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Abstract
We revisit the classical edge coloring problem for general graphs in the streaming model. In this
model, the input graph is presented as a stream of edges, and the algorithm must report colors
assigned to the edges in a streaming fashion, using a memory of size O(n polylog n) on graphs of up
to O(n2) edges. In ESA 2019 and SOSA 2021, two elegant randomized algorithms were presented for
this problem in the adversarial edge arrival model, where the latest one colors any input graph using
O(∆2/s) colors with high probability in Õ(ns) space. In this short note, we propose two extremely
simple streaming algorithms that achieve the same color and space bounds deterministically. Besides
being surprisingly simple, our algorithms do not use randomness at all, and are very simple to
analyze.
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1 Introduction

An edge coloring of a graph G is an assignment of colors to the edges such that no two
adjacent edges receive the same color. The chromatic index of a graph G is the smallest
number of colors required to properly color edges of G. Although determining the chromatic
index is NP-hard [10], a classic theorem by Vizing states that any graph can be colored with
at most ∆ + 1 colors, where ∆ is the maximum degree of the graph. On the other hand, ∆
colors are always required to properly color edges of a graph.

In this short note, we revisit the edge coloring problem in the streaming model, where
edges of the input graph are presented to the algorithm one at a time in an adversarially
chosen order. In this model, the memory available to the algorithm is less than the input
size, and hence, we cannot store all the edges of the graph. We consider one-pass algorithms
in which the amount of available space is O(n polylog n), which is also known as the semi-
streaming model [9]. Moreover, since output in the edge coloring problem is as large as the
input, we cannot wait to report the output after the whole stream is processed. Instead, we
need to report colors of the edges in a streaming fashion, a typical approach usually referred
to as W-streaming in the literature [8].

The edge coloring problem has been studied in various models of computation. In the
offline model, there are polynomial-time algorithms that compute (∆ + 1)-edge colorings for
general graphs [1, 11]. In the online model, Bar-Noy et al. [3] were the first to show that no
algorithm can do better than the greedy algorithm, which uses at most 2∆ − 1 colors, no
matter if the input graph is revealed edge by edge or vertex by vertex. However, their lower
bound only holds when ∆ = O(log n). Therefore, research has been shifted towards online
edge coloring of higher-degree graphs, i.e., when ∆ = ω(log n). In particular, Cohen et al. [7]
achieved the first positive result by giving an algorithm that uses (1 + o(1))∆ colors for
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8:2 Simple Streaming Algorithms for Edge Coloring

Table 1 Summary of streaming algorithms for edge coloring in the adversarial edge arrival model.
Here, s = o(∆) is a space parameter.

Algorithm Type # Colors Space Ref

Behnezhad et al. randomized O(∆2) (w.h.p.) Õ(n) [4]
Charikar and Liu randomized (1 + o(1))∆2/s (w.h.p.) Õ(ns) [6]
This work deterministic (1 + o(1))∆2/s O(ns) [here]

bipartite graphs in the adversarial vertex arrival setting. In the same setting, Saberi and
Wajc [12] have recently presented a (1.9 + o(1))∆ algorithm for general graphs. In the
random-order edge arrival, where edges of the graph are presented in a uniformly random
order, the best current algorithm uses (1 + o(1))∆ colors due to Bhattacharia et al. [5],
improving upon the previous 1.26∆ algorithm of Bahmani et al. [2].

In the streaming model, existing results in the online model cannot be typically applied
due to memory restriction. Behnezhad et al. [4] were the first to provide O(n polylog n)-space
streaming algorithms for the edge coloring problem. They proposed an algorithm reporting
a 2e∆-coloring in the random edge arrival case, and another O(∆2) algorithm, when edges
arrive in an arbitrary (adversarial) order. Charikar and Liu [6] improved these results
by presenting an algorithm that uses (1 + o(1))∆ colors on random streams, and another
algorithm in the adversarial edge arrival case that uses O(∆2/s) colors with high probability
in Õ(ns) space.

In this work, we focus on the adversarial edge arrival model, where edges of the input
graph are revealed in an arbitrary order. In this setting, the algorithm of Behnezhad et al. [4]
randomly decomposes the input graph into O(log n) bipartite subgraphs, and uses a distinct
palette of colors for each subgraph. In particular, for each vertex v and each bipartite
subgraph i, a counter Cv,i is stored to denote the degree of v in the subgraph i. For each
incoming edge (u, v) belonging to subgraph i, the color (Cu,i, Cv,i, i) is assigned to that edge,
and both Cu,i and Cv,i are incremented by one. Behnezhad et al. showed that with high
probability, the number of colors used this way is O(∆2). Charikar and Liu [6] used a similar
technique, but modified the way each edge is randomly assigned to bipartite subgraphs. They
showed that their new algorithm uses O(∆2/s) colors with high probability, when available
space is Õ(ns).

