
A Technique to Speed up Symmetric
Attractor-Based Algorithms for Parity Games
K. S. Thejaswini #

Department of Computer Science, University of Warwick, Coventry, UK

Pierre Ohlmann #

University of Warsaw, Poland

Marcin Jurdziński #

Department of Computer Science, University of Warwick, Coventry, UK

Abstract
The classic McNaughton-Zielonka algorithm for solving parity games has excellent performance
in practice, but its worst-case asymptotic complexity is worse than that of the state-of-the-art
algorithms. This work pinpoints the mechanism that is responsible for this relative underperformance
and proposes a new technique that eliminates it. The culprit is the wasteful manner in which
the results obtained from recursive calls are indiscriminately discarded by the algorithm whenever
subgames on which the algorithm is run change. Our new technique is based on firstly enhancing
the algorithm to compute attractor decompositions of subgames instead of just winning strategies
on them, and then on making it carefully use attractor decompositions computed in prior recursive
calls to reduce the size of subgames on which further recursive calls are made. We illustrate the
new technique on the classic example of the recursive McNaughton-Zielonka algorithm, but it can
be applied to other symmetric attractor-based algorithms that were inspired by it, such as the
quasi-polynomial versions of the McNaughton-Zielonka algorithm based on universal trees.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory;
Theory of computation → Design and analysis of algorithms; Theory of computation → Logic and
verification

Keywords and phrases Parity games, Attractor decomposition, Quasipolynomial Algorithms, Uni-
versal trees

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.44

Related Version Full Version: https://arxiv.org/abs/2010.08288 [30]

Funding EPSRC grant EP/P020992/1 (Solving Parity Games in Theory and Practice).
Pierre Ohlmann: Project BOBR that has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 948057).

Acknowledgements We thank Rémi Morvan for contributing to several simulating discussions. We
are grateful to Aditya Prakash for proof reading the current version of the paper, and to Nathanaël
Fijalkow and Olivier Serre for doing the same with an earlier version of the paper. We also thank
anonymous referees for pointing out some missing references from our previous draft as well as for
their valuable comments to improve our current presentation. The authors are listed in reverse
alphabetical order.

1 Context and contributions

Parity games are two-player games on graphs, which have been studied since early 1990’s
[10, 11] and have many applications in automata theory on infinite trees [15], fixpoint
logics [9, 4], verification and synthesis [28, 29]. They are intimately linked to the problems
of emptiness and complementation of nondeterministic automata on trees [10, 33], model
checking [11, 4, 16] and satisfiability checking of fixpoint logics, or fair simulation relations [12].

© K. S. Thejaswini, Pierre Ohlmann, and Marcin Jurdziński;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 44; pp. 44:1–44:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thejaswini.raghavan.1@warwick.ac.uk
mailto:pohlmann@mimuw.edu.pl
mailto:marcin.jurdzinski@warwick.ac.uk
https://orcid.org/0000-0003-3640-8481
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.44
https://arxiv.org/abs/2010.08288
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

Determining the winner of a parity games are one of the few problems known to lie in
the complexity class NP ∩ coNP as well as UP ∩ coUP but not known to have a polynomial
algorithm. Existence of a polynomial algorithm for solving parity games, which has been an
important open problem for nearly three decades, has recently gained a lot of attention after
the major breakthrough of Calude, Jain, Khoussainov, Li and Stephan [5], who provided a
quasi-polynomial solution to the problem. Several algorithms [18, 23, 27, 24] followed this
work, each providing a different perspective to solving parity games. Czerwiński, Daviaud,
Fijalkow, Jurdziński, Lazić, and Parys [6] originally exhibited an underlying combinatorial
structure of universal trees, provably underlying the techniques of Calude et al. of Jurdziński
and Lazić, and of Lehtinen. Czerwiński et al. have also established a quasi-polynomial lower
bound for the size of smallest universal trees, providing evidence that the techniques developed
in these papers may be insufficient for leading to further improvements in the complexity of
solving parity games. Following their work, Jurdziński, Morvan and Thejaswini [20] extended
this result to formulate attractor based algorithms, as that of Parys [27] and also Lehtinen,
Schewe, and Wojtczak [24] using universal trees too.

We propose a new technique for speeding up symmetric attractor-based algorithms for
solving parity games. We focus on illustrating the technique on the example of the classic
McNaughton-Zielonka algorithm [33], but we argue that it is applicable to other symmetric
attractor-based algorithms that were inspired by McNaughton-Zielonka [1, 27, 25, 20, 22].
Many such algorithms have exhibited excellent performance in practice, significantly beating
other classes of algorithms on standard benchmarks [21, 31]. On the other hand, their worst-
case asymptotic running time is typically worse than that of asymmetric algorithms [17, 5,
18, 8]. More specifically, using the perspective of how various algorithms for parity games are
related to universal trees [6], while the running time of state-of-the-art asymmetric algorithms
is dominated by the size of a universal tree [18, 8], it is the square of the size of a universal
tree for symmetric algorithms [20, 25]. Our technique allows to reduce the worst-case running
time of symmetric attractor-based algorithms to match the linear dependence on the size of
a universal tree enjoyed by asymmetric algorithms.

Our technique is based on making a better use of structural information obtained from
earlier recursive calls to significantly reduce the worst-case overall size of the tree of recursive
calls of the algorithm. While existing symmetric attractor-based algorithms are typically
computing just the winning sets of positions or positional winning strategies, following [20],
we propose to enhance them to explicitly record more finely structured witnesses of winning
strategies called attractor decompositions. Moreover, we show how witnesses for both players
from recursive calls on subgames can be meaningfully used to reduce the sizes of subgames
on which further recursive calls are made, even if their key properties are damaged by the
removal of some vertices from subgames on which they were computed. In contrast, other
symmetric attractor-based algorithms are wasteful by routinely discarding witnesses for
one of the players that are computed in recursive calls; in the worst case, this results in
repeatedly solving large subgames from scratch. Our technique is robust and it applies to
both the classic exponential-time McNaughton-Zielonka algorithm [33] and its more recent
quasi-polynomial variants [27, 20, 25]. We are also confident that it is applicable to other
symmetric attractor-based algorithms such as priority promotion [1]. Such algorithms can
be interpreted as variants of the McNaughton-Zielonka algorithm that are enhanced by
ad-hoc heuristics to construct attractor decompositions which are more robust to the wasteful
behaviour described above. Our technique offers a more principled approach, in which
decompositions of subgames computed in previous recursive calls are never discarded and are
instead used in a systematic manner to speed up and reduce the number of further recursive
calls.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:3

2 Games, Strategies, Attractor decomposition

Parity Games. A parity game G consists of a finite directed graph (V, E), where the vertices
are partitioned into VEven and VOdd where these belong to the Even player and the Odd
player respectively along with a mapping π, from V to the set {1, . . . h} that labels every
vertex with a positive integer, called its priority. A token is moved from a designated start
vertex into a neighbour by Even or Odd depending on who owns the vertex, forming a
sequence of vertices, which we will a play. An infinite play is said to be winning for Even if
the highest priority that occurs infinitely often is Even and Odd wins otherwise.

A (positional) strategy σ ⊆ E for Even is a subset of edges originating from Even owned
vertices. A game restricted to an Even strategy refers to the sub graph induced by considering
only edges in σ along with edges in which originate in Odd’s vertex. We call a cycle in a
game G an even cycle if the highest priority of the cycle is Even. A strategy is said to be
winning for Even from a vertex v, if the game restricted to the Even strategy σ is such that
the only cycles reachable from v are such that the highest priority in the cycle is even.

Attractors, traps, and dominions. In a parity game G, for a target set of vertices B and a
set of vertices A such that B ⊆ A, we say that an Even strategy σ is an Even reachability
strategy to B from A if every infinite path in the subgraph restricted to σ along with all
edges from all Odd vertices, that starts from a vertex in A contains at least one vertex in B.
We call the largest such set A for which there is a reachability strategy, the Even attractor
of B and we denote it by AttrG

Even(B).
A trap for Odd is a subgame T of G, where Even has a strategy σ, on restricted to which

all paths from T remain in T . A subgame D in a game G is said to be an Even dominion if
it is an Odd trap and moreover, every cycle that can be reached from any vertex in D using
the strategy used to trap Odd is an even cycle.

