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1 Introduction

Since the inception of parameterized complexity in the late 1980s and early 1990s, much
research has been done on establishing the complexity of parameterized problems. Typically
one is particularly interested in either designing FPT-algorithms for these problems, or to
prove them W [t]-hard, for some t, which provides evidence that such a problem is not likely
to be fixed-parameter tractable. As opposed to the classical P versus NP-complete setting,
the question of membership in some class of the W -hierarchy is often much less clear. While
some natural problems such as Independent Set and Dominating Set are known to
be W [1]-complete and W [2]-complete, respectively, many other problems are unknown to
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be complete for a class of parameterized problems, and even conjectured not to be in the
W -hierarchy. Recently, building upon work by Elberfeld et al. [12], Bodlaender et al. [4]
introduced a complexity class called XNLP, which gives a way of addressing this question.

The class XNLP consists of the parameterized problems that can be solved with a non-
deterministic algorithm that uses f(k) log n space and f(k)nc time, where f is a computable
function, n is the input size, k is the parameter and c is a constant. In particular, XNLP-
hardness implies W [t]-hardness for all t. Therefore it is unlikely that any XNLP-hard problem
is complete for some W [t].

One success story within parameterized algorithms and complexity is the use of width
measures of graphs as parameters (see, e.g., [9]). Typically, such width measures are defined
in terms of a tree-like decomposition of a graph, and the width describes the complexity
of the decomposition, and therefore, in turn, of the graph. Such width measures also have
linear variants, where the decomposition resembles a path instead of a tree. In this work, we
provide evidence that the class XNLP is the “natural home” for hard problems parameterized
by linear width measures.

Let us give some intuitive explanation why this is the case. A typical dynamic pro-
gramming algorithm that uses such a linear decomposition stores, at each node of the path,
some partial solutions associated with it. The table entries associated with the nodes are
then filled in the order in which they appear on the path. If one turns such an algorithm
into a nondeterministic algorithm, it often suffices at the i-th node to nondeterministically
determine the table index corresponding to the correct partial solution (if it exists) from
the table entry that was previously determined for the (i − 1)-th node. In such a case,
membership in XNLP follows if each single table entry of such a DP algorithm can be
represented by f(k) log n bits (where k is the width) and if the nondeterministic step does
not require a computation that uses significantly more space. This is often the case. Now,
such an approach fails for tree-like decompositions, since even a nondeterministic algorithm
might have to keep too many table entries at some point during the computation. One
common situation in which this occurs is when the algorithm needs to store one table entry
for each level of the decomposition. This incurs a multiplicative factor in the memory usage
that depends on the height of the tree, which can be prohibitively large.

In this direction, Bodlaender et al. [4] showed that List Colouring parameterized by
the pathwidth of the input graph, and Bandwidth are XNLP-complete. In this paper, we
show XNLP-completeness of fundamental graph problems parameterized by linear variants of
well-established width measures, such as pathwidth, linear clique-width and linear mim-width,
as well as some of their logarithmic analogues.

Besides showing W [t]-hardness for all t, XNLP-hardness also provides insight into the
space complexity of parameterized problems. Pilipczuk and Wrochna [23] proposed the
following conjecture.1

▶ Conjecture 1 (Slice-wise Polynomial Space Conjecture [23]). XNLP-hard problems do not
have an algorithm, that runs in nf(k) time and f(k)nc space, with f a computable function,
k the parameter, n the input size, and c a constant.

Typically, membership in XP for the problems studied in our paper follows from a dynamic
programming approach that uses a significant amount of memory. XNLP-hardness indicates
(via Conjecture 1) that dynamic programming is in some sense “optimal” (no XP algorithm
can use “significantly less” memory).

1 The statement of the conjecture here is equivalent to the conjecture on time and memory use for the
Longest Common Subsequence problem from [23]; the name of the conjecture is taken as analogue
to the naming of XP as problems that use slice-wise polynomial time (see [9, Section 1.1]).
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Linear width measures and logarithmic analogues. The width measures we consider in
this work include linear variants of arguably the most prominent measures, and some of
their generalizations. Pathwidth is a linear variant of the classic treewidth parameter, which,
informally speaking, measures how close a connected graph is to being a tree. In this vein,
pathwidth measures how close a connected graph is to being a path. Clique-width (or,
equivalently, rank-width) generalizes treewidth to several simply structured dense graphs,
and its linear counterpart is called linear clique-width (linear rank-width). Maximum induced
matching width [24], or mim-width for short, in turn generalizes clique-width and remains
bounded even on well-studied graph classes such as interval and permutation graphs, where
the clique-width is known to be unbounded. In fact, for most of these classes the linear
mim-width is bounded.

We also introduce a new parameter that we call logarithmic linear clique-width, analogous
to the parameter logarithmic pathwidth that was introduced by Bodlaender et al. [4]. For
an n-vertex graph of linear clique-width k, logarithmic linear clique-width takes the value
⌈k/ log n⌉. We stress the fact that XNLP-hardness parameterized by a logarithmic parameter
implies that there is no algorithm solving the problem in time 2O(k)nO(1) and space kO(1)nO(1),
where k is the original parameter2, under Conjecture 1. Such results can complement existing
(S)ETH lower bounds for single exponential FPT algorithms with lower bounds on the space
requirements of such algorithms.

Bipartite bandwidth. Finally, we consider a bipartite variant of the notoriously difficult [2]
problem of computing the bandwidth of a graph. Here, for a bipartite graph with vertex
bipartition (A, B) and bandwidth target value w, we seek an ordering α of A and an ordering
β of B, such that for each edge ab, |α(a)−β(b)| ≤ w. We consider this problem parameterized
by w, and show that it is XNLP-complete, even when the input graph is a tree.

Our results. We summarize our results in the following theorem.

▶ Theorem 2. The following problems are XNLP-complete.
(i) Capacitated Red-Blue Dominating Set and Capacitated Dominating Set

parameterized by pathwidth.
(ii) Coloring, Maximum Regular Induced Subgraph, and Max Cut parameterized

by linear clique-width.
(iii) q-Coloring and Odd Cycle Transversal parameterized by logarithmic pathwidth

or logarithmic linear clique-width.
(iv) Independent Set, Dominating Set, Feedback Vertex Set, and q-Coloring

for fixed q ≥ 5 parameterized by linear mim-width.
(v) Bipartite Bandwidth, even if the input graph is a tree.

