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Abstract
Hierarchical Clustering is a popular tool for understanding the hereditary properties of a data set.
Such a clustering is actually a sequence of clusterings that starts with the trivial clustering in which
every data point forms its own cluster and then successively merges two existing clusters until all
points are in the same cluster. A hierarchical clustering achieves an approximation factor of α if the
costs of each k-clustering in the hierarchy are at most α times the costs of an optimal k-clustering.
We study as cost functions the maximum (discrete) radius of any cluster (k-center problem) and the
maximum diameter of any cluster (k-diameter problem).

In general, the optimal clusterings do not form a hierarchy and hence an approximation factor
of 1 cannot be achieved. We call the smallest approximation factor that can be achieved for any
instance the price of hierarchy. For the k-diameter problem we improve the upper bound on the price
of hierarchy to 3 + 2

√
2 ≈ 5.83. Moreover we significantly improve the lower bounds for k-center

and k-diameter, proving a price of hierarchy of exactly 4 and 3 + 2
√

2, respectively.
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1 Introduction

Clustering is an ubiquitous task in data analysis and machine learning. In a typical clustering
problem, the goal is to partition a set of objects into different clusters such that only similar
objects belong to the same cluster. There are numerous ways how clustering can be modeled
formally and many different models have been studied in the literature in the last decades.
In many theoretical models, one assumes that the data comes from a metric space and that
the desired number of clusters is given. Then the goal is to optimize some objective function
like k-center, k-median, or k-means. In most cases the resulting optimization problems are
NP-hard and hence approximation algorithms have been studied extensively.

One aspect of real-world clustering problems that is not captured by these models is
that it is often already a non-trivial task to determine for a given data set the right or most
reasonable number of clusters. One particularly appealing way to take this into account
is hierarchical clustering. A hierarchical clustering of a data set is actually a sequence of
clusterings, one for each possible number of clusters. It starts with the trivial clustering
in which every data point forms its own cluster and then successively merges two existing
clusters until all points are in the same cluster. This way for every possible number of clusters,
a clustering is obtained. These clusterings help to understand the hereditary properties of
the data and they provide information at different levels of granularity.
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10:2 The Price of Hierarchical Clustering

While hierarchical clustering is successfully used in many applications, it is not as well
understood from a theoretical point of view as the models in which the number of clusters
is given as part of the input. One reason for this is that it is not obvious how the quality
of a hierarchical clustering should be measured. A possibility that has been explored in
the literature is to define the quality of a hierarchical clustering based on its worst level.
To be precise, let (X , d) be a metric space and P ⊂ X a set of n points. Furthermore let
H = (Hn, . . . , H1) be a hierarchical clustering of P , where Hk denotes a k-clustering, i.e., a
clustering with at most k non-empty clusters. Then Hk−1 arises from Hk by merging some
of the existing clusters. We assume that some objective function like k-center, k-median,
or k-means is selected and denote by cost(Hk) the objective value of Hk with respect to
the selected objective function. Furthermore, let Ok denote an optimal k-clustering and
let cost(Ok) denote its objective value. Then we say that H achieves an approximation
factor of α ≥ 1 if cost(Hk) ≤ α · cost(Ok) for every k, assuming that cost is an objective
that is to be minimized. In this work we consider the radius objective, which is well-known
from the k-center problem. Here the cost is defined as the maximum radius of a cluster.
Furthermore we consider the diameter objective, where the cost is defined as the maximum
distance between any two points lying in the same cluster.

An α-approximation for small α yields a strong guarantee for the hierarchical clustering on
every level. However, in general there do not exist optimal clusterings On, . . . , O1 that form a
hierarchy. So even with unlimited computational resources, a 1-approximation usually cannot
be achieved. In the literature different algorithms for computing hierarchical clusterings
with respect to different objective functions have been developed and analyzed. Dasgupta
and Long [13] and Charikar et al. [8] initiated this line of research and presented both
independently from each other an algorithm that computes efficiently an 8-approximate
hierarchical clustering with respect to the radius and diameter objective. That is, for every
level k, the maximal radius or diameter of any cluster in the k-clustering computed by their
algorithms is at most 8 times the maximal radius or diameter in an optimal k-clustering.
Inspired by [13], Plaxton [21] proposed a constant-factor approximation for the k-median
and k-means objective. Later a general framework that also leads constant approximation
guarantees for many objective functions including in particular k-median and k-means has
been proposed by Lin et al. [19].

Despite these articles and other related work, which we discuss below in detail, many
questions in the area of hierarchical clustering are not yet resolved. We find it particularly
intriguing to find out which approximation factors can be achieved for different objectives.
This question comes in two flavors depending on the computational resources available. Of
course it is interesting to study which approximation factors can and cannot be achieved in
polynomial time, assuming P ̸= NP. Since in general there do not exist hierarchical clusterings
that are optimal on each level, it is also interesting to study which approximation factors can
and cannot be achieved in general without the restriction to polynomial-time algorithms.

For an objective function like radius or diameter we define its price of hierarchy as the
smallest α such that for any instance there exists an α-approximate hierarchical clustering.
Hence, the price of hierarchy is a measure for how much quality one has to sacrifice for the
hierarchical structure of the clusterings.

