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Abstract
Synthesis is the automated construction of a system from its specification. In many cases, we
want to maintain the privacy of the system and the environment, thus limit the information that
they share with each other or with an observer of the interaction. We introduce a framework for
synthesis that addresses privacy in a simple yet powerful way. Our method is based on specification
formalisms that include an unknown truth value. When the system and the environment interact,
they may keep the truth values of some input and output signals private, which may cause the
satisfaction value of specifications to become unknown. The input to the synthesis problem contains,
in addition to the specification φ, also secrets ψ1, . . . , ψk. During the interaction, the system directs
the environment which input signals should stay private. The system then realizes the specification if
in all interactions, the satisfaction value of the specification φ is true, whereas the satisfaction value
of the secrets ψ1, . . . , ψk is unknown. Thus, the specification is satisfied without the secrets being
revealed. We describe our framework for specifications and secrets in LTL, and extend the framework
also to the multi-valued specification formalism LTL[F ], which enables the specification of the quality
of computations. When both the specification and secrets are in LTL[F ], one can trade-off the
satisfaction value of the specification with the extent to which the satisfaction values of the secrets
are revealed. We show that the complexity of the problem in all settings is 2EXPTIME-complete,
thus it is not harder than synthesis with no privacy requirements.
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1 Introduction

Synthesis is the automated construction of a system from its specification: Given a linear
temporal logic (LTL) formula φ over sets I and O of input and output signals, the goal is
to return an I/O-transducer that realizes φ. At each moment in time, the transducer reads
a truth assignment, generated by the environment, to the signals in I, and it generates a
truth assignment to the signals in O. Thus, with every sequence of inputs, the transducer
associates a sequence of outputs, and it realizes φ if all the computations that are generated
by the interaction satisfy φ. Synthesis enables designers to focus on what the system should
do rather than on how it should do it, and has attracted a lot of research and interest [41, 9].

While synthesized systems are correct, there is no guarantee about their quality. This
is a real obstacle, as designers will give up manual design only after being convinced that
the automatic process replacing it generates systems of comparable quality. An important
quality measure is privacy: we seek systems that allow the underlying components not to
reveal information they prefer to keep private. Unlike quality measures that are based on
prioritizing different on-going behaviors, privacy is a global conceptual requirement, and it is
not clear how to address the challenge of privacy in existing formulations and algorithms of
synthesis. The Computer Science community has adopted the notion of differential privacy
for formalizing when an algorithm maintains privacy. Essentially, an algorithm is differentially
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private if by observing its output, we cannot tell if a particular individual’s information is used
in the computation [20, 22]. An orthogonal related challenge is that of obfuscation in system
development, where we aim to develop systems whose internal operation is hidden [5, 27].

We introduce a framework for synthesis that addresses privacy in a simple yet powerful
way. Our method is based on extending the semantics of the specification formalism to
include an unknown truth value, denoted “?”. Let us first explain the framework when applied
to LTL. In our framework, the input and output signals take values from {F, ?, T}, and so
the semantics is defined with respect to an infinite noisy computation κ ∈ ({F, ?, T}I∪O)ω.
The satisfaction value of a formula ψ in κ is T if all the computations obtained by “filling”
the missing information in κ satisfy ψ, is F if all these computations do not satisfy ψ, and is
? otherwise. Allowing the system and the environment to hide the values of some signals
by assigning them ? is a natural way to increase privacy. Indeed, the truth value of these
signals remains private. Adjusting the definition of realizability to require the system to
satisfy the specification in all possible “fillings” of the missing values is also natural. Indeed,
as is the case in other settings with incomplete information, we want the specification to
hold no matter what the hidden values are [30].

An important question in the three-valued approach is how to measure the privacy level
of the system. Clearly, the more signals are hidden, the more privacy is maintained. Still,
an approach that is based on the number or the density of unknown assignments is not
satisfactory, as many values are often not interesting, and we need an approach that captures
the fact that the system and the environment do not reveal information they care not to
reveal. A three-valued semantics for LTL and other temporal logics has already been studied
in formal methods, in settings in which information is lost due to abstraction and other
methods for coping with the state-explosion problem [10, 39, 18]. In all these methods,
an evaluation of a specification to ? is a problem, which one should address by adding
information, for example by refinement or revealing of data. The novelty of our approach is
that we let the system and environment specify in LTL the behaviors they want to keep secret,
and we view an evaluation to ? as a desirable outcome – when it applies to secret behaviors.

More formally, the input to our synthesis problem includes a specification φ and a list of
secrets ψ1, . . . , ψk, both over the set I ∪O of input and output signals. The output of the
synthesis problem is an I/O-transducer with masking. Such a transducer outputs, in each
state, both a three-valued assignment to the signals in O (that is, some output signals may
be assigned ?), and a subset of input signals – these whose truth value should not be revealed
in the current state. If in state s, the transducer asks the environment not to reveal the
truth value of the signals in M ⊆ I, then the transitions from s are independent of the values
of the signals in M . Accordingly, the interaction of a transducer T with an environment
produces an infinite noisy computation in ({F, ?, T}I∪O)ω. The transducer is correct if for all
input sequences wI ∈ ({F, T}I)ω, the interaction of T with an environment that generates
wI result in a noisy computation κ ∈ ({F, ?, T}I∪O)ω such that the satisfaction value of the
specification φ in κ is T, and the satisfaction value of all secrets ψ1, . . . , ψk in κ is ?. In
other words, all the computations of T satisfy φ without revealing the secrets. Note that
while in traditional synthesis, the system only decides what the assignment to the signals in
O is, here the system decides which signals in I ∪ O it masks, and then decides what the
assignment to the unmasked signals in O is. Clearly, the more signals the system masks, the
easier it is for ψ1, . . . , ψk to stay secret, and the harder it is for φ to be satisfied.

Recall that our goal of synthesizing systems that preserve privacy is a component in
our overarching objective to synthesize systems of high quality. In recent years, researchers
have started to address the challenge of synthesis of high-quality systems by extending the



Boolean setting to a multi-valued one, capturing different levels of satisfaction [8, 13, 1, 2].
We consider here the linear temporal logic LTL[F ], which extends LTL with an arbitrary set
F of functions over [0, 1]. The satisfaction value of an LTL[F ] formula φ is a value in [0, 1],
where the higher the satisfaction value is, the higher is the quality in which φ is satisfied [1].
Using the functions in F , a specifier can prioritize different ways of satisfaction. Classical
decision problems in the Boolean setting become optimization problems in the quantitative
setting. In particular, in the synthesis problem, we seek systems with the highest possible
satisfaction value [1, 2].

Adding privacy to the setting, this highest possible satisfaction value for the specification
φ should be achieved without revealing the satisfaction value of the secrets. We follow the
worst-case approach, where the quality of the synthesized system is the minimal satisfaction
value of φ in some interaction, and the satisfaction value of all the secrets should be kept
unknown in all interactions. We focus on secrets in LTL, but study also secrets in LTL[F ],
where we can also trade-off the satisfaction value of φ and the extent to which the satisfaction
value of the secrets is revealed. We show that the complexity of the problem in all settings
is 2EXPTIME-complete for specifications in LTL and LTL[F ], thus it is not harder than
synthesis with no privacy requirements.

As an example, consider a system that directs a robot patrolling a warehouse storage.
Typical specifications for the system requires it to direct the robot so that it eventually
reaches the shelves of requested items, it never runs out of energy, etc. Our algorithm
automatically synthesizes a system that not only satisfies the specification, but also decides
which parts of the interaction to hide so that the specification is satisfied without revealing
secrets that would have been revealed by an observer of the full interaction. Such secrets
may be dependencies between customers and shelves visited, locations of battery docking
stations, and other properties of the structure of the warehouse. As a more specific example,
assume there is a set of shelves S = {s1, s2, . . . , sk} such that we want to keep private the
vicinity of shelves in S to docking stations. The input signals, namely these assigned by the
robot, include the signals at_si, for 1 ≤ i ≤ k, indicating the robot is at shelf si, and the
signal charging, indicating the robot is at a docking station. Let at_S =

∨
i∈[k] at_si. Then,

adding a secret F(charging ∧ at_S) requires the system to direct the robot to hide the values
of signals in a way that hides from an observer the truth value of “eventually, the robot is near
both some shelf in S and a docking station”. Similarly, the secret F(charging ∧ at_si) hides
whether shelf si is near a docking station (recall that our framework supports a set of secrets,
in particular a secret for each shelf in S). If we need to keep the whole radius of the charging
docks secret, we can strengthen the secrets to F(Xcharging ∧ (at_S ∨ Xat_S ∨ XXat_S)),
and similarly for the individual shelves. In order to prevent this secret from being evaluated
to T, the system needs to direct the robot to assign ? to at_si not only when it assigns T to
charging, but also in three time units around it, namely one time unit before and after making
charging visible. Alternatively, the system can direct the robot to assign ? to charging. In
addition, since the secret is evaluated to F in computations in which at_si ∧ charging is
always evaluated to F, the system needs to direct the robot to assign ? to at_si and charging
in a way that prevents such an evaluation, for example by assigning them both ? in the
initial state. In general, the choice of the system which signals to hide depends on other
specifications it has to satisfy. If, for example, it is essential for the system to know about
visits to all the shelves in S, then it may direct the robot not to charge near them or to
hide the fact it does so. Otherwise, the system may leave the information about the visits
unknown, and it may also combine the two solutions – this is exactly what our procedure
does automatically.