We also say that a set of vertices C is a quasi-dominion for Even if the subgame G ∩ C

is winning for Even. Note that all dominions of Even are also quasi-dominions but not all
quasi-dominions of Even are dominions, since Odd might be able to escape a quasi-dominion.

If we do not mention if an object defined is for Even or for Odd, we assume Even by
default. All of the above can be defined analogously for the other player.

Trees. Throughout this paper, trees only refer to rooted ordered trees. For a totally ordered
set Σ, an ordered tree T is a finite prefix closed set consisting of sequences of elements from
Σ. We say that the root of the tree is the empty sequence ⟨⟩. We call an element of this
prefix closed set, a node and use η, γ, ϵ . . . to refer to it. The leaves of a tree are the maximal
elements of T . For a node η ∈ T , the subtree rooted at η is the tree η−1 · T . We say η′

is an element of the subtree rooted at η if η′ in T can be obtained by extending η with a
sequence from Σ. For a node η that is not a leaf, the children of η are elements ηi such that
ηi = η · ⟨a⟩ for a ∈ Σ. The height of a tree is defined as the maximum length sequence in
it. A leaf has height 1, and every node has a height one more than any of its children. We
separately define levels of nodes in a tree for Even and Odd inductively as follows. An Even
level of a node is 2 if it is a leaf, and it is two more than its children’s Even level if it is not a
leaf. The Odd level is defined similarly, starting at level 1 for leaves. Note that the height of
a tree is at most half of either the Even or Odd level.

We only consider trees such that the children of each node all have the same level. For
any node, we usually use the same variable with subscripts to list their children in order i.e.,
for η, we use η1, . . . , ηk to denotes its first k children

FSTTCS 2022

44:4 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

A complete n-ary tree of height 2h, is the tree where each node has n children and the
height of the root is 2h. For this an n-ary tree, we use η · ⟨i⟩ to denote the ith child of η. A
tree is (n, h)-universal if there is an order preserving injective homomorphism from any tree
of height h and with n leaves into it.

Attractor decomposition. A structurally simplest quasi-dominion is an atomic quasi-
dominion: it is a set T ∪H such that T is an Even attractor to H in T ∪H, and all vertex
priorities in H are even and larger than all vertex priorities in T . It is a quasi-dominion
because if Even uses an attractor strategy in T and an arbitrary strategy in H, then a play
that stays in T ∪H forever visits set H infinitely many times and hence it is winning for
Even. Consider the following three ways of composing quasi-dominions into structurally
more complex ones.

If Q1 and Q2 are quasi-dominions and Q1 is a trap for Odd in Q1 ∪Q2, then Q1 ∪Q2 is
a quasi-dominion. We say that Q1 ∪Q2 is a sequential composition of Q1 and Q2.
If Q is a quasi-dominion, S is an attractor to Q in Q∪S, and Q is a trap for Odd in Q∪S,
then Q ∪ S is a quasi-dominion. We say that Q ∪ S is a side-attractor composition of Q

and S.
If Q is a quasi-dominion, T is an attractor to H in Q∪ (T ∪H), and if all vertex priorities
in H are even and larger than all vertex priorities in Q ∪ T , then Q ∪ (T ∪ H) is a
quasi-dominion. We say that Q ∪ (T ∪H) is a top-attractor composition of Q and T ∪H,
and that T is a top attractor to H.

Henceforth, when we say that a quasi-dominion can be obtained by sequential, side-attractor,
or top-attractor composition, we implicitly assume that the suitable applicability conditions
listed above hold.

Note that an atomic Even quasi-dominion is a special case of the top-attractor composition,
in which Q = ∅. A sequential composition is a quasi-dominion because if Even uses quasi-
dominion strategies in Q1 and Q2, then every play that stays in Q1 ∪ Q2 forever, either
stays in Q2 forever, or it eventually stays in Q1 forever, and hence it is winning for Even. A
side-attractor composition is a quasi-dominion because if Even uses quasi-dominion strategy
in Q and an attractor strategy in S, then every play that stays in Q ∪ S forever, eventually
stays in Q forever, and hence it is winning for Even. A top-attractor composition is a
quasi-dominion because if Even uses a quasi-dominion strategy in Q, an attractor strategy
in T , and an arbitrary strategy in H, then every play that stays in Q ∪ (T ∪ H) forever,
either eventually stays in Q forever, or it visits set H infinitely many times, and hence it is
winning for Even.

It is folklore that the three composition operations are complete in the sense that every
quasi-dominion can be obtained by a sequence of such composition operations [26, 33].
More specifically, the following concept of an attractor decomposition [7, 20] is a technically
convenient normal form, in which the hierarchical structure of quasi-dominions resulting
from the composition operations is captured by an ordered tree.

▶ Definition 1 (Attractor decomposition). An attractor decomposition of a game G consists
of an ordered tree, and for each node ϵ of the tree, three mutually disjoint sets of vertices Hϵ

(high even priority set), T ϵ (top attractor), and Sϵ (side attractor) that satisfy the following
conditions. Note that these vertices can be potentially empty for some nodes ϵ.
1. The root node has some even level, and the children of every node at level k have level k−2.

For every node ϵ, if its level is k, then all vertex priorities in Hϵ are k, all vertex priorities
in T ϵ are at most k − 1, and all vertex priorities in Sϵ are at most k + 1.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:5

Figure 1 On the left, a game where Even wins from every vertex and on the right, its attractor
decomposition.

2. If node ϵ is a leaf, then T ϵ ∪Hϵ is an atomic quasi-dominion, and quasi-dominion Qϵ

can be obtained by side-attractor composition of T ϵ ∪Hϵ and Sϵ.
3. If ϵ is node that is not a leaf, then quasi-dominion Qϵ can be obtained in the following way.

Firstly, quasi-dominion P can be obtained by the sequential composition of quasi-dominions
Qη, where η ranges over the children of ϵ in the tree order. Then, quasi-dominion R can
be obtained by the top-attractor composition of P and T ϵ ∪Hϵ. Finally, quasi-dominion
Qϵ can be obtained by the side-attractor composition of R and Sϵ.

Consider an example of a game and an attractor decomposition described in Figure 1.
The priorities are written in the vertices. Player Even owns all square vertices and Odd
owns all the pentagons. Some vertices are shaded to be able to identify each vertex in the
game uniquely. In this game, Even has a strategy to win from everywhere. An attractor
decomposition of this game is depicted to its right. The nodes of the tree are depicted by
ϵ, ϵ1, ϵ2, ϵ11, ϵ21 and ϵ22. The corresponding sets are depicted in the figure with some of them
being empty. This attractor decomposition satisfies properties 1, 2 and 3 in Definition 1.

McNaughton-Zielonka algorithm. We recall the classical recursive algorithm of
McNaughton and Zielonka [26, 33]. However, this is not similar to a description of
McNaughton and Zielonka one would find in the wild. It is enhanced to produce at-
tractor decompositions for both the players and also return the winning sets for players
Even and Odd. This is accomplished in Algorithm 1 where the attractor decomposition
produced is similar to the one defined before. Note that the work of Jurdziński, Morvan
and Thejaswini [20] also produce attractor decompositions explicitly for McNaughton and
Zielonka.

