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Abstract
More than three decades ago, after a series of results, Kaltofen and Trager (J. Symb. Comput.
1990) designed a randomized polynomial time algorithm for factorization of multivariate circuits.
Derandomizing this algorithm, even for restricted circuit classes, is an important open problem. In
particular, the case of s-sparse polynomials, having individual degree d = O(1), is very well-studied
(Shpilka, Volkovich ICALP’10; Volkovich RANDOM’17; Bhargava, Saraf and Volkovich FOCS’18,
JACM’20). We give a complete derandomization for this class assuming that the input is a symmetric
polynomial over rationals. Generally, we prove an spoly(d)-sparsity bound for the factors of symmetric
polynomials over any field. This characterizes the known worst-case examples of sparsity blow-up
for sparse polynomial factoring.

To factor f , we use techniques from convex geometry and exploit symmetry (only) in the Newton
polytope of f . We prove a crucial result about convex polytopes, by introducing the concept of “low
min-entropy”, which might also be of independent interest.
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1 Introduction

Polynomial factorization is one of the most fundamental and central problems studied in
computational algebra. In this paper, we concern ourselves with the problem of multivariate
polynomial factorization which, given a polynomial f ∈ F[x1, . . . , xn] over some field F
as an input, asks to compute all the irreducible factors of f . In a famous line of work,
it was shown that this problem admits a polynomial time randomized algorithm [18, 20].
Finding an efficient deterministic algorithm continues to be a challenging open problem1.

1 We only want an efficient deterministic algorithm to reduce multivariate circuit (or even sparse)
factorization to univariate factorization.
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9:2 Sparse Polynomial Factorization

See [19, 38, 39, 35] for a detailed exposition. Polynomial factorization also has interesting
connections with other problems such as circuit lower bounds [15], list decoding [34, 13] and
cryptography [6].

The representation of the input polynomial is significant in the complexity of this problem.
The randomized algorithms of [18, 20] are efficient when both the input polynomial and
output factors are represented as general algebraic circuits (see Appendix B for definition).
It is imperative to ask if derandomizing polynomial factorization will be easier for restricted
circuit classes. One may believe the problem to be easier since the input polynomial is weak
as it belongs to a restricted class. However, note that the demand is correspondingly stronger;
we want output factors also to be given in this restricted class. A very natural interesting
class of algebraic circuits, which is considered for this problem, is that of sparse polynomials.
Sparsity of a polynomial f is defined as number of monomials in f with non-zero coefficients.
Sparse polynomials can also be seen as depth-2 (ΣΠ) algebraic circuits. If we give sparse
polynomial as input to Kaltofen’s factorization algorithm, the output will be in the form of
general algebraic circuit, but in sparse polynomial factorization, we want output factors also
to be in sparse representation.

There is another motivation for studying sparse polynomials for the factorization problem,
which arises from another fundamental problem called the Polynomial identity testing (PIT).
Given an input polynomial f ∈ F[x1, . . . , xn] as an algebraic circuit, PIT asks to determine if
f is identically zero. This problem also admits a simple and efficient randomized algorithm
due to PIT Lemma [29, 42, 10, 26] and like factoring, finding a deterministic efficient
algorithm is still open. It is easy to show that PIT reduces to factorization2. In fact, [22]
showed that the problem of derandomizing multivariate polynomial factoring is equivalent
to derandomizing PIT, for general algebraic circuits. Showing this equivalence for other
interesting circuit classes, was left as an open problem by [22]. The classes, which admit
an efficient deterministic PIT algorithm are particularly interesting because if we show the
equivalence for these classes, we also derandomize factoring for them. Sparse polynomials is
one such natural class, for which we do have poly-time deterministic PIT algorithms [21].

Note that the run-time of sparse factorization algorithm will be lower bounded by the
sparsity of factors, just for writing the output alone. In general, the sparse model is not
closed under factors, i.e. sparse polynomials can have dense factors as shown in Examples
4.8 and 4.9. Therefore, the bounded individual degree setting is studied for sparse polynomial
factorization [31, 36, 37, 2]. Individual degree of a polynomial is defined as the maximum
degree of some variable appearing in it (See Section 2). This raises the following important
question:

▶ Question 1.1. Let f be an s-sparse polynomial with constant individual degree. Can f be
deterministically factored in poly(s)-time?

