edu
https://sites.google.com/site/ilyavv/
https://orcid.org/0000-0002-7616-0751
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.7
https://eccc.weizmann.ac.il/report/2021/009/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 One-Way Functions and a Conditional Variant of MKTP

Acknowledgements We would like to thank Russell Impagliazzo for explaining his work [18] to us,
and Ján Pich and Ninad Rajgopal for illuminating discussions. We thank Ján Pich for bringing
his work [27] to our attention. We thank Mikito Nanashima and Hanlin Ren for helpful comments
and for spotting bugs in the proofs of earlier versions of Lemma 20 and Lemma 21, respectively. In
particular, we thank Hanlin Ren for asking the question of whether KT complexity would be an
appropriate complexity measure to consider in the context of our work. We thank Yanyi Liu and
Rafael Pass for the excellent correspondence regarding their work [20, 23, 24], and Rahul Santhanam
for bringing the work by Impagliazzo and Naor [19] to our attention. Finally, we would like to thank
the anonymous reviewers for their helpful feedback.

1 Introduction

One-way functions (OWFs) – that is, functions that are easy to compute but hard to invert –
are objects of great importance in cryptography and computational complexity. For example,
it is known that OWFs exist if and only if pseudorandom generators exist [12] and, moreover,
if OWFs exist, then P ̸= NP.

In this paper, we ask the following question:

Can the existence of OWFs be shown to be equivalent to the average-case hardness of
some NP-complete problem?

We take concrete steps toward giving an affirmative answer to this question, by presenting a
candidate problem. Note that by Impagliazzo and Naor [19] it is known that there exists
some NP-complete problem (Subset Sum) whose average-case hardness implies the existence
of OWFs. However, what we attempt to do is different: We want to make concrete progress
in characterizing OWFs by the average-case hardness of an NP-complete problem.

The importance of NP stems mainly from the fact that, for thousands of important
naturally-occurring computational problems, their worst-case computational complexity is
best explained by knowing that they are NP-complete. However, NP-completeness has not
been as relevant for the concerns of cryptographers, who require one-way functions, which
in turn require problems in NP that are hard-on-average. Liu and Pass [20] gave what is
arguably the first “natural” example of a problem in NP that is hard-on-average if and only if
one-way functions exist; but this problem (computing time-bounded Kolmogorov complexity,
Kt) is not known to be NP-complete. Although it is not hard to modify their language
to obtain an artificial NP-complete problem with the same average-case complexity (see
Proposition 24), there had been no “natural” example of an NP-complete problem whose
average-case complexity had been connected directly to the existence of one-way functions.
Our main contribution is to present such an example.

There are different ways to define time-bounded Kolmogorov complexity; the measure
KT (defined in [4]) has the property that KT(x) is approximately the same as the circuit
complexity of the function that has x as its truth table. Thus the problem MKTP =
{(x, i) | KT(x) ≤ i} has been useful [4] in studying the Minimum Circuit Size Problem
MCSP = {(f, i) | CC(f) ≤ i}, which has been the subject of much recent work. As with
most other Kolmogorov complexity measures, KT(x) is defined in [4] as a special case of the
conditional KT-complexity KT(x | y), where y is the empty string. Our results concern the
decision problem McKTP = {(x, y, i) | KT(x | y) ≤ i}. We show the following.
(a) If McKTP is hard-on-average, then one-way functions exist (Theorem 1).
(b) McKTP is NP-complete under randomized reductions (Theorem 2).
(c) If one-way functions exist, then McKTP is (somewhat) hard-on-average (Theorem 4).
(d) In fact, McKTP is hard-on-average if and only if logspace-computable one-way functions

exist (Theorem 3 and Theorem 5).

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:3

There has been a flurry of recent activity on this topic, and it may be helpful to present the
following timeline:
1. [20] is posted by Liu and Pass, proving an equivalence between the existence of OWFs

and the average-case hardness of Kt complexity.
2. [6] is posted by Allender, Cheraghchi, Myrisiotis, Tirumala, and Volkovich, claiming to

characterize the existence of OWFs by the average-case complexity of an NP-complete
problem called Sparse Partial MCSP. This paper was retracted.

3. [5] is posted by Allender, Cheraghchi, Myrisiotis, Tirumala, and Volkovich, presenting
the proofs of Item a through Item c above.

4. [21] is posted by Liu and Pass, whereby they prove that subexponentially-hard OWFs
exist if and only if MKtP (a decision problem based on Kt complexity) is average-case
hard for sublinear-time non-uniform heuristics.

5. [24] is posted by Liu and Pass, showing that one-way functions exist if and only if the
EXP-complete language MKtP is hard-on-average1 and that logspace-computable one-way
functions exist if and only if the PSPACE-complete language MKSP is hard-on-average.

6. [28] is posted by Ren and Santhanam, showing that MKTP is hard-on-average if and only
if logspace-computable one-way functions exist. This allows us to prove Item d above.

7. [23] is posted by Liu and Pass (which is inspired by and in part a response to [6]), showing
that a conditional variant of Kt complexity is NP-complete, and is hard-on-average if
and only if one-way functions exist.

8. [16] is posted by Ilango, Ren, and Santhanam, showing that one-way functions exist if
and only if the undecidable problem MKP (i.e., a decision problem based on Kolmogorov
complexity) is hard-on-average under a samplable distribution, and if and only if MCSP
is hard-on-average under a locally-sampleable distribution.

9. [22] is posted by Liu and Pass, generalizing the results of Ilango, Ren, and Santhanam [16],
whereby they show that there exists some sparse language L such that OWFs exist if and
only if L is average-case hard with respect to some efficiently sampleable “high-entropy”
distribution.

1.1 Prior work
An early goal in cryptographic research was to base the existence of cryptographically secure
one-way functions on the worst-case complexity of some NP-complete problem. This goal
remains elusive; it was shown in [2] that no black-box argument of this sort can proceed
based on non-adaptive reductions. Non-adaptive worst-case-to-average-case reductions were
also studied by Bogdanov and Trevisan [8], who showed that such reductions to sets in NP
exist only for problems in NP/poly ∩ coNP/poly. Recent work by Nanashima [26] holds open
the possibility that the security of OWFs can be based on an adaptive black-box reduction,
by first establishing a non-adaptive black-box reduction basing the existence of auxiliary
input one-way functions on the worst-case complexity of an NP-complete problem, although
this would also require non-relativizing techniques. Instead of worst-case hardness, the focus
of our work is on average-case hardness assumptions. A nice survey on this area, that lays
out many of the issues about one-way functions and average-case complexity, is the one by
Bogdanov and Trevisan [7].