The algorithm uses two mutually recursive calls, McNZEven and McNZOdd which takes as
input a game G, the highest priority h. We also further include as input to these calls, two
nodes ϵ and ω where ϵ belongs to an Even n-ary tree and ω to an Odd n-ary tree. The
respective levels of these nodes in the tree are h and h + 1. These trees are used to store the
structure of the quasi-dominions obtained in the algorithm thus far. Moreover, we assume
that the algorithm has access to the recursive structure of the quasi-dominions computed by
it in previous recursive subcalls and can access the sets corresponding to this quasi-dominion
with the help of the nodes of the tree. The quasi-dominions computed up until a point in the
algorithm are stored as a disjoint partition of sets, based on the underlying complete tree.
These disjoint sets are represent with Hϵ

Even, T ϵ
Even and Sϵ

Even for each node ϵ belonging to
the n-ary tree used for Even tree and Hω

Odd, T ω
Odd and Sω

Odd for ω belonging to the Odd tree.
We exclusively use ϵ and its variants for Even trees and ω and its variants for Odd trees to
avoid confusion. The statement S

ω·⟨i⟩
Odd ← A′

i \ U ′
i performs the side attractor composition for

Odd and the statements Hϵ
Even ← Hi, and T ϵ

Even ← Ai \Hi together perform a top attractor
composition for the Even attractor decomposition.

FSTTCS 2022

44:6 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

Figure 2 The game H4.

Algorithm 1 The McNaughton-
Zielonka Algorithm.

procedure McNZEven(G, h, ϵ, ω):
if h = 0 then

return ∅
G1 ← G, i = 0
repeat

i← i + 1
Hi ← π−1(h) ∩ Gi

Ai ← AttrGi
Even (Hi)

G′
i ← Gi \Ai

U ′
i ←
McNZOdd (G′

i, h− 1, ω · ⟨i⟩, ϵ)
A′

i ← AttrGi
Odd (U ′

i)
S

ω·⟨i⟩
Odd ← A′

i \ U ′
i

Gi+1 ← Gi \A′
i

until Gi = Gi+1

Hϵ
Even ← Hi

T ϵ
Even ← Ai \Hi

returnV (Gi)

We only describe the Even recursive call since the Odd recursive subcall can be described
similarly. The correctness of the above algorithm are well known and we refer an interested
reader to several pre-existing works [26, 33, 19, 20] proving the correctness of the algorithm.

Hard examples for McNaughton and Zielonka. The McNaughton-Zielonka algorithm
outperforms several other algorithms in practice, but there are several families of games on
which it takes exponential time. Some examples are those found in the paper of Friedmann [13],
Gzada and Willemse [14] and van Dijk [31], Benerecetti et al [2]. We add to this list, a family
of games on which McNaughton-Zielonka makes exponentially many recursive subcalls. We
focus our attention in this section to this family and use it as a running example to highlights
the exponential complexity of McNaughton-Zielonka and to motivate the idea behind our
technique in the following sections.

Consider the following family of games Hk for each k which we define below. The game
Hk consists of 5k vertices, with the highest priority being k + 2. For each i at most k, the
vertex set consists of 5 vertices, and they are {ui, vi, wi, xi, yi}. We call this set Li and refer
to it as the ith layer of the game. The priority of wi is i + 2 and all the other nodes in Li

have priority i + 1. For even values of i, Odd owns vi, yi and Even owns ui, xi. For odd
values of i, this is swapped. The ownership of wi is irrelevant. The edges within a layers Li

are: {(ui, vi), (vi, ui), (vi, xi), (xi, wi), (wi, vi), (xi, yi), (yi, xi)}. Between layers,
for each i ⩽ k − 2, there is an edge (ui, yi+2);
for each 1 < i ⩽ k, there are edges (vi, vi−1) and (yi, yi−1).

An example of the game H4 is shown in Figure 2, where square vertices are owned by Even
and pentagon by Odd. The odd layers in the game are winning for Even, whereas the Even
layers are winning for Odd. A strategy witnessing the above of each player is for a player to
move to the vertex to their left. More formally, for each player and an appropriate j, the
edges (vj , uj) and (yj , xj) turns out to be a winning strategy in their respective dominions.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:7

▶ Lemma 2. For the family of games Hn for n ⩾ 1 Algorithm 1 makes O(2n) recursive
subcalls to McNZEven and McNZOdd

We provide the proof for the above in the full version of the paper but restrict ourselves
to a discussion to highlight the idea behind the exponential complexity of McNaughton-
Zielonka. For an odd value k, the procedure McNZEven on Hk makes two McNZOdd subcalls
and these are on the subgames Hk−1 ∪{uk, vk, yk} and Hk−1 ∪{xk, yk} in succession. Notice
that these games have a large intersection, which includes Hk−1 and the vertex yk, leading
to an exponential complexity of this easy-to-describe algorithm. The first recursive call
Hk−1∪{uk, vk, yk} indeed identifies winning sets for this subgame for both players. Moreover,
for the Even player, the strategies that are winning in this subgame is in fact winning in Hk

too. Unfortunately, the next recursive subcall promptly discards this information.
It is natural to ask if there is some way we can utilise the progress we make in the

first recursive subcall to provide a head start for the following recursive subcalls. Several
enhancements of McNaughton-Zielonka exist, all of which attempt to utilise some information
from recursive subcalls. A notable few include the Priority promotion algorithms and its
variants [1, 3] along with the Tangle learning algorithms by van Dijk [31], which all perform
well in practice. The key idea behind these algorithms is to identify quasi-dominions in
their recursive subcalls and increase the quasi-dominions obtained so far carefully. Another
idea was to remember the strategy obtained in the recursive subcall. In a recent work by
Lapauw, Bruynooghe, and Denecker [22], they show that by remembering and modifying
strategies obtained recursively in a calculated manner, they too obtained faster practical
performances. But all of these have worst case exponential running time comparable to
McNaughton-Zielonka, as these heuristics do not lead to a provable increase in the running
time of either of these algorithms.

We propose a technique in the next section, which remembers some information obtained
from the structure of the attractor decompositions computed from previous recursive subcalls.
This turns out to provide a quadratic gain in the worst case runtime complexity.

3 Making McNaughton-Zielonka faster with some memory

The crucial object that we will be dealing with for the rest of this paper are decompositions,
which forms the central theme of this section. We define this object as a generalisation
of an attractor decomposition. With the help of our definition, we carefully modify the
classical algorithm to make at most O

((
n
h

)h/2
)

many recursive calls. This is comparable
to the runtime of the first progress measure algorithm by Jurdziński [17]. For the proof of
correctness and runtime of the algorithm, we need the machinery that we develop in Section 4.
This mathematical tool-kit helps accurately pin point the guarantees of the algorithm and
also analyse the running time. We however state these guarantees in this Section and with
these guarantees use them to demonstrate how our algorithm works faster on families of
games which are hard for several attractor based algorithms. We show that this modification
to McNaughton-Zielonka makes it run in polynomial time for two specific families.

A relaxation of attractor decomposition
Recall the procedure McNZEven on example Hk from Section 2. This procedure makes two
recursive subcalls of McNZOdd to subgames each containing Hk−1. Notice that although
McNZOdd returned an attractor decomposition on the first iteration, we discarded the Even
attractor decomposition obtained from this recursive subcall until an empty Odd dominion
was returned by the recursive subcall. In fact, this algorithm on any game repeatedly discards
this information until U ′

i returned is empty.

FSTTCS 2022

44:8 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

Indeed, this wasteful discarding of attractor decompositions seems necessary to prove
correctness at first sight. On removing vertices from an Even attractor decomposition it
might no longer satisfy all the properties of an attractor decomposition. Since after each
recursive subcall, we remove a non-empty Odd attractor A′

i from it, it seems natural that
this information must now be discarded. To circumvent this wastage, we propose to store an
object that loosely resembles an attractor decomposition but with the requirements about
quasi-dominions and attractors relaxed. Below, we define an Even decomposition to closely
resemble our definition of attractor decomposition from the previous section.

▶ Definition 3 (Decomposition). A decomposition consists of an ordered tree, and for each
node ϵ of the tree, three mutually disjoint sets of vertices Hϵ (high even priority set), T ϵ (top
set), and Sϵ (side set) that satisfy only the following condition.

The root node has some even level, and the children of every node at level k have level k−2.
For every node t, if its level is k, then all vertex priorities in Hϵ are k, all vertex priorities
in T ϵ are at most k − 1, and all vertex priorities in Sϵ are at most k + 1.