Furthermore, Feedback Vertex Set parameterized by logarithmic pathwidth or logarithmic
linear clique-width is XNLP-hard.

Note that Theorem 2(ii) and (iv) include the first XNLP-completeness results for graph
problems with the linear clique-width and linear mim-width as parameter.

2 Indeed, replacing k with k′ log n, this gives running time 2O(k′ log n) = nO(k′) and space k′O(1)nO(1),
which is excluded by the conjecture.

IPEC 2022



8:4 XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

Related Work. Guillemot [17] introduced the class WNL (which equals XNLP closed under
fpt-reductions), and showed some problems to be complete for WNL, including a version of
Longest Common Subsequence. The class XNLP (under a different name) was introduced
by Elberfeld et al. [12], who also showed a number of problems, including Linear Cellular
Automaton Acceptance, to be complete for the class. A large number of parameterized
problems was shown to be XNLP-complete recently by Bodlaender et al. [4]. Very recently,
in work that aims at separating the complexity of treewidth and pathwidth at one side, and
stable gonality at another side, Bodlaender et al. [3] showed a number of flow problems
parameterized by pathwidth to be complete for XNLP.

2 Overview of the results

In this section, we give a bird’s-eye view of the results proved in this paper, and discuss
related work for the specific problems we consider. Due to space limitations, statements
marked with ♣ had their proofs deferred to the full version of this work.

Parameterized by linear clique-width. We consider the Max Cut, the Coloring, and the
Maximum Regular Induced Subgraph problems parameterized by linear clique-width.
Let E(V1, V2) denote the set of edges with one endpoint in V1 and one endpoint in V2.

Max Cut
Input: A graph G = (V, E) described by a given linear k-expression describing G and
an integer W .
Parameter: k.
Question: Is there a bipartition of V into (V1, V2) such that |E(V1, V2)| ≥ W?

In 1994, Wanke [25] showed that Max Cut is in XP for graphs of bounded NLC-width,
which directly implies XP-membership with clique-width as parameter, as NLC-width and
clique-width are linearly related. In 2014, Fomin et al. [14] consider the fine grained complexity
for Max Cut for graphs of small clique-width, giving an algorithm with improved running
time and showing asymptotic optimality (assuming the Exponential Time Hypothesis). From
their results, it follows that Max Cut is W [1]-hard with clique-width as parameter. In
Section 4.1, we prove the following theorem.

▶ Theorem 3. Max Cut with linear clique-width as parameter is XNLP-complete.

Next, we consider the classical Coloring problem, which given a graph G and an integer
k asks if G has a proper coloring with k colors. Similarly to the story of the Max Cut
problem, Coloring parameterized by clique-width was shown to be in XP by Wanke in
1994 [25], and a W[1]-hardness proof only followed in 2010 by Fomin et al. [13]. The XP
algorithm for coloring runs in time nO(2k), where k is the clique-width, and Fomin et al. [15]
even showed that this run time can probably not be substantially improved: an algorithm
running in time n2o(k) would refute the ETH. We prove the following.

▶ Theorem 4 (♣). Coloring parameterized by linear clique-width is XNLP-complete.

Lastly, we consider the Maximum Regular Induced Subgraph problem. The problem
was studied by several authors, including Asahiro et al. [1], who show among others an
algorithm that uses linear time for graphs of bounded treewidth, where the time depends
single exponentially on the treewidth. Moser and Thilikos [22], and independently Mathieson
and Szeider [21] show (amongst other results) that the problem is W [1]-hard when the size
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of the subgraph (parameter W in our description below) is used as parameter. Broersma et
al. [7] give XP algorithms for several problems, including Maximum Regular Induced
Subgraph for graphs of bounded clique-width.

Maximum Regular Induced Subgraph
Input: A graph G described by a given linear k-expression and two integers W and D.
Parameter: k.
Question: Is there a D-regular induced subgraph of G on at least W vertices?

We show the following.

▶ Theorem 5 (♣). Maximum Regular Induced Subgraph parameterized by linear
clique-width is XNLP-complete.

Parameterized by pathwidth. We consider the Capacitated Red-Blue Dominating
Set and Capacitated Dominating Set problems. Below, we give the formal statement
of the problems, where we have the width of the path decomposition as parameter. One of
the reasons of interest in these problems is that they model facility location problems: the
red vertices model possible facilities that can serve a bounded number of clients which are
modelled by the blue vertices.

Capacitated Red-Blue Dominating Set
Input: A bipartite graph G = (R, B, E), a path decomposition of G of width ℓ, a
capacity function c : R → N, and an integer k.
Parameter: ℓ.
Question: Is there a subset S of R, and an assignment of blue vertices f : B → S such
that {w, f(w)} ∈ E for all w ∈ R and |f−1(v)| ≤ c(v) for all v in S?

Capacitated Dominating Set
Input: A graph G = (V, E), a path decomposition of G of width ℓ, a capacity function
c : V → N, and an integer k.
Parameter: ℓ.
Question: Is there a subset S of V , and an assignment of the vertices f : V → S such
that {w, f(w)} ∈ E or w = f(w) for all w ∈ V and |f−1(v)| ≤ c(v) for all v in S?

In 2008, Dom et al. [10] showed that Capacitated Dominating Set is W [1]-hard,
with the treewidth and solution size k as combined parameter. Capacitated Dominating
Set was shown to be W [1]-hard for planar graphs, with the solution size as parameter
by Bodlaender et al. [5]. Fomin et al. [14] give bounds for the fine grained complexity of
Capacitated Red-Blue Dominating Set, for graphs with a small feedback vertex set;
their results imply that the problem is W [1]-hard with feedback vertex set as parameter.
The proof of the following theorem can be found in Section 4.2.

▶ Theorem 6. Capacitated Red-Blue Dominating Set and Capacitated Dominating
Set parameterized by pathwidth are XNLP-complete.

Parameterized by logarithmic linear clique-width. Bodlaender et al. [4] introduced the
parameter logarithmic pathwidth as pw / log n for an n-vertex graph of pathwidth pw. This
allows the pathwidth to be linear in the logarithm of the number of vertices of the graph.
Here we introduce the logarithmic linear clique-width as lcw / log n for graphs on n vertices
with linear clique-width lcw.