1 This is also proved in [28], and was posted to ECCC one day later.

FSTTCS 2021

7:4 One-Way Functions and a Conditional Variant of MKTP

Hirahara and Santhanam have discussed zero-error average-case complexity of problems
related to MKTP [14]. Santhanam [29] showed that a restricted type of hitting-set generator
exists if and only if MCSP is zero-error average-case hard. Hirahara also proved similar
results connecting the worst-case and the zero-error average-case complexity of problems
related to MCSP and Kolmogorov complexity [13].

More recently, Brzuska and Couteau [9] discuss basing OWFs on average-case hardness,
stating that it remains an open question to do this for the general notion of average-case
hardness. They present some negative results, indicating the difficulty of establishing the
existence of fine-grained one-way functions, based on the existence of average-case hardness,
via black-box reductions.

There is also an important line of work (including Ajtai [1] and Micciancio and Regev [25])
basing the existence of OWFs on the worst-case complexity of certain problems in NP
(including problems that are closely related to NP-complete problems, although they are not
themselves known to be NP-complete).

1.2 Our results
In this work, we connect the existence of OWFs to the average-case hardness of computing a
conditional (and NP-complete) variant of MKTP, which we term McKTP.

Initially, we prove that the average-case hardness of McKTP implies the existence of
OWFs.

▶ Theorem 1 (Informal). OWFs exist if McKTP is hard-on-average on a polynomial fraction
of its instances.

We also show that McKTP is NP-complete under randomized reductions.

▶ Theorem 2 (Informal). McKTP is NP-complete under polynomial-time one-sided-error
randomized reductions.

Moreover, Theorem 1 suggests an approach for excluding Impagliazzo’s Pessiland [17],
that is, a version of our world where there are average-case hard problems in NP and there are
no OWFs. This approach is based on the following observation. If McKTP is NP-hard under
average-case reductions, then by Theorem 1 the existence of an average-case hard problem in
NP would imply the existence of OWFs. Therefore proving that McKTP is NP-hard under
average-case reductions excludes Pessiland.

We are able to prove a stronger version of Theorem 1, building on the work of Ren and
Santhanam [28].

▶ Theorem 3 (Informal). Logspace-computable OWFs exist if McKTP is hard-on-average on
a polynomial fraction of its instances.

Finally, we prove a weak converse of Theorem 1, and a strong converse of Theorem 3.

▶ Theorem 4 (Informal). OWFs exist only if McKTP is hard-on-average on an exponential
fraction of its instances.

▶ Theorem 5 (Informal). Logspace-computable OWFs exist only if McKTP is hard-on-average
on an polynomial fraction of its instances.

By Theorem 3 and Theorem 5, we get the following corollary.

▶ Corollary 6. McKTP is hard-on-average if and only if logspace-computable OWFs exist.

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:5

1.2.1 How significant are our results?
The reader may wonder whether the hypothesis of Theorem 1 is overly strong. Is there
perhaps some trivial heuristic that succeeds well on average for this NP-complete decision
problem?

The input to the problem consists of a triple (x, y, θ), where the question is whether
KT(x | y) ≤ θ, where θ is a number bounded by |x| + O(log |x|). A simple heuristic is to
accept if θ is at the high end of this range, and reject otherwise; one can augment this to
accept for slightly lower values of θ if x has certain hallmarks of low complexity (such as
starting or ending with a logarithmic number of zeros, or agreeing with y on those substrings).
However, when inputs are chosen at random, this heuristic still seems likely to fail with
constant probability if θ is close to the boundary between where the heuristic accepts and
rejects. In particular, it is far from clear how to design a heuristic that would have failure
probability less than, say 1/s2, where θ ranges over a domain of size s. In particular, it
seems quite plausible that there is a constant k for which no heuristic can achieve failure
probability less than 1/sk, which is precisely the hypothesis of Theorem 1, and is sufficient
for the existence of OWFs.

Moreover, by Theorem 5, this hypothesis is in fact equivalent to the existence of logspace-
computable OWFs, which is widely believed to hold.

By the same token, the conclusion of Theorem 4 gives a much weaker, but still non-trivial,
average-case hardness condition for McKTP.

1.3 Our techniques
Our main results are Theorem 1, Theorem 2, and Theorem 4. Below we provide some
intuition regarding their proofs.
1. Theorem 1 is proved by

a. giving an average-case decision-to-search reduction for McKTP (see Lemma 20) and
b. observing that a recent result by Liu and Pass [20], whereby they prove that the

average-case hardness of a search variant of time-bounded Kolmogorov complexity Kt

yields OWFs, can be adjusted to the case of McKTP as well (see Lemma 21).
The three properties of time-bounded Kolmogorov complexity Kt, for some t : N → N
where t(n) ≥ n for all n ∈ N, that are used by Liu and Pass, are as follows.
i. One can create a string of low time-bounded Kolmogorov complexity in polynomial

time. This can be done by running a universal Turing machine U on some string,
for polynomially-many steps, and subsequently recording the output of U .

ii. For any string x, the possible values of its Kt complexity are polynomially-many
in |x|. In fact, there is a c > 0 such that, for any function t : N → N such that
t(n) ≥ n for all n ∈ N, and any string x, the possible values of Kt(x) are at most
|x| + c.

iii. The following domination property holds. Let x∗ ∈ {0, 1}n be a string, and c > 0
be as in Item 1(b)ii. Then,

Pr
Π∼{0,1}n+c

[
U
(

Π, 1t(n)
)

= x∗
]

≥ 1
2n+c

= 2−n

2c
≥

Prx∼{0,1}n [x = x∗]
poly(n) .

As it turns out, all of these properties are satisfied even when one considers McKTP.
2. Theorem 3 is proved by use of the techniques of [28]. In particular, the proof of Theorem 1

shows that the following function is one-way, if McKTP is hard-on-average:

FSTTCS 2021

7:6 One-Way Functions and a Conditional Variant of MKTP

Given (s, t, y, Π), output the string obtained by running U on y and the length-s
prefix of Π for t steps.

Ren and Santhanam observe that this function is logspace-computable if we restrict t to
be O(log n). Then, crucially, they show that for most strings in the range of this function,
s + t is minimized when t = O(log n). These insights, combined with the the proof of the
preceding theorem, suffice.

3. Theorem 2 is proved by
a. noting that McKTP is in NP (see Lemma 11) and
b. showing the NP-hardness of McKTP (see Corollary 34). This is done by giving a

polynomial-time randomized reduction from Set Cover, which is NP-hard to approxim-
ate (see Corollary 33), to an appropriate gap version of McKTP (see Corollary 32).
Note that this step closely mimics the proof of Ilango [15] for the NP-hardness of
Minimum Oracle Circuit Size Problem (MOCSP).