Notice that this definition is more general than an attractor decomposition. A decomposition
which satisfies the attractor composition properties (items 2 and 3) in Definition 1 is an
attractor decomposition. More importantly, since a decomposition no longer needs to satisfy
properties about traps and attractors, on restricting it to a subset of vertices, it still remains
a decomposition. This helps us maintain this structure even after the algorithm removes
some vertices from it.

A faster algorithm

The modification we propose for McNaughton-Zielonka is described in Algorithm 2. This
algorithm, at a high level resembles Algorithm 1. The significant difference is that it starts
with a decomposition and modifies it by calling recursive subcalls until this decomposition is
an attractor decomposition.

For a parity game G, the algorithm maintains two decompositions with n-ary trees for both
the players. This is done globally and refers to the sets associated to these decompositions
using the nodes of the tree. We refer to decompositions Dϵ

Even or Dω
Odd for ϵ and ω which

are nodes in the Even and Odd tree respectively. Note that although we use Dϵ
Even or Dω

Odd,
these are two distinct decompositions. Moreover, we use ϵ along with Even in the subscript,
along with its variations like ϵ′, ϵi, . . . for nodes in the Even tree and similarly for Odd with
ω, this enables us to refer to both the Even and Odd decompositions without confusion.

We call the partitions in these decomposition Hϵ
Even, T ϵ

Even and Sϵ
Even for ϵ, a node in

the Even tree, and Hω
Odd, T ω

Odd and Sω
Odd for ω in the Odd tree. We use [Dϵ

Even] to denote
the set of of vertices associated with some node in the subtree of the tree rooted at ϵ but
without the vertices in Sϵ

Even. More formally, for a decomposition Dϵ
Even, we define [Dϵ

Even]
inductively, where

[Dϵ
Even] consists of Hϵ ∪ T ϵ if ϵ is a leaf;

[Dϵ
Even] consists of Hϵ

Even ∪ T ϵ
Even along with all vertices in [Dϵi

Even] ∪ Sϵi

Even for ϵi ranging
over the children of ϵ.

The procedure McNZFastEven in Algorithm 2 works using decompositions Dϵ
Even and Dω

Odd
on a subgame G. We modify these decompositions with operations like “Set” and “Move”.
We only give an intuition of the operations here, but we make these precise in the appendix
of the paper. The highest priority in the game G is at most the level of Even tree’s root: ϵ.
Moreover, the level of Odd tree’s root ω is one more than the level of ϵ.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:9

Algorithm 2 McNaughton and
Zielonka Algorithm with memory.

procedure McNZFastEven(G, h, ϵ, ω):
if Dϵ

Even restricted to G is an
attractor decomposition then

Set Sω
Odd to V (G)

return V (G)
else if Dω

Odd restricted to G is an
attractor decomposition then

Set Sϵ
Even to V (G)

return ∅
else
G1 ← G; i = 0
repeat

i← i + 1
Hi ← π−1(h) ∩ Gi

Ti ← AttrGi
Even (Hi)

Set T ϵ
Even to Ti \Hi

Si ←
AttrGi

Even

(
Gi \

[
Dω·⟨i⟩

Odd

])
Move Si to at least S

ω·⟨i⟩
Odd

G′
i ← (Gi \ Si)

U ′
i ←
McNZFastOdd (G′

i, h− 1, ϵ, ω · ⟨i⟩)

S′
i ← AttrGi

Odd (U ′
i)

Set S
ω·⟨i⟩
Odd to S′

i \ U ′
i

Move S′
i to at least Sϵ

Even
Gi+1 ← Gi \ S′

i

until Dϵ
Even restricted to Gi+1 is

an attractor decomposition
return V (Gi)

Algorithm 3 Universal Attractor De-
composition algorithm with memory.

procedure UnivFastEven(G, h, ϵ, ω):
if Dϵ

Even is an attractor
decomposition for G then

Set Sω
Odd to V (G)

return V (G)
else if Dω

Odd is an attractor
decomposition for G then

Set Sϵ
Even to V (G)

return ∅
else
G1 ← G
Let ω1, . . . , ωk be children of ω in
the Odd tree

for i← 1 to k do
Hi ← π−1(h) ∩ Gi

Ti ← AttrGi
Even (Hi)

Set T ϵ
Even to Ti \Hi

Si ← AttrGi
Even (Gi \ [Dωi

Odd])
Move Si to at least Sωi

Odd
G′

i ← (Gi \ Si)
U ′

i ←
UnivFastOdd (G′

i, h− 1, ϵ, ωi)

S′
i ← AttrGi

Odd (U ′
i)

Set Sωi
Odd to S′

i \ U ′
i

Move S′
i to at least Sϵ

Even
Gi+1 ← Gi \ S′

i

return V (Gi+1)

If the decompositions computed so far already forms an attractor decomposition for either
player, the algorithm stops and returns the corresponding set, since having an attractor
decomposition implies that we have a witness of winning for either player in the current
subgame. We claim that one can check if a decomposition is an attractor decomposition
efficiently, in polynomial time in the number of vertices of the game rather than the size of
the tree, but postpone the details on how until the next section.

On the other hand, if both players only have decompositions that are not attractor
decompositions on the current subset of vertices, we first compute the Even attractor to the
top priority in the current subgame, closely mirroring Algorithm 1. However, we deviate
from McNaughton-Zielonka, by updating this information by modifying the partition T ϵ

Even
of the Even decomposition.

The line Set T ϵ
Even to Ti \Hi results in the current decomposition of even being modified

so that the “top set” T ϵ
Even now contains exactly the vertices Ti \Hi, which could be attracted

to the set of vertices of top priority Hi in the current subgame. Doing this updates requires
modification of the decomposition to relocate the other vertices that were previously at T ϵ

Even
to sets associated to the children of ϵ.

FSTTCS 2022

44:10 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

In Algorithm 1, the next recursive subcall would work on the complement of the attractor
set Ti. However, for this algorithm, the next recursive subcall at one level lower, we considers
a subset of the set

[
Dω·⟨i⟩

Odd

]
. Since this need not be a subgame, the procedure computes the

Even attractor to all vertices not in this set. The complement of this Even attractor results
in Si, a trap for Even. Intuitively, the next line: Move Si to at least S

ω·⟨i⟩
Odd modifies the

decomposition such that in the new decomposition obtained, the vertices in Si are no longer
in the sets at

[
Dω·⟨i⟩

Odd

]
. Instead, these vertices are such that assigned the vertices in Si to the

sets corresponding to either move these vertices to S
ω·⟨i⟩
Odd in the Odd decomposition. The

other partitions in the decomposition are left unchanged.
We then perform an Odd recursive subcall, by calling the procedure McNZFastOdd on G′

i,
the trap for Even obtained above. After the Odd recursive subcall, which returns the Odd
winning set U ′

i in the subgame G′
i, we compute the Odd attractor to this set which is S′

i.
Since S′

i is the set of vertices from which Odd has a strategy to reach U ′
i , we adjust the Odd

decomposition such that the side set S
ω·⟨i⟩
Odd is exactly S′

i \ U ′
i and all vertices in S′

i are then
relocated to Sϵ

Even for the Even decomposition. This is captured by the line Move S′
i to at

least Sϵ
Even. This is done similarly to the above move operator, where all vertices in S′

i in
the newly obtained decomposition

Now, all we need to explain is how we initialise these decompositions for the algorithm.
The following definition seem technical, although intuitively, we start with an “optimistic”
decomposition, which starts with the simplest structure of a decomposition for both Odd
and Even. We call the initial Even decomposition for the game G with highest priority h,
where the Even node at level h is ϵ, and the Odd node at level h + 1 is ω, as the following:

all vertices of priority h are at Hϵ
Even for Even.

all vertices with priority strictly smaller than h− 1 are at T ϵ
Even for Even.

Similarly, the initial Even decomposition is defined as
all vertices of priority h are at Sω

Odd for Odd.
all vertices of priority exactly h−1 are at Hω1

Odd and all vertices of priority strictly smaller
than h− 1 are at T ω1

Odd for Odd
With this, we can state the guarantees our modification provides.