One technical challenge of our algorithms is the need to combine automata for the
specification with automata for the secrets. For the specification φ, the quantification
of the hidden information is universal – we want all computations obtained by filling
the hidden information to satisfy φ. For a secret ψi, the quantification of the hidden
information is existential – we want witnesses that different fillings lead to different satisfaction
values of ψi. The fact we need automata that handle both types of quantification makes
it impossible to proceed with a Safraless synthesis algorithm, which requires universal
automata [31]. We introduce and study a syntax-based three-valued semantics for LTL in
noisy computations, which enables us to construct universal automata for secrets, leading to
a Safraless synthesialgorithm that circumvents determinization and solution of parity games.

Related work. A very basic model of privacy has been studied in the context of synthesis
with incomplete information [35, 30, 14], where the value of a subset of the signals stays
secret throughout the interaction. Synthesis with incomplete information can be viewed as
a special case of our approach here. Indeed, hiding of a signal p can be achieved with the
secrets Fp and F¬p. Moreover, our framework supports hiding of designated signals in parts
(rather than all) of the interaction.

Lifting differential privacy to formal methods, researchers have introduced the temporal
logic HyperLTL, which extends LTL with explicit trace quantification [17]. In particular,
such a quantification can relate computations that differ only in non-observable elements, and
can be used for specifying that computations with the same observable input have the same
observable output. The synthesis problem of HyperLTL is undecidable, yet is decidable for
the fragment with a single existential quantifier, which can specify interesting properties [24].
Our approach here is different, as it enables the specification of arbitrary secrets, and can be
implemented on top of LTL synthesis tools.

As for obfuscation, while it is mainly studied in the context of software, where it has
exciting connections with cryptography [5, 27], researchers have also studied the synthesis
of obfuscation policies for temporal specifications [21, 43], which is closer to our approach
here. In [43], an obfuscation mechanism is based on edit functions that alter the output of
the system, aiming to make it impossible for an observer to distinguish between secret and
non-secret behaviors. In [21], the goal is to synthesize a control function that directs the
user which actions to disable, so that the observed sequence of actions would not disclose a
secret behavior. Our work, on the other hand, addresses the general synthesis problem and
thus handles specifications and secrets that are on-going infinite behaviors given by LTL and
LTL[F ] specifications. In particular, while our transducers can mask information, they do
not have an option to edit the interaction or disable actions of the environment.

2 Preliminaries

2.1 Automata
For a finite nonempty alphabet Σ, an infinite word w = σ1 ·σ2 · · · ∈ Σω is an infinite sequence
of letters from Σ. A language L ⊆ Σω is a set of infinite words.

An automaton over infinite words is A = ⟨Σ, Q, q0, δ, α⟩, where Σ is an alphabet, Q is a
finite set of states, q0 ∈ Q is an initial state, δ : Q× Σ→ 2Q is a transition function, and α

is an acceptance condition, to be defined below. For states q, s ∈ Q and a letter σ ∈ Σ, we
say that s is a σ-successor of q if s ∈ δ(q, σ). We consider automata with a total transition
function. That is, for every state q ∈ Q and letter σ ∈ Σ, we have that |δ(q, σ)| ≥ 1. If
|δ(q, σ)| = 1 for every state q ∈ Q and letter σ ∈ Σ, then A is deterministic.



A run of A on w = σ1 ·σ2 · · · ∈ Σω is an infinite sequence of states r = r0, r1, r2, . . . ∈ Qω,
such that r0 = q0, and for all i ≥ 0, we have that ri+1 ∈ δ(ri, σi+1). The acceptance condition
α determines which runs are “good”. We consider here the Büchi, co-Büchi, generalized
Büchi, generalized co-Büchi, and parity acceptance conditions. All conditions refer to the
set inf (r) ⊆ Q of states that r traverses infinitely often. Formally, inf (r) = {q ∈ Q : q =
ri for infinitely many i’s}. In generalized Büchi and co-Büchi automata, the acceptance
condition is of the form α = {α1, α2, . . . , αk}, for sets αi ⊆ Q. In a generalized Büchi
automaton, a run r is accepting if for all 1 ≤ i ≤ k, we have that inf (r) ∩ αi ̸= ∅. Thus, r
visits each of the sets in α infinitely often. Dually, in a generalized co-Büchi automaton, a
run r is accepting if there exists 1 ≤ i ≤ k such that inf (r) ∩ αi = ∅. Thus, r visits at least
one of the sets in α only finitely often. Büchi and co-Büchi automata are special cases, with
k = 1, of their generalized forms. Finally, in a parity automaton α : Q → {1, ..., k} maps
states to ranks, and a run r is accepting if the maximal rank of a state in inf (r) is even.
Formally, maxq∈inf (r){α(q)} is even. A run that is not accepting is rejecting. We refer to the
number k in α (that is, the number of sets in the generalized conditions and the number of
ranks in parity conditions) as the index of the automaton.

Note that as A may not be deterministic, it may have several runs on a word. We
distinguish between two branching modes. If A is a nondeterministic automaton, then a word
w is accepted by A if there is an accepting run of A on w. If A is a universal automaton,
then a word w is accepted by A if all the runs of A on w are accepting. The language of
A, denoted L(A), is the set of words that A accepts. Two automata are equivalent if their
languages are equivalent.

We denote the different classes of automata by three-letter acronyms in {D,N,U} ×
{B,C,GB,GC,P} × {W,T}. The first letter stands for the branching mode of the automaton
(deterministic, nondeterministic, or universal); the second for the acceptance condition type
(Büchi, co-Büchi, generalized Büchi, generalized co-Büchi, or parity); and the third indicates
we consider automata on words or trees (in Appendix A, we define tree automata). For
example, NBWs are nondeterministic Büchi word automata.

2.2 Parity games

A parity game is G = ⟨V,E, v0, α⟩ is played between two players Sys and Env. The set V
of positions is partitioned into two disjoint sets V = VEnv ∪ VSys, controlled by Sys and
Env. Then, E ⊆ (VSys × VEnv) ∪ (VEnv × VSys) is a transition relation, which we assume to
alternate between VsSys and Vsenv, v0 ∈ V is an initial position, and α : V → {1, . . . , k} is
a parity winning condition.

A strategy fSys : V ∗ ·VSys → VEnv for Sys maps a finite path in G that ends in a position
u ∈ VSys to a next position v ∈ VEnv such that (u, v) ∈ E, and similarly for a strategy
fEnv : V ∗ · VEnv → VSys for Env. When the two players play according to their strategies
fSys and fEnv, the outcome of the game, denoted outcome(fSys, fEnv), is the unique infinite
path ρ = v0, u0, v1, u1, . . . ∈ (VSys · VEnv)ω, where v0 ∈ VSys is the initial position, and for all
j ≥ 0, we have that uj = fSys(v0, u0, . . . , vj) and vj = fEnv(v0, u0, . . . , vj−1, uj−1).

A strategy fSys of Sys is winning if for every strategy fEnv for Env from v0, we have
that outcome(fSys, fEnv) satisfies the winning condition α. We say that Sys wins G, if it has
a winning strategy.



2.3 The temporal logic LTL[F]
The logic LTL[F ] is a multi-valued logic that extends the linear temporal logic LTL with
an arbitrary set of functions F ⊆ {f : [0, 1]k → [0, 1] : k ∈ N} called quality operators. For
example, F may contain the maximum or minimum between the satisfaction values of
subformulas, their product, and their average. This enables the specifier to refine the Boolean
correctness notion and associate different possible ways of satisfaction with different truth
values [1].

Let AP be a finite set of Boolean atomic propositions. The syntax of LTL[F ] is given
by the following grammar, where the symbol T stands for True, p ranges over a set AP of
atomic propositions, φ1, φ2, . . . , φk are LTL[F ] formulas and f : [0, 1]k → [0, 1] ∈ F .

φ := T | p | f(φ1, φ2, . . . , φk) | Xφ1 | φ1Uφ2.

The length of φ, denoted |φ|, is the number of nodes in the generating tree of φ. Note
that |φ| bounds the number of sub-formulas of φ. The semantics of LTL[F ] is defined with
respect to computations over AP . Let the calligraphic digit 2 denote the set {F, T}, where F
stands for False and T stands for True. Given a computation π = π0, π1, . . . ∈ (2AP )ω and
a position j ≥ 0, we use πj to denote the suffix πj , πj+1, . . . ∈ (2AP )ω of π. The semantics
maps a computation π ∈ (2AP )ω and an LTL[F ] formula φ to the satisfaction value of φ in
π, denoted [[π, φ]]. The satisfaction value is in [0, 1], and is defined inductively as follows.

[[π, T]] = 1.
[[π, p]] = 1 if p ∈ π0 and [[π, p]] = 0 if p ̸∈ π0.
[[π, f(φ1, φ2, . . . , φk)]] = f([[π, φ1]], [[π, φ2]], . . . , [[π, φk]]).
[[π,Xφ1]] = [[π1, φ1]].
[[π, φ1Uφ2]] = maxi≥0 {min([[πi, φ2]],min0≤j<i[[πj , φ1]])}.