4. Theorem 4 is proved by giving a proof of its contrapositive statement, as explained by
the items below.
a. Assume that McKTP is easy on average under the uniform distribution.
b. By a corollary of Ilango, Loff, and Oliveira, for all a ≥ 1, there exists a learning

algorithm for SIZE[na] that works for infinitely many n ∈ N.
c. By a learner-to-distinguisher reduction, for every polynomial-time computable Boolean

function family {fy}y∈{0,1}∗ , there is a distinguisher for {fy}y∈{0,1}∗ .
d. By the correctness of the works by Håstad, Implagliazzo, Levin, and Luby [12], and

Goldreich, Goldwasser, and Micali [11], there are no OWFs.
5. Theorem 5 is proved by giving a slight modification to the proof of [28, Lemma 4.7].

1.4 Paper organization
In Section 2 we give some background knowledge and useful facts. We prove Theorem 1 in
Section 3, Theorem 3 in Section 4, and Theorem 5 in Section 5. Finally, we prove Theorem 2
in Appendix B. Theorem 4 is proved in the full version of the paper [5].

2 Preliminaries

2.1 Notation
We denote the natural numbers by N and the positive reals by R>0. For any n ∈ N, we
denote the set {1, . . . , n} by [n]. Let x = (x1, . . . , xn) ∈ {0, 1}n be a string of length n; we
write |x| := n. The empty string is denoted by λ.

We denote by Fn the class of all Boolean functions on n variables. We identify infinite
Boolean functions f : {0, 1}∗ → {0, 1} with collections {fn}n∈N, whereby fn : {0, 1}n →
{0, 1} for all n ∈ N.

We consider Boolean circuits over the bounded fan-in {∧2, ∨2, ¬} basis. Given a circuit,
its size is the number of its gates. Let s : N → N be a function. If we use s to upper bound
the size of some circuit, then we shall call s a size function.

Given a Boolean function f : {0, 1}n → {0, 1}, the circuit complexity of f , denoted CC(f),
is the size of a minimum size circuit that computes f . For a size function s : N → N, we denote
by SIZE[s(n)] the class of Boolean functions f = {fn}n∈N, whereby fn : {0, 1}n → {0, 1} for
all n ∈ N, such that CC(fn) ≤ s(n) for all n ∈ N.

In this work, we do not distinguish between Turing machines and algorithms. We say
that an algorithm A is a PPT algorithm if A is a probabilistic polynomial-time algorithm. If
A is a PPT algorithm that runs in time p(n) for a polynomial p, then we denote by A(x; r)

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:7

the output of A on input x ∈ {0, 1}∗ using random bits r ∈ {0, 1}p(|x|). We say that an
algorithm A is a PPT oracle algorithm if A is a PPT algorithm that has access to some
oracle. If A is a PPT oracle algorithm that runs in time p(n) for a polynomial p and has
access to an oracle for a language L ⊆ {0, 1}∗, then we denote by AL(x; r) the output of AL

on input x ∈ {0, 1}∗ using random bits r ∈ {0, 1}p(|x|).

2.2 Probability theory

We will use the following useful fact from probability theory.

▶ Lemma 7 (Markov’s inequality). If X is a non-negative random variable with µ := E[X],
then for all k > 0 it is the case that Pr[X ≥ kµ] ≤ 1/k.

2.3 KT complexity

2.3.1 A universal Turing machine

In what follows, we fix some efficient universal (oracle) Turing machine (UTM) U . Let
y, Π, z ∈ {0, 1}∗ and t ∈ N. The notation UΠ,y(z, 1t) denotes the output of U when U runs
the program Π on input z for at most t steps, given that U has extended oracle access to
program Π and standard oracle access to auxiliary string y. These notions are defined as
follows.
1. Standard oracle access to auxiliary string y means that U has a standard oracle tape Ty

of log |y| cells, and that in order to read a bit yi of y, whereby 1 ≤ i ≤ |y|, the machine
U has to write i ∈ {0, 1}log|y| on Ty and then enter a question state. In the next step,
the contents of Ty are erased and replaced by a bit b such that b = yi.
One important aspect of our choice of U is that, for every auxiliary string y ∈ {0, 1}∗

and 1 ≤ i ≤ log |y|, the oracle query yi
?= 1 is such that it requires time log |y|, and can

be implemented in time O(log |y|).
2. Extended oracle access to program Π means that U has a tape TΠ of |Π| cells that contains

Π, and the head of TΠ has both the ability to jump to an indexed location 1 ≤ i ≤ |Π| of
TΠ, namely TΠ[i] = Πi, and to move left and right on TΠ. Note that in the former case
the index i is written in a separate tape of log |Π| cells, specifically allocated for that
purpose. (So extended oracle access implies the existence of two tapes that help facilitate
the oracle query.)

The notation UΠ,y(z) denotes the output of U when U runs the program Π on input z, until
Π halts (if this is the case, otherwise Π runs forever), whereby U has extended oracle access
to Π and standard oracle access to y.

In this work, we will assume that whenever U is given oracle access to a program Π,
this access will be extended, and whenever U is given oracle access to an auxiliary string y,
this access will be standard. This is mainly to avoid unnecessary complications in the proof
of Theorem 2 (where it is convenient to have sequential access to Π, while requiring that
each query to y uses logarithmic time) while maintaining the trivial upper bound on KT
complexity (see Lemma 8) which requires oracle access to Π.

We will also assume that the output of U will either be 1 or 0, on any input.

FSTTCS 2021

7:8 One-Way Functions and a Conditional Variant of MKTP

2.3.2 Definition of KT complexity, and some properties
Given strings x, y ∈ {0, 1}∗, we define the KT complexity of x given y, denoted KT(x | y),
to be the minimum value of |Π| + t over programs Π ∈ {0, 1}∗ and run-time bounds t ∈ N
whereby for all 1 ≤ i ≤ |x| it is the case that UΠ,y(i, 1t) = xi.2 For all strings x ∈ {0, 1}∗,
we define KT(x) to be equal to KT(x | λ).

▶ Lemma 8 ([4]). There is a c > 0 such that for all x ∈ {0, 1}∗ it is the case that KT(x) is
at most |x| + c log |x|.

▶ Corollary 9. There is a c > 0 such that for all x, y ∈ {0, 1}∗ it is the case that KT(x | y)
is at most |x| + c log |x|.

2.4 Minimum Conditional KT-complexity Problem, and variants
We give here formal definitions of the computational problems that we will consider in this
work. These are the decision and search variants of McKTP.

▶ Definition 10 (Decision variant). Let c > 0 be as in Corollary 9. Let n ∈ N and m : N → N.
The Minimum m-Conditional KT-complexity Problem of dimension n (McKTmP of dimension
n) is defined as follows.

Input: Strings x ∈ {0, 1}n, y ∈ {0, 1}m(n), and a parameter 0 ≤ θ ≤ n + c log n in binary.
Question: Is there a program Π ∈ {0, 1}∗ and a run-time bound t ∈ N such that
UΠ,y(i, 1t) = xi for all 1 ≤ i ≤ n, and |Π| + t ≤ θ?