▶ Theorem 4. Let G be a parity game with priorities no larger than an even number h,
for two n-ary trees of height h/2 and h/2 + 1 with roots ϵ and ω respectively. Procedure
McNZFastEven(G, h, ϵ, ω), with the underlying decomposition being the initial Even and Odd
decomposition of G into these trees output the winning set of Even, and the decomposition
computed is the same as the one computed by procedure McNZEven in Algorithm 1.

The following statement proves runtime of this algorithm, and shows the quadratic improve-
ment we gain compared to McNaughton-Zielonka, and comparable to the the small progress
measure algorithm by Jurdziński [17].

▶ Lemma 5. On a game G with n vertices with priority at most h, the number of recursive
subcalls by either McNZFastEven or McNZFastOdd is at most the product of a polynomial in n

and O
(

n
h

)⌈h/2⌉.

Examples of faster termination
We will demonstrate the algorithm on two examples in this subsection to understand this.
These two examples are going to be the family of games Hk introduced in Section 2 and the
family of games, we will call Fk, which was introduced by Friedmann [13].

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:11

We recall that in his work, Friedmann had provided a family of games on which
McNaughton-Zielonka takes exponential time [13]. We will call this family of examples
Fk for k ∈ N but will not describe this family in detail, and instead refer the reader to the
work Friedman [13]. Friedmann, showed in Theorem 4.3, of [13] that on the game Fk, the
algorithms makes Fk recursive subcalls where Fk denotes the nth Fibonacci number, bounded
by approximately (1.618)k. This is smaller than the 2n time for the previous example we
have shown, however, one can remark that because of the structure of the game, it makes it
difficult for several algorithms to solve this game. Indeed, the priority promotion algorithms
without any enhancements such as memoisation or delayed promotion also takes exponential
time on these games. This exponential behaviour is due to their “rests” performed. We show
that our algorithm solves this family of games provided by Friedmann in polynomial time as
well as our running example of Hk in the next two lemmas.

▶ Lemma 6. Algorithm 2 when initialised with the trivial decomposition for both players
solves the family of games Hn in time that is polynomial in n.

▶ Lemma 7. Algorithm 2 when initialised with the trivial decomposition for both players
solves the family of games Fn, introduced by Friedmann [13] in time that is polynomial in n.

The key idea behind both these proofs is that we do enough work by maintaining a decompos-
ition in an initial recursive subcall. In the future recursive subcalls, when this decomposition
is our starting point, the algorithm needs to do at most polynomial amount of processing in
the above family of games by showing that they fit one of the following criterion:

already have a witness for winning in the form of an attractor decomposition from a
previous recursive subcall (To prove polynomial termination of Hk in Lemma 6);
although the current decomposition of an Even dominion, is the initial decomposition,
the decomposition maintained for Odd is robust enough to conclude quickly that it is
losing for Odd, and therefore winning for Even; (used in the proof of Lemma 7).
each of the next several recursive subcalls made are on a significantly smaller subgames
due to the structure of the available decompositions. Some of these subcalls might even
turn out to be empty (Lemma 6 used to prove fast termination of Fk). This happens
dually with the above mentioned phenomenon;
starting from a specific decomposition for the game, we only require polynomial time using
our algorithm to arrive at an attractor decomposition (used in the proof of Lemma 6).

The exact details of these proof requires us to identify specific subgames in the recursive calls
and are available in the full version of the paper. Although the proof of both Lemmas rely
on induction which in turn depends on the regularity of the subgames in recursive calls, this
is not essential for our algorithm to terminate faster and is just an easier proof mechanism.
This distinguishes our algorithm from targeted tricks aimed at solving specific families of
games faster.

4 Using smaller trees

Attractor decompositions function as a proof of winning for parity games, and can be
defined on the recursive structure of trees. Universal trees have been key to all known
quasi-polynomial algorithms [6]. The use of small universal trees in the attractor based
quasi-polynomial algorithms of Lehtinen, Parys, Schewe and Wojtczak [25] was highlighted
in works of Jurdziński, Morvan and Thejaswini [20]. Their work also captured the recursive
structure of these witnesses with the help of trees. Moreover, they generalise their algorithm
to work on arbitrary trees, and show stronger guarantees. As a corollary, they obtain that

FSTTCS 2022

44:12 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

using two universal trees in their algorithm gives a correct algorithm for solving parity games.
However, the theoretical complexity of these algorithms do not match the run-time of the
state of the art. For two trees T Even and T Odd, these algorithms take time proportional
to the interleaving of the two trees. This object has size equal to the product of the trees,
|T Even| · |T Odd|, as opposed to the algorithms with state of the art [18] worst case complexity
of time which is linear in the size of each tree. In fact, in the journal version of the paper of
Lehtinen, Parys, Schewe and Wojtczak [25], they emphasise in their introduction that their
algorithm has a gap when compared to other quasi-polynomial algorithms. We describe how
our technique can be applied to the algorithms of Lehtinen, Parys, Schewe and Wojtczak [25]
as well as Jurdziński, Morvan and Thejaswini [20] in this section which would closes this gap.
We also achieve this by extending our results to arbitrary trees, of which their algorithms
form specific instances. For a detailed report on which universal trees correspond to which
algorithm, we refer the reader to the work of Jurdzińksi, Morvan and Thejaswini [20].

Algorithm using arbitrary trees
To apply the technique of remembering decompositions for quasi-polynomial versions of
attractor based algorithm, we need to restrict the exponential branching in the previous
algorithm. In our algorithm, we bound the branching in the algorithm to inter-leavings of any
two arbitrary trees with minimal modification from our previous algorithms. Instantiating
these trees to the universal trees underlying the algorithm of Parys [27], or Lehtinen, Schewe,
and Wojtczak [24] results in a speed up compared to these respective algorithms.

The version of our algorithm which uses any two arbitrary trees contains two mutually
recursive procedures UnivFastEven and UnivFastOdd which take as input a game G, the
highest priority h in the game, and two nodes ϵ and ω from T Odd and T Even. The nodes
ϵ and ω have level h and h + 1 respectively in their trees for the Even procedure and vice
versa for the Odd procedure. The underlying trees are not passed in a recursive subcall as
we assume they are a part of the algorithm and can be accessed globally. Other than the
arbitrary trees, this algorithm deviates slightly from our previous algorithms in one way.
The main loop in this algorithm, whose branching was earlier (virtually) unbounded, is now
determined by the trees T Odd and T Even. The pseudo-code for the Even recursive subcall
is specified in Algorithm 3 and is given next to the pseudo-code of Algorithm 2 for ease of
comparison.

Decompositions and labels
To prove correctness of the algorithms as well as analyse their runtime more carefully, we offer
an alternate way of viewing decompositions. Instead of a partition in the shape of a tree, we
can equivalently view it as a map to a specific tree. We define such trees, which we call leafy
trees. We then show that decompositions are nothing but maps into such specific ordered
trees. This ordering on the tree induces a natural ordering on the set of all decompositions.

This alternate view also helps us argue correctness and termination using monovariance
of the decomposition maintained throughout the algorithm.

Leafy tree. Let T be an ordered tree with a root at level h, an even value. We call the
leafy tree of a tree T , denoted by L(T) to be an ordered set which contains three copies of
each element in the tree T and another element ⊤. We define this more formally below.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:13

16

17

18 19

Figure 3 From left to right: A decomposition set into the tree T Even, tree T Even and its
corresponding leafy tree with its order.

▶ Definition 8. Given a tree T , we introduce two additional nodes for each node η ∈ T , which
we will call ηT and ηS to denote the nodes corresponding to top and side nodes respectively.
Other than this, we add an element ⊤. We say, that

L(T) = T ∪ {ηT | η ∈ T } ∪ {ηS | η ∈ T } ∪ {⊤}.

