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Abstract
We investigate the Euclidean d-Dimensional Stable Roommates problem, which asks whether
a given set V of d · n points from the 2-dimensional Euclidean space can be partitioned into n

disjoint (unordered) subsets Π = {V1, . . . , Vn} with |Vi| = d for each Vi ∈ Π such that Π is stable.
Here, stability means that no point subset W ⊆ V is blocking Π, and W is said to be blocking Π
if |W | = d such that

∑
w′∈W

δ(w, w′) <
∑

v∈Π(w) δ(w, v) holds for each point w ∈ W , where Π(w)
denotes the subset Vi ∈ Π which contains w and δ(a, b) denotes the Euclidean distance between
points a and b. Complementing the existing known polynomial-time result for d = 2, we show
that such polynomial-time algorithms cannot exist for any fixed number d ≥ 3 unless P=NP. Our
result for d = 3 answers a decade-long open question in the theory of Stable Matching and Hedonic
Games [18, 1, 10, 26, 21].
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1 Introduction

We study the computational complexity of a geometric and multi-dimensional variant of the
classical stable matching problem, called Euclidean d-Dimensional Stable Roommates
(Euclid-d-SR). This problem is to decide whether a given set V of d · n agents, each
represented by a point in the two-dimensional Euclidean space R2, has a d-dimensional
stable matching (in short, d-stable matching). Here, each agent x ∈ V has a preference
list over all (unordered) size-d agent sets containing x which is derived from the Euclidean
distances between the points. More precisely, agent x prefers subset S to subset T if the
sum of Euclidean distances from x to S is smaller than the sum of the distances to T . We
call preferences over subsets of agents which are based on the sum of Euclidean distances
Euclidean preferences. A d-dimensional matching is a partition of V into n disjoint agent
subsets Π = {V1, . . . , Vn} with |Vi| = d for all i ∈ {1, . . . , n}. In this way, each agent v ∈ V

is assigned to a subset in Π. An agent subset V ′ is blocking the d-dimensional matching Π
if |V ′| = d and each agent in V ′ prefers V ′ to its “assigned” agent subset in Π. A d-stable
matchings is a d-matchings that is not blocked by a subset of agents of size d.
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36:2 Multi-Dimensional Stable Roommates in 2-Dimensional Euclidean Space

When allowing agents to have arbitrary preferences, we arrive at the d-dimensional
Stable Roommates (d-SR) problem with 2-SR being equivalent to the classical Stable
Roommates problem [14, 17]. It is well-known that not every instance of Stable Room-
mates admits a 2-stable matching, but deciding whether there exists one is polynomial-time
solvable [17]. Fortunately, if we restrict the preferences to be Euclidean, then a 2-stable
matching always exists and it can be found in polynomial time: Iteratively pick two remaining
agents who are closest to each other and match them [1]. One may be tempted to apply
this greedy approach to the case when d = 3. However, this would only work if it can
find and match a triple of agents in each step such that this triple is the most preferred
one of all three. Since such a “most-preferred” triple may not always exist, the prospects
become less clear. Indeed, Arkin et al. [1] showed that not every instance of Euclid-3-SR
admits a 3-stable matching. To the best of our knowledge, nothing about the existence of
Euclid-d-SR is known for any fixed d ≥ 4. In particular, the no instance by Arkin et al. will
not work for any fixed d ≥ 4. Arkin et al. left open the computational complexity of finding a
3-stable matching. The same question has been repeatedly asked since then [18, 21, 10, 26, 6].
Nevertheless, d-SR (i.e., for general preferences) has been known to be NP-complete for
d = 3. Hence, it is of particular importance to search for natural restricted subcases, e.g.,
under Euclidean preferences, which may allow for efficient algorithms.

Our contribution. In this work, we aim at settling the computational complexity of Euclid-
d-SR for all fixed d ≥ 3. Arkin et al. [1] showed that there is always a 3-dimensional matching
which is approximately stable, which sparks hope for a polynomial-time algorithm for d = 3.
We destroy such hope by showing that Euclid-3-SR is NP-hard. We achieve this by reducing
from an NP-complete planar variant of the Exact Cover by 3 Sets problem, where we
make use of a novel chain gadget (see the orange and blue parts in Figure 3) and a star
gadget (see Figure 1) which is adapted from the no-instance of Arkin et al. See the idea part
in Section 3 for more details.

The same construction does not work for d ≥ 4 since a no-instance for Euclid-3-SR does
not remain a no-instance for Euclid-4-SR. However, we manage to derive two extended star
structures, one for odd d and the other for even d (see the right and left figures of Figure 4,
respectively), adapt the remaining component gadgets to show hardness for all fixed d ≥ 4.
Together, we show the following.

▶ Theorem 1. Euclid-d-SR is NP-complete for every fixed d ≥ 3.

Related work. Knuth [19] proposed to generalize the well-known Stable Marriage
problem (a bipartite restriction of the Stable Roommates problem) to the 3-dimensional
case. There are many such generalized variants in the literature, including the NP-complete
3-SR problem [18]. Huang [16] strengthen the result by showing that 3-SR remains NP-hard
even for additive preferences. Herein, each agent x ∈ V has cardinal preferences µx : V \
{x} → R over all other agents such that x prefers {x, s1, s2} to {x, t1, t2} if and only if
µx(s1) + µx(s2) > µx(t1) + µx(t2). Deineko and Woeginger [10] strengthen the result of
Huang by showing that 3-SR remains NP-hard even for metric preferences: µx(y) = µy(x) ≥
0 and µx(y) + µy(z) ≤ µx(z) such that x prefers {x, s1, s2} to {x, t1, t2} if and only if
µx(s1) + µx(s2) < µx(t1) + µx(t2). It is straightforward to see that Euclidean preferences
are metric preferences and metric preferences are additive. We thus strengthen the results
of Deineko and Woeginger, and Huang, by showing that the hardness remains even for
Euclidean preferences. Recently, McKay and Manlove [22] strengthen the result of Huang [16]
by showing that the NP-hardness remains even if the cardinal preferences are binary, i.e.,
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µx(y) ∈ {0, 1} for all other agents y. This result is not comparable to ours since binary
preferences and Euclidean preferences are not comparable. They also show that 3-SR becomes
polynomial-time solvable when the preferences are binary and symmetric.