We make progress towards a positive answer to this question by giving a poly(s)-time
deterministic factoring algorithm, when the sparse polynomial f is also symmetric. Symmetric
polynomials are ones that remain the same even if any of the variables are interchanged
(See Section 2 for formal definition). To the best of our knowledge, symmetry was not
exploited before our work and the previous best deterministic algorithm for this class
was a super-polynomial time algorithm by [2] with run-time sO(log n), for general s-sparse
polynomials.

2 Observe that the polynomial x2 + y · f factorizes if and only if f = 0.
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The work of [2] partially derandomizes the factoring question for sparse polynomials
having constant individual degree. The crucial derandomization step in their algorithm is
proving an efficient sparsity bound for factors of the input polynomial f , which dominates
the run-time of their algorithm. They were able to prove an sO(log n) sparsity bound for
factors of f . Our main contribution is to prove factor-sparsity bound of sO(1), when f is
symmetric. The key combinatorial object associated with derandomization of sparse factoring
or equivalently factor-sparsity, is the Newton polytope of f . We prove our bound by giving a
completely new line of attack on the symmetric Newton polytope of f .

Symmetric polynomials are studied extensively both in computer science and mathematics.
It is intriguing to explore the effect of symmetry in the polynomial factorization problem.
Many multivariate polynomials f ∈ F[x1, . . . , xn] are constructed by “boosting” a univariate
polynomial a(X) by product or addition as shown below:

f =
n∏

i=1
a(xi) or f =

(
n∑

i=1
a(xi)

)d

for some d ≥ 1.

Some of the famous polynomials that are known to have dense factors (Example 4.8 and
Example 4.9) are of this type. Such polynomials are actually symmetric by construction
and are exactly captured by the results of this work. Therefore, the symmetric setting
is important and non-trivial. Moreover, our proof techniques do not require symmetry in
the coefficients of f , but merely in the support of f . Besides symmetric polynomials, our
techniques also give polynomial-time deterministic factoring algorithm for another class of
polynomials, which we call low min-entropy polynomials, that we define later.

1.1 Our results
Given a polynomial f , the complete factorization of f is a representation of f as fe1

1 fe2
2 · · · fek

k ,
where f1, . . . , fk are co-prime, irreducible polynomials and e1, . . . , ek are positive integers.
This representation is unique up to a reordering of fi’s. Let Q denote the field of rational
numbers. We get a poly-time deterministic reduction from multivariate to univariate factoring
over any field F. In particular, this gives us a complete poly-time factoring algorithm over Q
below, by using the univariate factoring algorithm of [23].

▶ Theorem 1.2 (Symmetric factoring algorithm). Let f ∈ Q[x1, . . . , xn] be an s-sparse,
symmetric polynomial with constant individual degree d. Let t be the maximum bit-complexity
of the coefficients of f . Then, there is a deterministic algorithm that computes the complete
factorization of f in at most poly(s, n, t)-time.

▶ Remark.
1. The exact complexity is poly(sd7 log d · nd2 · t)-time.
2. For a finite field F = Fpℓ , we get a deterministic poly(sd7 log d · nd2 · ℓ log p)-time reduction

to univariate factoring.
3. Throughout this paper (specifically in Theorems 1.2, 1.3 & 4.6), we get the same results

if we replace symmetric polynomials with a more general class of polynomials, which we
call symmetric-support polynomials. Let supp(f) denote the set of monomials in f with
non-zero coefficients. We call f ∈ F[x1, . . . , xn] a symmetric-support polynomial if for
each monomial xe1

1 · · · xen
n ∈ supp(f), we also have that x

eσ(1)
1 · · · x

eσ(n)
n ∈ supp(f) for every

permutation σ ∈ Sn. For eg., f = x2
1x2x3 + 2x1x2

2x3 − x1x2x2
3 is a symmetric-support

polynomial that is not symmetric. While f = x2
1x2x3 + x1x2

2x3 is not symmetric-support.