Our main results are tight bounds for the price of hierarchy for the radius, discrete
radius and diameter objective. Here the difference between radius and discrete radius lies
in the choice of centers. For the radius objective we allow to choose the center of a cluster
C ⊂ P from the whole metric space X , while for the discrete radius objective the center
must be contained in C itself. We will see that this has an impact on the price of hierarchy.
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For all three objectives the algorithms in [13, 8] compute an 8-approximate hierarchical
clustering in polynomial time. Until recently this was also the best known upper bound for
the price of hierarchy in the literature for hierarchical radius and diameter. For discrete
radius, Großwendt [17] shows an upper bound for the price of hierarchy of 4. The best
known lower bounds are 2, proven by Das and Kenyon-Mathieu [11] for diameter and by
Großwendt [17] for (discrete) radius. We improve the framework in [19] for radius and
diameter and show an upper bound on the price of hierarchy of 3 + 2

√
2 ≈ 5.83. The upper

bound of 3 + 2
√

2 for the radius was also recently proved by Bock [5] in independent work.
However our main contribution lies in the design of clustering instances to prove a lower
bound of 4 for discrete radius and 3 + 2

√
2 for radius and diameter.

Related work. Gonzales [14] presents a simple and elegant incremental algorithm for k-center.
The algorithm exhibits the following nice property: given a set P which has to be clustered,
it returns an ordering of the points, such that the first k points constitute the centers of the
k-center solution, and this solution is a 2-approximation for every 1 ≤ k ≤ |P|. However the
resulting clusterings are usually not hierarchically compatible. Dasgupta and Long [13] use
the ordering computed by Gonzales’ algorithm to compute a hierarchical clustering. The
authors present an 8-approximation for the objective functions (discrete) radius and diameter.
In an independent work Charikar et al. [8] also present an 8-approximation for the three
objectives which outputs the same clustering as the algorithm in [13] under some reasonable
conditions [11]. In a recent work, Mondal [20] gives a 6-approximation for hierarchical
(discrete) radius. In the full version of this paper [4] we present an instance where this
algorithm computes only a 7-approximation contradicting the claimed guarantee.

Plaxton [21] shows that a similar approach as in [13] yields a hierarchical clustering
with constant approximation guarantee for the k-median and k-means objectives. Later a
general framework for a variety of incremental and hierarchical problems was introduced by
Lin et al. [19]. Their framework can be applied to compute hierarchical clusterings for any
cost function which satisfies a certain nesting property, especially those of k-median and
k-means. This yields a 20.71α-approximation for k-median and a 576β-approximation for
k-means. Here α = 2.675 and β = 6.357 are the currently best approximation guarantees for
k-median [6] and k-means [2]. The algorithms presented in [8, 13, 19, 21] run in polynomial
time. Unless P=NP there is no polynomial-time α-approximation for α < 2 for hierarchical
(discrete) radius and diameter. For (discrete) radius this is an immediate consequence of
the reduction from dominating set presented by [18]. A similar reduction from clique cover
yields the statement for hierarchical diameter.

However even without time constraints it is not clear what approximation guarantee can
be achieved for hierarchical clustering. It is easy to find examples, where the approximation
guarantee of any hierarchical clustering for all three objectives is greater than one. Das
and Kenyon-Mathieu [11] and Großwendt [17] present instances for diameter and (discrete)
radius, where no hierarchical clustering has an approximation guarantee smaller than 2. On
the other hand Großwendt [17] proves an upper bound of 4 on the approximation guarantee
of hierarchical discrete radius by using the framework of Lin et al. [19]. In recent independent
work Bock [5] improved the bound for hierarchical radius to 3 + 2

√
2. While his approach is

inspired by Dasgupta and Long [13], the resulting algorithm is similar to the algorithm we
present in this paper as an improvement of [19].

Aside from the theoretical results, there also exist greedy heuristics, which are more
commonly used in applications. One very simple bottom up, also called agglomerative,
algorithm is the following: starting from the clustering where every point is separate, it

ESA 2022
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merges in every step the two clusters whose merge results in the smallest increase of the
cost function. For (discrete) radius and diameter this algorithm is known as complete
linkage and for the k-means cost this is Ward’s method [23]. Ackermann et al. [1] analyze
the approximation guarantee of complete linkage in the Euclidean space. They show an
approximation guarantee of O(log(k)) for all three objectives assuming the dimension of the
Euclidean space to be constant. This was later improved by Großwendt and Röglin [15] to
O(1). In arbitrary metric spaces complete linkage does not perform well. There Arutyunova
et al. [3] prove a lower bound of Ω(k) for all three objectives. For Ward’s method Großwendt
et al. [16] show an approximation guarantee of 2 under the strong assumption that the
optimal clusters are well separated.

Recently other cost functions for hierarchical clustering were proposed, which do not
compare to the optimal clustering on every level. Dasgupta [12] defines a new cost function
for similarity measures and presents an O(α log(n))-approximation for the respective problem.
This was later improved to O(α) independently by Charikar and Chatziafratis [7] and
Cohen-Addad et al. [9]. Here α is the approximation guarantee of sparsest cut. However
Cohen-Addad et al. [9] prove that every hierarchical clustering is an O(1)-approximation to
the corresponding cost function for dissimilarity measures when the dissimilarity measure is
a metric. A cost function more suitable for Euclidean spaces was developed by Wang and
Moseley [22]. They prove that a randomly generated hierarchical clustering performs poorly
for this cost function and show that bisecting k-means computes an O(1)-approximation.