IPEC 2022
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We provide new XNLP-complete problems for the parameter logarithmic pathwidth,
and show that these problems and the previously known XNLP-complete problems for this
parameter [4] are also complete for the parameter logarithmic linear clique-width. Our results
are summarised below.

The motivation to study the logarithmic linear clique-width or logarithmic pathwidth
comes from the observation that many FPT algorithms with linear cliquewidth or pathwidth
as parameter have a single exponential time dependency on the parameter. Thus, if linear
cliquewidth or pathwidth is logarithmic in the size of the graph, these algorithms turn into
XP algorithms.

▶ Theorem 7 (♣). When parameterized by logarithmic pathwidth or logarithmic linear
clique-width, Independent Set, Dominating Set, q-List-Coloring for q > 2, and Odd
Cycle Transversal are XNLP-complete, and Feedback Vertex Set is XNLP-hard.

Lokshtanov et al. [20] established (tight) lower bounds for these problems for the parameter
pathwidth under the Strong Exponential Time Hypothesis. Several of our gadgets are based
on those used for these lower bounds by [20].

Parameterized by linear mim-width. We prove that several fundamental graph problems
are XNLP-complete when parameterized by the mim-width of a given linear order of the input
graph. W[1]-hardness for Independent Set and Dominating Set in this parameterization
was shown by Fomin et al. [16], and for Feedback Vertex Set by Jaffke et al. [19]. For
q-Coloring, W [1]-hardness was not known before our work. We would like to point out
that our XNLP-hardness proof uses a gadget that requires five colors to construct, and it
would be interesting to see if this can be improved to three colors. In section Section 4.3 we
prove the result below for q-Coloring. The proofs for the remaining problems are deferred
to the full version.

▶ Theorem 8 (♣). When parameterized by linear mim-width, Independent Set, Dominat-
ing Set, q-Coloring for any fixed q ≥ 5 and Feedback Vertex Set are XNLP-complete.

Bipartite bandwidth. We consider the following bipartite variant of the Bandwidth
problem.

Bipartite Bandwidth
Input: A bipartite graph G = (X, Y, E) and an integer k.
Parameter: k.
Question: Are there orderings α : X → [n] and β : Y → [m] such that for each uv ∈ E,
|α(u) − β(v)| ≤ k ?

A possible application of this problem is as follows. Let a matrix M be given. Create a
vertex xi ∈ X for each row i and a vertex yj ∈ Y for each column j, and let xi be adjacent
to yj if and only if Mi,j ̸= 0. This graph has bipartite bandwidth at most k if and only if
the rows and columns of M can be permuted (individually) in such a way that all non-zero
entries are within k distance from the main diagonal. We show the following.

▶ Theorem 9 (♣). Bipartite Bandwidth is XNLP-complete for trees.
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3 Preliminaries

The required background on the computational problems studied in this paper are given in
their respective sections. The notions relevant to the entire paper are defined below.

We write [n] = {1, . . . , n} and [a, b] for the set of integers x with a ≤ x ≤ b. All
logarithms in this paper have base 2. We use N for the set of the natural numbers {0, 1, 2, . . .},
and Z+ denotes the set of the positive natural numbers {1, 2, . . .}. We write N(S) and
N [S] = N(S) ∪ S for the open and closed neighborhood of S.

3.1 Definition of the class XNLP
In this paper, we study parameterized decision problems, which are subsets of Σ∗ × N, for
a finite alphabet Σ. We assume the reader to be familiar with notions from parameterized
complexity, such as XP, W [1], W [2], . . . , W [P ] (see e.g. [11]). The class XNLP (denoted
N [f poly, f log] by [12]) consists of the parameterized decision problems that can be solved
by a non-deterministic algorithm that simultaneously uses at most f(k)nc time and at most
f(k) log n space, on an input (x, k), where x can be denoted with n bits, f a computable
function, and c a constant. We assume that functions f of the parameter in time and resource
bounds are computable – this is called strongly uniform by Downey and Fellows [11]. More
information about the complexity class XNLP can be found in [4].

3.2 Reductions
In the remainder of the paper, unless stated otherwise, completeness for XNLP is with respect
to pl-reductions, which are defined below. The definitions are based upon the formulations
in [12].

A parameterized reduction from a parameterized problem Q1 ⊆ Σ∗
1 ×N to a parameterized

problem Q2 ⊆ Σ∗
2 × N is a function f : Σ∗

1 × N → Σ∗
2 × N, such that the following holds.

1. For all (x, k) ∈ Σ∗
1 × N, (x, k) ∈ Q1 if and only if f((x, k)) ∈ Q2.

2. There is a computable function g, such that for all (x, k) ∈ Σ∗
1 ×N, if f((x, k)) = (y, k′),

then k′ ≤ g(k).
A parameterized logspace reduction or pl-reduction is a parameterized reduction for which
there is an algorithm that computes f((x, k)) in space O(g(k)+log n), with g a computable
function and n = |x| the number of bits to denote x.

3.3 Pathwidth, linear clique-width, and linear mim-width
A path decomposition of a graph G = (V, E) is a sequence (X1, X2, . . . , Xr) of subsets of V

with the following properties.
1.

⋃
1≤i≤r Xi = V .

2. For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.
3. For all 1 ≤ i0 < i1 < i2 ≤ r, Xi0 ∩ Xi2 ⊆ Xi1 .
The width of a path decomposition (X1, X2, . . . , Xr) equals max1≤i≤r |Xi| − 1, and the
pathwidth pw of a graph G is the minimum width of a path decomposition of G.

A k-labeled graph is a graph G = (V, E) together with a labeling function Γ : V → [k]. A
k-expression constructs a k-labeled graph by the means of the following operations:
1. Vertex creation: i(v) is the k-labeled graph consisting of a single vertex v which is assigned

label i.
2. Disjoint union: H ⊕ G is the disjoint union of k-labeled graphs H and G.

IPEC 2022
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3. Join: ηi×j(G) is the k-labeled graph obtained by adding all possible edges between
vertices with label i and vertices with label j to G.