Multi-dimensional stable matchings are equivalent to the so-called fixed-size stable cores
in hedonic games [12], where each coalition (i.e., a non-empty subset of agents) in the core
must have the same size, and stability only needs to be guaranteed for any other coalition
of the same size.1 Hence, our NP-hardness result also transfers to the case of finding a
fixed-size stable core in the scenario where the agents in the hedonic game have Euclidean
preferences. Hedonic games have been studied under graphical preference models [11, 24],
where there is an underlying social network (a directed graph) such that agents correspond
to the vertices in the graph. The general idea is to assume that agents prefer to be with
their own out-neighbors more than non-out-neighbors. The Euclidean preference model is
related to the graphical preference model where the underlying graph is planar. However,
the Euclidean model is more fine-grained and assumes that the intensity of the preferences
also depends on the distance of the agents. Notably, under the graphical model, a stable core
always exists and it can be found in linear time [11], but verifying whether a given partition
is stable is NP-hard [7]. Hedonic games with fixed-size coalitions have been studied for
other solution concepts such as strategy-proofness [27], Pareto optimality [9], and exchange
stability [3].

Other generalized variants include the study of 3-stable matching with cyclic prefer-
ences [13, 4, 20], with preferences over individuals [18], and the study of the higher-dimensional
case [6] and of other restricted preference domains [5]. We refer to the textbook by Man-
love [21] for more references.

Paper outline. In Section 2, besides introducing necessary concepts and notations used
throughout the paper, we describe a crucial star-structured instance of Euclid-3-SR (see
Example 2), which serves as a tool of our NP-hardness reduction. The proof of Theorem 1
is divided into two sections: In Section 3, we consider the case of d = 3 and show-case in
detail how to combine the star-structured instance with two new gadgets, one for the local
replacement and one for the enforcement, to obtain NP-hardness. In Section 4, we show how
to carefully adapt the star-structured instance (which only works for d = 3) and modify the
reduction to show hardness for any fixed d ≥ 4. We conclude in Section 5. Due to space
constraints, some figures, examples, and (part of) the proofs for results marked by ⋆ are
deferred to the full version [8].

2 Preliminaries

Given a non-negative integer t, we use “[t]” (without any prefix) to denote the set {1, . . . , t}.
Throughout the paper, if not stated explicitly, we assume that ε and εd are small fractional
values with 0 < ε < 0.001 and 0 < εd < 1

1000d , where d ≥ 3. By “close to zero” we mean a
value which is smaller than ε and εd.

For each fixed integer d ≥ 2, an instance of Euclidean d-Dimensional Stable
Roommates (Euclid-d-SR) consists of a set V = {1, . . . , d · n} of d · n agents and an
embedding E : V → R2 of the agents into 2-dimensional Euclidean space. We call a non-
empty subset V ′ ⊆ V of agents a coalition. The preference list ⪰x of each agent x ∈ V over

1 A stable core is a partition Π of the agents into disjoint coalitions such that no subset of agents would
block the partition Π by forming its own new coalition.

ESA 2022
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all possible size-d coalitions containing x is derived from the sum of the Euclidean distances
from x to the coalition. More precisely, for each two size-d coalitions S = {x, a1, . . . , ad−1}
and T = {x, b1, . . . , bd−1} containing x we say that x weakly prefers S to T , denoted as
S ⪰x T , if the following holds:∑

j∈[d−1]

δ(E(x), E(aj)) ≤
∑

j∈[d−1]

δ(E(x), E(bj)),

where δ(p, q) :=
√

(p[1] − q[1])2 + (p[2] − q[2])2. We use S ≻x T (i.e., x preferring S to T )
and S ∼x T (i.e., x indifferent between S and T ) to refer to the asymmetric and symmetric
part of ⪰x, respectively. To ease notation, for an agent x and a preference list L over a
subset F of size-d coalitions, we use L ≻x · · · to indicate that agent x prefers every size-d
coalition in F over every size-d coalition not in F and her preferences over F are according
to L. Further, we use the agent and her embedded points interchangeably, and the distance
between two agents means the distance between their embedded points. For each agent x

and each coalition S ⊆ V , we use δ(x, S) to refer to the sum of Euclidean distances from x

to each member in S: δ(x, S) =
∑

y∈S δ(x, y).
See the introduction for the definition of d-matchings, blocking coalitions, and d-stable

matchings. Given a d-matching Π and an agent x ∈ V , let Π(x) denote the coalition that
contains x. The problem studied in this paper is defined as follows:

Euclid-d-SR
Input: An agent set V = {1, . . . , d · n} and an embedding E : V → R2.
Question: Is there a d-stable matching?

Note that since stability for each fixed d can be checked in polynomial time, Euclid-d-SR is
contained in NP for every fixed d.

Not every Euclid-3-SR instance admits a 3-stable matching. Arkin et al. [1] provided a
star-structured instance which does not. In Example 2, we describe an adapted variant of
their instance, which is a decisive component of our hardness reduction.