The logic LTL coincides with the logic LTL[F ] for F = {¬,∨,∧}, which corresponds to the
usual Boolean operators. Formally, for x, y ∈ [0, 1], we have ¬x = 1− x, x ∨ y = max {x, y},
and x ∧ y = min {x, y}. To see that LTL indeed coincides with LTL[F ], note that for this F ,
all formulas are mapped to {0, 1} in a way that agrees with the semantics of LTL. When φ

is an LTL formula, we say that a computation π satisfies φ, denoted π |= φ, iff [[π, φ]] = 1.
The novelty of LTL[F ] is the ability to manipulate values by arbitrary functions. For

example, F may contain the quantitative operator ▽λ, for λ ∈ [0, 1], which tunes down the
quality of a sub-specification. Formally, [[π,▽λφ1]] = λ · [[π, φ1]]. Another useful operator
is the weighted-average function ⊕λ that is defined, for λ ∈ [0, 1], by [[π, φ1 ⊕λ φ2]] =
λ · [[π, φ1]] + (1−λ) · [[π, φ2]]. Consider, for example, the robot at the warehouse example from
Section 1. Suppose shelf s1 is at the east of the warehouse and we prefer the robot to be as
close to the center as possible. Accordingly, we want a specification that incentivize the system
to direct the robot in s1 to the west, possibly also to the north or south, but less to the east.
This can be done with the LTL[F ] specification ψ1 = G(at_s1 → X(W ∨▽ 4

5
(N ∨ S)∨▽ 3

5
E).

Then, the satisfaction value of ψ1 in computations in which the system directs the robot to
go east from s1 (for example, in order to satisfy other specifications), get satisfaction value 3

5 .
Suppose further that the robot sends a signal low whenever its battery falls below some

threshold, in which case the system should direct the robot not to pick up new packages
and to charge its battery in the first docking station it comes across. Ideally, the robot stays
in this docking station for two consecutive time units. This can be stated with the LTL[F ]
specification ψ2 = G(low → (¬pickup ∧ ¬station)U(station ∧ (charging ⊕ 2

3
Xcharging))).

When the robot indeed stops at the first docking station and charges for two time units, the



satisfaction value is 2
3 + 1

3 = 1. If it stays there for only one time unit, the satisfaction value
is 2

3 , and if it starts the charging only at the second time unit in the station, the satisfaction
value drops to 2

3 . Note that the satisfaction value of ψ1 and ψ2 may not be 1 not only as a
result of a non-optimal behavior but also as a result of hiding of an optimal behavior. For
example, aiming to hide the secrets discussed in Section 1, the system may direct the robot
to assign ? to charging, reducing the satisfaction value of ψ2.

▶ Theorem 1 ([1]). Let φ be an LTL[F ] formula over AP and P ⊆ [0, 1] be a predicate. There
exists an NGBW APφ over the alphabet 2AP such that for every computation π ∈ (2AP )ω, we
have that APφ accepts π iff [[π, φ]] ∈ P . Furthermore, APφ has at most 2O(|φ|) states and index
at most |φ|.

2.4 LTL[F] synthesis
Consider finite disjoint sets I and O of input and output signals, which takes values in
2. For i ∈ 2I and o ∈ 2O, let i ∪ o ∈ 2I∪O be the assignment that agrees with i and o.
An I/O-transducer models an interaction between an environment that generates in each
moment in time an input in 2I and a system that responds with an output in 2O. Formally,
an I/O-transducer is a tuple T = ⟨I,O, S, s0, η, τ⟩ where S is a finite set of states, s0 ∈ S
is an initial state, η : S × 2I → S is a deterministic transition function, and τ : S → 2O is
an output-labeling function. Given a sequence wI = i0, i1, i2, . . . ∈ (2I)ω of input letters,
the run of T on wI is defined to be the sequence of states r(wI) = s0, s1, s2, . . . ∈ Sω that
begins with the initial state s0 and is such that for all j ≥ 0, we have sj+1 = η(sj , ij). We
define the computation of T on wI to be T (wI) = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . ∈ (2I∪O)ω,
where for all j ≥ 0, we have oj = τ(sj). Note that the interaction is initiated by the system:
the j-th output letter is determined by the j-th state, prior of reading the j-th input letter.

Defining the satisfaction value of φ in T , denoted [[T , φ]], the environment is assumed to
be hostile and we care for the minimal satisfaction value of some computation of T . Formally,
[[T , φ]] = min{[[T (wI), φ]] : wI ∈ (2I)ω}. Note that no matter what the input sequence is,
the specification φ is satisfied with value at least [[T , φ]].

The realizability problem for LTL[F ] is to determine, given φ and a predicate P ⊆ [0, 1],
whether there exists a transducer T such that [[T , φ]] ∈ P . We then say that T realizes
⟨φ, P ⟩. The synthesis problem is then to generate such a transducer. Of special interest are
predicates P that are upward closed. Thus, P = [v, 1] for some v ∈ [0, 1].

2.5 Satisfaction value in noisy computations
Let the calligraphic digit 3 denote the set {F, T, ?}. We think of 3AP as the set of noisy
assignments to AP , where the truth value of a proposition mapped to ? is “unknown”. For
two noisy assignments σ, σ′ ∈ 3AP , we say that σ′ is more informative than σ, denoted
σ ≤info σ′, if for all p ∈ AP , we have that σ(p) ∈ {σ′(p), ?}. Thus, some assignments
of F and T in σ′ may become ? in σ. A noisy computation over AP is an infinite word
κ = κ0, κ1, . . . ∈ (3AP )ω. We extend the ≤info relation to noisy computations in the expected
way, thus for κ, κ′ ∈ (3AP )ω, we have that κ ≤info κ

′ iff for all i ≥ 0, we have that κi ≤info κ
′
i.

A noisy assignment σ ∈ 3AP induces a set fill(σ) ⊆ 2AP of assignments, obtained by
replacing assignments to ? by assignments to F or T. Formally, an assignment σ′ ∈ 2AP is
in fill(σ) if σ ≤info σ

′. Each noisy computation κ induces a set fill(κ) of computations in
(2AP )ω, where π = π0, π1, . . . is in fill(κ) if for all i ≥ 0, it holds that πi ∈ fill(κi). Note that
κ ≤info π iff π ∈ fill(κ).



For a noisy computation κ ∈ (3AP )ω and an LTL[F ] formula φ over AP , we denote by
[[κ, φ]] the set of satisfaction values of φ in computations in fill(κ). Formally,

[[κ, φ]] = {[[π, φ]] : π ∈ (2AP )ω is such that π ∈ fill(κ)}.

For an LTL formula ψ, we say that κ satisfies ψ, denoted κ |= ψ, if π |= ψ for all
computations π in fill(κ). Thus, ψ is satisfied in all the computations obtained by filling κ.
Note that for an LTL formula ψ, we have that [[κ, ψ]] is {0}, {1}, or {0, 1}. For simplicity,
we use T, F, and ? to refer to these cases. In particular, [[κ, ψ]] =? if κ can be filled both to a
computation that satisfies ψ and to a computation that does not satisfy ψ, and in such case
we say that κ hides ψ.

3 Problem Formulation

In this section we define the problem of synthesis with privacy. We first define noisy
I/O-transducers, which are the output of the synthesis algorithm.

3.1 Noisy transducers
A noisy I/O-transducer is T = ⟨I,O, S, s0, η, τ,m⟩, which augments an I/O-transducer by
an input-masking function m : S → 2I . In addition, the transition function assumes a noisy
assignment to the input signals, thus η : S × 3I → S, and the labeling function generates a
noisy assignment to the output signals, thus τ : S → 3O. Intuitively, when the transducer
is in state s, it generates the noisy assignment τ(s) to the output signals and declares that
the values of input signals in m(s) should stay private. Then, the environment generates an
assignment σ ∈ 2I and reveals only the values of signals not in m(s). Thus, the transducer
moves to the successor state s′ = η(s, σ′), where σ′ ∈ 3I is obtained from σ by assigning ? to
the signals in m(s).

Formally, for an input assignment i ∈ 2I and a subset M ∈ 2I of I, let hide(M , i) ∈ 3I

be the noisy input assignment such that for every p ∈ I, if p ∈ M , then hide(M , i)(p) =?,
and if p ̸∈ M , then hide(M , i)(p) = i(p). Given an infinite sequence of assignments
to the input signals wI = i0, i1, i2, . . . ∈ (2I)ω, we define the run of T on wI and the
observable input sequence induced by wI , as the sequences r(wI) = s0, s1, s2, . . . ∈ Sω and
w′
I = i′0, i

′
1, i

′
2, . . . ∈ (3I)ω, respectively, where for all j ≥ 0, we have that i′j = hide(m(sj), ij)

and sj+1 = η(sj , i′i).
For a noisy input assignment i′ ∈ 3I and a noisy output assignment o′ ∈ 3O, we define

i′ ∪ o′ ∈ 3I∪O as the noisy assignment that agrees with i′ and o′. The noisy computation of
T on wI is then Tm(wI) = (i′0 ∪ τ(s0)), (i′1 ∪ τ(s1)), (i′2 ∪ τ(s2)), . . . ∈ (3I∪O)ω.

Note that while each input sequence wI ∈ (2I)ω induces a single noisy computation
in (3I∪O)ω, it induces several computations in (2I∪O)ω. Namely, the set fill(Tm(wI)) of
all computations that are obtained by filling the noisy assignments to the signals that are
unknown in Tm(wI).

3.2 Synthesis with privacy
In synthesis with privacy, we are given a specification φ in LTL[F ] and a set of secrets
{ψ1, . . . , ψk} in LTL, and we seek a noisy I/O-transducer that satisfies φ in the highest
specification value while keeping the satisfaction value of ψ1, . . . , ψk unknown. Formally, a
noisy I/O-transducer T realizes ⟨φ, P ⟩ with privacy ψ1, . . . , ψk, for a predicate P ⊆ [0, 1], if
for every input sequence wI ∈ (2I)ω, it holds that [[Tm(wI), φ]] ⊆ P and [[Tm(wI), ψi]] =?,
for all 1 ≤ i ≤ k.



Note that we chose to focus on a setting where the secret ψ is an LTL (rather than LTL[F ])
formula. This is because the behaviors we want to keep private are typically qualitative. In
Section 4.1 we describe how our framework can be extended to secrets in LTL[F ].

Note also that while the input to our problem contains a single specification, it contains
several secrets. Indeed, while for a set {φ1, . . . , φk} of specifications, a system realizes their
conjunction φ1 ∧ · · · ∧ φk iff it realizes all conjuncts φi, for a set of secrets {ψ1, . . . , ψk}, we
cannot guarantee that the system hides all the secrets in the set by defining a single secret
that is some Boolean combination of ψ1, . . . , ψk. In particular, an unknown truth value for
the conjunction ψ1 ∧ · · · ∧ ψk does not guarantee an unknown truth value for all conjuncts.