Our results. We define the price of hierarchy ρcost with respect to an objective function
cost as the smallest number such that for every clustering instance there exists a hierarchical
clustering which is a ρcost-approximation with respect to cost. Observe that the results [8, 11,
13, 17] imply that the price of hierarchy for radius and diameter is between 2 and 8 and for
discrete radius between 2 and 4. We close these gaps and prove that the price of hierarchy for
radius and diameter is exactly 3+2

√
2 and for discrete radius exactly 4. Notice that this does

not imply the existence of polynomial-time algorithms with approximation guarantee ρcost.
Especially our algorithm which computes a 3 + 2

√
2-approximation for radius and diameter

does not run in polynomial time. This is also the case for the 3 + 2
√

2-approximation for
radius presented by Bock [5] in independent work. Our upper bound of 3 + 2

√
2 can be

achieved by a small improvement in the framework of Lin et al. [19]. However our most
technically demanding contribution is the design of a clustering instance for every ϵ > 0
such that every hierarchical clustering has approximation guarantee at least 3 + 2

√
2 − ϵ for

radius and diameter and 4 − ϵ for discrete radius. It requires a careful analysis of all possible
hierarchical clusterings, which is highly non-trivial for complex clustering instances.

2 Preliminaries

A clustering instance (X , P, d) consists of a metric space (X , d) and a finite subset P ⊂ X .
For a set (or cluster) C ⊂ P we denote by

diam(C) = max
p,q∈C

d(p, q)

the diameter of C. By rad(C, c) = maxp∈C d(c, p) we denote the radius of C with respect to
a center c ∈ X . This is the largest distance between c and a point in C. The radius of C is
defined as the smallest radius of C with respect to a center c ∈ X , i.e.,

rad(C) = min
c∈X

rad(C, c)
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while the discrete radius of C is defined as the smallest radius of C with respect to a center
c ∈ C, i.e.,

drad(C) = min
c∈C

rad(C, c).

A k-clustering of P is a partition of P into at most k non-empty subsets. We consider
three closely related clustering problems.

The k-diameter problem asks to minimize diam(Ck) = maxC∈Ck
diam(C), i.e., the max-

imum diameter of a k-clustering Ck. In the k-center problem we want to minimize the
maximum radius rad(Ck) = maxC∈Ck

rad(C), and in the discrete k-center problem we want
to minimize the maximum discrete radius drad(Ck) = maxC∈Ck

drad(C).

▶ Definition 1. Given an instance (X , P, d), let n = |P|. We call two clusterings C and C′ of
P with |C| ≥ |C′| hierarchically compatible if for all C ∈ C there exists C ′ ∈ C′ with C ⊂ C ′.
A hierarchical clustering of P is a sequence of clusterings H = (Hn, . . . , H1), such that
1. Hi is an i-clustering of P
2. for 1 < i ≤ n the two clusterings Hi−1 and Hi are hierarchically compatible.
For cost ∈ {diam, rad, drad} let Oi denote the optimal i-clustering with respect to cost. We
say that H is an α-approximation with respect to cost if for all i = 1, . . . , n we have

cost(Hi) ≤ α · cost(Oi).

Since optimal clusterings are generally not hierarchically compatible, there is usually no
hierarchical clustering with approximation guarantee α = 1. We have to accept that the
restriction on hierarchically compatible clusterings comes with an unavoidable increase in
the cost compared to an optimal solution.

▶ Definition 2. For cost ∈ {diam, rad, drad} the price of hierarchy ρcost ≥ 1 is defined as
follows.
1. For every instance (X , P, d), there exists a hierarchical clustering H of P that is a

ρcost-approximation with respect to cost.
2. For any α < ρcost there exists an instance (X , P, d), such that there is no hierarchical

clustering of P that is an α-approximation with respect to cost.
Thus ρcost is the smallest possible number such that for every clustering instance there is a
hierarchical clustering with approximation guarantee ρcost.

3 An Upper Bound on the Price of Hierarchy

It is already known that the framework of Lin et al. [19] yields an upper bound of 4 on the
price of hierarchy for the discrete radius [17]. This framework also yields upper bounds for
the price of hierarchy for radius and diameter, which are not tight, however. We present an
improved version that yields the following better upper bound on the price of hierarchy for
radius and diameter.

▶ Theorem 3. For cost ∈ {diam, rad} we have ρcost ≤ 3 + 2
√

2 ≈ 5.828.

For the details we refer to the full version [4].

ESA 2022
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4 A Lower Bound on the Price of Hierarchy

The most challenging contributions of this article are matching lower bounds on the price of
hierarchy for diameter, radius, and discrete radius.

▶ Theorem 4. For cost ∈ {diam, rad} we have ρcost ≥ 3 + 2
√

2 and for cost = drad we have
ρcost ≥ 4.

There is already existing work in this area by Das and Kenyon-Mathieu [11] for the
diameter and Großwendt [17] for the radius. Both show a lower bound of 2 for the respective
objective. To improve upon these results we have to construct much more complex instances
which differ significantly from those in [11, 17].

For every ϵ > 0 we will construct a clustering instance (X , P, d) such that for any
hierarchical clustering H = (H|P|, . . . , H1) of P there is 1 ≤ i ≤ |P| such that cost(Hi) ≥
α·cost(Oi), where Oi is an optimal i-clustering of P with respect to cost and α = (3+2

√
2−ϵ)

for cost ∈ {diam, rad} and α = 4 − ϵ for cost = drad.
The proof is divided in three parts. First we introduce the clustering instance (X , P, d)

and determine its optimal clusterings. In the second part we develop the notion of a bad
cluster. We prove that any hierarchical clustering contains such bad clusters and develop
a lower bound on their cost. In the third part we compare the lower bound to the cost of
optimal clusterings and prove Theorem 4.