4. Renaming label: ρi→j(G) is the k-labeled graph obtained by assigning label j to all
vertices labelled i in G.

A linear k-expression is a k-expression with the additional condition that one of the arguments
of the disjoint union operation needs to be a graph consisting of a single vertex. The clique-
width cw(G)(resp. linear clique-width lcw(G)) of a graph G is the minimal k such that G

can be constructed by a k-expression (resp. linear k-expression) with any labeling.
For a graph G = (V, E) and A, B ⊆ V with A ∩ B = ∅, we let G[A, B] be the bipartite

subgraph of G with vertices A ∪ B and edges {ab | ab ∈ E, a ∈ A, b ∈ B}. We let
cutmimG(A, B) be the size of a maximum induced matching in G[A, B] and mimG(A) =
cutmimG(A, V \ A). Here, an induced matching M ⊆ E is a matching such that there are
no additional edges between the endpoints of M in the graph in question. The mim-width of
a linear order v1, . . . , vn of V is the maximum, over all i, of mimG({v1, . . . , vi}). The linear
mim-width of G is the minimum mim-width over all linear orders of V .

3.4 Chained variants of Satisfiability and Multicolored Clique

In [4], the following problems were introduced, and shown to be XNLP-complete.

Chained Positive CNF-SAT
Input: r sets of Boolean variables X1, X2, . . . Xr, each of size q; an integer k ∈ N;
Boolean formula ϕ, which is in conjunctive normal form and an expression on 2q variables,
using only positive literals; for each i, a partition of Xi into Xi,1, . . . , Xi,k such that
∀j, j′ ∈ [k], |Xi,j | = |Xi,j′ |.
Parameter: k.
Question: Is it possible to satisfy the formula∧

1≤i≤r−1
ϕ(Xi, Xi+1)

by setting from each set Xi,j exactly 1 variable to true and all others to false?

Chained Multicolored Clique
Input: Graph G = (V, E), partition of V into V1, . . . , Vr, such that for each edge uv ∈ E

with u ∈ Vi and v ∈ Vj , |i − j| ≤ 1, function f : V → [k].
Parameter: k.
Question: Is there a set W ⊆ V such that for all i ∈ [r − 1], W ∩ (Vi ∪ Vi+1) is a clique,
and for each i ∈ [r] and j ∈ [k], there is a vertex v ∈ W ∩ Vi with f(v) = j?

The Chained Multicolored Independent Set problem is defined analogously, with
the only difference that the solution W is required to be an independent set.

▶ Theorem 10 (Bodlaender et al. [4]). Chained Positive CNF-SAT, Chained Multi-
colored Clique and Chained Multicolored Independent Set are XNLP-complete.
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4 Problems parameterized by linear width measures

In this section we prove XNLP-completeness for three of the problems mentioned in Section 2
parameterized by linear width measures. The full version of this work contains all the proofs
of the results stated in Section 2.

4.1 Max Cut parameterized by linear clique-width
In this section, we consider the Max Cut problem, with the linear clique-width as parameter,
and show it to be XNLP-complete. Our result is based upon the XNLP-hardness result for
a problem, called Circulating Orientation, with pathwidth as parameter. Borrowing
from terminology from flows in graphs, we say that a directed graph G = (V, A) with for
each arc a ∈ A a weight w(a) ∈ N, is a circulation, if for each vertex v, the total weight of
all incoming arcs at v equals the total weight of all arcs outgoing from v. We reduce from
the following problem.

Circulating Orientation
Input: An undirected graph G = (V, E) with a path decomposition of G of width ℓ, an
edge weight function w : E → N, given in unary notation.
Parameter: ℓ.
Question: Is there an orientation of G that is a circulation?

▶ Theorem 11 (Bodlaender et al. [3]). Circulating Orientation is XNLP-complete.

▶ Theorem 3. Max Cut with linear clique-width as parameter is XNLP-complete.

Proof. We first show membership in XNLP. The main idea is to turn the existing dynamic
programming that solves the problem given a k-expression of an n-vertex graph of linear
clique-width k into a non-deterministic algorithm, by guessing an element from a table instead
of building full tables. For each vertex creation, we guess on which side of the partition the
vertex is. We maintain the following certificate: for each label, the number of vertices on
each side of the bipartition, and the number of edges of the current expression that were in
the cut. Since there are at most k labels and the size of the cut is bounded by the number of
edges, this certificate uses only O(k log n) bits.

To show hardness for XNLP, we reduce from Circulating Orientation with pathwidth
as parameter. Suppose we have an instance for Circulating Orientation: an undirected
graph G with edge weight function w. For each vertex v, write D(v) as the total weight of
all edges incident to v.

We build a new, undirected graph H = (VH , EH) as follows. For each vertex v ∈ V , each
edge e with v as one of its endpoints, and each integer i ∈ [1, w(e)], we create a vertex xv,e,i.
Two distinct vertices xv,e,i and xw,e′,j are adjacent if and only if v = w or e = e′. In other
words: for each vertex v ∈ V , we have a clique with D(v) vertices, which consists of all
vertices of the form xv,·,·, that we call the clique of v. For each edge e = {v, w} ∈ E, we have
a clique with 2w(e) vertices, namely all vertices of the form xv,e,· and xw,e,·. See Figure 1
for a partial example.

▷ Claim 12. G has a circulating orientation if and only if H has a bipartition that cuts∑
e∈E w(e)2 +

∑
v∈V D(v)2/4 edges.

Proof. Suppose G has a circulating orientation. For each edge e = {v, w}, if the orientation
directs v to w, then add all vertices of the form xv,e,i to Z1 and all vertices of the form xw,e,i

to Z2 (i ∈ [1, w(e)]); otherwise, add all vertices of the form xv,e,i to Z2 and all vertices of
the form xw,e,i to Z1 (i ∈ [1, w(e)]).
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2

2

4 4

Figure 1 Example for the construction of the hardness proof of Max Cut (fragment).

Since we started from a circulating orientation, for each vertex v there are D(v)/2×D(v)/2
edges of the form {xv,·,·, xv,·,·} crossing the bipartition. Moreover, there are w(e)×w(e) edges
of the form {xv,e,·, xw,e,·} crossing the bipartition for each edge e = {v, w}. We conclude
that the bipartition cuts the required number of edges.

Now, suppose we have a partition Z1, Z2 of VH with
∑

e∈E w(e)2 +
∑

v∈V D(v)2/4 edges
between Z1 and Z2. We distinguish two types of edges in EH ∩ (Z1 × Z2). A Type 1 edge is
an edge between two vertices xv,e,i and xv,e′,j (i.e., it is in the clique of a vertex v). A Type
2 edge is an edge between two vertices xv,e,i and ew,e,j for some edge e = {v, w}. Note that
each edge in H is of Type 1 or Type 2 and that H has precisely

∑
e∈E w(e)2 Type 2 edges.