▶ Remark 2. Note that our framework hides the truth values of the secrets from an external
observer: rather than observing computations in (2I∪O)ω, it observes noisy computations
in (3I∪O)ω. If we want to assure the environment that the secrets are hidden also from the
system, then we can change the framework so that the labeling function of the transducer
generates non-noisy assignments to the output signals, thus τ : S → 2O. Then, the result of
the interaction is a computation in which only the input signals are noisy, and it should still
keep the satisfaction values of the secrets unknown. Dually, if we only care about the privacy
of the system, we can give up the noisy assignment to the input signals, which considerably
simplifies the setting, as it makes the input-masking function unneccesary. ◀

4 Specifying Secrets

A key component of our algorithms is a construction of automata over an alphabet 3AP

that accept noisy computations that hide the satisfaction value of a secret. In this section
we define such automata. We start with secrets in LTL. Recall that a noisy computation
κ ∈ (3AP )ω hides an LTL formula ψ if there are two computations π1, π2 ∈ fill(κ) such that
π1 |= ψ and π2 ̸|= ψ. Note that this implies that an observer of κ indeed does not know
whether the computation that induces κ satisfies ψ. We first define an automaton that
follows the above definition. Essentially, the automaton is obtained by taking the intersection
of two automata, one that accepts a noisy computation κ ∈ (3AP )ω iff 1 ∈ [[κ, ψ]], and one
that accepts κ iff 0 ∈ [[κ, ψ]].

▶ Theorem 3. Let ψ be an LTL formula over AP . There exists an NGBW N ?
ψ over the

alphabet 3AP such that for every noisy computation κ ∈ (3AP )ω, we have that N ?
ψ accepts κ

iff [[κ, ψ]] =?. Also, N ?
ψ has at most 2O(|ψ|) states and index at most |ψ|.

Proof. Let A1
ψ = ⟨2AP , Q,Q0, δ, α⟩ be an NGBW such that for every computation π ∈

(2AP )ω, it holds that A1
ψ accepts π iff π |= ψ. Let N T

ψ = ⟨3AP , Q,Q0, δ
′, α⟩ be the NGBW

obtained from A1
ψ by letting it guess an assignment to atomic propositions whose value is

unknown. Formally, for every state q ∈ Q and letter σ′ ∈ 3AP , we have that δ′(q, σ′) =⋃
{δ(q, σ) : σ ∈ 2AP is such that σ′ ≤info σ}. It is easy to see to see that N T

ψ accepts a noisy
computation κ ∈ (3AP )ω iff 1 ∈ [[κ, ψ]]. In a similar way, one can construct an NGBW N F

ψ

that accepts a noisy computation κ ∈ (3AP )ω iff 0 ∈ [[κ, ψ]]. We can now define the required
NGBW N ?

ψ as the intersection of N T
ψ and N F

ψ. By [42], both N T
ψ and N F

ψ have at most 2O(|ψ|)

states and index at most |ψ|, implying the same bound for N ?
ψ. ◀

A drawback of the construction in Theorem 3 is that the constructed automaton is
nondeterministic, which seems unavoidable. Indeed, it guesses values for the unknown signals
that lead to satisfaction and violation of ψ. The use of a nondeterministic automaton
makes it impossible to proceed with a Safraless synthesis algorithm, which requires universal



automata [31]. In order to address this weakness, we define a syntax-based three-valued
semantics for LTL formulas when interpreted with respect to noisy computations. As we
elaborate in the sequel, the syntax-based semantics coincides with the semantics-based one
only for well-specified secrets, and it enables us to define universal automata for such secrets.

We start by defining the syntax-based three-valued semantics. We consider LTL formulas
with the following syntax.

ψ := T | p | ¬ψ1 | ψ1 ∨ ψ2 | Xψ1 | ψ1Uψ2.

Given a noisy computation κ = κ0, κ1, . . . ∈ (3AP )ω and a position j ≥ 0, we use κj to denote
the suffix κj , κj+1, . . . ∈ (3AP )ω of κ. The three-valued semantics maps a noisy computation
κ ∈ (3AP )ω and an LTL formula ψ to the three-valued satisfaction value of ψ in κ, denoted
⟨⟨κ, ψ⟩⟩, and defined inductively as follows.

⟨⟨κ, T⟩⟩ = T.
⟨⟨κ, p⟩⟩ = κ0(p).
⟨⟨κ,¬ψ1⟩⟩ = ¬⟨⟨κ, ψ1⟩⟩, where ¬T = F, ¬F = T, and ¬? =?.

⟨⟨κ, ψ1 ∨ ψ2⟩⟩ =

 T if ⟨⟨κ, ψ1⟩⟩ = T or ⟨⟨κ, ψ2⟩⟩ = T,
F if ⟨⟨κ, ψ1⟩⟩ = F and ⟨⟨κ, ψ2⟩⟩ = F,
? otherwise.

⟨⟨κ,Xψ1⟩⟩ = ⟨⟨κ1, ψ1⟩⟩.

⟨⟨κ, ψ1Uψ2⟩⟩ =

 T if ∃i ≥ 0.⟨⟨κi, ψ2⟩⟩ = T and ∀0 ≤ j < i, ⟨⟨κj , ψ1⟩⟩ = T,
F if ∀i ≥ 0.⟨⟨κi, ψ2⟩⟩ ̸= F implies ∃0 ≤ j < i, ⟨⟨κj , ψ1⟩⟩ = F.
? otherwise.

As we now show, the classical translation of LTL formulas to NGBWs [42] can be extended
to noisy computations. For an LTL formula ψ, let cl(ψ) denote the set of ψ’s subformulas
and their negation. The state space of our NGBW consists of functions f ∈ 3cl(ψ) that do
not contain propositional inconsistencies. For example, f(ψ1 ∨ ψ2) =? iff f(ψ1) =? and
f(ψ2) ∈ {?, F}, or f(ψ2) =? and f(ψ1) ∈ {?, F}. Then, the transition function corresponds to
temporal requirements, and the acceptance condition makes sure that eventualities are not
propagated forever. As is the case with the construction in [42], each noisy computation κ

has a single accepting run in the NGBW: the run starts from the state f0 that describes the
satisfaction value of all the formulas in cl(ψ) in κ (according to the syntax-based semantics),
continues to the state f1 that describes the satisfaction in the suffix κ1, and so on. Accordingly,
the choice of initial states determines the language of the NGBW. For obtaining an NGBW
for computations κ with ⟨⟨κ, ψ⟩⟩ =?, we define the set of initial states to consists of functions
f for which f(ψ) =?. For obtaining an equivalent UGCW, we dualize the NGBW whose set
of initial state consists of functions f for which f(ψ) ̸=? (see proof in Appendix B.1).

▶ Theorem 4. Let ψ be an LTL formula over AP . There exist an NGBW S?
ψ and a UGCW

U?
ψ over the alphabet 3AP , such that for every noisy computation κ ∈ (3AP )ω, we have that
S?
ψ accepts κ iff U?

ψ accepts κ iff ⟨⟨κ, ψ⟩⟩ =?. Also, S?
ψ and U?

ψ have at most 2O(|ψ|) states
and index at most |ψ|.

The syntax-based semantics may not change the polarity of evaluations, yet it may lead to
a loss of information. Formally, we have the following, which can be proved by an induction
on the structure of the LTL formula.

▶ Lemma 5. For every noisy computation κ and LTL formula ψ, if ⟨⟨κ, ψ⟩⟩ ∈ {F, T}, then
⟨⟨κ, ψ⟩⟩ = [[κ, ψ]]. Possibly, however, ⟨⟨κ, ψ⟩⟩ =? and [[κ, ψ]] ∈ {F, T}.



We say that a secret ψ is well-specified if for all noisy computations κ, we have that
[[κ, ψ]] = ⟨⟨κ, ψ⟩⟩. Thus, the two semantics coincide for ψ. Equivalently, ψ is well-specified
if L(N ?

ψ) = L(S?
ψ). The rationale behind the term “well-specified” is that, intuitively, the

three-valued semantics loses information due to local dependencies that can be simplified.
To see this, let us consider a few examples.

Recall that [[κ, ψ]] = T if π |= ψ for all computations π ∈ fill(κ). Accordingly, for
every noisy computation κ and tautology ψ and, we have that [[κ, ψ]] = T. In particular,
[[κ, p∨¬p]] = T, even for a noisy computation κ with κ0(p) =?. On the other hand, for such a
noisy computation κ, we have that ⟨⟨κ, p ∨ ¬p⟩⟩ =?. This loss of information occurs not only
with tautologies. For example, consider a noisy computation κ with κ0(q) = F and κ0(p) =?.
It is easy to see that [[κ, p ∨ ¬(q ∨ p)]] = T whereas ⟨⟨κ, p ∨ ¬(q ∨ p)⟩⟩ =?. Moreover, the loss
happens not only in the propositional level. Assume that κ above continues with κ1 = κ0
and consider the LTL formula ψ = (p ∧ X¬p)Uq. Note that [[κ, ψ]] = F whereas ⟨⟨κ, ψ⟩⟩ =?.

Now, for the three examples above, we have that p ∨ ¬p = T, p ∨ ¬(q ∨ p) = p ∨ ¬q, and
(p∧X¬p)Uq = q ∨ (p∧X(q ∧¬p)), thus, all three formulas can be simplified to formulas that
describe the intention of the designer in a clearer way. As is the case with other forms of
inherent vacuity [26, 33], the fact that a secret is not well-specified is valuable information
for the designer, as it points to redundant complications in the formulation of the secret.
Theorems 3 and 4 are useful also for this task. To see this, consider an LTL formula ψ, and
recall that, by definition, ψ is well-specified iff L(N ?