The following result is a standard observation.

▶ Lemma 11. For all polynomial-time computable functions m : N → N, it is the case that
McKTmP of dimension n is in NP.

▶ Definition 12 (Search variant). Let n ∈ N and m : N → N. The search variant of Minimum
m-Conditional KT-complexity Problem of dimension n (Search McKTmP of dimension n) is
defined as follows.

Input: Strings x ∈ {0, 1}n and y ∈ {0, 1}m(n).
Output: A program Π ∈ {0, 1}∗ and a run-time bound t ∈ N in binary such that
UΠ,y(i, 1t) = xi for all 1 ≤ i ≤ n, and the sum |Π| + t is minimized over the choices of Π
and t.

2.5 One-way functions
In the following, a function µ is said to be negligible if for every polynomial p there exists a
n0 ∈ N such that for all naturals n > n0 it is the case that µ(n) ≤ 1/p(n).

▶ Definition 13. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. We say
that f is a one-way function (OWF) if for every PPT algorithm A there exists a negligible
function µ such that for all n ∈ N it is the case that

Pr
x∼{0,1}n,r

[
A(1n, f(x) ; r) ∈ f−1(f(x))

]
< µ(n)

where the size of r is equal to the running time of A.

2 Originally [4], KT(x | y) was defined with the additional requirement that, for i = |x|+1, UΠ,y
(
i, 1t
)

= ∗.
We do not need that additional complication here, although our theorems would also hold using that
definition.

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:9

We will also employ the following weaker notion of OWFs.

▶ Definition 14. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. We
say that f is an α-weak one-way function (α-weak OWF) if for every PPT algorithm A and
all sufficiently large n ∈ N it is the case that

Pr
x∼{0,1}n,r

[
A(1n, f(x) ; r) ∈ f−1(f(x))

]
< 1 − α(n)

where the size of r is equal to the running time of A. We say that f is a weak one-way
function (weak OWF) if there exists some polynomial q > 0 such that f is a (1/q)-weak
OWF.

Yao [30] proved that the existence of weak OWFs implies the existence of OWFs.

▶ Theorem 15 ([30]). Assume that there exists a weak one-way function. Then there exists
a one-way function. (Also, if there exists a weak-one-way function computable in logspace,
then there is a one-way function computable in logspace.)

2.6 Average-case hardness/easiness
A heuristic H is a PPT algorithm that, on input any x ∈ {0, 1}n, outputs a value in {0, 1}
along each computation path.

▶ Definition 16 (Average-case hardness). Let α : N → [0, 1] be a failure parameter function.
We say that a function f : {0, 1}n → {0, 1} is α-hard-on-average (α-HoA) if for all heuristics
H and all sufficiently large n ∈ N it is the case that

Pr
x∼{0,1}n,r

[H(x; r) = f(x)] ≤ 1 − α(n)

where the size of r is equal to the running time of H.

▶ Definition 17 (Average-case easiness). Let α : N → [0, 1] be a success parameter function.
We say that a function f : {0, 1}n → {0, 1} is α-easy-on-average (α-EoA) if f is not (1 − α)-
hard-on-average; that is, if there exists some heuristic H such that for infinitely many n ∈ N
it is the case that

Pr
x∼{0,1}n,r

[H(x; r) = f(x)] > 1 − (1 − α(n)) = α(n)

where the size of r is equal to the running time of H.

Let R ⊆ {0, 1}n × {0, 1}∗ be a search problem. A heuristic H is a PPT algorithm that,
on input any x ∈ {0, 1}n, outputs a value in {0, 1}∗ along each computation path.

The notions of average-case hardness and easiness for search problems are defined in a
fashion similar to that of decision problems; see Definition 16 and Definition 17.

3 OWFs from average-case hardness of McKTP

In this section, we prove the following result.

▶ Theorem 18. Assume that, for some m : N → N, McKTmP of dimension n is (1/p)-HoA
for some polynomial p. Then, there exists some weak OWF.

By Theorem 18 and Theorem 15, we get the following corollary.

▶ Corollary 19 (Theorem 1, restated). Assume that, for some m : N → N, McKTmP of
dimension n is (1/p)-HoA for some polynomial p. Then, there exists some OWF.

FSTTCS 2021

7:10 One-Way Functions and a Conditional Variant of MKTP

3.1 Proof of Theorem 18
We will first require the following two lemmas.

▶ Lemma 20. For all functions m : N → N, if McKTmP is (1/p)-HoA for some polynomial
p, then Search McKTmP is

(
1/p2)-HoA.

Proof. We will prove the contrapositive. That is, we will prove that if Search McKTmP
is
(
1 − 1/p2)-EoA, then McKTmP is (1 − 1/p)-EoA. In what follows, let c > 0 be as in

Corollary 9.
Let N ′ := n + m(n) be the size of the instances of Search McKTmP of dimension n.

Assume that Search McKTmP is
(
1 − 1/p2)-EoA. That is, assume that there exists some

heuristic H ′ that on input a random instance (x, y) ∈ {0, 1}n × {0, 1}m(n) outputs with
probability greater than 1 − 1/p(N ′)2 a program Π ∈ {0, 1}∗ and a run-time bound t ∈ N (in
binary) such that UΠ,y(i, 1t) = xi for all 1 ≤ i ≤ n, and the sum |Π| + t is minimized over
the choices of Π and t.

Given H ′, a heuristic H for McKTmP of dimension n and input size N := n + m(n) +
log(n + c log n), works as follows:

On input strings x ∈ {0, 1}n and y ∈ {0, 1}m(n), and a size parameter 0 ≤ θ ≤
n + c log n in binary, run H ′ on (x, y) to get a program Π ∈ {0, 1}∗ and a run-time
bound t ∈ N (in binary). If Π and t are such that UΠ,y(i, 1t) = xi for all 1 ≤ i ≤ n

and |Π| + t ≤ θ, then return YES. Else, return NO.

Note that the running time of H is polynomial in N . The success probability of H over a
random instance (x, y, θ) and random bits r is

Pr
x,y,θ,r

[H(x, y, θ; r) succeeds]

≥ Pr
x,y,θ,r

[H(x, y, θ; r) succeeds | H ′(x, y; r) succeeds] · Pr
x,y,r

[H ′(x, y; r) succeeds]

> 1 ·

(
1 − 1

p(N ′)2

)
= 1 − 1

p(N ′)2 ≥ 1 − 1
p(N) ,

since 1/p(N ′)2 ≤ 1/p(N) for all sufficiently large n ∈ N, as desired.
Therefore, McKTmP is (1 − 1/p)-EoA as witnessed by H. ◀

The following is an elaboration on the seminal work by Liu and Pass [20].

