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Abstract
Let T be an ordinal tree on n nodes in which each node is assigned a color. We consider the batched
colored path counting problem and the batched path mode/least frequent element query problem,
in which given n query paths, each identified by a pair of nodes in T , one is asked to answer queries
of the following forms: How many distinct colors are there on each query path (i.e. the colored path
counting problem); what is the color on each query path that occurs at least/most as frequently
as any other colors (i.e. the path mode/least frequent element query problem). By reducing the
batched colored path counting problem to sparse matrix multiplication, we design a solution that
answers n colored path counting queries in Õ(n

2ω
ω+1 ) = O(n1.40704) time in total, while we reduce

batched path mode/least frequent element query to the min-plus-query-witness problem so that
we can answer a batch of n queries in Õ(n

24+2ω
17+ω ) = O(n1.483814) time1. Previously, both problems

could only be solved in Õ(n1.5) time.
Based on similar techniques, we design a dynamic colored path counting structure supporting

both queries and updates in Õ(n
ω+1
ω+3 ) = O(n0.627759) time, while our dynamic path mode/least

frequent element query structures support each operation in Õ(n
16+ω(1,2,1)
26+ω(1,2,1) ) = O(n0.658139) time,

where ω(1, 2, 1) denotes the minimum value such that the product of an n × n2 matrix and an n2 × n

matrix can be computed in O(nω(1,2,1)+ϵ) time for any constant ϵ > 0. We also solve batched range
mode/least frequent element query problems over arrays in Õ(n

18+2ω
13+ω ) = O(n1.479603) time. Both

problems can be viewed as special cases of these batched path queries, and previously, the fastest
algorithm for batched range mode queries and batched range least frequent element queries use
O(n1.4805) and Õ(n1.5) time, respectively.
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1 Introduction

Trees are used to represent information in many areas of computer science. In tree-structured
data, additional properties such as categorical information are often encoded as colors of
tree nodes. To facilitate the retrieval of color information, researchers have defined the
following queries over an ordinal tree T on n nodes with each node assigned a color from

1 The Õ notation hides the polylog(n) factors, e.g., O(n lg2 n) = Õ(n), and ω denotes the best possible
exponent of square matrix multiplication.
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59:2 Faster Path Queries in Colored Trees

{0, 1, . . . , C − 1}, where C ≤ n: Given a path in T , a path colored counting query returns the
number of distinct colors assigned to the nodes in this path, while a path mode query or a
path least frequent element query returns the most frequent or the least frequent color among
the multiset of colors assigned to nodes in this path, respectively2. The color that is assigned
to the most number of nodes in a path is called the mode of the path. These queries can be
used to compute fundamental statistic information over tree-structured data.

Researchers have studied these query problems and designed data structure solutions [32,
11, 21]. Different time-space tradeoffs have been achieved, and among the best linear-space
solutions under word RAM, the structure of He and Kazi [21] can answer a colored path
counting query in O(

√
n lg lg C) time, while the solutions of Durocher et al. [11] can answer

a path mode query or a path least frequent element query in O(
√

n/w lg lg n) time, where
w denotes the number of bits stored in a word. The support for these queries is thus
much slower than the support for many other path queries in trees such as path minimum
[9, 2, 30, 10, 5, 8], path medium [32, 35, 24, 25], path counting [9, 32, 35, 24, 25] and path
majority [11, 13], for which linear-space solutions with sublogarithmic or even constant query
times exist.

However, researchers have given evidence to show that these solutions to colored path
counting, path mode and path least frequent element are efficient, by proving conditional
lower bounds. It has been shown that the multiplication of two

√
n ×

√
n Boolean matrices

can be performed by answering n colored path counting queries, n path mode queries or n

path least frequent element queries. This reduction was explicitly given for colored path
counting [21], while for the other two path queries, it follows from the same conditional
lower bound on range mode queries [6] and range least frequent element queries [7] in arrays,
for which we preprocessing an array A, such that, given a range [i, j], we can find the
most frequent or least frequent element in A[i, j] efficiently. Note that when the given tree
has a single path only, path mode and path least frequent element queries become range
mode and range least frequent element queries, respectively. This reduction means, with
current knowledge, the total running time of answering n of these path or range queries,
including preprocessing, cannot be faster than nω/2, save for polylogarithmic speedups,
where ω < 2.37286 denotes the exponent of matrix multiplication [1]. Furthermore, since
the best known combinatorial approach of multiplying two n × n Boolean matrices require
Θ(n3/polylog(n)) time [38], the total time of answering n of these queries cannot be faster
than n1.5, save for polylogarithmic speedups, using pure combinatorial methods with current
knowledge. Since the structures of He and Kazi [21] and Durocher et al. [11] can be built
in Õ(n1.5) time, they can be used to answer n colored path counting or path mode/least
frequent element queries in Õ(n1.5) time, matching this conditional lower bound on pure
combinatorial methods within polylogarithmic factors.

The problem of answering n queries given offline is the batched version of these query
problems. To achieve O(n1.5−ϵ)-time solutions for some positive constant ϵ, Williams and
Xu [37] reduced batched range mode to the min-plus product of a pair of matrices of special
structures, which makes it possible to answer a batch of n range mode queries over an array
of length n in O(n1.4854) time. Gu et al. [17] further improved the running time to O(n1.4805).
Similar ideas have also yielded dynamic range mode structures with O(n0.655994) query and
update times [17]. This is surprising as Jin and Xu [27] showed that dynamic range mode

2 These problems can also be defined over free trees. However, we follow the definitions given in previous
work [11, 21] and assume that T is an ordinal tree, as this allows us to directly apply previous solutions
to the problems defined over ordinal trees.
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structure cannot simultaneously support update and query in O(n2/3−ϵ) time for any positive
constant ϵ using purely combinatorial method with current knowledge. Even before that,
Kaplan et al. [31] used sparse matrix multiplication to answer n 2D orthogonal colored range
counting queries over n colored points on the plane in Õ(n

2ω
ω+1 ) total time. This query counts

the number of distinct colors assigned to points in an axis-aligned query rectangle and is
related to path colored counting in the sense that they both generalize 1D colored range
counting [14, 34] and have the same conditional lower bound.