FSTTCS 2022



9:4 Sparse Polynomial Factorization

The factoring algorithm in Theorem 1.2 is a direct consequence of our new sparsity bound
below.

▶ Theorem 1.3 (Symmetric sparsity bound). Let f ∈ F[x1, . . . , xn] be an s-sparse, symmetric
polynomial with constant individual degree d, over any field F. Then, every factor of f has
its sparsity bounded by poly(s).

▶ Remark.
1. The exact factor-sparsity bound that we prove is sO(d2 log d). From Example 4.9, we

note that sd is a lower bound on factor-sparsity and hence also a lower bound on the
time-complexity of any factoring algorithm for sparse polynomials.

2. Previous best sparsity upper bound was sO(d2 log n) due to [2], which is super polynomial
even for constant d.

3. We can also work with a general (possibly non-symmetric) f and get the same sparsity
bound for any symmetric factor of f (if it exists). We prove this formally in Theorem 4.6.
This yields a surprising incompressibility result: a symmetric bounded-individual-degree
polynomial g, that is s-dense, has sΩ(1)-dense multiples gh, for an arbitrary nonzero
polynomial h! (See Remark 4.5)

We now give a factoring algorithm for another class of polynomials, which we call “low min-
entropy” polynomials. We say that an n-dimensional vector v is of δ-min-entropy if (n− δ) of
its coordinates have the same value, where we consider minimum δ across all distinct elements
in v. We call a set of vectors A, a δ-min-entropy set, if every vector in A has min-entropy ≤ δ.
We can identify the support of polynomial f , with the subset supp(f) ⊆ {0, 1, . . . , d}n, as
the set of exponent vectors corresponding to each monomial in f . We call f a δ-min-entropy
polynomial, if supp(f) is of δ-min-entropy. For eg., f = x1x2x3

3x5
4 + 2x2

1x4
2x6

3x6
4 + 3x7

1x9
2x8

3x9
4 is

a 2-min-entropy polynomial (also, 3-min-entropy but not 1-min-entropy). Moreover, it does
not have symmetric-support. See Section 2 for more details on δ-min-entropy polynomials.

▶ Theorem 1.4 (Low min-entropy factoring algorithm). Let f ∈ Q[x1, . . . , xn] be a δ-min-
entropy polynomial with individual degree d, for some constants δ, d. Let t be the maximum
bit-complexity of the coefficients of f . Then, there is a deterministic algorithm that computes
the complete factorization of f in at most poly(n, t)-time.

▶ Remark. The exact complexity is poly((nd)d4δ · t)-time. For a finite field F = Fpℓ , we get
a deterministic poly((nd)d4δ · ℓ log p)-time reduction to univariate factoring.

The factoring algorithm in Theorem 1.4 is also a direct consequence of the following
sparsity bound for factors of δ-min-entropy polynomials.

▶ Theorem 1.5 (Factors of low min-entropy polynomials). Let f ∈ F[x1, . . . , xn] be a δ-min-
entropy polynomial with individual degree d over any field F, such that d, δ are constants.
Then, every factor of f has its sparsity bounded by poly(n).

▶ Remark.
1. The exact factor-sparsity bound that we prove is (nd)O(dδ), for any field F. Further,

our bound beats the sO(d2 log n) bound in [2], as long as f has min-entropy δ as low as
o(d log n).

2. We do not claim that the factors are “low” min-entropy as well. For example, f =
(x1 · · · xn/2) · (xn/2+1 · · · xn) has both the factors with high min-entropy n/2, while f is
itself of 0-min-entropy.
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All the factor-sparsity results mentioned above crucially rely on our structure theorem
stated below. It shows that if we have a δ-min-entropy set of exponent vectors, then the
integral-points in its convex hull, have min-entropy at most O(dδ). Trivially, such a thing
is false for Z-linear-span (resp. Q-linear-span) of vertices. Yet, surprisingly, a convex-span
preserves the low min-entropy of its vertices!