▶ Lemma 21 (Following Liu and Pass [20]). Assume that, for some function m : N → N,
Search McKTmP is (1/p)-HoA for some polynomial p. Then, there exists some weak OWF.

Proof. Fix some UTM U , and let c > 0 be as in Corollary 9. Let n ∈ N be sufficiently
large and such that Search McKTmP of dimension n is (1/p)-HoA. Consider the function
f : {0, 1}∗ → {0, 1}∗ defined by the mapping rule

(s, t, y, Π′) 7→
(
s + t, UΠ,y

(
1, 1t

)
, . . . , UΠ,y

(
n, 1t

)
, y
)

,

where m := m(n), y ∈ {0, 1}m, Π′ ∈ {0, 1}n+c log n is a program, and Π := Π′|[s] is the s-bit
prefix of Π′. Note that without loss of generality, s+ t ≤ n+ c log n, by Corollary 9. This also
implies that s ≤ n + c log n and t ≤ n + c log n. For that matter, f is a function from {0, 1}M

to {0, 1}N , where M := 2 log(n + c log n)+m+n+ c log n and N := log (n + c log n)+n+m,
and is computable in polynomial time.

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:11

Observe also that f is only defined over infinitely many input lengths. However, by a
padding trick, f can be transformed into another function f ′ that is defined over all input
lengths, and such that f ′ is a weak one-way function, given that f is [20].

We now claim that if Search McKTmP is (1/p)-HoA, then f is a (1/q)-weak OWF, where
q is a polynomial such that q(n) := 2 (n + c log n)2

ncp(n + m(n))3 for all n ∈ N. Towards a
contradiction, assume that there exists a PPT algorithm A that inverts f with probability
at least 1 − 1/q(M) ≥ 1 − 1/q(n).

First, note that except for a fraction 1/ (2p(n + m)) of sequences of random bits r for A,
the deterministic machine Ar, given by Ar(f(z)) := A(f(z) ; r) for all z ∈ {0, 1}M , fails to
invert f with probability at most 2p(n + m) /q(n) over a uniformly random input z. This is
so, as

Pr
r

[
Pr

z
[Ar(f(z)) fails] >

2p(n + m)
q(n)

]
≤ Pr

r

[
Pr

z
[Ar(f(z)) fails] ≥ 2p(n + m) · Pr

z,r
[Ar(f(z)) fails]

]
= Pr

r

[
Pr

z
[A(f(z) ; r) fails] ≥ 2p(n + m) · E

r

[
Pr

z
[A(f(z) ; r) fails]

]]
≤ 1

2p(n + m) ,

by Lemma 7. Henceforth, we will call such a sequence of random bits good; otherwise, we
will call a sequence of random bits bad. Therefore, we have

Pr
z,r

[A(f(z) ; r) fails | r is good] = Pr
z,r

[Ar(f(z)) fails | r is good] ≤ 2p(n + m)
q(n) .

We propose the following heuristic H for Search McKTmP:

On input strings x ∈ {0, 1}n and y ∈ {0, 1}m, and using random bits r, the al-
gorithm H runs A(j, x, y; r) for all j ∈ [n + c log n]. For each j ∈ [n + c log n],
A(j, x, y; r) returns a tuple

(
sj , tj , y, Π′

j

)
. Then, H(x, y; r) returns a program Π′

k|[sk]

from
{

Π′
j

∣∣
[sj]

}
j∈[n+c log n]

such that U
Π′

k|[sk],y(i, 1tk) = xi for all 1 ≤ i ≤ n, and∣∣∣Π′
k|[sk]

∣∣∣+ tk = sk + tk is minimized.

We will now analyze the average-case performance of H. Fix a good sequence of random bits
r, as defined above, and recall that, in this case, Prz[Ar(f(z)) fails] ≤ 2p(n + m) /q(n). Let
Sr be the set of inputs (x, y) for which H(x, y; r) fails, when given random bits r. Observe
that, for any good r,

Pr
x,y

[H(x, y; r) fails] = |Sr|
2n+m

.

Consider (x, y) ∈ Sr and let wx,y := KT(x | y) be the conditional KT-complexity of x given
y. By Corollary 9, we have wx,y ≤ n + c log n. If H(x, y; r) fails, then it means that A fails
to invert (wx,y, x, y) when given the good sequence of random bits r.

Recall that Prz[Ar(f(z)) fails] ≤ 2p(m (n + 1)) /q(n). Recall also, from the definition of
f , and from the fact that wx,y ≤ n + c log n, that

Pr
z

[f(z) = (wx,y, x, y)] ≥ 1
(n + c log n)2 · 2m · 2n+c log n

.

Thus, for any good sequence r, we have

2p(n + m)
q(n) ≥ Pr

z
[Ar (f(z)) fails]

FSTTCS 2021

7:12 One-Way Functions and a Conditional Variant of MKTP

=
∑

(w,x,y):Ar(w, x, y) fails

Pr
z

[f(z) =(w, x, y)]

≥
∑

(x,y):Ar(wx,y, x, y) fails

Pr
z

[f(z) =(wx,y, x, y)]

≥
∑

(x,y)∈Sr

1
(n + c log n)2 · 2m · 2n+c log n

= |Sr|
2n+m

· 1
(n + c log n)2 2c log n

= Prx,y[H(x, y; r) fails]
(n + c log n)2

nc
.

Since this holds for any good sequence r, we have that

Pr
x,y,r

[H(x, y; r) fails | r is good] ≤ (n + c log n)2
nc2p(n + m)

q(n)

= (n + c log n)2
nc2p(n + m)

2 (n + c log n)2
ncp(n + m)3

= 1
p(n + m)2 <

1
2p(n + m) ,

since p(n + m) > 2 for all sufficiently large n ∈ N. Therefore, H fails with probability at
most

Pr
x,y,r

[H(x, y; r) fails | r is good] + Pr
r

[r is bad] <
1

2p(n + m) + 1
2p(n + m) = 1

p(n + m) .

This yields a contradiction. ◀

We now turn to the proof of Theorem 18.

Proof of Theorem 18. Immediate; by Lemma 20 and Lemma 21, since if p is a polynomial,
then p2 is a polynomial too. ◀

4 Logspace-computable OWFs from average-case hardness of McKTP

Now we show that, applying the insights of Ren and Santhanam [28], we can strengthen the
theorems of the preceding section. We show the following.

▶ Theorem 22. Assume that, for some m : N → N, McKTmP of dimension n is (1/p)-HoA
for some polynomial p. Then, there exists some weak OWF computable in logspace.

Proof sketch. Modify the definition of f from the proof of Lemma 21, so that now f is

(s, t, y, Π′) 7→
(
s + t, UΠ,y

(
1, 1t

)
, . . . , UΠ,y

(
n, 1t

)
, y
)

,

where m := m(n), y ∈ {0, 1}m, Π′ ∈ {0, 1}n+c log n is a program, Π := Π′|[s] is the s-bit
prefix of Π′, and t ≤ d log n for some d. This function f is clearly computable in logspace.