4.1 Definition of the Clustering Instance

For n ∈ N we denote by [n] the set of numbers from 1 to n.
Let k ∈ N and Γ = k + 1. For 0 ≤ ℓ ≤ k we define point sets Qℓ and Pℓ recursively as

follows:
1. For ℓ = 0 let P0 = Q0 = [1] and denote by N0 the cardinality of P0.
2. For ℓ > 0 let Qℓ = [Γ · Nℓ−1]Nℓ−1 and Pℓ =

∏ℓ
i=0 Qi. Furthermore set Nℓ = |Pℓ|.

Moreover let ϕℓ : Pℓ →
[
Nℓ] be a bijection for 0 ≤ ℓ ≤ k.

We refer to a point X ∈ Pk as a matrix with k + 1 rows and Nℓ−1 entries in the ℓ-th row.
Thus we write

X = (x01 | . . . | xℓ1, . . . , xℓNℓ−1 | . . . | xk1, . . . , xkNk−1).

Let Xℓ = (xℓ1, . . . , xℓNℓ−1) ∈ Qℓ for 0 ≤ ℓ ≤ k. For a shorter representation we can replace
the ℓ-th row directly by Xℓ and for 0 ≤ i ≤ j ≤ k we can replace the i-th up to j-th row by
X[i:j] = (Xi | . . . | Xj).

Let X ∈ Pk and 1 ≤ ℓ ≤ k. Notice that X[0:ℓ−1] ∈ Pℓ−1 and let m = ϕℓ−1(X[0:ℓ−1]), we
define

AX
ℓ = {(X[0:ℓ−1] | xℓ1, . . . , xℓm−1, ⋆, xℓm+1, . . . , xℓNℓ−1 | X[ℓ+1:k]) | ⋆ ∈ [Γ · Nℓ−1]}.

Thus all coordinates of points in AX
ℓ are fixed and agree with those of X except one which is

variable. Here X[0:ℓ−1] serves as prefix which indicates through ϕℓ−1 which coordinate of Xℓ

can be changed.
We define Aℓ = {AX

ℓ | X ∈ Pk} as the set containing all subsets of this form. It is clear
that Aℓ is a partition of Pk and that it contains only sets of size Γ · Nℓ−1. Furthermore we
set A0 = {{X} | X ∈ Pk}.
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▶ Example 5. If we perform the first three steps of the construction, we get Q0 = [1], Q1 =
[Γ], Q2 = [Γ2]Γ and

P1 = {(1 | x11) | x11 ∈ [Γ]},

P2 = {(1 | x11 | x21, . . . , x2Γ) | x11 ∈ [Γ], x2i ∈ [Γ2] for 1 ≤ i ≤ Γ}.

Since ϕ0 is a map between two sets of cardinality one, this map is always unique. Now
suppose that we picked ϕ1 such that ϕ1((1 | x11)) = x11 for all (1 | x11) ∈ P1. Then the
partition A1 consists of the sets

{(1 | ⋆ | x21, . . . , x2Γ) | ⋆ ∈ [Γ]}

with x2i ∈ [Γ2] for all 1 ≤ i ≤ Γ. The partition A2 consists of the sets

{(1 | x11 | x21, . . . , x2x11−1, ⋆, x2x11+1, . . . , x2Γ) | ⋆ ∈ [Γ2]}

with x11 ∈ [Γ] and x2i ∈ [Γ2] for all 1 ≤ i ≤ Γ with i ̸= x11. ⌟

Now let G = (V, E, w) denote the weighted hyper-graph with V = Pk and E =
⋃k

i=1 Ai.
The weight of a hyper-edge e ∈ E is set to ℓ iff e ∈ Aℓ. For 0 ≤ ℓ ≤ k, the sub-graph
Gℓ = (Vℓ, Eℓ, wℓ) is given by Vℓ = Pk, Eℓ =

⋃ℓ
i=0 Ai and wℓ = w|Eℓ

.
We extend G to a hyper-graph H = (V ′, E′, w′) as follows. Let V ′ = V ∪

⋃k
i=0{vA | A ∈

Ai} and E′ = E ∪
⋃k

i=0{{v, vA} | A ∈ Ai, v ∈ A}. Thus H contains one vertex for every
A ∈

⋃k
i=0 Ai and this vertex is connected by edges to every vertex v ∈ A. For e ∈ E we set

w′(e) = w(e) and for e = {v, vA} for some A ∈ Aℓ and v ∈ A we set w′(e) = ℓ/2.
The clustering instance (X , P, d) is given by X = V ′, P = V , and d as the shortest path

metric on H. Observe that the extension of G to H is only necessary for the lower bound for
the radius but not for the diameter and the discrete radius. This is because the additional
points V ′ \ V do not belong to P and are hence irrelevant for the clustering instance for the
diameter and discrete radius. In the lower bound for the radius they will be used as centers,
however.