▶ Theorem 1.6 (Polytope entropy Theorem). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy set,
then CS(V ) ∩ Zn is a (2dδ)-min-entropy set.

1.2 Related works
The problem of sparse polynomial factorization was first studied in [40], where a randomized
algorithm for the same was provided. The time complexity of this algorithm was polynomial
in the sparsity of factors and exponential in the number of factors. Naturally, [40] raised
the question of proving better sparsity bounds for factors of sparse polynomials. Even
designing factoring algorithms for sparse polynomials of individual degree one or two required
non-trivial insights. An efficient deterministic algorithm for factorization of sparse multilinear
polynomials (d = 1) was provided in [31]. This result was further generalized to sparse
polynomials that factorize into multilinear factors in [36]. The model of sparse multiquadratic
polynomials (d = 2) was solved in [37].

The work of [2] utilized the interesting connection of factor-sparsity with Newton polytopes.
They proved a sparsity bound of sO(log n) for factors of s-sparse polynomials with constant
individual degree. For symmetric polynomials in Theorem 1.3, we improve this bound
considerably. The work of [2] also gives a deterministic factorization algorithm for sparse
polynomials with constant individual degree which runs in sO(log n) time. With our new
poly(s)-sparsity bound, we use their algorithm to get a deterministic poly(s)-time factorization
algorithm for symmetric, s-sparse polynomials, in the bounded individual degree regime.

A related and somewhat subsumed problem in polynomial factorization is that of factor
closure. Given an input f in a particular representation, what is the size of factors in the
same representation? The foundational work of [16, 17, 18] showed that if f is a size-s,
degree-poly(n) algebraic circuit, then its factors also have poly(s, n)-sized algebraic circuits,
i.e. VP is closed under factoring. [11] proved factor closure for the classes of VF, VBP,
VNP with a quasi-polynomial blowup in size, and gave analogous whitebox algorithms (see
Appendix B for definitions of these classes). VNP was shown to be properly closed under
factoring (with only poly blowup in size) in [7]. Recently, [33] showed that size-s ABPs have
factors of size poly(s), thus proving factor closure for VBP class.

For algebraic formulas, [25] showed that if f is computed by a depth-∆, size-s algebraic
formula, then its factors can be computed by depth-(∆ + 5) and size poly(s) formulas,
provided that individual degree of f is constant. Observe that sparse polynomials can also
be seen as depth-2 algebraic formulas, thus [25] showed that factors of bounded individual
degree sparse polynomials can be computed by depth-7 formulas. However, [2] showed that
these factors can be computed in depth-2 itself with a quasi-polynomial blowup in size. We
show that if f is also symmetric, then the factors can even be computed in depth-2 efficiently,
with only a polynomial blowup in size.

Another motivation for studying polynomial factorization of special classes is that im-
proving factoring methods often lead to improvements in blackbox PIT. For eg. [24] used
factoring of special circuits to give the first subexponential PIT for constant-depth circuits.

Besides being studied extensively in classical mathematics, symmetric polynomials have
been investigated in the area of algebraic complexity theory as well, mostly in the context of
lower bounds. A new model of depth-2 symmetric circuits was defined in [30], which studies

FSTTCS 2022



9:6 Sparse Polynomial Factorization

the complexity of determinant for this model. The complexity of elementary symmetric
polynomials in the algebraic formula model is studied in [14] while [5] study a class of
symmetric polynomials called Schur polynomials, also in the formula model. A strong lower
bound for elementary symmetric polynomials in the model of depth-4 algebraic circuits with
bounded bottom fan-in is proved in [12]. The complexity of symmetric polynomials with
respect to its expression in terms of elementary symmetric polynomials is studied in [3]. A
new class of algebraic circuits called symmetric algebraic circuits is studied in [8], which
shows a separation of determinant from permanent in this model. Recently in [9], under a
more stringent symmetry restriction in this model, lower bounds for even the determinant
polynomial are shown. In this work, symmetric polynomials are studied in the context of
sparse polynomial factorization.