Significantly, Ren and Santhanam [28, Theorem 4.1] show that, if the search version of KT
is hard-on-average, then a function very similar to f is a weak one-way function. Essentially
identical considerations allow us to conclude that, if Search McKTmP is (1/p)-HoA for some
polynomial p, then f is a weak one-way function. The main point is that, for every y, most
strings x have the property that, when |Π| + t is minimized (where U uses description Π and
run-time t to compute the bits of x), t = O(log n). The rest of the analysis is very similar to
that of Lemma 21. ◀

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:13

By Theorem 22 and Theorem 15, we get the following corollary.

▶ Corollary 23 (Theorem 3, restated). Assume that, for some m : N → N, McKTmP of
dimension n is (1/p)-HoA for some polynomial p. Then, there exists some logspace-computable
OWF.

5 Average-case hardness of McKTP from logspace-computable OWFs:
Proof of Theorem 5

Again, we appeal to the techniques of Ren and Santhanam. Ren and Santhanam [28,
Theorem 4.4] show that, if there is a one-way function computable in logspace, then the
problem of computing an approximation to KT complexity is hard-on-average. A nearly-
identical proof shows that computing KT(x | y) is HoA. Essentially the only modification
that needs to be made to the proof of [28, Theorem 4.4] arises in the proof of their Lemma
4.7, which establishes that computing KT is HoA under a condition that holds if there is a
logspace-computable OWF. The proof of [28, Lemma 4.7] relies on the fact that the output
of a certain pseudorandom generator has small KT complexity, whereas a random string has
high KT complexity. But the output z of this generator also has small KT(z | y) for every
y, whereas a random string z has KT(z | y) large for almost every y. Thus a very similar
analysis shows that computing KT(x | y) is HoA, which in turn (via Lemma 20) implies that
McKTmP is HoA.

References
1 Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In Proceedings

of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (STOC), pages
99–108. ACM, 1996. doi:10.1145/237814.237838.

2 Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing one-way
functions on NP-hardness. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC), pages 701–710. ACM, 2006. See also [3].

3 Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. Erratum for: On
basing one-way functions on NP-hardness. In Proceedings of the 42nd ACM Symposium on
Theory of Computing (STOC), pages 795–796. ACM, 2010.

4 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.
Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006.

5 Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich.
One-way functions and a conditional variant of MKTP. Electron. Colloquium Comput.
Complex., 28:9, 2021.

6 Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich.
One-way functions and Partial MCSP. Electron. Colloquium Comput. Complex., 28:9, 2021.

7 Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor. Comput.
Sci., 2(1), 2006.

8 Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for NP problems.
SIAM J. Comput., 36(4):1119–1159, 2006.

9 Chris Brzuska and Geoffroy Couteau. Towards fine-grained one-way functions from strong
average-case hardness. IACR Cryptol. ePrint Arch., 2020:1326, 2020.

10 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In David B. Shmoys,
editor, Symposium on Theory of Computing (STOC), pages 624–633. ACM, 2014.

11 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

12 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

FSTTCS 2021

https://doi.org/10.1145/237814.237838

7:14 One-Way Functions and a Conditional Variant of MKTP

13 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In 59th
IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 247–258. IEEE
Computer Society, 2018.

14 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and
its variants. In Ryan O’Donnell, editor, 32nd Computational Complexity Conference, CCC
2017, July 6-9, 2017, Riga, Latvia, volume 79 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

15 Rahul Ilango. Approaching MCSP from above and below: Hardness for a conditional variant
and AC0[p]. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science
Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs,
pages 34:1–34:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

16 Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any samplable distribution
suffices: New characterizations of one-way functions by meta-complexity. Electron. Colloquium
Comput. Complex., 28:82, 2021.

17 Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth
Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA, June
19-22, 1995, pages 134–147. IEEE Computer Society, 1995.

18 Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances than
picking uniformly at random. In 31st Annual Symposium on Foundations of Computer Science,
St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages 812–821. IEEE Computer
Society, 1990.

19 Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as
subset sum. J. Cryptol., 9(4):199–216, 1996.

20 Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 1243–1254. IEEE, 2020.

21 Yanyi Liu and Rafael Pass. Cryptography from sublinear-time average-case hardness of
time-bounded Kolmogorov complexity. In Proceedings of the 53rd ACM Symposium on Theory
of Computing (STOC). ACM, 2021.

22 Yanyi Liu and Rafael Pass. A note on one-way functions and sparse languages. IACR Cryptol.
ePrint Arch., 2021:890, 2021.

23 Yanyi Liu and Rafael Pass. On one-way functions from NP-complete problems. Electron.
Colloquium Comput. Complex., 28:59, 2021.

24 Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on EXP ̸= BPP. Electron.
Colloquium Comput. Complex., 28:56, 2021.

25 Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput., 37(1):267–302, 2007. doi:10.1137/S0097539705447360.

26 Mikito Nanashima. On basing auxiliary-input cryptography on NP-hardness via nonadaptive
black-box reductions. In 12th Innovations in Theoretical Computer Science Conference (ITCS),
volume 185 of LIPIcs, pages 29:1–29:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

27 Ján Pich. Learning algorithms from circuit lower bounds. CoRR, abs/2012.14095, 2020.
arXiv:2012.14095.

28 Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes parallel cryptography.
Electron. Colloquium Comput. Complex., 28:57, 2021.

29 Rahul Santhanam. Pseudorandomness and the Minimum Circuit Size Problem. In 11th
Innovations in Theoretical Computer Science Conference (ITCS), volume 151 of LIPIcs, pages
68:1–68:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

30 Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 80–91. IEEE Computer Society, 1982.

https://doi.org/10.1137/S0097539705447360
http://arxiv.org/abs/2012.14095

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:15

A Hard-on-average problems in NP

We first introduce some useful notation. For a language L ⊆ {0, 1}∗ we define its characteristic
function, namely fL : {0, 1}∗ → {0, 1}, to be a function given by

fL(x) :=
{

1, if x ∈ L,

0, otherwise

for all x ∈ {0, 1}∗.
For sets K, L ⊆ {0, 1}∗, the disjoint union of K and L, denoted K ⊎ L, is the set

{0x | x ∈ K} ∪ {1x | x ∈ L}.
For a failure parameter function α : N → [0, 1], we say that a language L is α-hard-on-

average (α-HoA) if its characteristic function fL is α-HoA. Similarly we define average-case
easiness for languages.

We prove the following.