▶ Example 6. For k = 2 we obtain Γ = 3 and P = P2. Suppose that we again picked ϕ1
such that ϕ1((1 | x11)) = x11 for all (1 | x11) ∈ P1. By the above definition the shortest path
between the two points X = (1 | 1 | 1, 1, 1), Y = (1 | 1 | 2, 2, 1) ∈ P2 in G is of the form

X = (1 | 1 | 1, 1, 1), (1 | 1 | 2, 1, 1), (1 | 2 | 2, 1, 1), (1 | 2 | 2, 2, 1), (1 | 1 | 2, 2, 1) = Y.

Thus the distance is given by d(X, Y ) = 2 + 1 + 2 + 1 = 6. ⌟

▶ Lemma 7. Let p, q ∈ V , then d(p, q) is the length of a shortest path between p and q in G.

Proof. By definition d(p, q) is the length of a shortest path between p and q in H. Suppose
the shortest path contains a vertex vA for some A ∈

⋃k
i=0 Ai with v ∈ A as predecessor and

w ∈ A as ancestor. Since v and w are connected in H by the hyper-edge A we can delete vA

from the path and the length of the path does not change. The resulting path is also a path
in G, so d(p, q) is also the length of a shortest path between p and q in G. ◀

Next we state some structural properties of the graph G and the clustering instance
(X , P, d). To establish a lower bound on the approximation factor of a hierarchical clustering
we first focus on the optimal clusterings of the instance (X , P, d). One can already guess that
Aℓ is an optimal clustering with Nk

ΓNℓ−1
clusters with respect to cost ∈ {diam, rad, drad} and

we will prove this in this section. First we need the following statement about the connected
components of Gℓ.

ESA 2022
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y`s → z`s y`s′ → z`s′
V Y
`−1

V Y ′

`−1 V Y ′′

`−1

V Z
`−1

Figure 1 Here we see the construction of the path. It corresponds to changing the coordinates of
Y successively until they match Z. We use an edge in Aℓ to change yls to zls, next we change yls′

to zls′ and proceed like this until we obtain Z. The respective edges are then connected to a path
from V X

ℓ−1 to V Z
ℓ−1.

▶ Lemma 8. The vertex set of every connected component in Gℓ has cardinality Nℓ and is
of the form V X

ℓ = {(X ′ | X) | X ′ ∈ Pℓ} for a given X = (Xℓ+1 | . . . | Xk) ∈
∏k

i=ℓ+1 Qi.

Proof. Notice that |V X
ℓ | = Nℓ and that {V X

ℓ | X ∈
∏k

i=ℓ+1 Qi} is a partition of V .
Furthermore since Eℓ =

⋃ℓ
i=0 Ai any edge e ∈ Eℓ is either completely contained in or

disjoint to V X
ℓ .

It is left to show that V X
ℓ is connected. We prove this via induction over ℓ. For ℓ = 0

this is clear because |V X
0 | = 1. For ℓ > 0 let Y = (Yℓ | X), Z = (Zℓ | X) ∈

∏k
i=ℓ Qi. By the

induction hypothesis we know that the sets V Y
ℓ−1, V Z

ℓ−1 are connected. To prove that V X
ℓ is

connected it is sufficient to show that there is a path from a point in V Y
ℓ−1 to a point in V Z

ℓ−1.
We show this claim by induction over the number m of coordinates in which Y and Z differ.
For m = 0 there is nothing to show. If m > 0 pick 1 ≤ s ≤ Nℓ−1 such that yℓs ̸= zℓs and let
P = ϕ−1

ℓ−1(s) ∈
∏ℓ−1

i=0 Qi. Consider the point (P | Yℓ | X) which is contained in V Y
ℓ−1 . This

point is also contained in the set

{(P | yℓ1, . . . , yℓs−1, ⋆, yℓs+1, . . . , yℓNℓ−1 | X) | ⋆ ∈ [Γ · Nℓ−1]} ∈ Eℓ.

Thus there is an edge in Gℓ connecting a point in V Y
ℓ−1 to a point in V Y ′

ℓ−1 with Y ′ =
(yℓ1, . . . , yℓs−1, zℓs, yℓs+1, . . . , yNℓ−1 | X). Now Y ′ and Z differ in m − 1 coordinates, thus
there is a path between two points in V Y ′

ℓ−1 and V Z
ℓ−1 by induction hypothesis. If we combine

this with the induction hypothesis that V Y ′

ℓ−1 is connected this yields the claim (see Figure 1
for an illustration). ◀

▶ Lemma 9. Any clustering of (X , P, d) with less than Nk

Nℓ−1
clusters costs at least ℓ if

cost ∈ {diam, drad} and ℓ/2 if cost = rad.

Proof. The shortest path in G between any two points which lie in different connected
components of Gℓ−1 must contain an edge of weight ≥ ℓ. Thus any set of points M ⊂ V

which is disconnected in Gℓ−1 has diameter ≥ ℓ. Remember that the discrete radius of M is
given by drad(M) = minc∈M maxp∈M d(p, c). For every possible choice of c ∈ M there exists
a point p ∈ M which is not in the same connected component of Gℓ−1 as c, thus d(c, p) ≥ ℓ

and therefore drad(M) ≥ ℓ and rad(M) ≥ diam(M)/2 ≥ ℓ/2.
We conclude that if cost ∈ {diam, drad} any cluster of cost smaller than ℓ is contained in

one of the sets V X
ℓ−1 for some X ∈

∏k
i=ℓ Qi by Lemma 8 and any clustering with less than∣∣ ∏k

i=ℓ Qi

∣∣ clusters costs at least ℓ. By the same argument if cost = rad any cluster of cost
smaller than ℓ/2 is contained in one of the sets V X