We sometimes refer to the nodes from T as a node in the skeleton of the leafy tree. The
order of elements in L(T) is as follows: η ∈ T and for η′ ∈ L(T ′), where T ′ is a strict subtree
of the tree rooted at η, we have η < ηT < η′ < ηS . Moreover, the order on T is inherited
by L(T). We also have η < ⊤, for any η ∈ L(T), which is not ⊤. Note that the above
conditions ensure that L(T) is a total order and the smallest element strictly larger than η

is well defined. We define level of ηS to be one more than the level of η and the level of ηT

to be one less.
For a pictorial representation of a leafy tree, look at Figure 3. Here, the Leafy tree of

the tree T Even with root ϵ, and its children ϵ1, ϵ2 and leaves ϵ11, ϵ21, and ϵ22. In L(T Even),
we denote elements according to their order, where the elements from T Even are the black
nodes, ηT with blue and ηS with red. Their level can be inferred by the dotted lines. Also
observe a decomposition into the same tree T Even placed next to the leafy tree in the picture.
We show that a map into a leafy tree can be obtained from the following decomposition.

Labelling. We define a labelling for Even into T as a map from the vertices of a parity
game G to L(T), which obeys the following conditions:

if a vertex is mapped to the skeleton of the leafy tree: T ⊂ L(T), then its priority is the
same as the level of the node;
if a vertex is mapped to “leafy vertex”, i.e, ηS or ηT then its priority is at most the level
of the leafy vertex.

There are no restrictions on elements mapped to ⊤. One could also equivalently define a
labelling for Odd by replacing Even with Odd. When we refer to labellings in the rest of the
section, we refer to Even labellings.

Given two labellings for Even, λ1 and λ2 into tree T which are maps from V to L(T), we
say that the order on the elements of L (T) extend to give a partial order on the labelling.
More formally, λ1 ⊑ λ2 if and only if for all v ∈ V , λ1(v) ⩽ λ2(v).

Indeed, the above definition corresponds to a decomposition naturally by the following
proposition.

FSTTCS 2022

44:14 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

▶ Proposition 9. For a parity game G, with priorities that do not exceed h + 1 and a tree T
of height h/2,

for a labelling λ from G to L(T), there is a canonical decomposition Dλ to the tree T ;
for a decomposition D into T , there is a canonical labelling λD which maps V (G) to
L(T).

This allows us to use labellings and decompositions interchangeably, as they have a one to
one correspondence with each other. It also induces a partial order⊑ on decompositions, which
is obtained by a the partial order on labellings. We now pinpoint when the decomposition
corresponding to a labelling forms an attractor decomposition. We say that a vertex u is
valid in a labelling λ if λ(u) = ⊤ or:

λ(u) ∈ T and in one step, Even can ensure that she reaches a vertex v such that
λ(v) < λ(u)S .
λ(u) = tT or λ(u) = tS and there is a reachability strategy from u to vertices in
{v | λ(v) < t} without visiting any vertex v in the path where λ(v) > t.

In the lemma below, we show that validity of all vertices also corresponds to a witness of
winning.

▶ Lemma 10. Given an Even labelling λ, there is a winning strategy for Even from all
vertices u such that λ(u) ̸= ⊤ iff all vertices are valid.

Not only do such labellings correspond to dominions, the following proposition shows a
stronger statement that the decomposition Dλ corresponding to such a labelling λ is an
attractor decomposition exactly if and only if every vertex is valid in λ.

▶ Proposition 11. In a parity game G,
an Even decomposition D to a tree T is also an attractor decomposition if the corresponding
labelling λD which maps V (G) to L(T) is valid for all vertices;
if a labelling λ is valid at all vertices, then the corresponding Dλ is an attractor decom-
position.

As defined in these previous works [7, 20, 8], given a dominion, there could be several attractor
decompositions for it. Each of these attractor decompositions could correspond to different
trees. In our definition, instead of obtaining the trees from a given attractor decomposition,
we view it as a map into a fixed tree. The proposition below helps us show that attractor
decompositions defined as labellings is robust.

▶ Proposition 12. Consider a parity game G with two labellings λ1 and λ2 from the vertices
to L(T) for some tree T . Let λ1 ⊑ λ2 and u ∈ V (G) such that λ1(u) = λ2(u). If u is valid
in λ2, then it is also valid in λ1.

It can be shown as a corollary of the above proposition, that taking the point-wise minimum of
two attractor decompositions is also an attractor decomposition. An interesting consequence
of this stated corollary of Proposition 12 is the following lemma, which notes that the set of
all attractor decompositions forms a lattice.

▶ Lemma 13. Given a game G and a tree T , the set of all labellings from V (G) to L(T)
which are also attractor decompositions form a lattice, with the ⊑ order. More specifically, it
has a unique maximal and minimal element.

The meet operator is well defined, which makes the set of attractor decompositions a finite
semi-lattice. Since there is a unique maximal element, the trivial labelling which maps all
elements to ⊤, this structure forms a lattice. We will focus on this unique minimal attractor
decomposition, which plays a key role in our proofs.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:15

Correctness and runtime

With this dual view of an attractor decomposition, we are equipped to prove the correctness
and runtime of our algorithms.

Correctness

We prove correctness by proving Theorem 4, which states that on two input trees T Even

and T Odd, if there is a dominion of Even that has an attractor decomposition for the tree
TEven, then the decomposition returned contains all vertices in that dominion. Additionally,
it contains no vertices from any Odd dominions that has an attractor decomposition for the
tree TOdd. Indeed, if the trees are large enough, and winning set for both Even and Odd
have an attractor decomposition into T Even and T Odd respectively, then the sets DOdd and
DEven correspond to winning sets exactly and the algorithm exactly returns the winning sets.
On smaller trees that cannot include the entire dominion, the set returned in itself is not a
winning set, but it partitions the winning dominions captured by these trees. Therefore, this
theorem can be seen as a generalisation of the dominion separation theorem (Theorem 17)
in [20].

▶ Theorem 14. Let G be a parity game with priorities no larger than an even number h,
and let T Even and T Odd be two trees of with roots ϵ and ω respectively. Let DEven be the
largest Even dominion in G that has an attractor decomposition into T Even and similarly
DOdd, the largest Odd dominion that has an attractor decomposition into T Odd. Procedure
UnivFastEven(G, h, ϵ, ω), with the decomposition being the initial Even and Odd decomposition
of G outputs a set of vertices W such that DEven ⊆W ⊆ V (G \DOdd).

We prove the above theorem by showing the following stronger statements. We show that
for the smallest attractor decompositions Aϵ and Aω with respect to the corresponding trees,
the algorithm maintains the following invariants for the decompositions:
1 Dϵ

Even ⊑ Aϵ
Even and Dω

Odd ⊑ Aω
Odd;

2 At the end of a recursive subcall of UnivFastEven(G, h, ϵ, ω), the decompositions at the
end of the recursive call are such that [Dϵ

Even] ∩ [Dω
Odd] is empty.

The essence of the proof boils down to showing that each operation performed on
the decompositions, increases the decomposition without overtaking the smallest attractor
decomposition. We achieve this by using the ordering on labellings developed earlier in
this section. Additionally, we prove Theorem 4 with an extra invariant that if the trees
T Even and T Odd are complete n-ary trees, then Dϵ

Even = Aϵ
Even and Dω

Odd = Aω
Odd. This

automatically gives us the proof of correctness for Algorithm 2 and that it provides an
attractor decomposition.

A notable observation on the proof of Theorem 4 is that these two invariants mentioned
hold true for all three of the Algorithms stated in the paper until now, including McNaughton-
Zielonka. However, it is only with complete trees that we can prove that both Algorithm 1
and Algorithm 2 produce the minimal attractor decompositions. This shows that McNaugton
and Zielonka and its variants provide a winning strategy on termination, whereas the quasi-
polynomial algorithms only produce a partition between the winning and loosing vertices,
with no strategy for each player. We make precise what guarantees one can achieve using our
techniques. We also show a quadratically faster termination for Algorithm 2 and Algorithm 3
than their counterparts which do not maintain a decomposition.