1.3 Proof Techniques
The sparsity connection with Newton polytopes

Let f ∈ F[x1, . . . , xn] be a polynomial of individual degree d such that f =
∑

ce1,e2,...,en
·

xe1
1 xe2

2 · · · xen
n . We define support of f as the set of exponent vectors: supp(f) ≜ {(e1, . . . , en) |

ce1,...,en
̸= 0}. Let us denote sparsity of f as ∥f∥, which is the same as |supp(f)|. We define

the Newton Polytope of f , denoted by Pf , as the convex hull (or convex-span) of all the
points in supp(f).

For two polytopes A and B, their Minkowski sum A + B is defined as the set of points
{a + b | a ∈ A, b ∈ B}. Minkowski sum is well studied in polytope literature and comes
with some nice properties. The Minkowski sum A + B is itself a convex polytope. Let V (P )
denote the set of vertices (corner points) of a polytope P , then one can show a certain
“incompressibility” property: |V (A + B)| ≥ max{|V (A)| , |V (B)|}.

A classical fact about Newton polytopes, first observed by [27] a century ago, states that
if f = g · h, then Pf = Pg + Ph, where Pg + Ph is the Minkowski sum of Newton polytopes
of g and h. Moreover, we know that ∥f∥ ≥ |V (Pf )|, since supp(f) is in the convex hull of
V (Pf ). Therefore, we are able to connect sparsity of f with a factor g as follows:

∥f∥ ≥ |V (Pf )| ≥ |V (Pg)|. (1)

Another way to think about sparsity bound problem for f = g · h is to determine how many
monomials of g survive on multiplication with h. Equation (1) tells us that at least |V (Pg)|
many monomials survive. These vertices of Pg are in a sense extremal monomials in g that
never get canceled on multiplication (with any h).

Polytope entropy Theorem

We introduce the notion of δ-min-entropy sets and polynomials in this work. In our structure
theorem (Theorem 1.6), we analyze how min-entropy behaves with respect to polytopes.
Suppose we are given a δ-min-entropy set V of exponent vectors from {0, 1, . . . , d}n. The
motivating question is that if all vertices (elements of V ) have low min-entropy, then how
large can be the min-entropy of internal points in the polytope? In this theorem, we show
that min-entropy blows up only by a factor of O(d) for the internal integral-points, which is
a small factor in the bounded individual degree regime.

In order to prove this, we first design a set of symmetric hyperplane equations in Section 3
such that for each hyperplane, the entire set V lies on one side of it. Then by convexity,
one can show that every point in its convex-span also lies on the same side. Secondly,
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the hyperplane equations are so designed that any integral-point “enclosed” within these
hyperplanes must have min-entropy at most O(dδ). We present this designing of “certifying”
hyperplanes as a new approach for bounding sparsity of factors. Besides the factor-sparsity
implications, Theorem 1.6 could be of independent interest in its own right.

Symmetric polytopes

We say that a polytope P is symmetric if for each point v = (v1, . . . , vn) in P , every
permutation of v is also in P . If f is a symmetric polynomial, then its Newton polytope
Pf will be a symmetric polytope. Further, we observe that if a monomial (or its exponent
vector) is a vertex of a symmetric polytope, then all its distinct permutations are also
vertices. In other words, the vertex set V (Pf ) is also symmetric. Moreover, if f is sparse,
then cardinality of V (Pf ) is also bounded. Since the vertex set is symmetric, every vector in
it must contain a coordinate of “very high” frequency, otherwise V (Pf ) will contain a lot of
distinct permutations and its size will blow up (i.e. symmetry ⇒ low min-entropy). Thus,
V (Pf ) will have somewhat low min-entropy. Now, we can use our Theorem 1.6 to deduce
that all the integral points in Pf have low min-entropy. In Section 4, we exploit this with
additional counting arguments to prove that total number of integral points in this symmetric
polytope Pf is few. In particular, we show that |Pf ∩ Zn| ≤ |V (Pf )|O(d2 log d), where d is the
individual degree of f . If f factorizes as f = gh, then we have Pf = Pg + Ph. This means
that Pf contains a translated copy of Pg. Moreover, supp(g) ⊆ Pg contains only integral
points and therefore, ∥g∥ ≤ |Pf ∩ Zn| ≤ |V (Pf )|O(d2 log d). This implies ∥g∥ ≤ ∥f∥O(d2 log d),
showing that any factor of a sparse, symmetric polynomial is also sparse (Theorem 1.3).
Sparsity bound for factors of δ-min-entropy polynomials follows similar trajectory. Once
we have these nice sparsity bounds, we derive efficient deterministic factoring algorithms in
Section 5 using a result of [2] (Lemma 5.1).