ℓ−1 for some X ∈
∏k

i=ℓ Qi by Lemma 8 and
any clustering with less than

∣∣ ∏k
i=ℓ Qi

∣∣ clusters costs at least ℓ/2. Since
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∣∣∣ k∏
i=ℓ

Qi

∣∣∣ =
∣∣ ∏k

i=0 Qi

∣∣∣∣ ∏ℓ−1
i=0 Qi

∣∣ = Nk

Nℓ−1

this proves the lemma. ◀

▶ Corollary 10. For 1 ≤ ℓ ≤ k and cost ∈ {diam, rad, drad} the clustering Aℓ is an optimal
Nk

ΓNℓ−1
-clustering for the instance (X , P, d). Furthermore diam(Aℓ) = drad(Aℓ) = ℓ and

rad(Aℓ) = ℓ/2.

4.2 Characterization of Hierarchical Clusterings
Let from now on H = (HNk

, . . . , H1) denote a hierarchical clustering of (X , P, d). We
introduce the notion of bad clusters in H Nk

ΓNℓ−1
which are clusters whose cost increases

repeatedly, as we will see later. In this section we prove the existence of such clusters in H

and we give a lower bound on their cost.

▶ Definition 11. We call all clusters C ∈ HNk
bad at time 0 and denote by Ker0(C) = C

the kernel of C at time 0 and set Bad(0) = HNk
.

For 1 ≤ ℓ ≤ k we say that a cluster C ∈ H Nk
ΓNℓ−1

is anchored at ℓ ≤ ℓ′ ≤ k if the set⋃
D∈Bad(ℓ−1) : D⊂C Kerℓ−1(D) is

1. connected in Gℓ′ ,
2. disconnected in Gℓ′−1.

We call C bad at time ℓ if C is anchored at some ℓ′ ≥ ℓ. We denote by Bad(ℓ) ⊂ H Nk
ΓNℓ−1

the
set of all bad clusters at time ℓ. If C is bad we define the kernel of C as the union of all
kernels of bad clusters at time ℓ − 1 contained in C, i.e.,

Kerℓ(C) =
⋃

D∈Bad(ℓ−1) : D⊂C

Kerℓ−1(D).

All clusters in H Nk
ΓNℓ−1

\Bad(ℓ) are called good.

The example in Figure 2 shows that a bad cluster at time ℓ can contain clusters which are
good at time ℓ − 1. However we are only interested in points that are contained exclusively
in bad clusters at any time t < ℓ. The set Kerℓ(C) contains exactly such points.

We will use two crucial properties to prove the final lower bound on the approximation
factor of any hierarchical clustering H of (X , P, d). We first observe that bad clusters exist
in H for every time-step 1 ≤ ℓ ≤ k and second that these clusters have a large cost compared
to the optimal clustering.

▶ Lemma 12. For all 0 ≤ ℓ ≤ k we have
∑

C∈Bad(ℓ) |Kerℓ(C)| ≥ Γ−ℓ
Γ Nk.

An immediate consequence of Lemma 12 is the existence of bad clusters at time ℓ for
any 0 ≤ ℓ ≤ k. To prove that their (discrete) radius and diameter is indeed large we need a
lower bound on the distance between two points X, Y ∈ P that lie in different connected
components of Gj−1 for some 1 ≤ j ≤ k.

Suppose that the points X and Y only differ in one coordinate, i.e., there is a 1 ≤ s ≤ Nj−1
such that xjs ̸= yjs, while X and Y agree in all other coordinates. There is only one edge
in Gj connecting V

X[j:k]
j−1 with V

Y[j:k]
j−1 . Let P = ϕ−1

j−1(s), then this edge connects the points

ESA 2022
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V X
`−1 V Y

`−1

V Z
`−1 V W

`−1

A
B

C

D

E

V X
`−1 V Y

`−1

V Z
`−1 V W

`−1

D

E

A
B

C

Figure 2 An illustration of the evolution of good and bad clusters: In the example, we see five
clusters at time ℓ − 1. The clusters A, B, D, E are assumed to be bad, with their kernels depicted
in dark gray, while C is assumed to be a good cluster. At time ℓ, clusters A, B and C are merged.
The resulting cluster is bad because the kernels of A and B lie in different connected components of
Gℓ−1. Clusters D and E are still present at time ℓ, but now D is a good cluster since its kernel is
completely contained in V Z

ℓ−1, while E is still bad, since its kernel is disconnected in Gℓ−1.

xjs → yjs

V
X[j:k]

j−1 V
Y[j:k]

j−1

j

(P | X[j:k]) (P | Y[j:k])X Y

Figure 3 A shortest path between X and Y . It consists of two shortest paths inside the connected
components of Gj−1 and the unique edge of weight j between these components.

(P | X[j:k]) and (P | Y[j:k]). If we connect X to (P | X[j:k]) and (P | Y[j:k]) to Y via a
shortest path, this results in a path from X to Y , see Figure 3. We show that this path is
indeed a shortest path between X and Y and generalize this to arbitrary X and Y which
are disconnected in Gj−1.

▶ Lemma 13. Let X, Y ∈ P be two points and suppose there is 1 ≤ j ≤ k and 1 ≤ s ≤ Nj−1
such that xjs ̸= yjs. Let P = ϕ−1

j−1(s) ∈
∏j−1

i=0 Qi. Then

d(X, Y ) ≥ d
(
X, (P | X[j:k])

)
+ j + d

(
Y, (P | Y[j:k])

)
.