▶ Example 2. Consider an instance which contains at least 12 agents called W = {0, . . . , 11}
where the 12 agents are embedded as given in Figure 1. In the embedding of W \ {10, 11},
the five inner-most points, namely 0 to 4, form a regular pentagon with edge length a. For
each i ∈ {0, . . . , 4}, the three points i, i + 1 mod 5, and i + 5 form a triangle with side
lengths a, b, c such that a < b < c < ℓ, where ℓ denotes the diagonal of the regular pentagon.
Moreover, the angle θ at points i + 1 mod 5, i, i + 5 is at most 90 degrees. This ensures
that the distance between points (i + 1 mod 5) + 5 and i is strictly larger than ℓ (we will use
this fact later). Except for point 5 (marked in red), the closest neighbor of each point i + 5
is i, followed by i + 1 mod 5. Point 5’s two closest neighbors are points 10 and 11 with
a < δ(5, 10) < b and a < δ(5, 11) < b, followed by points 0 and 1. The distance between 10
and 11 is close to zero, with the intention to ensure that every 3-stable matching must match
them together. The distance from 10 (resp. 11) to any agent in W \ {5, 10, 11} is larger than
the diagonal length ℓ while the distance from 10 (resp. 11) to any agent not in W is larger
than δ(5, 10) − ε. Finally, the distance between any agent from W \ {10, 11} to any agent
not from W \ {10, 11} is strictly larger than ℓ.

To specify the embedding of the agents from W , we use the polar coordinate system. We
first fix the embeddings of 5, 10, 11 to ensure the distances between them are as stated above.
Then, we fix points 0 and 1 and the centroid of the regular pentagon to ensure the distances
satisfy a < b < c < ℓ, and the angle θ at points 1, 0, 5 is at most 90 degrees, and the angle
at points 0, 5, j, j ∈ {10, 11}, is more than 90 degrees. Once these points are fixed we can
determine the other points by a simple calculation.



J. Chen and S. Roy 36:5

b

ca

b
c

a

b
c

a

b
c

a

b c

a

ℓ

0

1

2

3

4

5

67

8

9

θ

10

11

<b

Figure 1 A star-structured instance adapted from Arkin et al. [1]; see Example 2. We use different
colors to highlight the distances between the points. For instance, the smallest distance between any
two points is a (highlighted in green). We also draw a dashed circle of radius b, centered at point 5
to indicate that points both 10 and 11 are with distance smaller than b to 5.

The instance of Arkin et al. [1] embeds the two extra points 10 and 11 differently than
ours (see Example 2). Hence, their instance is a no-instance, while ours may be a yes-instance,
provided some specific triple is matched together, formulated as follows:

▶ Lemma 3. Every 3-stable matching of an instance satisfying the embedding described in
Example 2 must contain triple {5, 10, 11}.

Proof. Towards a contradiction, suppose that Π is a 3-stable matching with {5, 10, 11} /∈ Π.
We infer that {10, 11} ⊆ Π(10) since otherwise {5, 10, 11} is blocking Π due the following:
δ(5, Π(5)) ≥ min(δ(5, 10), δ(5, 11)) + b > δ(5, {5, 10, 11}), and for each x ∈ {10, 11} it holds
that δ(x, Π(x)) ≥ 2(δ(x, 5) − ε) > δ(x, 5) + δ(10, 11) for any ε > 0. This implies that
{10, 11} ∩ Π(5) = ∅. Next, we observe that there must be a triple in Π that contains the two
agents of at least one pentagon edge as otherwise {2, 3, 7} is blocking: δ(2, Π(2)) ≥ b+c > a+b,
δ(3, Π(3)) ≥ b + c > a + c, and δ(7, Π(7)) ≥ b + ℓ > b + c. Thus, at least one triple in Π
contains the agents of some pentagon edge, say {2, 3}; the other cases are analogous. Let
{2, 3, x} ∈ Π. We distinguish between three subcases:
Case 1: x /∈ {1, 4, 7, 8}. Then, one can verify that {2, 3, 7} is blocking; recall that every

agent not in W \ {2, 3} is at distance larger than ℓ to agent 7.
Case 2: x ∈ {1, 7}. Then, Π(4) = {0, 4, 9} or Π(4) = {0, 4, 8} since otherwise {3, 4, 8}

blocks Π due to: δ(3, Π(3)) ≥ a + min(δ(3, 1), δ(3, 7)) = a + c > a + b, δ(4, Π(4)) > a + c,
δ(8, Π(8)) > b + c (recall that the distance from every agent not in W \ {3, 4} to
agent 8 is larger than ℓ). However, both cases imply that {0, 1, 5} is blocking since
δ(0, Π(0)) ≥ a + c > a + b = δ(0, {0, 1, 5}), δ(1, Π(1)) ≥ a + ℓ > a + c = δ(1, {0, 1, 5}), and
δ(5, Π(5)) ≥ c + ℓ > b + c = δ(5, {0, 1, 5}); recall that Π(5) ∩ {10, 11} = ∅.

Case 3: x ∈ {4, 8}. Then, δ(2, Π(2)) ≥ a + ℓ > a + c. This implies that {0, 1, 6} ∈ Π since
otherwise {1, 2, 6} is blocking Π. However, this implies that {0, 4, 9} is blocking Π.

Since we have just shown that no agent x exists which is in the same triple as 2 and 3, no
3-stable matching exists that does not contain {5, 10, 11}. ◀

3 NP-hardness for EUCLID-3-SR

In this section, we prove Theorem 1 for the case of d = 3 by providing a polynomial reduction
from the NP-complete Planar and Cubic Exact Cover by 3 Sets problem [23], which
is an NP-complete restricted variant of the Exact Cover by 3 Sets problem [15].

ESA 2022



36:6 Multi-Dimensional Stable Roommates in 2-Dimensional Euclidean Space

Planar and Cubic Exact Cover by 3 Sets (PC-X3C)
Input: A 3n-element set X = {1, . . . , 3n} and a collection S = (S1, . . . , Sm) of
3-element subsets of X of cardinality 3n such that each element occurs in exactly
three sets and the associated graph is planar.
Question: Does S contain an exact cover for X, i.e., a subcollection K ⊆ S such
that each element of X occurs in exactly one member of K?

Herein, given a PC-X3C instance I = (X, S), the associated graph of I, denoted as G(I),
is a bipartite graph G(I) = (U ⊎ W, E) on two partite vertex sets U = {ui | i ∈ X} and
W = {wj | Sj ∈ S} such that there exists an edge e = {ui, wj} ∈ E if and only if i ∈ Sj . We
call the vertices in U and W the element-vertices and the set-vertices, respectively.