▶ Proposition 24. Let L be a language in NP that is α-HoA for some failure parameter
function α : N → [0, 1]. Then, the language L∗ := L ⊎ SAT is NP-complete and α∗-HoA,
where α∗ : N → [0, 1] is a failure parameter function such that α∗(n) := α(n − 1) − 1/2 for
all naturals n ≥ 2.

Before we prove Proposition 24, we recount the following basic observation.

▶ Lemma 25. NP is closed under disjoint union.

We now turn to the proof of Proposition 24.

Proof of Proposition 24. By Lemma 25, the language L∗ is in NP since L∗ is the disjoint
union of L ∈ NP and SAT ∈ NP.

We will now show that L∗ is NP-hard, by giving a polynomial-time reduction R from
SAT to L∗. For all x ∈ {0, 1}∗, let R(x) := 1x ∈ {0, 1}∗. We see that R is polynomial-time
computable. Moreover, if x ∈ SAT, then R(x) = 1x ∈ L∗, and if R(x) ∈ L∗, then 1x ∈ L∗

and so x ∈ SAT.
What is left is to prove that L∗ is α∗-HoA, where α∗ : N → [0, 1] is such that α∗(n) :=

α(n − 1) − 1/2 for all naturals n ≥ 2. Towards a contradiction, assume that L∗ is (1 − α∗)-
EoA and let H∗ be a heuristic that witnesses this phenomenon. We will give a heuristic H

that witnesses the fact that L is (1 − α)-EoA, whereby establishing the desired contradiction.
To this end, let

H(x) := H∗(0x)

for all x ∈ {0, 1}∗. We will show that H has the desired average-case performance. Indeed,

Pr
x∼{0,1}n

[H(x) = fL(x)] = Pr
x∼{0,1}n

[H∗(0x) = fL∗(0x)]

= Pr
y∼{0,1}n+1

[H∗(y) = fL∗(y) | y1 = 0]

≥ Pr
y∼{0,1}n+1

[H∗(y) = fL∗(y)] − Pr
y∼{0,1}n+1

[y1 = 1]

≥ 1 − α∗(n + 1) − 1
2

= 1 −
(

α((n + 1) − 1) − 1
2

)
− 1

2
= 1 − α(n) . ◀

FSTTCS 2021

7:16 One-Way Functions and a Conditional Variant of MKTP

B McKTP is NP-complete under randomized reductions

In this section, we prove Theorem 2 by adapting Ilango’s work [15].

B.1 Set Cover
We first fix some notation about Set Cover.

▶ Definition 26. The Set Cover problem is defined as follows.
Input: A tuple (n, S1, . . . , St) in binary, where n ∈ N and S1, . . . , St ⊆ [n] are sets such
that [n] ⊆

⋃t
i=1 Si.

Output: The value of

min
I⊆[t]

{
|I| | [n] ⊆

⋃
i∈I

Si

}
.

Dinur and Steurer [10] show that it is NP-hard to approximate Set Cover.

▶ Theorem 27 ([10]). It is NP-hard to approximate Set Cover by a factor of at most
(1 − o(1)) ln n.

B.2 Approximation algorithms
In the following, we will adopt the following notion of an approximation algorithm.

▶ Definition 28. Let Π be an optimization problem. For all instances I ∈ {0, 1}∗ of Π, let
the optimal solution of I be denoted by OPT(I) ∈ R. Let α > 0. We say that a probabilistic
algorithm A approximates Π by a factor of α if, for all instances I of Π, it is the case that

OPT(I) < A(I) ≤ α · OPT(I)

with probability at least 1 − o(1) over the internal randomness of A.

B.3 Proof of Theorem 2
For a string b of length m and a set R ⊆ [m], let b⟨R⟩ be the string of length m where

b⟨R⟩(j) :=
{

b(j) , if j ∈ R,

0, otherwise

for all 1 ≤ j ≤ m. Equivalently,

b⟨R⟩(j) := b(j) ∧ 1j∈R

for all j ∈ [m].
Next, we define a uniformly random partition P = (P1, . . . , Pn) of [m] into n parts to be

such that each element i ∈ [m] is put into Pj where j ∈ [n] is chosen uniformly at random.
It will be also useful to think of P as a uniformly random function P : [m] → [n].

For a partition P = (P1, . . . , Pn) of [m] and any set S ⊆ [n], we define the P-lift of S,
denoted SP , to be the set

SP :=
⋃
i∈S

Pi.

Following Ilango [15], we show that McKTP can be used to approximate Set Cover.

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:17

▶ Lemma 29 (Following Ilango [15]). Let S1, . . . , St ⊆ [n] be sets that cover [n]. Let b be a
string of length m ≥ (nt)5 and let P = (P1, . . . , Pn) be a uniformly random partition of [m]
into n parts. Define the oracle O : {0, 1}log t × {0, 1}log m → {0, 1} to be such that

O(i, z) :=
{

b⟨SP
i ⟩(z) , if i ∈ [t],

0, otherwise,

for all i ∈ [t] and z ∈ [m]. Let y be the truth table of O, and note that |y| = mt. Let ℓ be the
size of an optimal cover of [n] by S1, . . . , St. Then, we have that
1. KT(b | y) ≤ 200ℓ (log t + log m) and
2. KT(b | y) > ℓ (log t + log m) /2 with high probability over the choice of b.

Proof. We prove each item of Lemma 29 separately.

▷ Claim 30. It is the case that KT(b | y) ≤ 200ℓ (log t + log m).

Proof. Assume that an optimal set cover of size ℓ is realized by the sets Si1 , . . . , Siℓ
. Fix

some UTM U that has oracle access to y. Let Π ∈ {0, 1}∗ be a program that contains in its
description encodings of i1, . . . , iℓ ∈ {0, 1}t and operates as follows:

On input x ∈ {0, 1}log m, compute and output y(i1,x) ∨ · · · ∨ y(iℓ,x).

Note that |Π| ≤ (ℓ + 2) log t + O(1) ≤ 100ℓ log t. In what follows, let T ∈ N be a sufficiently
large run-time bound such that

UΠ,y
(
x, 1T

)
:= y(i1,x) ∨ · · · ∨ y(iℓ,x)

= O(i1, x) ∨ · · · ∨ O(iℓ, x) =
∨

i∈[ℓ]

∨
j∈Si

b⟨Pj⟩(x) =
∨

j∈[n]

bPj
(x) = b(x) ,

for all x ∈ {0, 1}log m. Note that T ≤ 100ℓ (log t + log m). Therefore, we have that
KT(b | y) ≤ 200ℓ (log t + log m). ◁

We now turn to the lower bound. We do this by a union bound argument. Fix some
oracle program My(·) := UΠ,y

(
·, 1T

)
of program Π that uses oracle y and runs in time T such

that |Π| + T ≤ ℓ (log t + log m) /2. Then, as each oracle query requires time log t + log m, we
can deduce that M makes at most ℓ/2 ≤ n/2 ≤ n oracle queries to y.