For each vertex v ∈ V , we consider how many Type 1 edges (those in the clique of v) are
in Z1 × Z2. If we have α vertices in the clique of v that belong to Z1, then D(v) − α vertices
in the clique of v belong to Z2, and thus, in this clique, we cut α · (D(v) − α) ≤ D(v)2/4
edges; the maximum possible is reached when α = D(v)/2.

It follows that the number of Type 1 edges that are cut is at most
∑

v∈V D(v)2/4. So, we
must cut all Type 2 edges, i.e., for each edge e = {v, w}, all edges of the form {xv,e,i, xw,e,j}
are between a vertex in Z1 and a vertex in Z2. It follows that we either have that all vertices
of the form xv,e,i are in Z1 and all vertices of the form xw,e,i are in Z2 – in which case we
direct the edge e from v to w; or all vertices of the form xv,e,i are in Z2 and all vertices of
the form xw,e,i are in Z1, and now we direct the edge from w to v.

For each vertex v ∈ V , we must have exactly D(v)/2 vertices from the clique of v in
Z1 and equally many vertices in Z2; otherwise, we cannot reach the required number of
cut edges. Now, the total weight of all edges that we directed out of v precisely equals the
number of vertices in the clique of v in Z1, and similarly, the total weight of all edges that
we directed towards of v precisely equals the number of vertices in the clique of v in Z2.
Both numbers equal D(v)/2. As this holds for each v ∈ V , the orientation defined above is a
circulation. ◁

Finally, we show that we can construct a linear clique expression for H given a path
decomposition of G; the number of colors we use for the clique width construction equals the
width of the path decomposition plus 4. The construction uses ideas for constructing clique
width constructions for line graphs of graphs of bounded treewidth; see [18].

Suppose we have a nice path decomposition, which uses introduce vertex, introduce edge,
and forget nodes. We use k + 1 active colors – each active color will correspond to one vertex
in the current bag. We also have an inactive color, which we will denote by the letter o. We
also use two temporary colors, which we call α and β.

We sequentially visit the bags of the path decomposition. Bags correspond to a number
of steps of the construction of H, as described next. If we introduce a vertex, we select a
currently unused active color, and say this is the color of that vertex, and assume it to be
used. If we introduce an edge e = {v, w}, we add the vertices xv,e,i one by one, each with
the color α. Then, we add the vertices xw,e,i one by one, each with the color β. Now, we add
all edges between vertices of color α and β. Now, recolor all vertices of color α by the color



H. L. Bodlaender, C. Groenland, H. Jacob, L. Jaffke, and P. T. Lima 8:11

v x

ye,1

ye,α

y′e,1

y′e,α

ze
z′e

z′′e

Figure 2 Edge gadget from the proof of Theorem 6.

of v. Then, recolor the vertices of color β by the color of w. If we forget a vertex v, we first
add edges between all vertices of the color of v – at this point, these are all vertices in the
clique of v, thus effectively ensuring that this set of vertices indeed is a clique. Then, recolor
the vertices with the color of v with the inactive color o. Consider the color of v now unused.

One can verify that this indeed constructs precisely H, and that the construction can be
done with f(k) log n additional space. ◀

4.2 Variants of Dominating Set parameterized by pathwidth

In this section we prove the following theorem.

▶ Theorem 6. Capacitated Red-Blue Dominating Set and Capacitated Dominating
Set parameterized by pathwidth are XNLP-complete.

Proof. We first show membership in XNLP for Capacitated Red-Blue Dominating Set.
For each red vertex, we guess if it is in the dominating set, and for each edge from a chosen
red vertex to a blue neighbor, we guess if it is used for dominating. We do this while going
through the path decomposition from left to right. We need to keep track which blue vertices
are already dominated, which red vertices are in the dominating set plus their remaining
capacity, and the total number of vertices in the dominating set so far. We may assume that
the remaining capacities are never larger than the number of blue vertices; therefore, we only
need to store O(log n) bits per vertex in the current bag. Membership in XNLP follows in a
similarly for Capacitated Dominating Set.

Hardness follows by a reduction from Circulating Orientation (defined in Section 4.1).
Suppose that we are given an input of Circulating Orientation, say a graph G = (V, E)
with weight function w : E → N. We assume that these weights are given in unary. Note
that in a solution, the total weight of edges directed towards a vertex v and the total weight
of the edges directed out of v should both equal

∑
{v,x}∈E w({v, x})/2.

We build a graph as follows. For each vertex v ∈ V , we create a vertex v, colored red, in H.
We give v a private blue neighbor v′. The capacity of v equals 1 +

∑
{v,x}∈E w({v, x})/2.

We can assume this capacity is integral, otherwise there is no solution to the instance (G, w).
Each edge e = {v, x} ∈ E is replaced by the following gadget. Suppose w({v, x}) = α ∈ N.
We create 2α + 3 vertices, called ye,1, ye,2, . . . , ye,α, ze, z′

e, z′′
e , y′

e,1, . . . , y′
e,α. The edge e is

replaced by the subgraph shown in Figure 2. The vertices ze and z′′
e are red, and all other new

vertices are blue. We give the new red vertices ze and z′′′
e a capacity that equals their degree.

Let H = (VH , EH) be the resulting red-blue colored graph, with c(v) the capacity of a
red vertex v ∈ VH . We claim that H has a dominating set of size size |V | + |E| for which
each chosen red vertex dominates at most its capacity many blue vertices, if and only if G

has a circulating orientation.
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Suppose first that we have a set S of red vertices with |S| ≤ |V | + |E|, and an assignment
of blue vertices to neighbors in S, such that no red vertex has more than its capacity number
of vertices assigned to it.

Each vertex that is a copy of a vertex from V must belong to S, as they have a private
blue neighbor. For each edge e, either ze or z′′

e must be in S, to dominate z′
e. This gives

in total already |V | + |E| vertices, so no edge can have both ze and z′′
e in S. For each edge

e = {v, x}, if ze ∈ S, then orient the edge from v to x in G; if z′′′
e ∈ S, then orient the edge

from x to v. Now, for each v ∈ V , the total weight of incoming edges of the orientation
can be at most c(v) − 1, since v must also dominate its private neighbor. By definition,
c(v) − 1 =

∑
{v,x}∈E w({v, x})/2. This means that for each vertex, the total weight of

incoming edges is at most half the total weight of incident edges; it follows that this total
weight must be equal, because when there is a vertex for which this weight is smaller, then
there must be another vertex for which it is larger. So, we have an orientation that is a
circulation.