Despite all these exciting works which beat the conditional lower bounds for combinatorial
methods, no previous work was done to solve batched colored path counting or batched path
mode in O(n1.5−ϵ)-time. No similar results were achieved for batched range least frequent
queries in arrays or batched path least frequent element, either. Therefore, we use matrix
multiplication and min-plus product to solve these problems and their dynamic versions.

1.1 Previous Work
The study on colored range counting started in the 1D case, for which Gupta et al. [19]
showed a reduction to 2D orthogonal range counting over uncolored points, hence achieving
a linear space solution with O(lg n/ lg lg n) query time. This problem has been studied
extensively in 2D [18, 31, 16, 33, 15], for which Kaplan et al. [29] proved the conditional lower
bound based on Boolean matrix multiplication which we discussed previously. They further
designed a data structure occupying O((nt )2 lg6 n + n lg4 n) words that supports 2D colored
range counting in O(t lg7 n) time for any 0 < t ≤ n, which was later improved by Gao and
He [15] who shaved off several log n-factors in time/space bounds. Kaplan et al. also showed
how to solve batched 2D orthogonal colored range counting in Õ(n

2ω
ω+1 ) = O(n1.40704) time by

reducing it to sparse matrix multiplication. Recently, Jin and Xu [27] presented a dynamic 2D
orthogonal colored range counting structure with Õ(n2/3) query and update times. Colored
range counting has also been studied in high dimensions [18, 31, 16]. Finally, He and Kazi [21]
considered colored path counting in trees and proved a conditional lower bound which is
also based on Boolean matrix multiplication. They designed an O(n + n2

t2 )-word structure
that answers queries in O(t lg lg C) time for any t ∈ [1, n], and it can be constructed in
O(n

2

t lg lg C) time. Hence it implies an O(n3/2 lg lg C)-time solution to batched colored path
counting.

Since Krizanc et al. [32] proposed range and path mode query problems, a long series of
papers have been published on these and related problems [32, 6, 7, 12, 37, 36, 17, 27]. The
best linear-space solutions include the structure of Chan et al. [6] that answers range mode
queries in arrays in O(

√
n/w) time, the structure of Durocher et al. [11] that answers range

least frequent element queries in arrays in O(
√

n/w) time, and the structures of Durocher
et al. [11] that answer path mode / least frequent elements in trees in O(

√
n/w lg lg n)

time. Chan et al. [6] also studied dynamic range mode in arrays, and their solution was
later improved by El-Zein et al. [12], whose linear-space structure supports both queries and
updates in O(n2/3) time. El-Zein et al. also designed a linear-space structure supporting range
least frequent element in O(n2/3 lg n lg lg n) time and updates in O(n2/3) time; different from
the original definition of range least frequent, the query is allowed to return a color that does
not appear in the query range but appears elsewhere in the array. A Monte Carlo structure
is designed in the dynamic case for the original range least frequent element query. It is
worth mentioning that all the results summarized in this paragraph use purely combinatorial
approaches. They match the conditional lower bounds [6, 7, 27] within polylogarithmic
factors.

ESA 2022



59:4 Faster Path Queries in Colored Trees

Recently, more efficient solutions to the batched range mode problem in arrays [36, 37, 17]
have been found. Williams and Xu [37] reduced this problem to the min-plus product of
a pair of matrices. The second matrix has the property that the entries at each row are
non-decreasing, which allows designing a truly subcubic time algorithm for min-plus product
of two n × n matrices. With it, they can solve batched range mode in O(n1.4854) time. Later,
the query time was improved by Gu et al. [17] to O(n1.4805). Sandlund and Xu [36] broke
the O(n2/3) per-operation time barrier for dynamic range mode in arrays; they reduced the
problem to the min-plus-query-witness problem, and achieved a dynamic data structure
that supports both queries and updates in O(n0.655994) time. Later, Gu et al. [17] further
improved the time for each operation to O(n0.6524).

1.2 Our Contributions
Our Results. We have achieved the following results:

an Õ(n
2ω

ω+1 ) = O(n1.40704)-time algorithm for batched colored path counting in trees,
improving the previous best approach which solves this problem in Õ(n1.5) time [21];
an Õ(n

24+2ω
17+ω ) = O(n1.483814)-time algorithm for batched path mode/least frequent element

queries in trees, improving the previous best result with Õ(n1.5) running time [11];
an Õ(n

18+2ω
13+ω ) = O(n1.479603) time algorithm for batched range mode/least frequent

element queries in arrays, while the previous best results solve batched range mode in
O(n1.4805) time [17] and batched range least frequent element in Õ(n1.5) time [11];
a dynamic colored path counting structure for trees supporting queries and updates in
Õ(n

ω+1
ω+3 ) = O(n0.627759) time, while the best dynamic structure for 2D orthogonal colored

range counting, as a related problem, supports each operation in Õ(n2/3) time [27];
a dynamic data structure for path mode/least frequent element queries in trees supporting
queries and updates in Õ(n

16+ω(1,2,1)
26+ω(1,2,1) ) = O(n0.658139) worst-case time. Here, ω(1, 2, 1)

denotes the minimum value such that the product of an n × n2 matrix and an n2 × n

matrix can be computed in O(nω(1,2,1)+ϵ) time for any constant ϵ > 0. These bounds
are close to the O(n0.6524) query and update times for dynamic range mode [17] which
can be viewed as a special case of dynamic path mode, while the previous best result for
dynamic range least frequent element supports queries and updates in Õ(n2/3) time [12].

Overview of Our Approach. To achieve these results, we develop new algorithmic ideas to
address the challenges we encounter due to the tree topology. The first challenge is how to
apply a divide-and-conquer approach to batched path queries. The solution of Williams and
Xu [37] to batched range mode recursively divides the input array into halves, and at each
level of recursion, they build data structures to answer queries whose ranges straddle the
midpoint. This ensures that the set of possible queries considered share subranges instead of
being disjoint, facilitating preprocessing. The solution of Kaplan et al. [31] to batched 2D
orthogonal colored range counting is based on a similar idea in 2D. To adapt to tree topology,
we apply the centroid decomposition of trees recursively instead. Then, in each component
obtained as a result of the decomposition, we preprocess for queries whose paths cross the
centroid. This decomposition scheme helps us solve all three batched path queries.