In our reduction, we crucially utilize the fact that the associated graph G of the input
instance is planar and cubic, and hence by Valiant [25] admits a specific planar embedding
in Z2, called orthogonal drawing, which maps each vertex to an integer grid point and each
edge to a chain of non-overlapping horizontal and vertical segments along the grid (except
at the endpoints). To simplify the description of the reduction, we use the following more
restricted orthogonal drawing:

▶ Proposition 4 ([2]). In polynomial time, a planar graph with maximum vertex degree three
can be embedded in the grid Z2 such that its vertices are at the integer grid points and its
edges are drawn using at most one horizontal and one vertical segment in the grid.

We call the intersection point of the horizontal and vertical segments the bending point.

3.1 The construction
The idea. Given an instance I = (X, S) of PC-X3C, we first use Proposition 4 to embed
the associated graph G(I) = (U ⊎ W, E) into a 2-dimensional grid with edges drawn using
line segments of length at least L ≥ 200, and with parallel lines at least 4L grid squares apart.
The idea is to replace each element-vertex ui ∈ U with four agents which form a “star” with
three close-by “leaves” (see Figure 2a). These leaves one-to-one correspond to the sets Sj

with i ∈ Sj . In this way, exactly one set Sj is unmatched with the center and will be chosen
to the exact cover solution. Furthermore, we replace each set-vertex wj ∈ W with three
agents wi

j , i ∈ Sj , which form an equilateral triangle (see Figure 2b). We replace each edge
in G(I) with a chain of copies of three agents, which, together with a private enforcement
gadget (the star structure with a tail in Figure 3), ensure that either all three agents wi

j are
matched in the same triple (indicating that the corresponding set is in the solution) or none
of them is matched in the same triple (indicating that the corresponding set is not in the
solution). The agents in the star structure can be embedded “far” from other agents due to
the tail.

Gadgets for the elements and the sets. For each element-vertex ui ∈ U , assume that the
three connecting edges in G(I) are going horizontally to the right (rightward), vertically
up (upward), and vertically down (downward); we can mirror the coordinate system if this
is not the case. Let wj , wk, wr denote the set-vertices on the endpoints of the rightward,
upward, and downward edge, respectively. We create four element-agents, called ui, uj

i , uk
i ,

and ur
i . We embed them into R2 in such a way that uj

i , uk
i , ur

i are on the segment of the
rightward, upward, and downward edge, respectively, and are of equal distance 8 to each
other. Agent ui is in the center of the other three agents. See Figure 2a for an illustration.
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(a) Gadget (right) for an element vertex ui

(left) s.t. element i belongs to sets Sj , Sk, Sr.

wjup

ui

uq
wp

j

wi
j

wq
j

(b) Gadget (right) for a set-vertex wi
j for which the

set Sj consists of three elements i, p, q.

Figure 2 Element- and set-gadgets described in Subsection 3.1.

Similarly, for each set-vertex wj ∈ W , assume that the three connecting edges in G(I) are
going rightward, leftward, and upward, connecting the element-vertices ui, up, uq, respectively.
We create three set-agents, called wi

j , wp
j , wq

j . We embed them into R2 in such a way that
wi

j , wp
j , wq

j are on the segment of the rightward, leftward, and upward edge, respectively, and
are of equidistance 10 to each other. See Figure 2b for an illustration.

The edge- and the enforcement gadget. For each edge e = {ui, wj} in G(I), we create
n̂ (a constant value to be determined later) copies of the triple Aj

i [z] = {αj
i [z], βj

i [z], γj
i [z]},

1 ≤ z ≤ n̂, of agents and embed them around the line segments of edge e in the grid
(refer to Figure 3). To connect to the set-gadget, we merge agent γj

i [n̂] and set-agent wi
j

together. For technical reasons, we also use γj
i [0] to refer to uj

i . To define the distances, let
ε1, ε2, . . . , ε2n̂ be a sequence of increasing positive values with 2(2n̂ − 1)/(2n̂ + 1) ≤ ε2n̂−1 ≤
2(2n̂ − 1)/(2n̂) < ε2n̂ = 2 − ε. Now, we embed the newly added agents so that the distances
between “consecutive agents” on the line increase with z ∈ [n̂]:

The distance between agents αj
i [z] and βj

i [z] (marked in blue) is close to zero.
The distance between agents αj

i [z] (resp. βj
i [z]) and γj

i [z] is 8 + ε2z.
The distance between αj

i [z] (resp. βj
i [z]) and γj

i [z − 1] is 8 + ε2z−1.
In this manner, we will ensure that either all Aj

i [z], z ∈ [n̂ − 1], or all {γj
i [z − 1], αj

i [z], βj
i [z]},

i ∈ [n̂] belong to a 3-stable matching (to be proved later).
To determine the value n̂, let the lengths of the segments for edge {ui, wj} in the

orthogonal drawing of graph G(I) be L1 and L2, respectively; L2 is zero if there is only one
straight segment. We set n̂ to the largest value satisfying

∑2n̂
z=1(8+0.01 ·z) ≤ L1 +L2, which

is clearly a constant. For brevity’s sake, when using n̂, we mean the constant associated
to an edge {ui, wj} in the drawing which will be clear from the context. It is also fairly
straightforward to check that one can choose the sequence εi so that the bending point of
the chain is some agent γj

i [z′], z′ ∈ [n − 1] as shown in Figure 3.
By the construction of the gadgets above, each set-agent wi

j strictly prefers triple Aj
i [n̂] to

triple {wi
j , wp

j , wq
j } since δ(wi

j , x) < 10 = δ(wi
j , y) for all x ∈ {αj

i [n̂], βj
i [n̂]} and y ∈ {wp

j , wq
j };

recall that wi
j = γj

i [n̂] and δ(x, γj
i [n̂]) = 10 − ε. To ensure that exactly one of the two triples

is chosen, we make use of the star-gadget from Example 2. More precisely, we introduce an
agent triple Hi

j = {f i
j , gi

j , hi
j} and embed them in such a way that the distances between two

“consecutive” agents on the line towards the star-gadget increase:
The distance between f i

j and gi
j is close to zero.