Suppose now that we have a circulation that is an orientation. Add each original vertex
v ∈ V to S, and for each edge e = {v, x}, place ze in S when the edge is oriented from v to x

and otherwise place z′′
e in S. Red vertices on edge gadgets dominate all their neighbors; red

original vertices dominate their private neighbor and all not yet dominated blue neighbors.
This gives a dominating set where each red vertex in S dominates precisely its capacity many
neighbors, as desired.

Finally, we show that we can build a log-space transducer that transforms a path
decomposition of G of width ℓ to one of H with width at most ℓ + 2. We first ensure that
the path decomposition of G is nice (which can be done via a log-space transducer). We
pass through the bags from left to right. For a forget bag in the path decomposition of G,
we take the same bag for H. For an introduce bag Xi = Xi−1 ∪ {v}, we loop through the
vertices in Xi−1 one-by-one, say these are x1, . . . , xr. For each j ∈ [r], if {v, xj} ∈ E, then
we add the following bags (in order):

Xi ∪ {ze, ye,1}, Xi ∪ {ze, ye,2}, . . . , Xi ∪ {ze, ye,w(e)}, Xi ∪ {ze, z′
e}, Xi ∪ {z′

e, z′′
e },

Xi ∪ {z′′
e , y′

e,1}, Xi ∪ {z′′
e , y′

e,2}, . . . , Xi ∪ {z′′
e , y′

e,w(e)}.

One can verify that this gives a path decomposition of H. The width has increased by at
most 2.

A standard transformation now shows that Capacitated Dominating Set is also
XNLP-hard with pathwidth as parameter. Given an instance (G, w) of Capacitated Red-
Blue Dominating Set, we build an equivalent instance of Capacitated Dominating
Set. We give each blue vertex capacity zero. We add two new vertices x and x′, with x′ of
degree one and x adjacent to all red vertices and to x′. The capacity of x is equal to the
number of red vertices plus 2. We increase the target size of the solution by one (and remove
all colors). The pathwidth has gone up by at most one. ◀

We remark that a similar reduction can be used to show XNLP-hardness of Capacitated
Vertex Cover (by removing the vertex z′

e, having parallel paths of length 3 instead of 2 in
the gadget of Figure 2 and giving each original vertex a new neighbor of degree one).

4.3 q-Coloring parameterized by linear mim-width
In this section we show that for each fixed q ≥ 5, q-Coloring is XNLP-complete when
parameterized by the linear mim-width of the input graph.
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q-Coloring
Input: A graph G = (V, E) and a linear order of V of mim-width w.
Parameter: w.
Question: Does G have a proper vertex-coloring with q colors?

XNLP-membership for this problem will be shown via the corresponding known dynamic
programming XP-algorithm [8] which is based on the following.

▶ Definition 13 (Neighborhood Equivalence). Let G = (V, E) be a graph and A ⊆ V . For all
X, Y ⊆ A: X ≡A Y ⇔ N(X) ∩ (V \ A) = N(Y ) ∩ (V \ A).

▶ Lemma 14. q-Coloring parameterized by the mim-width of a linear order of the vertices
of the input graph is in XNLP.

Proof. Let n be the number of vertices of the input graph G = (V, E) and w the mim-width
of the given linear order v1, . . . , vn of V . Membership in XNLP is shown by adapting the
XP-algorithm [8] to a nondeterministic polynomial-time algorithm that also uses at most
O(w log n) space.

With i going from 1 to n, at step i we store partial solutions associated with the subgraph
of G induced by the vertices Vi = {v1, . . . , vi}. (For convenience, we let Vi = V \ Vi.) In
the XP algorithm of [8], partial solutions are proper colorings of G[Vi] and a table index
consists of representatives of equivalence classes Q1, . . . , Qq of ≡Vi

such that for all i ∈ [q],
color class i in the coloring is contained in Qi.

To prove that each such coloring can be represented using O(w log n) bits, we use the
following claim shown in [8]. We reprove it here to clarify that it leads to an algorithm
satisfying the time and space requirements.

▷ Claim 15. For each i ∈ [n − 1], and each Si ⊆ Vi, there is a set Ri ⊆ Vi with Ri ≡Vi Si

and |Ri| ≤ w. Furthermore, there is a polynomial-time algorithm using at most O(w log n)
space that determines Ri from Ri−1, where Ri−1 ≡Vi−1 Si ∩ Vi−1 and |Ri−1| ≤ w.

Proof. For i ≤ w, we can simply let Ri = Si, so suppose that i > w ≥ 1, and that
|Si| > w. By induction, we can assume that we have Ri−1 ⊆ Vi−1 of size at most w

such that Ri−1 ≡Vi−1 Si ∩ Vi−1. Let R′
i = Ri−1 ∪ {v}. If |R′

i| ≤ w, then we let Ri = R′
i

and we are done. We may assume that |R′
i| = w + 1. If there is some x ∈ R′

i such that
N(R′

i \ {x}) ∩ Vi = N(R′
i) ∩ Vi, then we let Ri = R′

i \ {x} and we are done. Otherwise, we
know that each vertex x in R′

i has a neighbor y in Vi such that y is non-adjacent to all
vertices in R′

i \ {x}. This means that these xy-edges form an induced matching in G[Vi, Vi],
a contradiction. ◁

The previous claim immediately shows that each table index can be encoded using
O(qw log n) bits, which is O(w log n) since q is a constant. The algorithm works as follows.
Upon arrival of the next vertex vi+1, we nondeterministically guess which of the q colors vi+1
receives. We then nondeterministically guess the table index corresponding to the updated
solution. By Claim 15 we can conclude that the nondeterministic step can be implemented
in polynomial time, and using only O(w log n) space. ◀

For two disjoint sets A, B ⊆ V , the bipartite complement replaces each edge with one
endpoint in A and the other in B with a non-edge and vice versa. The following construction
is due to Fomin et al. [16].
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▶ Definition 16 (Subdivision-complement, Fomin et al. [16]). Let G = (V, E) be a graph, and
A, B ⊆ V with A ∩ B = ∅. The subdivision-complement between A and B is the following
operation:
1. Subdivide each edge uv with u ∈ A and v ∈ B; call the resulting set of vertices R.
2. Take the bipartite complement between A and R and the bipartite complement between B

and R.