When preprocessing for query paths that contain the centroid in a component, we mark a
subset of nodes and attempt to use either sparse matrix multiplication or min-plus product
as in previous work. However, more twists to previous approaches are needed. In the solution
of Kaplan et al. [31] to batched 2D orthogonal colored counting, the matrices that they
need to multiply during preprocessing are already sparse. This is however not the case in
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our solution to batched path colored counting. To resolve this, we use the properties of
our node marking scheme to carefully reduce the problem of multiplying these matrices to
the multiplication of two different but related matrices that are sparse. There is a similar
challenge for batched path mode. Previous solutions to batched range mode in [36, 17]
reduces the preprocessing for each set of query ranges to the min-plus-query-witness problem
over two matrices of which the second matrix is monotone, i.e., entries in the same row are
non-decreasing.This allows applying strategies such as dividing each entry by a carefully
chosen integer and rounding down the result to decrease the number of different entries in
the matrix. In our case, due to the tree topology, the second matrix is not monotone, so
this way of applying integer division fails to decrease the number of different entries. To
resolve this issue, we design a two-tier scheme to mark nodes for preprocessing, and use the
properties of this marking scheme to reduce the weights of entries of the second matrix using
different formulas depending on at which tier the corresponding tree nodes are marked. This
allows us to decrease the number of different entries to speed up preprocessing.

In range mode queries over arrays, the input elements are split into two categories, i.e.,
frequent elements and infrequent elements, based on the frequency of each distinct element,
and the elements in the different categories are processed in different ways. As mentioned
above, the min-plus-query-witness problem was considered in [36, 17] to solve dynamic range
mode, and it is used to handle frequent elements. Naturally, a data structure that solves
dynamic range mode on arrays can answer static range mode queries as well. By combining
an existing solution to the min-plus-query-witness problem shown in [17, Lemma 33] and a
static data structure that handles infrequent elements shown in [37, Proof of Theorem 6.1],
we design a static data structure for range mode queries on arrays. This simple combination
leads to a new static data structure with faster preprocessing time and query time.

In this paper, we describe our solutions to batched colored path counting and batched
path mode queries to show the details of these ideas. Due to space constraints, our solutions
to other problems such as batched range mode queries in arrays, batched range least frequent
element queries in arrays, dynamic path colored counting, dynamic path mode queries, and
dynamic path least frequent queries are deferred to the full version of this paper.

2 Preliminaries

This section introduces the notation and the previous results used in this paper.

Notation. Given an ordinal tree T , let |T | denote the number of nodes in T , and let ⊥
denote its root. For any two nodes x, y ∈ T , we use Px,y to represent the path whose
endpoints are x and y. Thus, Px,⊥ is a root-to-node path. If y is an ancestor of x, then P ′

x,y

is defined to be the path whose endpoints are x and the child of y that is an ancestor of x,
i.e., P ′

x,y = Px,y \ {y}. Furthermore, c(x) denotes the color assigned to x, and C(Px,y) (or
C(P ′

x,y)) denotes the set of colors that appear in Px,y (or P ′
x,y). Finally, Tx refers to the

subtree of T rooted at node x, and parent(x) is the parent of x.

Navigation in colored ordinal trees. Regarding each tree node color as integer label, the
input tree, studied in this paper, is both an ordinal tree and a labeled tree. To support the
basic navigational operations on it, we apply the succinct representation of ordinal trees by
[22] and the result of He et al. [23] on labeled tree representations. The following lemma
summarizes the operations used in our solution and the complexity. Following their notation,
we call a node (resp. ancestor) assigned color α an α-node (resp. α-ancestor).

ESA 2022



59:6 Faster Path Queries in Colored Trees

▶ Lemma 1 ([22, 23]). Let T be an ordinal tree on n nodes with each node assigned a color
from {0, 1, . . . , C − 1}, where C ≤ n. A data structure occupying n lg C + 2n + o(n lg C) bits
can be built over T in O(n) time to support:

depthα(x) in O(lg lg C) time, which returns the number of α-ancestors of node x;3
depth(x) in O(1) time, which returns the number of ancestors of x;
LCA(x, y) in O(1) time, which returns the lowest common ancestor of nodes x and y.

Given a query path Px,y and a color α in a tree T represented by Lemma 1, He and
Kazi [21] showed how to use depthα and LCA to compute the number of appearances of α in
Px,y in O(lg lg C) time. This implies the support of colored path emptiness, which asks whether
a color α appears in Px,y. We can further use it to compute {|C(Px,⊥)| : x ∈ T )}, i.e., the
numbers of distinct colors on all root-to-node paths. To do this, perform a preorder traversal
of T , and each time we visit a node x, we compute |C(Px,⊥)| as follows: If x is the root, then
|C(Px,⊥)| is 1. Otherwise, locate x′ = parent(x), and answer a colored path emptiness query
to find out whether c(x) appears in Px′,⊥. If it does, set |C(Px,⊥)| = |C(Px′,⊥)|; otherwise,
|C(Px,⊥)| = |C(Px′,⊥)| + 1. This process uses O(n lg lg C) time.

Node sampling. In our solutions, we use the following lemma based on the pigeonhole
principle to select a subset of tree nodes and precompute information for them.

▶ Lemma 2 ([26]). Let T be a tree on n nodes whose height is h. Given an integer t ∈ [1, n],
an integer ℓ ∈ [0, t − 1] can be found in O(n) time such that the total number of nodes whose
depths are ℓ + i × t for some i ∈ [0, ⌊h−ℓ

t ⌋] is at most n/t.

Sparse rectangular matrix multiplication. We use the following result of Kaplan et al. [31]:

▶ Lemma 3 ([31, Theorem 2.5]). Let A be an m×n matrix having at most t non-zero entries,
where t ≥ m

ω+1
2 . Then, given the list of non-zero entries of A as the input without storing A

verbatim, the product of A and the transpose of A can be computed in O(tm ω−1
2 ) time.