We will show that

Pr
b,P

[My computes b in time T , and |Π| + T ≤ ℓ (log t + log m) /2]

is exponentially small. We do this by finding a long sequence of inputs x1, . . . , xd on which
M has not too large a chance of computing b.

We construct this list recursively, as follows. Let x1 := 0log m, and let

Q1 :=
{

x ∈ {0, 1}log m | My(x1) makes a query (i, x) to y, for some i ∈ [t]
}

.

Now, for j ≥ 1, if {0, 1}log m \Qj is non-empty, then let xj+1 be an element of {0, 1}log m \Qj ,
and let

Qj+1 := Qj ∪
{

x ∈ {0, 1}log m | My(xj+1) makes a query (i, x) to y, for some i ∈ [t]
}

.

FSTTCS 2021

7:18 One-Way Functions and a Conditional Variant of MKTP

If {0, 1}log m = Qj , then terminate the sequence. Since M makes at most n queries to y, we
know that |Qj | ≤ jn. Thus, since |Qd| =

∣∣∣{0, 1}log m
∣∣∣ = m the length of this sequence is at

least m/n. That is, d ≥ m/n.
It remains to bound the probability

Pr[for all j ∈ [d], My(xj) = b(xj)] =
d∏

j=1
Pr

My(xj) = b(xj) |
∧

k∈[j−1]

My(xk) = b(xk)

 .

Fix some j ∈ [d]. We will bound

Pr

My(xj) = b(xj) |
∧

k∈[j−1]

My(xk) = b(xk)

 .

Let E :=
∧

k∈[j−1] My(xk) = b(xk) be the event that we are conditioning on.

▷ Claim 31. It is the case that

Pr[My(xj) = b(xj) | E] ≤ 1 − 1
2n

.

Proof. By construction of the sequence x1, . . . , xd, we know that on all the inputs x1, . . . , xj−1,
the program My does not make an oracle call of the form (i, xj) for any i. Thus, the only
time the value of O depends on b(xj) and P (xj) is on inputs of the form (i, xj) for some
i, and since b(xj) and P (xj) are chosen independently at random, we know that b(xj) and
P (xj) are still uniform random variables conditioned on E. That is,

Pr[b(xj) = 1 | E] = 1
2

and

Pr[P (xj) = r | E] = 1
n

for all r ∈ [n].
Now, define O′ as

O′(i, x) :=
{

0, if x = xj ,

O(i, x) , otherwise,

and let y′ be the truth table of O′. Let also i1, . . . , iv with v ≤ ℓ/2 be such that, using the
modified oracle O′, they are the only oracle queries My′(xj) makes that have xj as the 2nd
component of the query, so the queries are (i1, xj) , . . . , (iv, xj). Since v < ℓ there exists an
element r∗ that is not in Si1 ∪ · · · ∪ Siv .

Moreover, observe that if P (xj) = r∗, then My(xj) will actually make the same oracle
queries (and get the same zero responses) as the modified oracle program My′ . In this case,
since P (xj) = r∗ is not in Si1 ∪ · · · ∪ Siv

, it follows that

O(i1, xj) = · · · = O(iv, xj) = 0

regardless of the value of b(xj). Thus, the output of My on input x does not depend at all
on the value of b(x) if P (xj) = r∗. Hence, the probability it correctly guesses My(x) = b(x)
is at most half when P (xj) = r∗.

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:19

Since P (xj) is chosen uniformly at random, we have that P (xj) = r∗ with probability
1/n. Therefore,

Pr[My(xj) = b(xj) | E] ≤ 1 − 1
2n

and the proof os complete. ◁

Using Claim 31, we have

d∏
j=1

Pr

My(xj) = b(xj) |
∧

k∈[j−1]

My(xk) = b(xk)

 ≤
(

1 − 1
2n

)d

≤ e−d/(2n) ≤ e−m/(2n2) ≤ e−n3t5/2.

On the other hand the number of oracle programs of size at most ℓ (log t + log m) /2 ≤
O(nt log n) is at most 2O(n2t). Thus, by a union bound, the probability that there exists an
oracle program Π that computes any bit of b in time T , whereby |Π|+T ≤ ℓ (log t + log m) /2,
is o(1) as desired. ◀

Lemma 29 implies the following corollary.

▶ Corollary 32. There is a polynomial-time computable function M : N → N such that
the following hold. Given a Set Cover instance I := (n, S1, . . . , St), a random b of length
N ≥ (nt)5 and a random partition P of [N] into n parts, if one constructs a string y as
in Lemma 29, whereby |y| ≤ M(N), then KT(b | y) approximates Set Cover by a factor of
400 according to Definition 28. That is, if ℓ is the size of an optimal set cover of I and
c := log N + log t, then it is the case that with probability 1

2
c

· KT(b | y) ≤ 400ℓ,

and with probability 1 − o(1)

2
c

· KT(b | y) > ℓ.

Proof. Let y ∈ {0, 1}∗, n ∈ N, and t ∈ N be as in Lemma 29. Let γ := 1/2. Then, McKTM P
of dimension N := |b| ≥ (nt)5 and M := N1+γ = N1+1/2 = N · N1/2 ≥ Nt = |y| is such that
Lemma 29 immediately implies that

ℓ <
2
c

· KT(b | y) ≤ 400ℓ,

where the first inequality holds with probability 1 − o(1) and the second one holds with
probability 1. ◀

Theorem 27 and Corollary 32 yield the following corollary.

▶ Corollary 33. There exists a polynomial-time computable function m : N → N such that
McKTmP is NP-hard under polynomial-time randomized reductions.

Finally, by combining Lemma 11 and Corollary 33 we get a proof of Theorem 2.

▶ Corollary 34 (Theorem 2, restated). There exists a polynomial-time computable function
m : N → N such that McKTmP is NP-complete under polynomial-time randomized reductions.

FSTTCS 2021

	1 Introduction
	1.1 Prior work
	1.2 Our results
	1.2.1 How significant are our results?

	1.3 Our techniques
	1.4 Paper organization

	2 Preliminaries
	2.1 Notation
	2.2 Probability theory
	2.3 KT complexity
	2.3.1 A universal Turing machine
	2.3.2 Definition of KT complexity, and some properties

	2.4 Minimum Conditional KT-complexity Problem, and variants
	2.5 One-way functions
	2.6 Average-case hardness/easiness

	3 OWFs from average-case hardness of McKTP
	3.1 Proof of

	4 Logspace-computable OWFs from average-case hardness of McKTP
	5 Average-case hardness of McKTP from logspace-computable OWFs: Proof of
	A Hard-on-average problems in NP
	B McKTP is NP-complete under randomized reductions
	B.1 Set Cover
	B.2 Approximation algorithms
	B.3 Proof of