The reason why this operation is useful for reductions for problems parameterized by
mim-width are the following bounds on the maximum induced matching size of cuts resulting
from this construction. This can also be derived from [16], but we include a simple direct
proof here for completeness.

▶ Lemma 17. Let G = (V, E) be a graph, and A, B ⊆ V with A ∩ B = ∅. Let G′ be the graph
obtained from G by applying the subdivision-complement between A and B; let R denote the
set of vertices created in the construction. Then, for all C ∈ {A, B}, cutmimG′(C, R) ≤ 2.

Proof. Suppose for a contradiction that there is an induced matching of size three in G′[A, R],
say M = {airi | i ∈ [3], ai ∈ A, ri ∈ R}. For all i ∈ [3], let ei denote the edge in G whose
subdivision created vertex ri. Since M is an induced matching and by construction, a1 is
the endpoint of e2 and e3. But this implies that a2 is not the endpoint of e3, and therefore
that the edge a2r3 exists in G′[A, R]. ◀

To prove the bound on the mim-width of linear orders constructed in the hardness proofs
in this section, we need the following additional lemma which can be seen as a variation of a
lemma in [6], but for linear mim-width. Recall that for a graph G = (V, E) and a partition
P of V , the quotient graph G/P is the graph obtained from G by contracting each part of P
into a single vertex. The cutwidth of a linear order Λ = v1, . . . , vn of V , denoted by cutw(Λ)
is the maximum, over all i, of the number of edges with one endpoint in {v1, . . . , vi} and the
other in {vi+1, . . . , vn}.

▶ Lemma 18 (♣). Let G = (V, E) be a graph, let P = (P1, . . . , Pr) be a partition of V , and
let G′ = G/P. For all i ∈ [r] let Λi be a linear order of Pi such that mimwG[Pi](Λi) ≤ c, and
suppose that for all distinct i, j ∈ [r], cutmimG(Pi, Pj) ≤ d. Let Λ = Λ1, Λ2, . . . , Λr, and let
Λ′ = P1, . . . , Pr be the corresponding linear order of G/P. Then, mimw(Λ) ≤ 2d·cutw(Λ′)+c.

▶ Definition 19 (Frame graph). Let (G = (V, E), V1, . . . , Vr, f) be an instance of Chained
Multicolored Clique; for each i ∈ [r], let V (i, 1), . . . , V (i, k) denote the partition of Vi

according to f .
The frame graph G′ = (V ′, E′) is obtained from G by applying, for each h ∈ [r−1] and each

pair (i1, j1), (i2, j2) ∈ {h, h+1}×[k], where (i1, j1) <LEX (i2, j2), the subdivision-complement
between V (i1, j1) and V (i2, j2).3 We denote the set of new vertices by R(i1, j1, i2, j2).

For convenience, we let P denote the partition of V ′ into V (1, 1), . . ., V (r, k), R(1, 1, 1, 1),
. . ., R(r, k, r, k), and we define the following auxiliary partial function ϕ : E → V ′: For all
(i1, j1) and (i2, j2) as above, for each v1 ∈ V (i1, j1) and v2 ∈ V (i2, j2) with v1v2 ∈ E, we let
ϕ(v1v2) ∈ R(i1, j1, i2, j2) be the vertex created when subdividing v1v2.

3 Here, <LEX denotes the lexicographic ordering. We have (i1, j1) <LEX (i2, j2) if either i1 < i2 or if
i1 = i2 and j1 < j2.
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▶ Lemma 20. Let (G = (V, E), V1, . . . , Vr, f) be an instance of Chained Multicolored
Clique, and let G′ = (V ′, E′) be its frame graph; adapt the notation from Definition 19.
Then, G′ has an independent set S with |S ∩ P | = 1 for all P ∈ P if and only if G has a
chained multicolored clique.

Proof. Suppose G′ has an independent set S with |S ∩ P | = 1 for all P ∈ P. Let vi,j ∈
S ∩ V (i, j) for all i ∈ [r], j ∈ [k]. We claim that this implies that for all h ∈ [r − 1], and
all (i1, j1), (i2, j2) ∈ {h, h + 1} × [k] with (i1, j1) <LEX (i2, j2), we have that ϕ(vi1,j1vi2,j2) ∈
S ∩ R(i1, j1, i2, j2), which implies that vi1,j1vi2,j2 ∈ E and in particular that S ∩ V is a
chained multicolored clique in G. Let r ∈ S ∩ R(i1, j1, i2, j2) and suppose r ̸= ϕ(vi1,j1vi2,j2).
We may assume that r = ϕ(v, w) where v ∈ V (i1, j1) \ {vi1,j1}. But then, vi1,j1r is an edge
in G′, a contradiction.

For the other direction, let W ⊆ V be the chained multicolored clique in G. Let S = ∅.
For each i ∈ [r] and j ∈ [k], we add the vertex vi,j ∈ W ∩ V (i, j) to S. Next, for each
h ∈ [r − 1], and each pair (i1, j1), (i2, j2) ∈ {h, h + 1} × [k] where (i1, j1) <LEX (i2, j2),
we add ϕ(vi1,j1vi2,j2) to S. Note that since W is a chained multicolored clique, the edge
vi1,j1vi1,j2 always exists in G. It follows immediately from the construction that S is an
independent set in G′, and that for all P ∈ P, |S ∩ P | = 1. ◀

▶ Lemma 21. For fixed q ≥ 5, q-Coloring parameterized by the mim-width of a given
linear order of the vertices of the input graph is XNLP-hard.

Proof. We give a parameterized logspace reduction from Chained Multicolored Clique
to 5-List-Coloring. Let I = (G = (V, E), V1, . . . , Vr, f) be the instance of Chained
Multicolored Clique. We create the graph G′′ = (V ′′, E′′) of the 5-List-Coloring
instance as follows: Let G′ = (V ′, E′) be the frame graph of I and adapt the notation of
Definition 19. We obtain G′′ and the lists L′′ = {L(v) | v ∈ V ′′} as follows:

For each P ∈ P , we add two vertices a(P ) and b(P ), and make P ′′ = P ∪ {a(P ), b(P )} a
path from a(P ) to b(P ). We let P ′′ = {P ′′ | P ∈ P}.
For each (i, j) ∈ [r] × [k], each list of a vertex in P = V (i, j) is [3]. If |P | is even, the lists
of both a(P ) and b(P ) are {1}; and if |P | is odd, the list of a(P ) is {1}, and the list of
b(P ) is {2}.
For each h ∈ [r − 1] and (i1, j1), (i2, j2) ∈ {h, h + 1} × [k] with (i1, j1) <LEX (i2, j2), each
list of a vertex in R = R(i1, j1, i2, j2) is {3, 4, 5}. If |R| is even, the lists of both a(R) and
b(R) are {5}; and if |R| is odd, the list of a(R) is {5}, and the list of b(R) is {4}.