3 Batched Colored Path Counting

We first design a data structure to answer a restricted version of colored path counting which
requires the query path to contain the root (Section 3.1). Then we generalize it to handle
arbitrary paths, which yields a new result for batched colored path counting (Section 3.2).

3.1 Color Counting over Paths Containing the Root
Data structures. To design a data structure for a restricted version of colored path counting
which requires the query path to contain the root, we first represent the tree T using Lemma 1.
As discussed in Section 2, this structure supports colored path emptiness. Then, for an
integer parameter 0 < X ≤ n to be chosen later, we select at most n/X nodes of T using
Lemma 2 and mark them. This means we mark nodes at every X levels of T , starting from
some level ℓ ∈ [0, X − 1] determined by Lemma 2. In addition, we mark the root node as

3 Note that the structure of He et al. [23] can support depthα(x, i) in O(lg lg C
lg w ) time, faster than what is

stated in Lemma 1. However, this requires a string representation with support for rank and select [4]
which uses perfect hashing, and it is not known how to construct this structure in O(n) deterministic
time. Therefore, we swap it with the string representation of Belazzougui et al. [3] which can be
constructed in linear deterministic time and achieve the bounds in Lemma 1.
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well. This means the number, m, of nodes that we mark satisfies m ≤ n/X + 1. We refer to
the i-th marked node visited in a preorder traversal as the i-th marked node for short, where
i starts from 0, and this node is denoted by xi. Thus, x0 is the root. For each marked node
x, we precompute r(x) which is the rank of x among marked nodes defined this way, as well
as the value |C(Px,⊥)|. Furthermore, each node in the tree stores a flag indicating whether it
is marked, as well as a pointer to the lowest marked proper ancestor.

Next, we construct an m × m matrix M . For every pair of integers i and j in [0, m − 1],
M [i, j] stores |C(Pxi,⊥) ∩ C(Pxj ,⊥)|, i.e., the number of distinct colors that appear in both
the path between the i-marked node and the root and the path between j-th marked node
and the root. It is worth mentioning that our query algorithm to be described later only
uses entries of M that correspond to two marked nodes whose lowest common ancestor is
the root. The other entries are never used, but we precompute them regardless.

Overall, our data structures use O(n + ( nX )2) words.

Query algorithm. To describe the query algorithm, let Px,y denote a query path containing
the root. Since ⊥∈ Px,y, we always have LCA(x, y) =⊥. W.l.o.g., we assume that neither
x nor y is the root node. Let x′ and y′ denote the lowest marked ancestors of x and
y, respectively, and we divide the query path Px,y into three disjoint subpaths: P ′

x,x′ ,
Px′,y′ and P ′

y,y′ . Following the inclusion-exclusion principle, we have that |C(Px′,y′)| =
|C(Px′,⊥)| + |C(P⊥,y′)| − M [r(x′), r(y′)]. Since the three terms at the right-hand side of this
formula have all been precomputed, |C(Px′,y′)| can be computed in constant time. Next, we
count the number of distinct colors that appear in P ′

x,x′ but not in Px′,y′ . This can be done
by iterating through each node z in P ′

x,x′ in the direction towards x and check whether c(z)
appears in Pparent(z),y′ by performing a path emptiness query. The number of distinct colors
that are in P ′

y,y′ but not in Px,y′ can be counted in a similar way. Adding these two counts
to |C(Px′,y′)| yields the answer. Since x (resp. y) and x′ (resp. y′) are at most X − 1 levels
apart, the query time is O(X lg lg C). This query algorithm is adapted from an algorithm of
He and Kazi [21] for arbitrary query paths, though we use a different matrix.

Preprocessing. Lemmas 1 and 2, together with the discussions on how to compute
{|C(Px,⊥)| : x ∈ T} in Section 2, can be applied to construct all our data structure
components except the matrix M in O(n lg lg C) time. To compute M , one way is to define
an m × C matrix A, in which entry A[i, α] = 1 if color α ∈ C(Pxi,⊥), and it is 0 otherwise.
Then we compute M as AAT , where AT denotes the transpose of A. However, since C can
be as large as n, the multiplication of A and AT can be costly.

Instead, to compute M , we use the computation of two related but different m × m

matrices as stepping stones, and one of these two, which we call M̂ , can be computed
via sparse rectangular matrix multiplication [31]. Before defining M̂ , we introduce more
notation. Let a be a marked node and b its lowest marked proper ancestor. We define
Ĉ(a) = C(P ′

a,b)\C(Pb,⊥), i.e., the set of colors that appear on the path from a to b (including
a but excluding b) but not on the path between and including b and the root. Since there
are at most X nodes in P ′

a,b, we have |Ĉ(a)| ≤ X.
With these definitions, we can define M̂ as an m × m matrix, in which, for each pair of

integers i, j ∈ [0, m − 1], M̂ [i, j] stores |Ĉ(xi) ∩ Ĉ(xj)|. To compute M̂ [i, j], we define an
m × C matrix Â, and for each integer i ∈ [0, m − 1] and each color α ∈ [0, C − 1], Â[i, α] is
set to be 1 if α ∈ Ĉ(xi) and 0 otherwise. Then M̂ = ÂÂT . Since each row of Â indicates
whether each color appears in the set Ĉ(a) for some marked node a, each row has at most X

non-zero entries. Since Â has m rows and m ≤ n/X + 1, overall Â has at most n + X ≤ 2n

ESA 2022



59:8 Faster Path Queries in Colored Trees

non-zero entries only. A list of non-zero entries of Â can be computed in O(n) time; the
details are omitted due to page limit. With these non-zero entries as input, we can apply
Lemma 3 to compute M̂ in O(n(ω+1)/2/X(ω−1)/2) time for any X ∈ [n(ω−1)/(ω+1), n].