In this short note, we propose two simple deterministic algorithms for the edge coloring
problem in the adversarial arrival streams. Besides being extremely simple, our algorithms
achieve the current state-of-the-art bounds on the space and number of colors, without using
randomization. More precisely, our algorithms use (1 + o(1))∆2/s colors in the worst case
using O(ns) space, where s = o(∆)1. To our knowledge, these are the first deterministic
algorithms for the problem in the adversarial edge arrival streams. A summary of the results
for edge coloring in the adversarial edge arrival model is presented in Table 1.

2 A Simple Greedy Algorithm

Our first algorithm uses a simple greedy approach to color edges of the input graph in an
online manner. The algorithm simply colors each edge arrived with the first available color,
and continues coloring until the memory is full. At that point, the algorithm deletes the most

1 Note that when s = Ω(∆), an O(ns) space is enough to store the entire graph.
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frequently used color and discards all edges which use that color to free up some memory.
The pseudocode of the algorithm is presented in Algorithm 1. Throughout the algorithm,
we say that a color c is available for coloring an edge e, if no other edge incident to either
endpoint of e has already received color c. Note that during the course of the algorithm, a
deleted color will never be used again.

Algorithm 1 A Simple Greedy Algorithm.
start with a color palette of size 1
for each edge e in the stream do

if no color is available in the palette to color e then
add a new color to the palette

end
color e with an available color in the palette
if the memory capacity is hit then

delete the most frequently used color c from the palette
remove all edges colored with c from memory

end
end

▶ Theorem 1. Algorithm 1 colors any input graph with (1 + o(1))∆2/s colors in O(ns) space.

Proof. It is easy to see that the algorithm reports a proper coloring. Consider two edges e1
and e2 incident to a vertex v, where e1 arrives earlier than e2 in the stream. Upon arrival
of e2, if e1 is still in memory, then its color will not be considered for coloring e2 by the
algorithm. On the other hand, if e1 is not in memory, then its color has been permanently
deleted from the palette, and hence will not be considered for coloring e2 again.

To bound the number of colors used by the algorithm, first note that at any point of
time during the execution of the algorithm, the color palette has size at most 2∆ − 1. This
is because for any edge e = (u, v) in the stream, at most 2(∆ − 1) = 2∆ − 2 distinct colors
are used by the edges incident to either u or v, as both endpoints have degree at most ∆. As
such, a color palette of size 2∆ − 1 has at least one color available for coloring e, and hence,
no new color is added to such palette by the algorithm. Therefore, for a memory of size
ns, whenever the memory capacity is hit, the most popular color deleted by the algorithm
has frequency at least ns/2∆. Thus, the total number of colors deleted during the course of
the algorithm is at most |E|/(ns/2∆), which is upper bounded by ∆2/s, since |E| ≤ n∆/2.
Therefore, the total number of colors used by the algorithm is at most (2∆ − 1) + ∆2/s

which is (1 + o(1))∆2/s, for s = o(∆). ◀

3 A Simple Buffering Algorithm

Algorithm 1 colors each arrived edge instantly in an online manner. In the streaming model,
however, we can use our limited space to “buffer” a chunk of input stream before processing
it and producing output. Using this buffering technique, we can achieve an even simpler
algorithm. The idea behind our second algorithm is to simply buffer every chunk of O(ns)
edges and color it using a distinct palette of ∆ + 1 colors. We can use any offline ∆ + 1
coloring algorithm to color each chunk of the input. The pseudocode of our algorithm is
presented in Algorithm 2.

▶ Theorem 2. Algorithm 2 colors any input graph with (1 + o(1))∆2/s colors in O(ns) space.

ESA 2022
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Algorithm 2 A Simple Buffering Algorithm.
partition the stream into chunks of size ns

for each chunk of edges do
color the chunk using a distinct palette of ∆ + 1 colors

end

Proof. As a new palette is used for coloring each chunk, it is clear that the algorithm reports
a proper edge coloring. To analyze the number of colors, we observe that the number of
chunks is |E|/ns. Therefore, the total number of colors used is

|E|
ns

(∆ + 1) ≤ n∆
2ns

(∆ + 1) =
(

1
2 + o(1)

)
∆2/s,

where the above inequality holds because |E| ≤ n∆/2. ◀

▶ Remark. Algorithm 2 can be easily modified to work online by just replacing the offline
∆ + 1 coloring algorithm with an online 2∆ − 1 greedy one. The resulting algorithm uses
(1 + o(1))∆2/s colors in the worst case.
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