ψ) = L(S?
ψ). By Lemma 5, it is always

the case that L(N ?
ψ) ⊆ L(S?

ψ). Thus, ψ is well-specified iff L(S?
ψ) ⊆ L(N ?

ψ). Note, however,
that the above only gives us an EXPSPACE upper bound for the problem, and we leave the
exact complexity open (see Section 7).

4.1 Extension to multiple and LTL[F] secrets
The constructions above handle a single secret in LTL. In this section we show how to
extend them to multiple and LTL[F ] secrets. We start with multiple secrets. Recall that
a set S = {ψ1, . . . , ψk} of secrets cannot be composed to a single secret. Still, it is easy to
extend the constructions above to such a set. First, in the semantics-based approach, we can
extend Theorem 3 to S by taking an NGBW for the intersection language of the NGBWs
N ?
ψ1
, . . . ,N ?

ψk
described there, hence the following theorem.

▶ Theorem 6. Let S = {ψ1, . . . , ψk} be a set of LTL formulas over AP . There exists an
NGBW N ?

S over the alphabet 3AP such that for every noisy computation κ ∈ (3AP )ω, we
have that N ?

S accepts κ iff [[κ, ψi]] =? for all 1 ≤ i ≤ k. Also, N ?
S has at most 2O(m) states

and index at most m, where m =
∑k
i=1 |ψi|.

Then, in the syntax-based approach, the situation is even simpler, as there we can actually
compose S to a single secret. Indeed, under the syntax-based three valued semantics, for
every noisy computation κ, we have that ⟨⟨κ, ψi ∨ ¬ψi⟩⟩ =? iff ⟨⟨κ, ψi⟩⟩ =?, and otherwise
⟨⟨κ, ψi ∨ ¬ψi⟩⟩ = T. Accordingly, ⟨⟨κ, (ψ1 ∨ ¬ψ1) ∨ · · · ∨ (ψk ∨ ¬ψk)⟩⟩ =? iff ⟨⟨κ, ψi⟩⟩ =? for
all 1 ≤ i ≤ k. Thus, here, the fact ψi ∨ ¬ψi is a tautology and is thus not well-specified is
surprisingly helpful.

We continue to LTL[F ] secrets. For two disjoint predicates P1, P2 ⊆ [0, 1], we say that
κ ⟨P1, P2⟩-hides ψ if there are two computations π1, π2 ∈ fill(κ) such that [[π1, ψ]] ∈ P1 and
[[π2, ψ]] ∈ P2. Thus, by observing κ, one cannot tell whether the satisfaction value of a
computation that induces κ is in P1 or P2. Note that the semantics-based definition for LTL
is a special case of the above definition, with P1 = {0} and P2 = {1}. It is not hard to see
that the same construction described in the proof of Theorem 3 can be applied to LTL[F ]
formulas, with the automata AP1

ψ and AP2
ψ (see Theorem 1) replacing the automata for ψ

and ¬ψ there. Formally, we have the following.



▶ Theorem 7. Let φ be an LTL[F ] formula over AP , and let P1, P2 ⊆ [0, 1] be two predicates.
There exists an NGBW N ?

φ over the alphabet 3AP such that for every noisy computation
κ ∈ (3AP )ω, we have that N ?

φ accepts κ iff κ ⟨P1, P2⟩-hides ψ. Also, N ?
φ has at most 2O(|φ|)

states and index at most |φ|.

Finally, handling a set S of LTL[F ] secrets combines Theorems 6 and 7: each secret ψi is
given with predicates P i1, P i2 ⊆ [0, 1], and the NGBW N ?

S is obtained by intersecting these
defined in Theorem 7.

5 Solving Synthesis with Privacy

In this section we describe a solution for the problem of synthesis with privacy. Let φ be an
LTL[F ] formula (the specification), P ⊆ [0, 1] a predicate, and ψ an LTL formula (the secret).
Note that, for simplicity, we assume a single LTL secret. As described in Section 4.1, the
extension to multiple and LTL[F ] secrets is easy. Consider a noisy computation κ ∈ (3I∪O)ω.
We say that κ is ⟨ψ,φ, P ⟩-good if [[κ, φ]] ⊆ P and [[κ, ψ]] =?. Recall that we seek a noisy
transducer T = ⟨I,O, S, s0, η, τ,m⟩ such that for every input sequence wI ∈ (2I)ω, the noisy
computations Tm(wI) is ⟨ψ,φ, P ⟩-good.

The next Theorem states that is possible to construct a DPW (and, in the case of
well-specified secrets, also a UGCW) that recognizes ⟨ψ,φ, P ⟩-good noisy computations (see
Appendix B.2). Once such a DPW or UGCW is defined, the problem is similar to usual
synthesis, except that the transducer we construct is noisy and has to generate both noisy
assignments to the output signals and input-masking instructions for the input signals.

▶ Theorem 8. Let φ be an LTL[F ] formula over AP , P ⊆ [0, 1] a predicate, and ψ an LTL

formula.
1. There exists a DPW DPφ,ψ over the alphabet 3AP that recognizes ⟨ψ,φ, P ⟩-good noisy

computations. The DPW DPφ,ψ has 22O(|φ|+|ψ|) states and index 2O(|φ|+|ψ|).
2. If ψ is well-specified, then there exists a UGCW UPφ,ψ over the alphabet 3AP that recognizes
⟨ψ,φ, P ⟩-good noisy computations. The UGCW UPφ,ψ has 2O(|φ|+|ψ|) states and index at
most |φ|+ |ψ|.

We proceed to define the notion of noisy synthesis, which refers to languages of noisy
computations.

▶ Definition 9. Consider a language L ⊆ (3I∪O)ω. We say that a noisy I/O-transducer
T realizes L if for all wI ∈ (2I)ω, the noisy computation Tm(wI) is in L. The noisy
synthesis problem gets as input an automaton A over the alphabet 3I∪O and returns a noisy
I/O-transducer T that realizes L(A), or decides that no such transducer exists.

The next theorem follows immediately from the definition. Together with the constructions
in Theorem 8, it enables us to reduce synthesis with privacy to noisy synthesis.

▶ Theorem 10. Consider an LTL[F ] specification φ, a predicate P ⊆ [0, 1], and an LTL
secret ψ. A noisy I/O-transducer T realizes ⟨φ, P ⟩ with privacy ψ iff T realizes L(DPφ,ψ).
When ψ is well-specified, then T realizes ⟨φ, P ⟩ with privacy ψ iff T realizes L(UPφ,ψ).

Following Theorem 10, it is left to solve noisy synthesis for specifications given by a DPW
or a UGCW. The algorithms are variants of these for traditional synthesis: For DPWs, we
describe a reduction to deciding a parity game. For UGCWs, we describe a Safraless solution
that is based on tree automata. In both solutions, we have to extend the solutions with



mechanisms that let the system choose the masked signals and direct the game or the tree
automaton accordingly. Due to the lack of space, the definitions of tree automata can be
found in Appendix A.

5.1 Solution for a DPW
In this section we describe a solution for the noisy-synthesis problem of a DPW D =
⟨3I∪O, Q, q0, δ, α⟩.

We reduce noisy synthesis of D to the problem of finding a winning strategy in a parity
game GD that models the interaction between the system (player Sys) and the environment
(player Env). At each round, Sys gives Env masking instructions and a noisy output
letter, and then Env responds with a noisy input assignment according to the masking
instructions of Sys. Formally, GD = ⟨V,E, v0, α

′⟩, where V is the set of positions and is
partitioned into two disjoint sets V = VEnv ∪ VSys. The positions in VSys = Q are controlled
by Sys, and the positions in VEnv = Q × 2I × 3O are controlled by Env. The game
starts in position v0 = q0 ∈ VSys, and it alternates between positions of Sys and Env, i.e.,
E ⊆ (VSys × VEnv) ∪ (VEnv × VSys). The exact definition of E is given by the following
description of the possible moves in the game. For every k ≥ 0 the k-th round of the game
begins in a position qk ∈ VSys and proceeds as follows:
1. Sys chooses a noisy output assignment ok ∈ 3O, and a set of input signals Mk ∈ 2I , and

the game moves to the position ⟨qk,Mk, ok⟩ ∈ VEnv.
2. Env chooses an input assignment ik ∈ 2I , which is masked into i′k = hide(Mk , ik), and

the game moves to the position qk+1 = δ(qk, i′k ∪ ok) ∈ VSys.
An outcome of the game then consists of the following components:

a noisy input word w′
I = i′0, i

′
1, i

′
2, . . . ,∈ (3I)ω,

a noisy output word wO = o0, o1, o2, . . . ∈ (3O)ω,
a run r = q0, q1, q2, . . . ∈ Qω of D on w′

I ∪ wO.
Finally, the winning condition α′ is induced by the acceptance condition α of D; thus a
vertex v with Q-component q has α′(v) = α(q).

We can now state the correctness of the reduction (see proof in Appendix B.3).

▶ Proposition 11. The DPW D is realizable by a noisy I/O-transducer iff Sys wins GD.

By Proposition 11, noisy synthesis of a DPW D can be solved in the same complexity
as the problem of deciding a parity game played on D. Hence, by Theorem 8, we have the
following (see proof in Appendix B.4). The lower bound follows from the fact we can reduce
synthesis with privacy requirements to synthesis with no such requirements by adding a
dummy atomic proposition p ∈ I ∪O and a secret that refers to p.

▶ Theorem 12. The problem of LTL[F ] synthesis with privacy is 2EXPTIME-complete.

5.2 Solution for a UGCW
In this section we describe a Safraless solution for the noisy-synthesis problem of a UGCW
U = ⟨3I∪O, Q, q0, δ, α⟩.