The other m × m matrix that is used to help us compute M is called M ′. For each
pair of integers i, j ∈ [0, m − 1], entry M ′[i, j] stores |Ĉ(xi) ∩ C(Pxj ,⊥)|. To compute M ′,
we perform a preorder traversal of T . Each time we visit a marked node xj , we compute
the j-th column of M ′ as follows: If xj =⊥, then j = 0 and, for each i ∈ [0, m − 1], we
set entry M ′[i, 0] to be 0, since c(⊥) /∈ Ĉ(xi). If xj is not the root, we locate the lowest
marked proper ancestor, y, of xj . Since y is visited before xj , M ′[i, r(y)] has already been
computed, and we set M ′[i, j] = M ′[i, r(y)] + M̂ [i, j]. To see the correctness, observe that
M ′[i, j] = |Ĉ(xi) ∩ C(Pxj ,⊥)| = |Ĉ(xi) ∩ (C(Py,⊥) ∪ Ĉ(xj))|; since C(Py,⊥) ∩ Ĉ(xj) = ∅, this
is equal to |Ĉ(xi) ∩ C(Py,⊥)| + |Ĉ(xi) ∩ Ĉ(xj)| = M ′[i, r(y)] + M̂ [i, j]. This way we can
compute M ′ in O(n + ( nX )2) time provided that M̂ is available.

After computing M̂ and M ′, we can compute M by performing another preorder traversal
of T. Each time we visit a marked node xi, we compute the i-th row of M as follows: If
xi =⊥, then M [i, j] = 1 for any j ∈ [0, m − 1]. Otherwise, we locate the lowest marked
proper ancestor, y, of xi. Since y is visited before xi, M [r(y), j] has already been computed,
and we set M [i, j] = M [r(y), j] + M ′[i, j]. To see the correctness, observe that M [i, j] =
|C(Pxi,⊥) ∩ C(Pxj ,⊥)| = |(C(Py,⊥) ∪ Ĉ(xi)) ∩ C(Pxj ,⊥)|; since C(Py,⊥) ∩ Ĉ(xi) = ∅, this is
equal to |C(Py,⊥) ∩ C(Pxj ,⊥)| + |Ĉ(xi) ∩ C(Pxj ,⊥)| = M [r(y), j] + M ′[i, j]. In this way, we
can compute M in O(n + ( nX )2) time after computing M̂ and M ′. The total preprocessing
time is hence O(n lg lg C + ( nX )2 + n(ω+1)/2

X(ω−1)/2 ) for any integer X ∈ [n
ω−1
ω+1 , n].

3.2 Color Counting on an Arbitrary Path
We now generalize the structure in the previous section to support queries over arbitrary
paths. Our strategy is to decompose T recursively using centroid decomposition [28]; a
centroid of an n-node tree is a node whose removal splits the tree into connected components
each containing at most n/2 nodes, and this node can be found in O(n) time.

At level 0 of the recursion, the given tree T is a connected component by itself and we
call it the level-0 component. We find a centroid, u, of T , and define a new rooted tree Tu

by designating u as the root of T , reorienting edges when necessary. Then we build the
query structure in Section 3.1 over Tu. Afterwards, we remove u from T , and build our
data structure recursively over each connected component that has more than X nodes. In
general, at the i-th level of the recursion, we have a set of connected components called
level-i components obtained by removing from T the centroids computed in previous levels of
the recursion. For each component, we compute its centroid and designate the centroid as
the root of this component to build the query structure of Section 3.1. One minor detail
is that, before building the query structure over a component of size n′, we need to ensure
that colors are encoded as nonnegative integers less than n′. Thus, when n′ ≤ C, we sort the
colors that appear in this component using integer sorting in O(n′ lg lg n′) = O(n′ lg lg C)
time [20] and re-encode these colors using their ranks. Then we remove the centroid of each
level-i component to split it into a set of level-(i + 1) components and recurse. When a
component has at most X nodes, we no longer apply this recursive procedure to it, and we
call it a base component. Thus, we have O(lg(n/X)) recursion levels.

In addition, for each node x ∈ T , we store a list of O(lg(n/X)) pointers, and the i-th
pointer maps x to its copy in a level-i component; this pointer is a null if x is removed as
a centroid node found in a previous level. Furthermore, we build a weighted tree T ′ by
assigning weights to the nodes of T as follows: If a node x is chosen as the centroid node of
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a level-i component, its weight is i. If x is never chosen as a centroid, then its weight is ∞.
Then we construct the linear-space data structure of Chan et al. [8, Theorem 1.1] to support
path minimum queries over T ′ in constant time; a path minimum query returns the node
with minimum weight in a given query path.

Since we have O(lg(n/X)) recursion levels, both the space costs and construction time of
this new structure is a factor of O(lg(n/X)) more than those of the structure in Section 3.1;
the detailed analyses are deferred to the full version of this paper. To answer a query with
Px,y as the query path, query T ′ to find the smallest weight, s, assigned to nodes in Px,y. If
s = ∞, then x and y are in the same base component, and thus Px,y has at most X vertices.
We can traverse Px,y in T to count the number of distinct colors; each time we visit a new
node, we perform a path emptiness query to determine whether we have already encountered
this color. This way we can answer the query in O(X lg lg C) time. Otherwise, observe that
no nodes in Px,y are chosen as centroids for recursion level s − 1 or smaller. Therefore, x and
y must reside in a same level-s component S, and Px,y contains the centroid of S. Since this
centroid is designated as the root of S before building the query structure of Section 3.1 over
S, we can use this query structure to answer the query in O(X lg lg C) time. Thus we have:

▶ Lemma 4. Let T be a colored ordinal tree on n nodes with each node assigned a color from
{0, 1, . . . , C−1}, where C ≤ n, and let X be an arbitrary integer in [n

ω−1
ω+1 , n]. A data structure

of O((lg n
X )(n + n2

X2 )) words can be constructed in O((lg n
X )(n lg lg C + ( nX )2 + n(ω+1)/2

X(ω−1)/2 )) time
to support colored path counting query in O(X lg lg C) time.

We finally solve the batched colored path counting problem by first building the query
structure of Lemma 4 and then using it to answer n queries. Setting X = n

ω−1
ω+1 yields:

▶ Theorem 5. A batch of n colored path counting queries over a colored tree T on n nodes
can be answered in Õ(n

2ω
ω+1 ) = O(n1.40704) time in total.