The distance between agent hi
j and each of {f i

j , gi
j} is 10 + 2ε.

The distance between f i
j (resp. gi

j) and each of Aj
i [n̂] is in range [10 + ε, 10 + 2ε).

This means that the most preferred triple of agent hi
j is Hi

j , while both f i
j and gi

j prefer
triple S to Hi

j where S = {f i
j , gi

j , x} and x ∈ Aj
i [n̂].

ESA 2022
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βj
i [n̂] αj

i [n̂]

wi
j = γj
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wp
jwq

j

f i
j
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j
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j

10
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ca

b
c

a

b
c

a

b
c

a

b c

a

ℓ

0

1
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3

4

5

67
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9

θ

Figure 3 Gadget for edge {ui, wj} in G(I) with Sj = {i, p, q}. Here, the fractional values εz

satisfy 0 < ε1 < · · · < εn̂ = 2 − ε. The star-gadget, adapted from Arkin et al. [1], is described in
Example 2. To highlight the distances between the points in the star-gadget, we use different colors.
For instance, the smallest distance between any two points in the star is a (highlighted in green).
We also draw a dashed circle of radius b, centered at point 5 to indicate that points both 10 and 11
are with distance smaller than b to 5.

Finally, we create 12 agents, namely, W = {0, . . . , 11}, according to Example 2 such
that agents 10 and 11’s most preferred triple is {10, 11, hi

j}, followed by {5, 10, 11}. More
precisely:

The distance between agent 10 (resp. agent 11) and hi
j is 10 + 3ε.

The distance between agent 10 (resp. agent 11) and 5 is 10 + 4ε.
The five agents from {0, . . . , 4} form a regular pentagon with edge length a. Each two
agents on the pentagon form with a private agent a triangle with edge lengths a (marked
in green), b (marked in red), and c. We set b = 10.1 and c = 10.2. The length of the
diagonal of the pentagon is ℓ.

Altogether, the lengths satisfy the relation a < b < c < ℓ and the specific angle θ is at most
90 degrees. Due to the chain, including f i

j , gi
j , and hi

j , the distance from every agent not
from W ∪ {hi

j} to every agent from W is larger than ℓ. We call the gadget, consisting of the
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star-agents and the triple Hi
j , the star-gadget for set-agent wi

j and element-agent uj
i . Figure 3

provides an illustration of how the element-gadget, the set-gadget, and the star-gadget are
embedded. Note that since the angle between any two line segments is 90 degrees and the
line segment has length at least 200, we can make sure that such embedding is feasible.

This completes the description of the construction, which clearly can be done in polynomial
time. In total, we constructed O(4 · 3n + 3 · 3n + 3 · 2n̂ · 3n + 15 · 3n) = O(n) agents. Note that
we only need to have a good approximation of the embedding of the agents in the star-gadget
and the equilateral triangle.

3.2 The correctness proof for d = 3
Before we proceed with the correctness proof, we summarize the preferences derived from
the embedding via the the following observation.

▶ Observation 5 (⋆). For each element i ∈ X and each set Sj ∈ S with Sj = {i, p, q}, let
0, . . . , 11 denote the 12 agents in the associated star-gadget. Then, the following holds.

(i) The preference list of each agent x ∈ {10, 11} satisfies {hi
j , 10, 11} ≻x · · · .

(ii) For each triple B ̸= {hi
j , f i

j , gi
j} with B ⪰hi

j
{hi

j , 10, 11} it holds that B ∩ {10, 11} ≠ ∅.
(iii) For each agent x ∈ {f i

j , gi
j} and each triple B ̸= {f i

j , gi
j , hi

j}:
If B = {f i

j , gi
j , y} (where y ∈ {αj

i [n̂], βi
j [n̂], γi

j [n̂]}), then B ≻x {f i
j , gi

j , hi
j}.

If B ⪰x {f i
j , gi

j , hi
j}, then B = {f i

j , gi
j , y} for some y ∈ {αj

i [n̂], βi
j [n̂], γi

j [n̂]}.
(iv) For each z ∈ [n̂] the preference list of agent γj

i [z] satisfies {αj
i [z], βj

i [z], γj
i [z]} ≻γj

i
[z] · · · .

(v) For each z ∈ [n̂] the preference list of each agent x ∈ {αj
i [z], βj

i [z]} satisfies {αj
i [z],

βj
i [z], γj

i [z − 1]} ≻x {αj
i [z], βj

i [z], γj
i [z]} ≻x · · · .

(vi) For each z ∈ [n̂ − 1] and each triple B ≠ {αj
i [z + 1], βj

i [z + 1], γj
i [z]} with B ⪰γj

i
[z]

{αj
i [z + 1], βj

i [z + 1], γj
i [z]} it holds that B ∩ {αj

i [z], βj
i [z]} ≠ ∅.

(vii) For each B ̸= {wi
j , wp

j , wq
j } with B ⪰wi

j
{wi

j , wp
j , wq

j } we have B ∩ {αi
j [n̂], βi

j [n̂]} ≠ ∅.

Finally, we show the correctness, i.e., “I = (X, S) admits an exact cover if and only if
the constructed instance admits a 3-stable matching” via the following lemmas. Lemma 6
shows the “only if” direction and Lemma 8 the other.

▶ Lemma 6 (⋆). If K ⊂ S is an exact cover of I, then the following 3-matching Π is stable.
For each Sj ∈ K with Sj = {i, p, q} add {wi

j , wp
j , wq

j } to Π.
For each element i ∈ X and each set Sj ∈ S with i ∈ Sj , call the agents in the associated
star-gadget along with the tail agents 0, . . . , 11, hi

j , f i
j , and gi

j.
Add Hi

j, {5, 10, 11}, {1, 6, 8}, {2, 3, 7}, and {0, 4, 9} to Π.
If Sj ∈ K, then add all triples {αj

i [z], βj
i [z], γj

i [z − 1]}, z ∈ [n̂], to Π. Otherwise, add
all triples Aj

i [z], z ∈ [n̂], to Π.
For each element i ∈ X let Sk, Sr be the two sets which contain i, but are not chosen in
the exact cover K. Add {ui, uk

i , ur
i } to Π.