2 Preliminaries

Notations

We use shorthand [n] for the set {1, 2, . . . , n}. We denote a vector v = (v1, . . . , vn) in short
by v (as a column vector). We will use the terms vector or point interchangeably. We use
the symbol ≜ for definitions. We will sometimes use F[x] as short for F[x1, . . . , xn]. The
finite symmetric group on n elements, which contains all the permutations of n elements, is
denoted by Sn. For a vector v and a permutation σ ∈ Sn, we denote σ-permutation of v by
σ ◦ v ≜ (vσ(1), . . . , vσ(n)). We call a set of points symmetric, if for each point v in it, σ ◦ v is
also in the set, for every permutation σ ∈ Sn. We denote the n-fold Cartesian product of a
set H by Hn. We will use log x for log2 x and ln x for loge x.

Let f ∈ F[x] be an n-variate polynomial. Individual degree of a variable xi, denoted by
degxi

(f) is defined as the maximum degree of that variable in f , while individual degree of a
polynomial is the maximum among all the individual degrees, maxi∈[n] degxi

(f). We will
use xe to denote the monomial xe1

1 xe2
2 · · · xen

n . We define coeff(xe)(f) as the coefficient of
monomial xe in polynomial f . We define support of f as supp(f) = {e | coeff(xe)(f) ̸= 0}.
Let us denote sparsity of f as ∥f∥, which is the same as |supp(f)|.

Polytopes

For a finite set of points v1, . . . , vk ∈ Rn, their convex combination is defined as an R-
linear combination of the points: α1v1 + . . . + αkvk, such that αi ≥ 0 for each i ∈ [k] and∑k

i=1 αi = 1. We define convex-span (or convex hull) CS(v1, . . . , vk) as the set of all possible
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9:8 Sparse Polynomial Factorization

convex combinations of vi, i ∈ [k]. A set P ⊆ Rn is called a (bounded) polytope if there is
a finite set of points v1, . . . , vk such that P = CS(v1, . . . , vk). A point a ∈ P is called a
vertex of P if it cannot be written as a = αu + (1 − α)v for any u, v ∈ P \ {a} and α ∈ [0, 1].
It is equivalent to saying that vertices are corner points of a polytope P which cannot be
expressed as convex combination of any other set of points in P . We use V (P ) to denote the
set of vertices of P . It is easy to verify that for a polytope P , P = CS(V (P )). Moreover, if
P = CS(v1, . . . , vk) then V (P ) ⊆ {v1, . . . , vk}.

Minkowski sum of two polytopes A, B ∈ Rn is defined as the following set of points
A+B = {a +b | a ∈ A, b ∈ B} . A basic fact is that Minkowski sum of two polytopes is itself
a polytope. The vertices of Minkowski sum have some very useful properties. It is known
that every vertex of A+ B can be expressed uniquely as a sum u + v, where u is a vertex of A

and v is a vertex of B. Additionally, one can show that |V (A + B)| ≥ max{|V (A)|, |V (B)|}
(See [2, Prop. 3.2]). We refer the readers to [41, 28] for a detailed discussion on polytopes.