We translate U into a UGCT U ′ on 2I × 3O-labeled 3I -trees that accept trees induced by
noisy I/O-transducers that realize U . We define U ′ = ⟨3I ,Σ, Q,Q0, δ

′, α⟩, where Σ = 2I×3O,
and δ′ : Q× Σ→ B+(3I ×Q) is such that for every state q ∈ Q and letter ⟨M,o⟩ ∈ Σ, we
have



δ′(q, ⟨M,o⟩) =
∧
i∈2I

∧
q′∈δ(q,hide(M,i)∪o)

⟨hide(M , i), q′⟩

Note that if U ′ is at node v labeled ⟨M,o⟩, and i′ ∈ 3I is a noisy assignment such that
i′−1({T, F}) ̸= M , then U ′ sends no requirements to the subtree that is the i′-successor of
v. On the other hand, for a noisy assignment i′ ∈ (3I) with i′−1({T, F}) = M , there is at
least one copy that is sent to the i′-successor of v. This corresponds to the behavior of a
noisy transducer: from a state s with m(s) = M , the transducer is expected to handle every
possible assignment to M , and when constructing a run, the assignments to signals not in
m(s) are ignored.

Formally, we have the following (see proof in Appendix B.5).

▶ Proposition 13. The UGCW U is realizable by a noisy I/O-transducer iff L(U ′) = ∅.

By Proposition 13, noisy synthesis of a UGCW U can be reduced to the nonemptiness of
a UGCT with the same state space and index. Hence, by [31] and Theorem 8, we have the
following.

▶ Theorem 14. The problem of LTL[F ] synthesis can be solved Safralessly in 2EXPTIME
for well-specified secrets.

6 On the Trade-off Between Utility and Privacy

Privacy involves loss of information, which makes it more difficult to realize specifications.
Technically, missing information is quantified universally, and the realizing transducer has
to satisfy the specification for all possible ways to fill it. In this section we discuss ways to
examine and play with the trade off between utility, namely the satisfaction value of the
specification φ, and privacy, namely the extent to which the satisfaction value of the secret
ψ is revealed.

For secrets in LTL, which are Boolean, possible compensations on privacy include
weakening of the secrets. One way to do it is to replace a secret ψ by a pair ⟨θ, ψ⟩, indicating
we care to keep the satisfaction value of ψ unknown only in noisy computations that satisfy θ.
Note that, unlike the case of assumptions on the environment in synthesis [15], this cannot
be achieved by changing the secret to θ → ψ. Indeed, the latter only means that we require
the satisfaction value of θ → ψ to be unknown. Our algorithms can be changed to address a
⟨θ, ψ⟩ secret by replacing the automata constructed in Section 4 by ones that take θ into
account, thus accept a noisy computation κ iff [[κ, θ]] ̸= T or [[κ, ψ]] =?.

For secrets in LTL[F ], taking the predicates described in Section 4 to be closed upward,
we can say, given h ∈ (0, 1], that a noisy computation κ h-hides a secret ψ in LTL[F ] if
max[[κ, ψ]]−min[[κ, ψ]] ≥ h. Thus, knowing κ, our uncertainty about the satisfaction value of
ψ is at least h. Note that LTL secrets are a special case of the above definition, with h = 1.
Now, in synthesis with LTL[F ] secrets, the input includes, in addition to the specification
ψ, a threshold v for it, and a secret ψ, also a threshold h for the secret, and we require the
generated computation to both satisfy φ with value at least v and to h-hide ψ. Our algorithm
can be changed to address the variants of the problem in which either v or h are given,
and the goal is to maximize the other parameter, having the first one as a hard constraint.
In particular, when h is given, we must h-hide φ, and seek a transducer that, under this
constraint, maximizes the satisfaction value of φ. Technically, this amounts to replacing the
DPW D?

ψ by an automaton that accepts noisy computations that h-hides ψ. For the other
case, where we fix v, the solution involves a search for h, which involves polynomially many
executions of our algorithm.



7 Discussion

We introduced a simple yet powerful framework for synthesis of systems that preserve privacy.
In our framework, the system and the environment may hide the values of signals they control,
and they are guaranteed that “secrets” they care about are not going to be revealed. When
one thinks about privacy, the first thing that comes to mind is privacy of data (age, salary,
illnesses, gender, etc.). An underlying assumption of our work is that, in the context of
reactive systems, privacy should concern behaviours. Thus, “secrets” are ω-regular languages,
possibly weighted ones. A nice analogy is the way games are studied in the formal-methods
community: classical game theory studies games with quantitative objectives, based on costs
and rewards, whereas classical games in formal methods have ω-regular objectives, possibly
weighted ones [9].

We introduced the key ideas behind the approach of “behavioral secrets”, namely a use
of a three-valued semantics for the specification formalism. We also described how existing
algorithms for synthesis, in fact even high-quality synthesis, can be extended to handle
privacy. The latter is simple for traditional synthesis algorithms and involved a study of a
syntax-based three-valued semantics for Safraless algorithms.

Beyond the challenge of extending the framework to richer settings of the synthesis
problem (e.g., rational, distributed, infinite-state, or probabilistic systems [4, 25, 32, 38]), we
find the following research directions, which address the basic idea of behavioral secrets, very
interesting.

A stochastic approach. Recall that in the multi-valued setting, we followed the worst-case
approach, thus the quality of the synthesized system is the minimal satisfaction value of
the specification φ in some interaction. In the stochastic approach, we assume a given
distribution on the input sequences, and the quality of the system is the expected satisfaction
value of φ [2]. Extending synthesis with privacy to a stochastic approach, we seek noisy
I/O-transducer that maximizes the expected satisfaction value of φ while hiding ψ with
probability 1. Technically, as the valuation of φ refers to its expected satisfaction value,
whereas hiding of the value of ψ is a hard constraint, the synthesis algorithm has to combine
both types of objectives [3, 11, 6, 7]. The stochastic approach is of special interest when
studying the trade-off between the expected uncertainty of ψ against the expected satisfaction
of φ.

Specifying secrets. In our framework, a behavior ψ in LTL is kept secret if its satisfaction
is unknown. More sophisticated definitions can refer to the probability that ψ is satisfied,
given the revealed information, or, even more sophisticated, to the extent in which the
revealed information changes the probability of ψ to be satisfied. For example, if the secret
is ψ = p ∧ q and we revealed that q holds, we still do not know the satisfaction value of ψ,
yet we did learn that the probability of its satisfaction has increased. A good treatment
of definitions that take probability in mind should address the fact that computations are
sampled from the set of computations that satisfy the specification, which poses interesting
technical challenges.

Multiple view-points. In our framework, revealed information is known to all parties:
the system, the environment, and an observer to the interaction. In some settings, the
environment is composed of several components who are willing to share information with
the system, but not with each other. Also, not all components care about the satisfaction
of all specifications. Such settings can be addressed by extending the framework to handle



multiple-viewpoint assignments to input and output signals. Thus, if the setting involves a
set C of components, values are in {T, F} × 2C , specifying both the value and the subset of
components that see it. Technically, the extension can be handled by using lattice automata
and synthesis algorithms for them [28, 29].

Perturbation of signals. Our framework handles Boolean signals and allows the system
and environment to hide the values of signals they control. In some settings, the Boolean
signals encode richer values, or the setting includes non-Boolean inputs in the first place (e.g.,
augmenting LTL with Presburger arithmetic [19] or register automata with linear arithmetic
over the rationals [16]). In such settings, it makes sense to allow the components not to
entirely hide the value of their variables, but rather to perturb it to an approximated value.
A synthesizing transducer should then perturb the value of the (non-Boolean) secret while
satisfying the specification, possibly up to some perturbation.

Syntax-based three-valued semantic. As discussed in Section 4, our syntax-based three-
valued semantic for LTL does not coincide with the semantics-based one. We described
an EXPSPACE algorithm for deciding whether a given LTL formula is well-specified (that
is, the two semantics coincide for it), and left the tight complexity of the problem open.
Interestingly, the problem has similarities with both the satisfiability problem of ∀LTL, namely
LTL augmented with universally-quantified propositions, which is EXPTIME-complete [40],
and with inherent vacuity, namely deciding whether a given LTL formula ψ has a subformula
θ such that ψ and ∀x.ψ[θ ← x] are equivalent, which is PSPACE-complete [26].
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A Tree Automata

Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · c ∈ T , where x ∈ D∗

and c ∈ D, then also x ∈ T . The elements of T are called nodes, and the empty word ε is
the root of T . For every x ∈ T , the nodes x · c, for c ∈ D, are the successors of x. A path π
of a tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π, either x is a leaf or there
exists a unique c ∈ D such that x · c ∈ π. Given an alphabet Σ, a Σ-labeled D-tree is a pair
⟨T, τ⟩ where T is a tree and τ : T → Σ maps each node of T to a letter in Σ.

For a set X, let B+(X) be the set of positive Boolean formulas over X (i.e., Boolean
formulas built from elements in X using ∧ and ∨), where we also allow the formulas T and
F. For a set Y ⊆ X and a formula θ ∈ B+(X), we say that Y satisfies θ iff assigning T
to elements in Y and assigning F to elements in X \ Y makes θ true. An alternating tree
automaton is A = ⟨Σ, D,Q, qin, δ, α⟩, where Σ is the input alphabet, D is a set of directions,
Q is a finite set of states, δ : Q×Σ→ B+(D×Q) is a transition function, qin ∈ Q is an initial
state, and α is an acceptance condition. We consider here the Büchi, co-Büchi, and parity
acceptance conditions. For a state q ∈ Q, we use Aq to denote the automaton obtained from
A by setting the initial state to be q. The size of A, denoted |A|, is the sum of lengths of
formulas that appear in δ.