The proof of the other direction is based on the following properties.

▶ Lemma 7 (⋆). Let Π be a 3-stable matching of the constructed instance. For each
element i ∈ X and each set Sj with Sj = {i, p, q}, the following holds:

(i) Hi
j ∈ Π.

(ii) Π contains either all triples {αj
i [z], βj

i [z], γj
i [z]} or all triples {αj

i [z], βj
i [z], γj

i [z − 1]},
z ∈ [n̂].
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Now, we consider the “if” direction.

▶ Lemma 8. If Π is a 3-stable matching, then the subcollection K with K = {Sj ∈ S |
{αj

i [1], βj
i [1], γj

i [0]} ∈ Π for some i ∈ Sj} is an exact cover.

Proof. First of all, for each two chosen Sj , Sk ∈ K we observe that it cannot happen that
Sj ∩Sk ̸= ∅ as otherwise {ui, uj

i , uk
i } is a blocking triple; recall that γj

i [0] = uj
i and γk

i [0] = uk
i .

It remains to show that K covers each element at least once.
Now, for each element i ∈ X, let Sj , Sk, Sr denote the three sets that contain i. We claim

that at least one of Sj , Sk, Sr belongs to K because of the following. If Sj /∈ K, then by
construction, it follows that T = {αj

i [1], βj
i [1], γj

i [0]} /∈ Π. By Lemma 7(ii), it follows that
Aj

i [1] ∈ Π. Since T is the most-preferred triple of both αj
i [1] and βj

i [1] (see Observation 5(v)),
by stability, uj

i must be matched in a triple which she weakly prefers to T . Since Aj
i [1] ∈ Π, it

follows that either {uj
i , uk

i , ur
i } ∈ Π or {uj

i , ui, v} ∈ Π for some v ∈ {uk
i , ur

i }. It cannot happen
that {uj

i , uk
i , ur

i } ∈ Π as otherwise there will be at least three blocking triples, including
{ui, uj

i , ur
i }. Hence, {uj

i , ui, v} ∈ Π for some v ∈ {uk
i , ur

i }. Without loss of generality, assume
that v = uk

i . Then, it is straightforward to check that {ur
i , αr

i [1], βr
i [1]} ∈ Π. This implies

that Sr ∈ K.
To complete the correctness proof, we show that for each element p ∈ Sr \{i} it holds that

{αr
p[1], βr

p [1], γr
p [0]} ∈ Π. Let Sr = {i, p, q}. Since Sr ∈ K, by definition and by Lemma 7(ii),

we infer that {αr
i [n̂], βr

i [n̂], γr
i [n̂−1]} ∈ Π (for some constant n̂ defined in the construction). We

infer that {wi
r, wp

r , wq
r} ∈ Π due to the following: By Lemma 7(i), we know that Hi

r ∈ Π; recall
that Hi

r = {f i
r, gi

r, hi
r}. Since both f i

r and gi
r prefer {f i

r, gi
r, wi

r} to Hi
r (see the first part of

Observation 5(iii)), it follows by stability that Π(wi
r) ⪰wi

r
{f i

r, gi
r, wi

r}. By Observation 5(vii),
we infer that Π(wi

r) = {wi
r, wp

r , wq
r} since αr

i [n̂] and βr
i [n̂] are not available anymore. This

means that Ar
p[n̂′], Ar

q[n̂′′] /∈ Π since wp
r = γr

p [n̂′] and wq
r = γr

p [n̂′′] (for some constants n̂′ and
n̂′′). Consequently, we infer by Lemma 7(ii) that {αr

p[1], βr
p [1], γr

p [0]}, {αr
q[1], βr

q [1], γr
q [0]} ∈ Π,

as desired. ◀

This concludes the proof of Theorem 1 for d = 3.

4 EUCLID-d-SR with d ≥ 4

In this section we look at the cases where d ≥ 4, and let κ := ⌊(d − 1)/2⌋. The general
idea of the reduction is similar to the case where d = 3, and we still reduce from PC-X3C.
Briefly put, we adapt the star-gadget from Example 2. However, depending on whether d is
even or not, we need to carefully revise the star-gadget from Example 2 to make sure the
enforcement gadget works. We will replace each pentagon-agent with a subset of agents of
size κ, and each further agent from the triangle with two agents if d is even. We also need to
update both the replacement and the enforcement gadget. In Subsection 4.1, we describe in
detail what the new star-gadgets and the the remaining gadgets look like, and how they are
connected to each other. In Subsection 4.2 we show the correctness.

4.1 The construction
We first describe the adapted star-gadgets through the following example (also see Figure 4).

▶ Example 9. We first consider the construction for even d, i.e., d = 2κ + 2. Consider an
instance with 7κ + 11 agents called W where 5κ agents are embedded as the five vertices of
a pentagon with κ agents at each vertex of the pentagon. We denote the five sets of points
at the five vertices of the pentagon as X0, . . . , X4. All points in each cluster Xi, 0 ≤ i ≤ 4,
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Figure 4 A star-structured instance adapted from Arkin et al. [1], similar to Example 2. The left
one is for even d, while the right one is for odd d, both described in Example 9. See the caption of
Example 2 for further explanation regarding the colors of the edges.

are embedded within an enclosing circle of radius close to zero, with the intention that a
d-matching is stable only if all agents in Xi are matched together. For each i ∈ {0, . . . , 4},
the distance between each point Xi and each point in Xi+1 mod 5 is in the range of [a, a + εd],
while the distance between each point in Xi and each point in Xi+2 mod 5 is in the range of
[ℓ, ℓ + εd]. There are 10 points {0, . . . , 9} that form a star with the pentagon, as shown in
Figure 4 (left). For each i ∈ {0, . . . , 4}, embed the points 2i and 2i + 1 as follows: point 2i is
at a distance between c and c + εd to every point in Xi, and at a distance between b′ and
b′ + εd to every point in Xi+1 mod 5. Point 2i + 1 is at a distance between c′ and c′ + εd
to every point in Xi, and at a distance between b and b + εd to every point in Xi+1 mod 5.
Finally, the distance δ(2i, 2i + 1) is close to 0. Here the mentioned values satisfy the following
relations a < b < c < ℓ, b < b′ < ℓ, c < c′ < ℓ, b + b′ < 3a, c + c′ < 3a, b + b′ < a + ℓ, and
c + c′ < b + ℓ.