The following observation is immediate from the above construction.

▶ Observation 22. In each proper list coloring of (G′′, L′′) and each P ∈ P, there is a vertex
in P that received color 3. Conversely, if some vertex v ∈ P received color 3 in a proper list
coloring of (G′′, L′′), then the vertices in P ′′ \ {v} can be properly list-colored with colors
{1, 2}, if P = V (i, j) for some i, j or with colors {4, 5}, if P = R(i1, j1, i2, j2), for some
i1, i2, j1, j2.

Now suppose that G has a chained multicolored clique W . Then by Lemma 20, there
is an independent set S in G′ such that |S ∩ P | = 1 for all P ∈ P. Note that S is also an
independent set in G′′. We can therefore let S be color class 3, and by Observation 22, the
remaining vertices of each path P can be properly list colored without using color 3. It suffices
to check the the edges between V (i1, j1) and R(i1, j1, i2, j2), for any valid choice of i1, i2, j1, j2.
Since S is an independent set, the vertices v ∈ S ∩ V (i1, j1) and w ∈ S ∩ R(i1, j1, i2, j2) are
non-adjacent. Furthermore, v has a different color from all vertices in R(i1, j1, i2, j2) \ S.
Finally, the sets of colors appearing on V (i1, j1) \ S and R(i1, j1, i2, j2) \ S are disjoint.
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Conversely, suppose that (G′′, L′′) has a proper list-coloring. Then we can combine
Observation 22 and Lemma 20 to conclude that G has a chained multicolored clique (with
color class 3 being the independent set required by Lemma 20).

We conclude with the following claim.

▷ Claim 23. One can in polynomial time and logarithmic space construct a linear order Λ
of V ′′ such that mimw(Λ) = O(k2).

Proof. Each part P ∈ P, together with a(P ) and b(P ) forms a path. Therefore we can
trivially obtain a linear order of P ∪ {a(P ), b(P )} by following the path from a(P ) to b(P )
whose mim-width is 1. For all i ∈ [r] and j ∈ [k], we let Λ(i, j) be such a linear order
where P corresponds to V (i, j). For all h ∈ [r − 1], and all (i1, j1), (i2, j2) ∈ {h, h + 1} × [k]
with (i1, j1) <LEX (i2, j2), we let Γ(i1, j1, i2, j2) be such a linear where P corresponds to
R(i1, j1, i2, j2). The desired linear order Λ traverses V ′′ as follows: Consider (i, j) ∈ [r] × [k]
in lexicographically increasing order. First, we follow Λ(i, j), and then Γ(i, j, i, j + 1), . . .,
Γ(i, j, i, k), and if i < r, then Γ(i, j, i + 1, 1), . . ., Γ(i, j, i + 1, k). This linear order of G′′ can
be created using O(log n) bits of memory, where n = |V |.

As pointed out above, each Λ(i, j) and each Γ(i1, j1, i2, j2) has mim-width at most 1.
The only edges in G′ between different parts of P are between V (i1, j1) and R(i1, j1, i2, j2),
and between V (i2, j2) and R(i1, j1, i2, j2), where (i1, j1) <LEX (i2, j2). By construction
it therefore follows from Lemma 17 that for each pair of distinct parts P1, P2 ∈ P,
cutmimG′(P1, P2) ≤ 2. Let Λ′ be the linear order of the vertices of G′′/P such Λ can
be obtained by traversing the parts of P in the order of Λ′, and then following the above
described order on each part of P . We can observe that cutw(Λ′) = O(k2), and therefore the
claim follows from Lemma 18. ◁

We have shown that 5-List-Coloring parameterized by the mim-width of a given linear
order of the input graph is XNLP-hard. To derive XNLP-hardness of 5-Coloring in the
same parameterization, observe that we can use the standard trick of adding a clique on
vertices {1, . . . , 5}, and for each i ∈ [5], connecting i and v if i /∈ L(v). Since adding c vertices
can only increase the mim-width of a given linear order by at most c, no matter where the
new vertices are placed, this does not prohibitively increase the linear mim-width either.

To obtain hardness for any q > 5, we simply add q − 5 universal vertices to the 5-
Coloring instance obtained in the previous paragraph. Adding universal vertices cannot
increase the mim-width w of any linear order, regardless of where they are placed, unless
w = 0. ◀

Combining Lemmas 14 and 21, we obtain that q-Coloring is XNLP-complete paramet-
erized by linear mim-width, for each fixed q ≥ 5.

5 Conclusion

In this paper, we gave a number of XNLP-completeness proofs for graph problems paramet-
erized by linear width measures. Such results are interesting for a number of reasons: they
pinpoint the “right” complexity class for parameterized problems, they imply hardness for all
classes W [t], and they tell that it is unlikely that there is an algorithm that uses ‘XP time
and FPT space’ by Conjecture 1.

This paper gives among others the first examples of XNLP-complete problems when the
linear clique-width or linear mim-width is taken as parameter. Our hardness results give new
starting points for future hardness and completeness proofs, in particular for problems with
width measures like pathwidth, (linear) clique-width, or (linear) mim-width as parameter.
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Other interesting directions for future research in this line are, for instance, to consider the
parameterization by cutwidth; a promising candidate problem to show XNLP-completeness
parametized by cutwidth is List Edge Coloring. Another interesting parameter to consider
in this context is the degeneracy of a graph. It is also interesting to explore the concept of
XNLP-completeness for width measures of other objects than graphs. One could for instance
consider (linear) width measures of digraphs or hypergraphs.

We also leave open what the correct parameterized complexity class is for Feedback
Vertex Set parameterized by logarithmic pathwidth or logaritmic linear cliquewidth – we
showed XNLP-hardness, but did not prove containment in XNLP.
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