The alternating automaton A runs on Σ-labeled D-trees. A run of A over a Σ-labeled
D-tree ⟨T, τ⟩ is a (T ×Q)-labeled N-tree ⟨Tr, r⟩. Each node of Tr corresponds to a node of T .
A node in Tr, labeled by (x, q), describes a copy of the automaton that reads the node x of
T and visits the state q. Note that many nodes of Tr can correspond to the same node x of
T . The labels of a node and its successors have to satisfy the transition function. Formally,
⟨Tr, r⟩ satisfies the following:
1. ε ∈ Tr and r(ε) = ⟨ε, qin⟩.
2. Let y ∈ Tr with r(y) = ⟨x, q⟩ and δ(q, τ(x)) = θ. Then there is a (possibly empty)

set S = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ D ×Q, such that S satisfies θ, and for all
0 ≤ i ≤ n− 1, we have y · i ∈ Tr and r(y · i) = ⟨x · ci, qi⟩.

For example, if ⟨T, τ⟩ is a {0, 1}-tree with τ(ε) = a and δ(qin, a) = ((0, q1) ∨ (0, q2)) ∧
((0, q3) ∨ (1, q2)), then, at level 1, the run ⟨Tr, r⟩ includes a node labeled (0, q1) or a node
labeled (0, q2), and includes a node labeled (0, q3) or a node labeled (1, q2). Note that if, for
some y, the transition function δ has the value T, then y need not have successors. Also, δ
can never have the value F in a run.

A run ⟨Tr, r⟩ is accepting if all its infinite paths satisfy the acceptance condition. Given a
run ⟨Tr, r⟩ and an infinite path π ⊆ Tr, let inf(π) ⊆ Q be such that q ∈ inf(π) if and only
if there are infinitely many y ∈ π for which r(y) ∈ T × {q}. That is, inf(π) contains exactly
all the states that appear infinitely often in π. The acceptance condition for alternating tree
automata are similar to these defined for word automata, except that here, inf(π) has to
satisfy the condition α for all paths π. We denote by L(A) the set of all Σ-labeled trees that
A accepts.

The alternating automaton A is nondeterministic if for all the formulas that appear in
δ, if (c1, q1) and (c2, q2) are conjunctively related, then c1 ̸= c2. (i.e., if the transition is
rewritten in disjunctive normal form, there is at most one element of {c}×Q, for each c ∈ D,
in each disjunct). The automaton A is universal if all the formulas that appear in δ are
conjunctions of atoms in D ×Q, and A is deterministic if it is both nondeterministic and
universal. Note that word automata are a special case of tree automata, with |D| = 1.

B Missing Proofs

B.1 Proof of Theorem 4
For an LTL formula ψ, the closure of ψ, denoted cl(ψ), is the set of ψ’s subformulas and
their negation (¬¬ψ is identified with ψ). Formally, cl(ψ) is the smallest set of formulas that
satisfy the following.

ψ ∈ cl(ψ).
If ψ1 ∈ cl(ψ) then ¬ψ1 ∈ cl(ψ).
If ¬ψ1 ∈ cl(ψ) then ψ1 ∈ cl(ψ).
If ψ1 ∨ ψ2 ∈ cl(ψ) then ψ1 ∈ cl(ψ) and ψ2 ∈ cl(ψ).
If Xψ1 ∈ cl(ψ) then ψ1 ∈ cl(ψ).
If ψ1Uψ2 ∈ cl(ψ) then ψ1 ∈ cl(ψ) and ψ2 ∈ cl(ψ).

Consider the set cl(ψ). We say that a function f ∈ 3cl(ψ) is consistent if f does not have
propositional inconsistency. Thus, f satisfies the following conditions.
1. For every formula ψ1 ∈ cl(ψ), one of the following holds:

f(ψ1) = T and f(¬ψ1) = F,
f(ψ1) = F and f(¬ψ1) = T, or
f(ψ1) =? and f(¬ψ1) =?.



2. For every formula of the form ψ1 ∨ ψ2 ∈ cl(ψ), the following holds.
f(ψ1 ∨ ψ2) = T iff f(ψ1) = T or f(ψ2) = T.
f(ψ1 ∨ ψ2) = F iff f(ψ1) = F and f(ψ2) = F.

Note that it follows that f(ψ1 ∨ ψ2) =? iff f(ψ1) =? and f(ψ2) ∈ {?, F}, or f(ψ2) =? and
f(ψ1) ∈ {?, F}.

Now, we define S?
ψ = ⟨3AP , Q, δ,Q0, α⟩, where

The state space Q ⊆ 3cl(ψ) is the set of all consistent functions.
Let f and f ′ be two states in Q, and let σ ∈ 3AP be a letter. Then, f ′ ∈ δ(f, σ) if the
following hold.

1. For every p ∈ AP , we have that σ(p) = f(p). Thus, σ agrees with f on the atomic
propositions.

2. For all Xψ1 ∈ cl(ψ), we have that f(Xψ1) = f ′(ψ1), and
3. For all ψ1Uψ2 ∈ cl(ψ), we have

f(ψ1Uψ2) = T iff f(ψ2) = T or (f(ψ1) = T and f ′(ψ1Uψ2) = T).
f(ψ1Uψ2) = F iff f(ψ2) = F and (f(ψ1) = F or f ′(ψ1Uψ2) = F).

Note that f(ψ1Uψ2) =? iff one of the following hold:
f(ψ2) =? and (f(ψ1) ̸= T or f ′(ψ1Uψ2) ̸= T).
f(ψ2) = F, and f(ψ1) = T and f ′(ψ1Uψ2) =?.
f(ψ2) = F, and f(ψ1) =? and f ′(ψ1Uψ2) ̸= F.

Q0 ⊆ Q is the set of all states f ∈ Q for which f(ψ) =?.
Every formula ψ1Uψ2 contributes to α the two sets αT

ψ1Uψ2
= {f ∈ Q : f(ψ2) =

T or f(ψ1Uψ2) ̸= T}. and α?
ψ1Uψ2

= {f ∈ Q : f(ψ2) =? or f(ψ1Uψ2) ̸=?}.
Thus, if a run eventually visits only states in which the satisfaction value of ψ1Uψ2 is T,
then it should visit infinitely many states in which the satisfaction value of ψ2 is T, and if
a run eventually visits only states in which the satisfaction value of ψ1Uψ2 is ?, then it
should visit infinitely many states in which the satisfaction value of ψ2 is ?.

Finally, U?
ψ is obtained by dualizing the NGBW S¬?

ψ , which is similar to S?
ψ, except that

Q0 ⊆ Q is the set of all states f ∈ Q for which f(ψ) ̸=?.

B.2 Proof of Theorem 8
Given φ and P , let P̄ be the predicate that complements P , thus P̄ = [0, 1]\P . By Theorem 1,
we can construct an NGBW AP̄φ = ⟨2AP , Q,Q0, δ, α⟩ such that for every computation
π ∈ (2AP )ω, it holds that AP̄φ accepts π iff [[π, φ]] ̸∈ P . Also, AP̄φ has at most 2O(|φ|)

states and index at most |φ|. Let N P̄
φ = ⟨3AP , Q,Q0, δ

′, α⟩ be the NGBW obtained from
AP̄φ by letting it guess an assignment to atomic propositions whose value is unknown.
Formally, for every state q ∈ Q and letter σ′ ∈ 3AP , we have that δ′(q, σ′) =

⋃
{δ(q, σ) :

σ ∈ 2AP is such that σ′ ≤info σ}. It is easy to see that N P̄
φ accepts a noisy computation

κ ∈ (3AP )ω iff [[κ, φ]] ∩ P̄ ≠ ∅. By dualizing N P̄
φ , we get a UGCW UPφ that accepts a noisy

computation κ ∈ (3AP )ω iff [[κ, φ]] ⊆ P .
By Theorem 3, given ψ, we can construct an NGBW N ?

ψ over the alphabet 3AP such
that for every noisy computation κ ∈ (3AP )ω, we have that N ?

ψ accepts κ iff [[κ, ψ]] =?. The
NGBW N ?

ψ has at most 2O(|ψ|) states and index at most |φ|. Also, by Theorem 4, when ψ is
well-specified, we can replace N ?

ψ by a UGCW U?
ψ.

Now, the desired UGCW UPφ,ψ can be obtained by taking the intersection of the UGCWs
UPφ and U?

ψ. Such an intersection does not involve a blow up (intersection of universal
automata is dual to union of nondeterministic automata), and we end up with a UGCW
with 2O(|φ|+|ψ|) states and index at most |φ|+ |ψ|.



In order to obtain the desired DPW DPφ,ψ, we first co-determinize N P̄
φ , and get a DPW

DPφ that accepts a noisy computation κ ∈ (3AP )ω iff [[κ, φ]] ⊆ P . By [36, 34], the DPW DPφ
has 22O(|φ|) states and index 2O(|φ|). Then, we determinize N ?

ψ and get a DPW D?
ψ with at

most 22O(|ψ|) states and index 2O(|ψ|) such that D?
ψ accepts a noisy computation κ ∈ (3AP )ω

iff [[κ, ψ]] = {0, 1}. The DPW DPφ,ψ is then obtained by taking the intersection of DPφ and
D?
ψ. Since intersection of DPWs involve an exponential blow up only in their indices, the

required bounds on the state space and index follows.
In more detail, Parity automata can be translated into Street automata on top of the

same structure and with index of the same order. Thus, we may treat both automata as
Streett automata of size and index of the same order. Then, we take the intersection DSW
which is of size 2kφ+kψ and index kφ + kψ. By [37], a deterministic Streett automaton
with m states and index k can be translated into a deterministic Rabin automaton with
Θ(m2k log k) states and index t = Θ(k). The pairs in the acceptance condition in the Rabin
automaton (⟨Bi, Gi⟩)ti=1 are such that Bi ⊆ Bj for all i ≤ j and all of the Gi are disjoint.
Thus, it is not hard to see that the parity condition that gives Gi priority 2i, and Bi \Bi−1
priority 2i− 1, and all other states priority 2t+ 1, defines an equivalent deterministic parity
automaton, with states and index of the same order as the Rabin automaton. Hence, the
DPW A for the intersection language has 2kφ+kψ2(kφ+kψ) log(kφ+kψ) ≤ 22O(|φ|+|ψ|) states and
index O(kφ + kψ) ≤ 2O(|φ|+|ψ|).