FSTTCS 2022

44:16 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

Runtime

We show how our algorithm runs in time that is at most linear in the size of each of the tree,
a significant reduction from other attractor based algorithms with a quadratic dependence.

▶ Theorem 15. Consider a game G with n vertices and priority at most
h. Procedure UnivFastEven (resp. UnivFastOdd) with trees TOdd and TEven makes
O (nc ·max (|TOdd|, |TEven|)) many recursive subcalls to UnivFastEven or UnivFastOdd for a
constant c. The time taken to perform each operations outside of the recursive subcalls is
a polynomial in n, thus making the run-time of this algorithm O

(
nd ·max (|TOdd|, |TEven|)

)
for a constant d.

Our most significant change that contributes to an improvement in the theoretical bound
of the running time is that we maintain the decompositions from previous recursive calls.
This is crucial in the proof and helps us argue that our modified algorithm does not take too
long before there is an increase at least one of our decompositions. We would however like to
emphasise that not all implementations of the algorithm would have the claimed run-time,
but with carefully designed data structures, the time taken outside a recursive call is at
most polynomial. One such implementation would require a data structure which stores
each decomposition as a labelling. This labelling is however represented by only maintaining
elements in the support of this labelling instead of the whole tree. Since there are at most n

vertices, this support is significantly smaller than the size of a potentially quasi-polynomial
or exponentially-sized tree. The attractor computations and the respective Set and Move
operations performed in the algorithms take time proportional to a polynomial in n, assuming
that we have either oracle access or polynomial-time access to queries such as: next sibling
of node, parent of a node or child of a node.

5 Outlook

We believe that our technique can be applied to other attractor-based algorithms that were
inspired by the McNaughton-Zielonka algorithm [1, 22], but elaborating this in detail is
beyond the scope of this paper. The methodology to follow would be analogous to ours:
first make explicit how these algorithms are incrementally building attractor decompositions,
and then use the decompositions for both players obtained from recursive calls to reduce
the sizes of subgames in further recursive calls. Even implementing just the first step of
this methodology seems worthwhile: doing so on arbitrary ordered trees, like we did in
Section 4, would allow to obtain a generic priority promotion algorithm, which could be
made straightforwardly quasi-polynomial by plugging in small universal trees [18, 8], hence
generalizing and streamlining the first quasi-polynomial priority promotion algorithm [3].

A weakness of all quasi-polynomial symmetric attractor-based algorithms – including ours
– is that they may output correct winning sets, but without constructing winning strategies.
This is a major shortcoming in the context of synthesis, where winning strategies correspond
to the desired controllers. We argue that our technique, which is based on computing
decompositions that are under-approximations of the least attractor decompositions, allows to
tackle this weakness with a modest additional computational cost. If the algorithm terminates
with a decomposition that is not an attractor decomposition, then the decomposition obtained
can serve as a starting point to make further progress. We can run an algorithm for each
player that repeatedly increases the decomposition in the underlying order appropriately
until an attractor decomposition is obtained. This addition does not increase the worst-case
asymptotic running time by more than a polynomial factor.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:17

We have illustrated that our technique, when applied to the standard McNaughton-
Zielonka algorithm, yields an algorithm that can solve some hard examples [13] in polynomial
time. Other families of hard examples [32, 2] should also be analyzed. We believe that
studying the shapes of attractor decompositions of hard examples and how they impact the
intricate behaviour of symmetric attractor-based algorithms could shed new light on some
central questions in the algorithmic study of parity games, such as how to overcome the
quasi-polynomial barrier [6].

References
1 Massimo Benerecetti, Daniele Dell’Erba, and Fabio Mogavero. Solving parity games

via priority promotion. Formal Methods Syst. Des., 52(2):193–226, 2018. doi:10.1007/
s10703-018-0315-1.

2 Massimo Benerecetti, Daniele Dell’Erba, and Fabio Mogavero. Robust worst cases for parity
games algorithms. Inf. Comput., 272:104501, 2020. doi:10.1016/j.ic.2019.104501.

3 Massimo Benerecetti, Daniele Dell’Erba, Fabio Mogavero, Sven Schewe, and Dominik Wojtczak.
Priority promotion with parysian flair. CoRR, abs/2105.01738, 2021. arXiv:2105.01738.

4 J. C. Bradfield and I. Walukiewicz. The mu-calculus and Model Checking, pages 871–919.
Springer, 2018. doi:10.1007/978-3-319-10575-8_26.

5 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasi-polynomial time. SIAM Journal on Computing, 51(2):STOC17–152–
STOC17–188, 2022. doi:10.1137/17M1145288.

6 W. Czerwiński, L. Daviaud, N. Fijalkow, M. Jurdziński, R. Lazić, and P. Parys. Universal
trees grow inside separating automata: Quasi-polynomial lower bounds for parity games.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2333–2349. SIAM, 2019.
doi:10.1137/1.9781611975482.142.

7 L. Daviaud, M. Jurdziński, and K. Lehtinen. Alternating weak automata from universal trees.
In 30th International Conference on Concurrency Theory, CONCUR 2019, volume 140 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:14, Amsterdam, the
Netherlands, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

8 Laure Daviaud, Marcin Jurdzinski, and K. S. Thejaswini. The strahler number of a parity
game, 2020. doi:10.4230/LIPIcs.ICALP.2020.123.

9 Anuj Dawar and Erich Grädel. The descriptive complexity of parity games. In Michael
Kaminski and Simone Martini, editors, Computer Science Logic, 22nd International Workshop,
CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008.
Proceedings, volume 5213 of Lecture Notes in Computer Science, pages 354–368. Springer,
2008. doi:10.1007/978-3-540-87531-4_26.

10 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer Society, 1991.
doi:10.1109/SFCS.1991.185392.

11 E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model-checking for fragments of
µ-calculus. In Costas Courcoubetis, editor, Computer Aided Verification, 5th International Con-
ference, CAV ’93, Elounda, Greece, June 28 – July 1, 1993, Proceedings, volume 697 of Lecture
Notes in Computer Science, pages 385–396. Springer, 1993. doi:10.1007/3-540-56922-7_32.

12 Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. Fair simulation relations, par-
ity games, and state space reduction for büchi automata. In Automata, Languages and
Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001,
Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 694–707. Springer,
2001. doi:10.1007/3-540-48224-5_57.

FSTTCS 2022

https://doi.org/10.1007/s10703-018-0315-1
https://doi.org/10.1007/s10703-018-0315-1
https://doi.org/10.1016/j.ic.2019.104501
http://arxiv.org/abs/2105.01738
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1137/17M1145288
https://doi.org/10.1137/1.9781611975482.142
https://doi.org/10.4230/LIPIcs.ICALP.2020.123
https://doi.org/10.1007/978-3-540-87531-4_26
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1007/3-540-56922-7_32
https://doi.org/10.1007/3-540-48224-5_57

44:18 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

13 Oliver Friedmann. Recursive algorithm for parity games requires exponential time. RAIRO
Theor. Informatics Appl., 45(4):449–457, 2011. doi:10.1051/ita/2011124.

14 Maciej Gazda and Tim A. C. Willemse. Zielonka’s recursive algorithm: dull, weak and solitaire
games and tighter bounds. In Gabriele Puppis and Tiziano Villa, editors, Proceedings Fourth
International Symposium on Games, Automata, Logics and Formal Verification, GandALF
2013, Borca di Cadore, Dolomites, Italy, 29-31th August 2013, volume 119 of EPTCS, pages
7–20, 2013. doi:10.4204/EPTCS.119.4.

15 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-36387-4.

16 Ichiro Hasuo, Shunsuke Shimizu, and Corina Cîrstea. Lattice-theoretic progress measures and
coalgebraic model checking. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 – 22, 2016, pages 718–732.
ACM, 2016. doi:10.1145/2837614.2837673.

17 M. Jurdziński. Small progress measures for solving parity games. In 17th Annual Symposium
on Theoretical Aspects of Computer Science, volume 1770 of LNCS, pages 290–301, Lille,
France, 2000. Springer. doi:10.1007/3-540-46541-3_24.