4 Batched Path Mode Queries

To solve batched path mode queries over tree T , let t1 and t2 be two constant parameters
such that 0 ≤ t2 ≤ t1 ≤ 1. We categorize node colors into two different types: a color α is an
infrequent color if it is assigned to at most n1−t1 nodes in T ; otherwise, we call it a frequent
color. Thereby, a mode of a query path could be either a frequent or an infrequent color.
We use the following lemma to find the most frequent element in the multiset of infrequent
colors assigned to the nodes in a query path Px,y; due to space constraints, we defer the
proof to the full version of this paper.

▶ Lemma 6. An O(n2−t1 lg4 n)-word structure can be constructed in O(n2−t1 lg5 n) time,
such that, given a query path Px,y, the most frequent element and its frequency in the multiset
of infrequent colors assigned to the nodes in Px,y can be computed in O(n1−t1 lg5 n) time.

To find the most frequent element in the multiset of frequent colors that appear in Px,y,
we mark O(n1−t2) nodes using a two-level marking scheme (Section 4.1). Section 4.2 then
handles the case in which the endpoints of a query path containing the root are both marked.
Finally, We assemble all components in Section 4.3 and solve batched range mode.

4.1 Marking O(n1−t2) Nodes
Let X be an integer parameter in [nt2 , n] to be determined later. We choose at most n/X

nodes of T using Lemma 2, mark these nodes and the root, and call them tier-1 marked
nodes. Since the tier-1 marked nodes form a subset of levels of T , removing them splits T
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into a forest of subtrees. Then we use the same lemma to mark nodes at every ⌈nt2⌉ levels
of each subtree starting from some level of the subtree, and these nodes are called tier-2
marked nodes. Since the total number of nodes over all subtrees is less than n, there are
O(n1−t2) tier-2 marked nodes. We regard both tier-1 and tier-2 marked nodes as marked
nodes, and there are O(n/X + n1−t2) = O(n1−t2) marked nodes in total. It follows that a
path that connects any non-root node to its lowest marked proper ancestor contains no more
than ⌈nt2⌉ + 1 nodes. As before, we refer to the i-th marked node, xi, visited in a preorder
traversal as the i-th marked node for short, starting from 0, and r(x′) is the rank of the
marked node x′.

4.2 Paths with Marked Endpoints Containing the Root: Frequent Colors
Now, for a path Px′,y′ such that x′ and y′ are both marked nodes and ⊥∈ Px′,y′ , we show
how to find the most frequent element and its frequency in the multiset of frequent colors
assigned to nodes in Px′,y′\{⊥} = P ′

x′,⊥ ∪ P ′
y′,⊥. Note that for each color other than c(⊥),

its frequencies in P ′
x′,⊥ ∪ P ′

y′,⊥ and in Px′,y′ are exactly the same, while later we consider
c(⊥) separately. A frequent color appears more than n1−t1 times in T , so there are only
O(nt1) distinct frequent colors. We number the frequent colors incrementally starting from
0 in an arbitrary order, and we refer to the frequent color numbered by k as color fk. Let
µ denote the total number of marked nodes, and let κ denote the total number of distinct
frequent colors. Then µ = O(n1−t2) and κ = O(nt1). Next, we construct a µ × κ matrix
M . Corresponding to marked node xi and frequent color fk, Mi,k stores the negation of the
frequency of fk in path P ′

xi,⊥. It follows that the min-plus product4 of M and its transpose,
denoted by M ⋆ MT , is a µ × µ matrix, in which entry (M ⋆ MT )i,j stores the negation of
the maximum frequency of a frequent color in P ′

xi,⊥ ∪ P ′
xj ,⊥, provided ⊥∈ Pxi,xj . As before,

some entries of this matrix correspond to a pair of nodes whose lowest common ancestor is
not the root and are thus never used, but we compute these entries regardless. To compute
M ⋆ MT efficiently, it suffices to solve the following problem using M and MT as input
matrices.

▶ Problem 1 (Min-Plus-Query-Witness problem [36]). Build a data structure upon a pair of
input matrices A and B, such that, given two integers i and j and a set S of integers in a
query, the index k∗ with Ai,k∗ + Bk∗,j = mink/∈S{Ai,k + Bk,j} can be found efficiently.

Gu et al. [17] solved this problem with three preprocessing steps, which we generalize
for our solution. Henceforth, we use k∗ to denote the index such that Mi,k∗ + MT

k∗,j =
mink/∈S{Mi,k + MT

k,j}. All the proofs omitted from this section will be made available in the
full version of this paper.

Preprocessing Step 1. Gu et al. provided an efficient solution to Problem 1 when the second
input matrix is monotone, i.e., entries in the same row are non-decreasing. In our case, the
second matrix, MT , does not have such a property due to the tree topology. Therefore, our
first step is to generalize their definition of total range over a monotone matrix to our notion
of total difference, defined over an arbitrary a × b matrix A as

∑b−1
j=1(

∑a−1
k=0JAk,j ̸= Ak,j−1K),

in which the Iverson bracket JAk,j ̸= Ak,j−1K evaluates to 1 if Ak,j ̸= Ak,j−1 is true and 0
otherwise. We then bound the total difference of MT :

4 Given an m × n matrix A and an n × p matrix B, the min-plus product of A and B, denoted by A ⋆ B,
is the m × p matrix in which entry (A ⋆ B)i,j = mink{Ai,k + Bk,j}.
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▶ Lemma 7. The total difference of the matrix MT is O(n).