For a polynomial f ∈ F[x1, . . . , xn], the Newton polytope of f is defined as Pf ≜
CS(supp(f)). In this paper, we crucially exploit its integral-points P ′

f := Pf ∩ Zn. We
denote the vertex set V (Pf ) by Vf . We also note that Vf ⊆ supp(f) ⊆ {0, . . . , d}n (integral-
points). The following two facts form the backbone for the Newton polytope approach of
bounding factor-sparsity.

▶ Proposition 2.1 ([27]). Let f, g, h ∈ F[x1, . . . , xn] be polynomials such that f = g · h. Then
Pf = Pg + Ph.

▶ Proposition 2.2 ([2]). Let f, g, h ∈ F[x1, . . . , xn] be polynomials such that f = g · h. Then
∥f∥ ≥ |Vf | ≥ max{|Vg|, |Vh|}.

Hyperplanes and Halfspaces

A hyperplane is the generalization of a line in higher dimensions. A hyperplane H is defined
as H ≜ {y ∈ Rn | a⊺y = b}, for some vector a ∈ Rn \ {0} and a number b ∈ R. The
hyperplane divides the space into two parts a⊺y ≥ b and a⊺y ≤ b. These are called halfspaces.

Symmetric polynomials and polytopes

We call f ∈ F[x1, . . . , xn] a symmetric polynomial if f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)),
for any permutation σ ∈ Sn. It is equivalent to saying: f is symmetric if and only if
coeff(xe1

1 · · · xen
n )(f) = coeff(xeσ(1)

1 · · · x
eσ(n)
n )(f), for all σ ∈ Sn. We call f ∈ F[x1, . . . , xn] a

symmetric-support polynomial if for each monomial xe1
1 · · · xen

n , we have coeff(xe1
1 · · · xen

n )(f) ̸=
0 ⇒ coeff(xeσ(1)

1 · · · x
eσ(n)
n )(f) ̸= 0, for every σ ∈ Sn. Note that all symmetric polynomials

are also symmetric-support polynomials.
We say that a polytope P is symmetric if for each point (v1, . . . , vn) in P , (vσ(1), . . . , vσ(n))

is also in P , for every permutation σ ∈ P . Note that Newton polytopes of symmetric-support
polynomials are in fact symmetric! (See Lemma A.1)

δ-min-entropy

We say that a vector v ∈ {0, 1, . . . , d}n is of δ-min-entropy if a single value c ∈ {0, . . . , d}
appears in exactly (n − δ) coordinates of v. We consider c with the highest frequency in v
and hence the minimum δ. In coding theory language, δ-min-entropy vector v has Hamming
distance δ from the constant vector (c, . . . , c). We also extend this definition of min-entropy
to sets and polynomials. We call A ⊆ {0, 1, . . . , d}n a δ-min-entropy set, if for every vector
v ∈ A, v has min-entropy ≤ δ. We call f a δ-min-entropy polynomial, if its support set
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supp(f) is of δ-min-entropy. Example 4.9 gives a polynomial f with 1-min-entropy. In
contrast, consider f = x1 · · · xn/3 + xn/3+1 · · · xn, which is a polynomial of (n/3)-min-entropy
but it’s not (< n/3)-min-entropy.

3 Polytope entropy – Theorem 1.6

Let Pf be the Newton polytope of f and Vf be its set of vertices such that Pf = CS(Vf ).
We prove few claims below which will help us prove Theorem 1.6. We are given Vf to be a
δ-min-entropy set. Let m ≜ n − δ. We first design a hyperplane u⊺ · y + dδ = 0 that will
help us prove very useful properties in Lemma 3.1 and Lemma 3.2 below. Define column
vector u ∈ {−1, +1}n such that,

ui :=
{

+1 if i ≤ δ + m/2
−1 otherwise.

(2)

The first δ +m/2 coordinates of u are +1 and the remaining n−(δ +m/2) = m/2 coordinates
are −1.