18 M. Jurdziński and R. Lazić. Succinct progress measures for solving parity games. In 32nd An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pages 1–9, Reykjavik,
Iceland, 2017. IEEE Computer Society.

19 M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for
solving parity games. SIAM Journal on Computing, 38(4):1519–1532, 2008.

20 Marcin Jurdziński, Rémi Morvan, and K. S. Thejaswini. Universal Algorithms for Parity
Games and Nested Fixpoints. CoRR, abs/2001.04333, 2020. arXiv:2001.04333.

21 J. J. A. Keiren. Benchmarks for parity games. In FSEN, volume 9392 of LNCS, pages 127–142,
Tehran, Iran, 2015. Springer. doi:10.1007/978-3-319-24644-4_9.

22 Ruben Lapauw, Maurice Bruynooghe, and Marc Denecker. Improving parity game solvers with
justifications. In Verification, Model Checking, and Abstract Interpretation, pages 449–470,
Berlin, Heidelberg, 2020. Springer-Verlag. doi:10.1007/978-3-030-39322-9_21.

23 K. Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial time. In 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, pages 639–648,
Oxford, UK, 2018. IEEE. doi:10.1145/3209108.3209115.

24 K. Lehtinen, S. Schewe, and D. Wojtczak. Improving the complexity of Parys’ recursive
algorithm, 2019. arXiv:1904.11810.

25 Karoliina Lehtinen, Paweł Parys, Sven Schewe, and Dominik Wojtczak. A Recursive Approach
to Solving Parity Games in Quasipolynomial Time. Logical Methods in Computer Science,
Volume 18, Issue 1, January 2022. doi:10.46298/lmcs-18(1:8)2022.

26 R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic,
65(2):149–184, 1993. doi:10.1016/0168-0072(93)90036-D.

27 P. Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In MFCS 2019, volume
138 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:13, Aachen,
Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
MFCS.2019.10.

28 N. Piterman. From nondeterministic buchi and streett automata to deterministic parity
automata. In 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06), pages
255–264, 2006. doi:10.1109/LICS.2006.28.

29 Sven Schewe and Bernd Finkbeiner. Synthesis of asynchronous systems. In Proceed-
ings of the 16th International Conference on Logic-Based Program Synthesis and Trans-
formation, LOPSTR’06, pages 127–142, Berlin, Heidelberg, 2006. Springer-Verlag. doi:
10.1007/978-3-540-71410-1_10.

https://doi.org/10.1051/ita/2011124
https://doi.org/10.4204/EPTCS.119.4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/2837614.2837673
https://doi.org/10.1007/3-540-46541-3_24
http://arxiv.org/abs/2001.04333
https://doi.org/10.1007/978-3-319-24644-4_9
https://doi.org/10.1007/978-3-030-39322-9_21
https://doi.org/10.1145/3209108.3209115
http://arxiv.org/abs/1904.11810
https://doi.org/10.46298/lmcs-18(1:8)2022
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.1007/978-3-540-71410-1_10
https://doi.org/10.1007/978-3-540-71410-1_10

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:19

30 K. S. Thejaswini, Marcin Jurdziński, and Pierre Ohlmann. A technique to speed up symmetric
attractor-based algorithms for parity games. CoRR, abs/2010.08288, 2020. arXiv:2010.08288.

31 T. van Dijk. Oink: An implementation and evaluation of modern parity game solvers. In Tools
and Algorithms for the Construction and Analysis of Systems, 24th International Conference,
TACAS 2018, volume 10805 of LNCS, pages 291–308, Thessaloniki, Greece, 2018. Springer.
doi:10.1007/978-3-319-89960-2_16.

32 Tom van Dijk. A parity game tale of two counters. In Jérôme Leroux and Jean-François
Raskin, editors, Proceedings Tenth International Symposium on Games, Automata, Logics,
and Formal Verification, GandALF 2019, Bordeaux, France, 2-3rd September 2019, volume
305 of EPTCS, pages 107–122, 2019. doi:10.4204/EPTCS.305.8.

33 W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theoretical Computer Science, 200(1–2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

A Set and Move operator

We define operations like “Set T ϵ to S”, “Add S to Sω
Odd” etc., as operations performed on

sets rigorously. These short hands helped us capture the essence of these manipulations
performed on the decompositions to give a new one. With appropriate data structures, these
operations can be performed in nearly linear time, i.e, for a set of size k, it takes time at
most mk log(n) log(d).

Adding and removing vertices from Dϵ
Even and Dω

Odd

To make the definition of Set and Move easier, we define operations that would facilitate
this: First, we define ⊕ and ⊖. We also define an extention of our notation [Dϵ

Even] here. We
use JDϵ

EvenK to denote the set of of vertices in [Dϵ
Even] along with Sϵ

Even. We also introduce
one extra partition of vertices to the already existing ones in the decompositions: ⊤Even for
the Even decomposition and ⊤Odd for the Odd decomposition to accommodate vertices that
no longer fit into a decomposition.

Consider an Even decomposition DEven and an element of the Even tree ϵ at level h,
and subset of vertices U , whose priorites are at most h + 1. Intuitively, we modify the
decomposition Dϵ

Even by adding elements of a set U to it whilst maintaining all the properties
of a decomposition. More rigorously, we let JDϵ

EvenK ← JDϵ
EvenK ⊕ U denote the following

operations in that order:
Sϵ

Even ← Sϵ
Even ∪

(
U ∩ π−1(h + 1)

)
;

Hϵ
Even ← Hϵ

Even ∪
(
U ∩ π−1(h)

)
;

T ϵ
Even ← T ϵ

Even ∪
(
U ∩ π−1(< h)

)
.

One could analogously define the operators ⊕ for Dω
Odd for an Odd decomposition.

To remove vertices U from the decomposition Dϵ
Even, we define JDϵ

EvenK← JDϵ
EvenK⊖ U

as follows: for each ϵ′ in the subtree of ϵ,
Sϵ′

Even ← Sϵ′

Even \ U ;
Hϵ′

Even ← Hϵ′

Even \ U ;
T ϵ′

Even ← T ϵ′

Even \ U .

Setting T ϵ
Even

To give an intuitive definition of “Set T ϵ
Even to S”, we essentially replace the set of vertices at

T ϵ
Even with S, and we remove vertices which are originally there which are not S and assign

them to the next available positions in the decomposition that would be processed. For a
subset of vertices S, we define “Set T ϵ

Even to S” where the set T ϵ
Even contains S.

FSTTCS 2022

http://arxiv.org/abs/2010.08288
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.4204/EPTCS.305.8
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

44:20 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

R← T ϵ
Even \ S

T ϵ
Even ← S

JDϵ1
EvenK← JDϵ1

EvenK⊕R, where
ϵ1 is the first child of ϵ in the tree if ϵ is not a leaf,
if ϵ is a leaf, then ϵ1 is the smallest node larger than epsilon, and
if the smallest node larger than epsilon does not exist in the tree, we let an element
⊤Even ← R.

Setting Sωi

Odd

This is very similar to the above, the only difference is in the last line. We could unify these
setting operations, but we give them separately for more clarity. For a subset S of vertices,
we define “Set Sωi

Odd to S” to be:
R← Sωi

Odd \ S

Sωi

Odd ← S

if i is the last child of ω, then Sω
Odd ← Sω

Odd ∪R

if not, then JDωi+1
Odd K← JDωi+1

Odd K⊕R

Moving vertices to Sωi

Odd

For a subset of vertices S, we define “ Move S to at least Sωi

Odd” as follows: we first remove
S from all the other positions in the decomposition rooted at ωi and then add it to Sωi

Odd if
it was in JDωi

OddK.
R← JDωi

OddK ∩ S

JDωi

OddK← JDωi

OddK⊖ S

Sωi

Odd ← Sωi

Odd ∪R

The even counterpart is defined similarly.

	1 Context and contributions
	2 Games, Strategies, Attractor decomposition
	3 Making McNaughton-Zielonka faster with some memory
	4 Using smaller trees
	5 Outlook
	A Set and Move operator