The total difference of MT is however not small enough to lead to an efficient solution
to Problem 1 directly. The strategy of Gu et al. is to divide each entry of the second
input matrix by a carefully chosen integer and round down the result, to decrease the total
difference of the matrix. However, the same method will fail to decrease the total difference
of MT , as MT is not monotone, so we design a new approach to construct a matrix B̃ from
MT that has a smaller total difference. To introduce this approach, we define p̂arent1(v)
to be node v’s lowest proper ancestor that is tier-1 marked and p̂arent(v) to be v’s lowest
proper ancestor that is either tier-1 or tier-2 marked. For a tier-1 marked node v̂1, let Rk(v̂1)
denote the frequency of the frequent color fk in P ′

v̂1,⊥, and for a tier-2 marked node v̂2, let
R′
k(v̂2) denote the frequency of fk in P ′

v̂2,p̂arent(v̂2) and Ψ(v̂2) denote the set of tier-2 marked
nodes in P ′

v̂2,p̂arent1(v̂2). We define parameter W to be ⌊nθ⌋, where θ is a constant with
0 ≤ θ ≤ 1. With the notations above, we introduce matrix B̃ which has the same size as
MT . For each pair (k, j), if the j-th column of MT corresponds to a tier-1 marked node
v̂1, then B̃k,j stores −⌊Rk(v̂1)

W ⌋. Otherwise, this column must correspond to a tier-2 marked
node v̂2; let v̂1 denote p̂arent1(v̂2) and we set B̃k,j = −⌊Rk(v̂1)

W ⌋ −
∑
u∈ψ(v̂2)⌊

R′
k(u)
W ⌋. Then

we can bound the total difference of B̃:

▶ Lemma 8. The total difference of B̃ is O( nX · nt1 + n
W ). Setting X to be ⌊Wnt1⌋, the total

difference of B̃ is O(n/W ).

We define a matrix Ã, in which entry Ãi,k = ⌊Mi,k

W ⌋, and a matrix C̃ ′ of the same size as
matrix M ⋆MT , in which C̃ ′

i,j stores the (|S|+1)-st smallest element in {Ãi,k+B̃k,j : k ∈ [κ]}.
Let [n] denote {0, 1, · · · , n − 1}. For each i ∈ [µ] and each j ∈ [µ], we define set Li,j to be
{(Ãi,k + B̃k,j , k) : k ∈ [κ]}. The small total difference of B̃ allows us to borrow ideas from
[17] to design a fast algorithm to compute C̃ ′ and to build a structure that maintains Li,j :

▶ Lemma 9. Matrix C̃ ′ can be computed in Õ(n2−2t2 + n(2−t2)/W ) time using matrices Ã

and B̃. Furthermore, in the same amount of time, a data structure of Õ(n2−2t2 + n(2−t2)/W )
words can be constructed upon Ã and B̃, such that, given a pair (i, j) and an integer t ≥ 1,
the t smallest pairs in Li,j, keyed by the first item of each pair, can be listed in Õ(t) time.

Preprocessing Step 2. In this step, we take matrices M , MT and C̃ ′ as input and partially
solve Problem 1 under certain conditions. Let ρ ≥ 0 be a parameter to be chosen later;
let c be any constant that is no less than 1. For each r ∈ [(c + 2)µρ ln n], we construct
matrices Ar and Br as follows: Sample jr uniformly at random from [µ]. Set Ar

i,k to be
Mi,k + MT

k,jr − W · C̃ ′
i,jr if |Mi,k + MT

k,jr − W · C̃ ′
i,jr | ≤ 2(W − 1) · (3 + W · n(t1−t2))

and Ar′

i,k = ∞ for all r′ < r; otherwise, set Ar
i,k = ∞. In addition, set entry Br

k,j to be
MT
k,j − MT

k,jr if MT
k,jr ̸= ∞; otherwise, set Br

k,j = 0. Following [17], for a pair (i, k), if
Ar
i,k ̸= ∞ for some r, we call (i, k) covered; otherwise it is uncovered. We call a triple

(i, k, j) weakly relevant if |Mi,k + MT
k,j − W · C̃ ′

i,j | ≤ 2(W − 1) · (3 + W · n(t1−t2)), and we
call a triple (i, k, j) almost relevant if 0 ≤ Ãi,k + B̃k,j − C̃ ′

i,j ≤ (W−1)·(3+W ·n(t1−t2))
W . Let

ω(1, t1/(1 − t2), 1) denote the smallest number such that the product of an n × ⌈nt1/(1−t2)⌉
matrix and an ⌈nt1/(1−t2)⌉ × n matrix can be computed in O(nω(1,t1/(1−t2),1)+ϵ) time for any
constant ϵ > 0. We have:

▶ Lemma 10. Given matrices Ar and Br, a data structure of Õ(2(W − 1)(3 + Wn(t1−t2)) ·
n(1−t2)·(ρ+2+ t1

1−t2
−σ) +n(1−t2)·(ρ+1+ 2t1

1−t2
−σ)) words can be built in Õ(2(W −1)(3+Wn(t1−t2))·

n(1−t2)·(ρ+ω(1,t1/(1−t2),1)+ t1
1−t2

−σ)) time to partially solve the min-plus-query-witness query
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problem upon matrices M and MT . More precisely, given a query (S, i, j), if (i, k∗) has been
covered, then k∗ can be found in Õ(|S| + n(1−t2)·(ρ+σ)) time, where ρ and σ are two constant
parameters with ρ ≥ 0, 0 ≤ σ ≤ t1

1−t2 . The randomized part in this preprocessing step can
be derandomized. Furthermore, after preprocessing, the number of triples that are almost
relevant and uncovered is O(n(1−t2)·(2+ t1

1−t2
−ρ)).

Preprocessing Step 3. Finally, for each pair (i, j), we define Vi,j = {(Mi,k + MT
k,j , k) :

(i, k, j) is an uncovered and almost relevant triple} and apply the same method in [17]:

▶ Lemma 11. In Õ(n2−2t2 + n(2−t2)/W + n(1−t2)·(2+ t1
1−t2

−ρ)) time, one can find all almost
relevant and uncovered triples and build a data structure of Õ(n2−2t2 + n(1−t2)·(2+ t1

1−t2
−ρ))

words upon them, such that, given a pair (i, j) and an integer t ≥ 1, the t smallest elements
in Vi,j, keyed by the first item in each pair, can be listed in Õ(t) time.