B.3 Proof of Proposition 11
We partition the proposition into two propositions.

▶ Proposition 15. If GD is winning for Sys, then a noisy I/O-transducer T that realizes D
can be constructed on top of D in time O(nk), where n is the number of positions in GD and
k is the index of D.

Proof. Since parity games enjoy memoryless-determinacy, it follows that Sys wins iff it
has a memoryless strategy. Thus assume that Sys wins GD and let fSys : VSys → VEnv be
a winning memoryless strategy for Sys. Note that such a winning memoryless strategy
fSys can be computed in time O(nk) [23] (in fact less, using improved algorithms for parity
games [12]). We define a noisy I/O-transducer T as follows. The set of states of the
transducer T is S = VSys = Q. For a state q ∈ S, let fSys(q) = ⟨q,M, o⟩, we set τ(q) = o

and m(q) = M . Then, for i′ ∈ 3I for which there exists i ∈ 2I with i′ = hide(M , i), we define
the transition function by η(q, i′) = δ(q, i′ ∪ o), and otherwise, if there is no such i ∈ 2I ,
then we define η(q, i′) to be an arbitrary state (Recall that runs of T does not use such
transitions of η). In other words, we let Env play with i ∈ 2I from ⟨q,M, o⟩, and move to
the appropriate i-successor in the game. Notice that for all wI ∈ (2I)ω the computation
Tm(wI) = (i′0∪o0), (i′1∪o1), . . . ∈ (3I∪O)ω is obtained from the input and output components
of the outcome of the game GD when Env plays with wI = i0, i1, i2, . . . ∈ (2I)ω and Sys plays
according to the strategy fSys. Hence, since fSys is winning for the System, it follows that for
all wI ∈ (2I)ω, the run of D over Tm(wI) is accepting. That is, T is a noisy I/O-transducer
that realizes D. ◀

▶ Proposition 16. If D is realizable with a noisy I/O-transducer, then Sys wins GD.

Proof. Assume that T = ⟨I,O,L, S, η, τ,m⟩ is a noisy I/O-transducer that realizes D, we will
construct a winning strategy fSys that uses T as a memory structure. Let W be the set of all
finite paths in GD that start in v0 = q0 ∈ VSys and end in some position vk ∈ VSys that belongs



to Sys. We define the strategy fSys : W ↛ VEnv as a partial function, where fSys is defined
on ⟨q0⟩ ∈ W , and for all ρ = ⟨q0, ⟨q0,M0, o0⟩, q1, . . . , ⟨qk−1,Mk−1, ok−1⟩, qk⟩ ∈ W , if fSys is
defined on ρ, and fSys(ρ) = ⟨qk,Mk, ok⟩, then for all i ∈ 2I , if qk+1 = δ(qk, hide(Mk , i) ∪ ok),
then fSys is also defined on ρ′ = ⟨q0, ⟨q0,M0, o0⟩, . . . , ⟨qk,Mk, ok⟩, qk+1⟩ ∈W . Namely, fSys
is defined on ρ′, which is the extension of ρ when Sys plays with fSys, hence moves to
fSys(ρ) = ⟨qk,Mk, ok⟩, and then Env proceeds to qk+1 = δ(qk, hide(Mk , i) ∪ ok) for some
i ∈ 2I . In order to define fSys we also define two more partial functions fS : W ↛ S

and fI : W ↛ 2I . Intuitively, fI guesses the last input letter played by Env, and fS
simulates the run of T on the word guessed by fI . The functions fS and fI have the
same domain as fSys, with the only exception that fI is not defined on the path ρ =
⟨q0⟩, as Env haven’t yet played, and hence there’s nothing for fI to guess. We define
fS , fI and fSys by induction. First, for ρ = ⟨q0⟩, let fS(ρ) = s0, where s0 ∈ S is the
initial state of T , and let fSys(ρ) = ⟨q0,m(fS(q0)), τ(fS(q0))⟩. Then, assume that fS and
fSys have been defined on ρ = ⟨q0, ⟨q0,M0, o0⟩, q1, . . . , ⟨qk−1,Mk−1, ok−1⟩, qk⟩ ∈ W , and let
fSys(ρ) = ⟨qk,Mk, ok⟩ ∈ VEnv. Consider qk+1 ∈ VSys such that (fSys(ρ), qk+1) ∈ E. I.e.,
qk+1 is a possible move of Env from fSys(ρ) = ⟨qk,Mk, ok⟩. Let ik ∈ 2I be some input
letter such that qk+1 = δ(qk, hide(Mk , ik) ∪ ok). Note that such an input letter ik ∈ 2I

exists since qk+1 is a successor of the Env-position fSys(ρ) = ⟨qk,Mk, ok⟩. Thus for the
extension ρ′ = ⟨q0, ⟨q0,M0, o0⟩, . . . , ⟨qk,Mk, ok⟩, qk+1⟩ ∈ W of ρ, we set fI(ρ′) = ik, and
fS(ρ′) = η(fS(ρ), hide(Mk , ik)) and fSys(ρ′) = ⟨qk+1,m(fS(ρ′)), τ(fS(ρ′))⟩. It is now not hard
to see that any outcome of the game when Sys plays with fSys, is such that the run component
rD is a run of D over the noisy computation Tm(wI), where wI = i0, i1, i2, . . . ∈ (2I) is
obtained by fI . Hence, since T realizes D, it follows that rD is accepting. That is, any
outcome of the game when Sys plays with fSys is winning for Sys, and fSys is a winning
strategy for Sys. ◀

B.4 Proof of Theorem 12
We start with the upper bound. Given an LTL[F ] specification φ, a predicate P ⊆ [0, 1],
and an LTL secret ψ, we construct the DPW D = DPφ,ψ as in Theorem 8, and then solve
the game GD. By Theorem 10 and Proposition 11, it follows that ⟨φ, P ⟩ is realizable with
privacy ψ iff Sys wins GD, and that solving GD is done in time O(nk) where n is the number
of positions in GD and k is the index of D. By Theorem 8, the number of states in D is
|Q| = 22O(|φ|+|ψ|) , and the index is of size k = 2O(|φ|+|ψ|), and in particular, the construction
of D is done in 2EXPTIME in the size of the formulas φ and ψ. The number of positions
in GD is |V | ≤ |Q| · 3|I|+|O| = 22O(|φ|+|ψ|) · 3|I|+|O|, and the number of priorities is the same
as in D. We may assume that I ∪ O ⊆ cl(φ) ∪ cl(ψ), hence 3|I|+|O| = 2O(|φ|+|ψ|), and
|V | = 22O(|φ|+|ψ|) . Thus, GD is solved in time,

nk ≤ (22O(|φ|+|ψ|)
)2O(|φ|+|ψ|)

= 22O(|φ|+|ψ|)

That is, GD is solved in 2EXPTIME in the size of φ and ψ.
For the lower bound, it is easy to reduce LTL[F ] synthesis with no privacy requirements

to LTL[F ] synthesis with such requirements, for example by adding a secret that refers to a
dummy output signal p ̸∈ I ∪O.

B.5 Proof of Proposition 13
We prove that if L(U ′) = ∅ then U is not realizable by a noisy I/O-transducer, and that if
L(U ′) ̸= ∅, then there is a finite witness for the nonemptiness of U ′ that encodes a noisy
transducer that realizes U .



Given a (2I × 3O)-labeled 3I -tree ⟨(3I)∗, f⟩ and an input word wI = i0, i1, i2, . . . ∈ (2I)ω,
we define the sequence of masking instructions M0,M1,M2, . . . ∈ (2I)ω, the sequence of noisy
output assignments o0, o1, o2, . . . ∈ (3O)ω, and the masked input word w′

I = i′0, i
′
1, i

′
2, . . . ∈

(3I)ω that correspond to f and wI as follows. First, ⟨M0, o0⟩ = f(ε). Then, for all
k ≥ 0, we have that i′k = hide(Mk , ik) and ⟨Mk+1, ok+1⟩ = f(i′0, i′1, . . . , i′k). Then, let
κ = (i′0 ∪ o0), (i′1 ∪ o1), . . . ∈ (3)I∪O be the noisy computation that correspond to f and
wI . Observe that f is accepted by U ′ iff for all wI ∈ (2I)ω, the noisy computation κ that
corresponds to f and wI is accepted by U . Thus, f can be thought as a strategy for the
noisy synthesis of U , and f is accepted by U ′ iff it is a winning strategy.

Note that the language of U ′ is not empty iff there is a finite memory strategy f : (3I)∗ →
2I × 3O that is accepted by A′, and the memory structure of f is at most exponential in the
size of A′ [31]. Hence, the specification given by A is realizable by a noisy I/O-transducer
iff the language of A′ is not empty, and a finite memory witness for the non-emptiness of
A′ is a noisy I/O-transducer that realizes A. Deciding whether the language of a UGCT
is empty, and finding a finite memory witness in the case it is not empty is in EXPTIME.
Hence, the synthesis of a noisy transducer that realizes A is reduced to the nonemptiness of
UGCT problem, and we have an EXPTIME upper bound.
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