The remaining 2κ + 1 points, denoted by 10, . . . , 10 + 2κ in the figure, are called Y ; note
that |Y | = 2κ + 1 = d − 1. Together, W :=

⋃
i∈{0,...,4}

Xi ∪ {0, . . . , 9} ∪ Y . All points in Y

are embedded within an enclosing ball with radius close to zero. For each point y in Y ,
it holds that b − εd ≤ δ(0, y) < b and b − εd ≤ δ(1, y) < b, and for each each point w in
W \ ({0, 1} ∪ Y ) it holds that δ(w, y) > ℓ. Points 0 and 1 are the two points from W \ Y

which are closest to the points in Y .
To specify the embedding, We first fix points 0, 1, and Y such that the distances between

them are as stated above and they are embedded roughly around a straight line. Then, we
fix the positions of X0, X1, and the centroid of the pentagon to ensure the values a, b, b′, c, c′,
and ℓ satisfy the above relations. For each i ∈ {0, 1, 2, 3, 4} and each two points x ∈ Xi and
x′ ∈ Xi+1 mod 5, the angle α (resp. β) at the points 2i, x, and x′ (resp. 2i + 1, x′, and x) is
less than 90 degrees. The angle at points y, j, and x (y ∈ Y , {i, j} = {0, 1}, x ∈ Xi) is more
than 90 degrees. After fixing X0, X1, 0, and 1, we can determine the other points by simple
calculations.

Now, we turn to odd d, i.e., d = 2κ + 1. Instead of having ten points {0, . . . , 9}, we create
five points that form a star with the pentagon. Consider an instance with 7κ+5 agents called
W where 5κ agents are embedded to replace the five vertices of a pentagon with κ agents at
each vertex of the pentagon. That is, each vertex of the pentagon is a cluster of points. note
the five clusters of points by X0, X1, X2, X3, and X4. There are five points {0, 1, 2, 3, 4} that
form a star with the pentagon, as in Example 2 (see Figure 4 (right)). Point i is at a distance
b from Xi and c from Xi+1 mod 5, for each i ∈ {0, . . . , 4} where a < b < c < ℓ and b < 2a.
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(a) Gadget (right) for an element vertex ui (left)
s.t. element i belongs to sets Sj , Sk, Sr.

wjup

ui

uq
wp

j

wi
j

wq
j

Wj

(b) Gadget (right) for a set-vertex wi
j for which the

set Sj consists of three elements i, p, q.

Figure 5 Element and set gadgets described in Subsection 4.1.

The remaining 2κ points are called Y . Together, W :=
⋃

i∈{0,...,4}
Xi ∪ {0, 1, 2, 3, 4} ∪ Y .

All points in Y are embedded within an enclosing circle with radius close to zero. For each
point y in Y , it holds that b − ε ≤ δ(0, y) < b, and for each each point w in W \ ({0} ∪ Y ) it
holds that δ(y, w) > ℓ. Point 0 is the only point from W \ Y which is closest to the points
in Y . The remaining unmentioned points are at distance at least b/2 to the points Y . We
specify the embeddings of the agents similarly to the one for even d.

Using a similar reasoning as to Example 2, we claim that the above embeddings are
feasible.

Since the distance between each two points in Xi is close to zero, we assume it to be 0
for ease of reasoning. The following lemma summarizes the crucial effect of the star-gadget.

▶ Lemma 10 (⋆). Every d-stable matching Π of the instance in Example 9 satisfy the
following.

If d is even, then Π(0) ∩ Y ̸= ∅ or Π(1) ∩ Y ̸= ∅.
If d is odd, then Π(0) = Y ∪ {0}.

The remaining gadgets. Let I = (X, S) be an instance of PC-X3C. Similarly to the case
with d = 3, we first embed the associated graph G(I) = (U ⊎ W, E) into a 2-dimensional grid
with edges drawn using line segments of length at least L ≥ 200, and with parallel lines at
least 4L grid squares apart. The element- and the edge-gadget are almost the same as the
ones describe in Subsection 3.1. The only difference is that we replace each element-agent ui

(for ui ∈ U) with a size-(d − 2) coalition Ui that are embedded so close to each other that
any stable matching must match them together. Similarly, for each z ∈ [n̂] (recall that n̂ is a
constant as defined in the Subsection 3.1) and wj ∈ W , we replace the two agents αj

i [z] and
βj

i [z] with a size-(d − 1) coalition Âj
i [z] such that the distance between each pair of points

in Âj
i [z] is close to zero, and define Aj

i [z] := Âj
i [z] ∪ {γj

i [z]}. For each set-vertex wj ∈ W ,
assume that the three connecting edges in G(I) are going rightward, leftward, and upward,
connecting the element-vertices ui, up, uq, respectively. We create three set-agents, called
wi

j , wp
j , wq

j , and an additional coalition Wj of size d − 3 and as before, define wi
j = γi

j [n̂].
We embed them into R2 in such a way that wi

j , wp
j , wq

j are on the segment of the rightward,
leftward, and upward edge, respectively, and are of equidistance 17.5 to each other, and the
coalition Wj is embedded in the center so that the distance between any two of them is close
to zero. Moreover, the largest distance from any agent of Wj to any agent of {wi

j , wp
j , wq

j } is
10. See Figure 5 for an illustration.