The Querying Procedure. The query algorithm is similar to the one shown in [17]. Let
(S, i, j) be the query parameters. If (i, k∗) is covered, then we use Lemma 10 to find k∗ in
Õ(|S|+n(1−t2)(ρ+σ)) time. Otherwise, we claim that Ãi,k∗ +B̃k∗,j−C̃ ′

i,j ≤ (W−1)(Wnt1−t2 +3)
W

(the proof will be made available in the full version of this paper); therefore, either (i, k∗, j)
is almost relevant, or Ãi,k∗ + B̃k∗,j − C̃ ′

i,j < 0. If (i, k∗, j) is almost relevant, then (Mi,k∗ +
MT
k∗,j , k∗) is among the (|S| + 1) smallest elements in Vi,j ; thereby, we can find k∗ in Õ(|S|)

time using Lemma 11. If Ãi,k∗ + B̃k∗,j − C̃ ′
i,j < 0, then (Ãi,k∗ + B̃k∗,j , k∗) is among the

(|S| + 1) smallest elements in Li,j ; we can find k∗ for this case in Õ(|S|) time using Lemma
9. As a result, we have solved the min-plus-query-witness problem over M and MT and
achieved Lemma 12. Recall that parameter W was set to be ⌊nθ⌋.

▶ Lemma 12. A data structure of Õ(n2−2t2 + n(1−t2)(1−θ)+1 + n(1−t2)(2+ t1
1−t2

−ρ)

+ n(1−t2)(ρ+1+ 2t1
1−t2

−σ) + n2θ(1−t2)+(t1−t2)+(1−t2)(ρ+2+ t1
1−t2

−σ)) words can be built upon M and
MT in Õ(n1+(1−t2)(1−θ) + n2θ(1−t2)+(t1−t2)+(1−t2)(ρ+ω(1, t1

1−t2
,1)+ t1

1−t2
−σ) + n(1−t2)(2+ t1

1−t2
−ρ))

time, such that a query defined in Problem 1 can be answered in Õ(|S| + n(1−t2)(σ+ρ)) time,
where ρ ≥ 0, 0 ≤ σ ≤ t1

1−t2 , and 0 ≤ θ ≤ 1.

As a result, we can apply Lemma 12 to find the most frequent element and its frequency
in the multiset of frequent colors assigned to nodes in P ′

x′,⊥ ∪ P ′
y′,⊥ provided that x′ and y′

are marked and ⊥∈ Px′,y′ . In the static case, the excluded set S is always set to be empty.

4.3 Mode Queries on an Arbitrary Path
We first represent tree T using Lemma 1. As discussed in Section 2, this structure supports
finding the number of appearances of a color on a path in O(lg lg C) time. Then we mark
O(n1−t2) nodes of T as discussed in Section 4.1. We compute the number of appearances of
each color on T to determine whether it is frequent or infrequent. Then we construct the data
structures of Lemmas 6 and 12 for queries over infrequent and frequent colors, respectively.

Let Px,y be a query path containing the root. W.l.o.g., we assume that neither x nor y

is the root node. If Px,y contains less than two marked nodes, then, by our node-marking
strategy, |Px,y| = O(nt2). In this case, a mode on Px,y can be found in O(nt2) time. Otherwise,
let x′ and y′ denote the lowest marked ancestors of x and y, respectively, and we divide Px,y
into four disjoint parts: P ′

x,x′ , P ′
x′,⊥ ∪ P ′

y′,⊥, ⊥ and P ′
y,y′ . Since there are O(nt2) nodes in

P ′
x,x′ ∪ P ′

y,y′∪ ⊥, it requires O(nt2 lg lg C) time to scan the nodes in P ′
x,x′ ∪ P ′

y,y′∪ ⊥, and
for each color encountered, count its occurrences in Px,y. Let c1 be the color with maximum
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number of occurrences found this way. Then we apply Lemma 6 to find the infrequent color,
c2, with maximum frequency in Px′,y′ in Õ(n1−t1) time, and we query over the data structure
of Lemma 12, setting the excluded set S = ∅, to find the frequent color, c3, with maximum
frequency in P ′

x′,⊥ ∪ P ′
y′,⊥ in Õ(n(1−t2)(σ+ρ)) time. We also obtain the frequency of c2 in

Px′,y′ and the frequency of c3 in P ′
x′,⊥ ∪ P ′

y′,⊥ when finding c2 and c3. Note that, if the mode
is not c1, then the mode does not appear in P ′

x,x′ ∪ P ′
y,y′∪ ⊥, so it must be either c2 or c3.

Hence it suffices to compare the frequency of c1 in Px,y, the frequency of c2 in Px′,y′ , and
the frequency of c3 in P ′

x′,⊥ ∪ P ′
y′,⊥ to find the answer to the query.

Finally, we apply the technique in Section 3.2 to compute the mode in an arbitrary path:

▶ Lemma 13. Let T be a colored ordinal tree on n nodes with each node assigned a color
from {0, 1, . . . , C − 1}, where C ≤ n. A data structure of Õ(n2−t1 + n2−2t2 + n(1−t2)(1−θ)+1 +
n(1−t2)(ρ+1+ 2t1

1−t2
−σ) + n2θ(1−t2)+(t1−t2)+(1−t2)(ρ+2+ t1

1−t2
−σ) + n(1−t2)(2+ t1

1−t2
−ρ)) words can be

constructed in Õ(n2−t1 + n2θ(1−t2)+(t1−t2)+(1−t2)(ρ+ω(1, t1
1−t2

,1)+ t1
1−t2

−σ) + n(1−t2)(2+ t1
1−t2

−ρ) +
n1+(1−t2)(1−θ)) time, such that a path mode query can be answered in Õ(nt2 + n1−t1 +
n(1−t2)(σ+ρ)) time, where ρ ≥ 0, 0 ≤ σ ≤ t1

1−t2 , and 0 ≤ θ ≤ 1.

Applying Lemma 13 to batched path mode and setting t1 = 10
17+ω(1,1,1) , where ω(1, 1, 1) ∈

[2, 2.37286), t2 = 1 − t1, θ = 2t1−1
t1

, ρ = 4t1−2
t1

, and σ = 3−5t1
t1

yields:

▶ Theorem 14. A batch of n path mode queries over a colored tree T on n nodes can be
answered in Õ(n

24+2ω
17+ω ) = O(n1.483814) time.
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