We now define the so called anchor set Ancℓ(C) of a bad cluster C at time ℓ. If C is
anchored at ℓ′ then Ancℓ(C) is the union of ℓ′ and the anchor set of some bad cluster D ⊂ C

at time ℓ − 1. If we choose D appropriately the sum of anchors in Ancℓ(C) is a lower bound
on the discrete radius of C, as we show later. It is clear that ℓ′ itself is a lower bound on
the discrete radius since Kerℓ(C) is disconnected in Gℓ′−1 by definition. If we additionally
assume that the discrete radius of D is large, e.g., lower bounded by the sum of anchors in
Ancℓ−1(D), then it is reasonable to assume that the discrete radius of C is lower bounded by
some function in ℓ′ and the sum of anchors in Ancℓ−1(D). First we give a formal definition
of Ancℓ(C) and how to choose D.

▶ Definition 14. Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ which is anchored at ℓ′ ≥ ℓ.
If ℓ = 1 we define the anchor set of C as Anc1(C) = {ℓ′} and set prev(C) = {X} for some
X ∈ C.

For ℓ > 1 we distinguish two cases.
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Case 1: C contains a bad cluster D which is bad at time ℓ − 1 and anchored at ℓ′. We then
set Ancℓ(C) = Ancℓ−1(D) and prev(C) = D.

Case 2: C does not contain such a cluster. Then let D ⊂ C be a bad cluster at time ℓ − 1
minimizing∑

a∈Ancℓ−1(D)

a

among all clusters D′ ∈ Bad(ℓ − 1) with D′ ⊂ C. We set Ancℓ(C) = Ancℓ−1(D) ∪ {ℓ′}
and prev(C) = D.

Observe that in Case 2 of the previous definition, the bad cluster D must be anchored at
some ℓD < ℓ′.

With the help of Lemma 13 we are able to show how the discrete radius and diameter of
a bad cluster, depends on the sum of anchors.

▶ Lemma 15. Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ anchored at ℓ′. Then for any
point Z ∈ P there is X ∈ Kerℓ(C) such that

d(Z, X) ≥
∑

a∈Ancℓ(C)

a.

▶ Lemma 16. Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ anchored at ℓ′. Then there
are two points X, Y ∈ Kerℓ(C) such that

d(X, Y ) ≥ ℓ′ + 2
∑

a∈Ancℓ(C)\{ℓ′}

a.

4.3 Comparison to Optimal Clusterings
Our initial motivation was to construct an instance where any hierarchical clustering has a
high approximation ratio. If we consider an arbitrary time 1 ≤ ℓ ≤ k then the hierarchical
clustering H on (X , P, d) may be even optimal at time ℓ. Thus the bounds which we develop
in Lemma 15 and Lemma 16 on the discrete radius and diameter of bad clusters are useless
without linking the cost of a bad cluster at time ℓ to the cost of bad clusters at other time
steps. Therefore we construct a sequence of clusters C1 ⊂ C2 . . . ⊂ Ck where Ci is a bad
cluster at time i such that Anc1(C1) ⊂ Anc2(C2) ⊂ . . . ⊂ Anck(Ck). We then show with the
help of Lemma 15 and Lemma 16 that at least one of these clusters has a high discrete radius
and diameter compared to the optimal cost.

▶ Lemma 17. Let Ck be a bad cluster at time k. For 1 ≤ i ≤ k−1 we define Ci = prev(Ci+1).
For all 1 ≤ i ≤ k − 1 cluster Ci is bad at time i and one of the following two cases occurs:
1. Anci(Ci) = Anci+1(Ci+1),
2. Anci+1(Ci+1)\{ℓ} = Anci(Ci), where ℓ = max Anci+1(Ci+1).

Proof. For i = k cluster Ck is bad at time k by assumption. If Ci+1 is a bad cluster at time
i + 1 then Ci = prev(Ci+1) is a bad cluster at time i, by definition of prev.

Let Ci be anchored at ℓ′ ≥ i and Ci+1 be anchored at ℓ ≥ i + 1. Since Ci is a bad cluster
at time i with Ci ⊂ Ci+1 we have by definition of Keri+1(Ci+1) that Keri(Ci) ⊂ Keri+1(Ci+1)
and thus ℓ′ ≤ ℓ. If ℓ′ = ℓ we obtain by Definition 14, that Anci(Ci) = Anci+1(Ci+1), so the
lemma holds in this case.

If ℓ′ < ℓ we know by Definition 14 that Anci(Ci) = Anci+1(Ci+1)\{ℓ}. So the lemma also
holds in this case. ◀

ESA 2022
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▶ Corollary 18. Let Ck be a bad cluster at time k. For 1 ≤ i ≤ k−1 we define Ci = prev(Ci+1).
Let Anck(Ck) = {ℓ1, . . . , ℓs} such that ℓt−1 < ℓt for all 2 ≤ t ≤ s and let ℓ0 = 0. Then for
any 1 ≤ t ≤ s and for any i with ℓt−1 < i ≤ ℓt, we have {ℓ1, . . . , ℓt} ⊂ Anci(Ci).

Proof. We prove this via induction over i, starting from i = k in decreasing order. There is
nothing to show for i = k. For i < k we distinguish two cases. If Anc(Ci) = Anci+1(Ci+1),
the lemma follows from the induction hypothesis.