We remark that by the construction of the set-gadget and the edge-gadget, each set-
agent wi

j prefers coalition Aj
i [n̂] (recall that γj

i [z] = wi
j) to coalition {wi

j , wp
j , wq

j } ∪ Wj since
the sum of distances from wi

j to the latter coalition is 17.5+17.5+10(d−3) > (d−1) ·(10−ε).
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To ensure that one of the two coalitions is chosen, we make use of the star-gadgets from
Example 9. Define b := 22.6 and c := 22.7. We create an agent-subset F i

j of size d − 1 and
agent hi

j and a star-gadget W as described in Example 9, with Y being the extra d − 1 agents
such that the most preferred coalition of each agent in Y is Y ∪ {hi

j}. Note that F i
j has the

same role as {f i
j , gi

j} in the case for d = 3.
The distance between each two agents in F i

j is close to zero.

The distance from each agent in F i
j to each agent in Âj

i [n̂] is in the range of [10+ε, 10+2ε).
The distance from each agent in F i

j to agent wi
j is 10 + 15

d−1 .
The distance from each agent in F i

j to agent hi
j is 15 + 2ε.

The distance from agent hi
j and each agent Y is 15 + 3ε.

The distance from each agent Y to 0 (and also to 1 if d is even) is 15 + 4ε.

Finally, we create two types of garbage collector agents to match with some left over
agents. For each added star gadget corresponding to Sj and i ∈ Sj , we create O(κ) garbage
collector agents Ri

j as follows: If d is odd, set |Ri
j | := d − κ − 2. Otherwise if d ≤ 6, set

|Ri
j | := 2d − κ − 5, and otherwise set |Ri

j | := d − κ − 5. These agents have distance close
to zero to each other. For each y ∈ Ri

j it holds that ℓ < δ(y, x) < 2ℓ < δ(y, x′), where x

is an agent from the same star and x′ is an agent from neither Ri
j or the same star. It is

straightforward to see that the distance between any two agents from different star-gadgets is
larger than ℓ, and the distance from an agent in W to an agent to a set-gadget is at larger ℓ,
where a, b, b′, c′, and ℓ are as defined in Example 9. Lastly, we add m−n triples of additional
garbage collector agents. The agents in each triple have distance close to zero to each other
but is far away from the other agents. Note that each triple will be matched to some Wj

whenever Sj is not chosen to the exact cover. See Figure 6 (for even d, without the garbage
collector agents) for an illustration. This completes the description of the construction, which
clearly can be done in polynomial time.

4.2 The correctness proof for d ≥ 4

The reasoning for the correctness is similar to the one for d = 3. For the forward direction,
assume that (X, S) admits an exact cover K. Then, using a reasoning similar to the one for
d = 3, one can verify that the following d-matching Π is stable; recall that κ = ⌊(d − 1)/2⌋.

For each Sj ∈ K with Sj = {i, p, q} add {wi
j , wp

j , wq
j } ∪ Wj to Π.

For each element i ∈ X let Sk, Sr be the two sets which contain i, but are not chosen
in the exact cover K. Add Ui ∪ {uk

i , ur
i } to Π. For each Sj /∈ K, take a triple of garbage

collector agents (of the second type) and match them with Wj .
For each element i ∈ X and each set Sj ∈ S with i ∈ Sj , call the agents in the associated
star-gadget along with the tail X0 ∪ · · · ∪ X4 ∪ {0, 1, 2, 3, 4, hi

j} ∪ Y ∪ {F i
j } ∪ {5, 6, 7, 8, 9 |

if d odd}. If Sj ∈ K, then add all Âi
j [z] ∪ {γi

j [z − 1]}, z ∈ [n̂], to Π. Otherwise, add
all Aj

i [z], z ∈ [n̂], to Π. Add F i
j ∪ {hi

j} and Y ∪ {0} to Π. If d is odd, add X1 ∪ X2 ∪ {1}
and X3 ∪ X4 ∪ {3} to Π. Otherwise, add X1 ∪ X2 ∪ {2, 3} and X3 ∪ X4 ∪ {6, 7} to Π.
Next, if d ≤ 6, then match X0 with d − κ agents from (1, 8, 9, 4) (in this sequence) to Π.
In any case, match the remaining star-agents with Ri

j .

The proof for the backward direction works analogously to d = 3 and is deferred to the
full version [8].
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︷ ︸︸ ︷8+ε4︸ ︷︷ ︸
8+ε3

︷ ︸︸ ︷8+ε6︸ ︷︷ ︸
8+ε5

︷ ︸︸ ︷8+ε8︸ ︷︷ ︸
8+ε7

︷ ︸︸ ︷8+ε10︸ ︷︷ ︸
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Figure 6 Gadget for edge {ui, wj} in G(I) with Sj = {i, p, q} for the case when d is even, omitting
the garbage collector agents for the sake of brevity.

5 Conclusion and Outlook

Establishing the first complexity results in the study of multi-dimensional stable matchings
for Euclidean preferences, we show that d-SR remains NP-hard for Euclidean preferences
and for all fixed d ≥ 3. The gadgets in the reductions may be useful for other matching and
hedonic games problems with Euclidean preferences.

Our Euclidean preference model assumes that the preferences over coalitions are based
on the sum of distances to all individual agents in the coalition. It would be interesting
to see whether taking the maximum or the minimum distance to the coalition members
instead of the sum would change the complexity. Furthermore, it would be interesting to
see whether restricting the agents’ embedding to 1-dimensional Euclidean space could lower
the complexity. We were not able to identify the complexity for this restricted variant, but
conjecture that it can be solved in polynomial time. Note that in 1-dimensional Euclidean
space, a 3-stable matching for the maximum distance setting always exists, which can be
found by greedily finding three consecutive agents which are closest to each other and
matching them.
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