Otherwise remember that Anci(Ci) ⊂ Anck(Ck) and ℓt−1 < i. Since max Anci(Ci) ≥ i we
obtain that max Anci(Ci) ∈ {ℓt, . . . , ℓs} and therefore ℓt ≤ max Anci(Ci).

By Lemma 17 we know that Anci(Ci) = Anci+1(Ci+1)\{ℓ}, where ℓ = max Anci+1(Ci+1).
Thus ℓt ≤ max Anci(Ci) < max Anci+1(Ci+1) = ℓ and by induction hypothesis we obtain

{ℓ1, . . . , ℓt} ⊂ Anci+1(Ci+1)\{ℓ} = Anci(Ci). ◀

Before we are able to prove the theorem we need some final lemma.

▶ Lemma 19. For every ϵ > 0 there exists k ∈ N such that for every s ∈ N any sequence of
s + 1 numbers (ℓ0, . . . , ℓs) ∈ Rs+1

≥0 with ℓ0 = 0 and ℓs = k satisfies the following.
1. There exists 1 ≤ t ≤ s such that for α1 = 4 − ϵ and ∆1 = 1 we have

ℓt + ∆1
∑t−1

i=0 ℓi

ℓt−1 + 1 > α1.

2. There exists 1 ≤ t ≤ s such that for α2 = 3 + 2
√

2 − ϵ and ∆2 = 2 we have

ℓt + ∆2
∑t−1

i=0 ℓi

ℓt−1 + 1 > α2.

▶ Theorem 4. For cost ∈ {diam, rad} we have ρcost ≥ 3 + 2
√

2 and for cost = drad we have
ρcost ≥ 4.

Proof. Let ϵ > 0 and k be the respective number from Lemma 19. We claim that the
approximation factor of any hierarchical clustering H = (HNk

, . . . , H1) on the instance
(X , P, d) is larger than 3 + 2

√
2 − ϵ if cost ∈ {diam, rad} and larger than 4 − ϵ if cost = drad.

First we use Lemma 12 to observe that there is a cluster Ck ∈ H Nk
ΓNk−1

that is bad at time

k. For 1 ≤ i ≤ k − 1 we define Ci = prev(Ci+1). Let Anck(Ck) = {ℓ1, . . . , ℓs} with ℓt−1 < ℓt

for 2 ≤ t ≤ s and let ℓ0 = 0. We know by Corollary 18, that for any 1 ≤ t ≤ s and for
i = ℓt−1 +1 we have {ℓ1, . . . , ℓt} ⊂ Anci(Ci). Let ℓ′ = max Anci(Ci), we obtain by Lemma 16
and Lemma 15 that

diam(Ci) ≥ ℓ′ + 2
∑

a∈Anci(Ci)\{ℓ′}

a ≥ ℓt + 2
t−1∑
u=1

ℓu,

rad(Ci) ≥ diam(Ci)
2 ≥

ℓt + 2
∑t−1

u=1 ℓu

2 ,

drad(Ci) ≥
∑

a∈Anci(Ci)

a ≥
t∑

u=1
ℓu.

Remember that by Corollary 10 Ai is an optimal Nk

ΓNi−1
-clustering with cost(Ai) = i if

cost ∈ {diam, drad} and cost(Ai) = i/2 if cost = rad. We obtain
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rad(Ci)
rad(Ai)

= 2rad(Ci)
2rad(Ai)

≥ diam(Ci)
diam(Ai)

≥
ℓt + 2

∑t−1
u=1 ℓu

ℓt−1 + 1
drad(Ci)
drad(Ai)

≥
∑t

u=1 ℓu

ℓt−1 + 1

which are lower bounds on the approximation factor of H .
We apply Lemma 19 on (ℓ0, . . . , ℓs) to observe that there is 1 ≤ t′ ≤ s such that

ℓt′ + 2
∑t′−1

u=1 ℓu

ℓt′−1 + 1 > 3 + 2
√

2 − ϵ

and an 1 ≤ t′′ ≤ s such that∑t′′

u=1 ℓu

ℓt′′−1 + 1 > 4 − ϵ.

This proves the theorem. ◀

5 Conclusions and Open Problems

We have proved tight bounds for the price of hierarchy with respect to the diameter and
(discrete) radius. It would be interesting to also obtain a better understanding of the price
of hierarchy for other important objective functions like k-median and k-means. The best
known upper bound is 16 for k-median [10] and 32 for k-means [17] but no non-trivial lower
bounds are known. Closing this gap also for these objectives is a challenging problem for
further research.

Another natural question is which approximation factors can be achieved by polynomial-
time algorithms. The algorithm we used in this article to prove the upper bounds is not a
polynomial-time algorithm because it assumes that for each level k an optimal k-clustering is
given. The approximation factors worsen if only approximately optimal clusterings are used
instead. It is known that 8-approximate hierarchical clusterings can be computed efficiently
with respect to the diameter and (discrete) radius [13]. It is not clear whether or not it is
NP-hard to obtain better hierarchical clusterings. The only NP-hardness results come from
the problems with given k. Since computing a (2 − ϵ)-approximation for k-clustering with
respect to the diameter and (discrete) radius is NP-hard, this is also true for the hierarchical
versions. However, this is obsolete due to our lower bound, which shows that in general there
does not even exist a (2 − ϵ)-approximate hierarchical clustering.
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