▶ Lemma 3.1 (Hyperplane cover). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy set and u be as
defined in (2). Then, every point y ∈ V satisfies each of the following symmetric inequalities:

(σ ◦ u)⊺ · y + dδ ≥ 0, for each σ ∈ Sn . (3)

Proof. Let y be any ≤ δ-min-entropy point from V ; so assume that y has some majority
element i with frequency ≥ m = n − δ, where i ∈ {0, . . . , d}. Let σ ∈ Sn be any permutation.
Define ℓ ≜ (σ ◦ u)⊺ · y. It suffices to show that ℓ ≥ −dδ. We claim that to minimize ℓ, by
varying (σ ◦ u), we can place at most δ many d’s in the coordinates corresponding to −1
and rest of the ≥ m coordinates must be filled by i. Since we have a total of (δ + m/2)
coordinates corresponding to +1 and remaining (m/2) coordinates corresponding to −1, the
minimum value of ℓ in this case is (δ + m/2) · i − (m/2 − δ) · i − (δ) · d = (2i − d)δ ≥ −dδ ,
since i ≥ 0. Thus, ℓ ≥ −dδ in this configuration.

We now show why this is an optimal configuration to minimize ℓ. Note that the majority
element i will always have a non-negative contribution in ℓ, since its frequency in the positions
corresponding to +1 will always be greater than or equal to its frequency in the positions
corresponding to −1. This is because there are only m/2 positions corresponding to −1 and
i has frequency ≥ m. Therefore to minimize its contribution, majority element i should be
fixed to 0. To get lowest possible value from the remaining elements in y, we should set all of
them to d and place them in any δ positions corresponding to −1. This will give minimum
value of ℓ to be −dδ. Rest of the configurations can only produce higher values for ℓ. Thus,
ℓ + dδ ≥ 0 for each y ∈ V and for every σ ∈ Sn. ◀

The symmetry in the above hyperplane-cover inequalities helps us to argue about y, by
first sorting its coordinates. This a powerful trick, as our following central claim demonstrates.

▶ Lemma 3.2 (Integral-point in the cover). Let u be as defined in (2). Let y ∈ {0, 1, . . . , d}n

be a point with 0 ≤ y1 ≤ y2 ≤ . . . ≤ yn ≤ d such that u⊺ · y + dδ ≥ 0 holds. Then, y is a
(2dδ)-min-entropy point.

FSTTCS 2022



9:10 Sparse Polynomial Factorization

Proof. Recall n = δ + m. Let us call, expectedly, the first (δ + m/2) coordinates, the
“positive zone” of y and the remaining (m/2) coordinates, the “negative zone” of y; this
corresponds to positions of +1’s and −1’s in u respectively. By hypothesis, the positive zone
has coordinates at most as large as in the negative zone. Let y =: y+ + y−, where we define
y+ and y− as

(y+)j ≜

{
yj if j ≤ δ + m/2
0 otherwise.

(y−)j ≜

{
yj if j > δ + m/2
0 otherwise.

Suppose the first coordinate in the negative zone of y is i for some i ∈ {0, 1, . . . , d}. We
then claim that y has at least n − 2dδ coordinates with this same value i, proving y to be a
2dδ-min-entropy point. Let p+ and p− denote the frequency of i in positive and negative
zones of y respectively, for some integers p+, p− ≥ 0. Note that u⊺ · y = ∥y+∥1 − ∥y−∥1,
where ∥·∥1 is the L1-norm. We first upper bound ∥y+∥1. Since y is sorted, the last p+
coordinates in positive zone must be i and all coordinates preceding it are of value at most
i − 1. This gives us

∥y+∥1 ≤ (i − 1) · (δ + m/2 − p+) + i · (p+) = iδ + im/2 − δ − m/2 + p+ . (4)

Now, we lower bound ∥y−∥1. Since y is sorted, the first p− coordinates in negative zone
must be i and all subsequent coordinates are of value at least (i + 1). This gives us

∥y−∥1 ≥ i · (p−) + (i + 1) · (m/2 − p−) = im/2 + m/2 − p− . (5)

Let l ≜ u⊺ · y + dδ. By hypothesis, l ≥ 0. Then using (4) and (5) together, we observe that

0 ≤ l = u⊺ · y + dδ = ∥y+∥1 − ∥y−∥1 + dδ

0 ≤ iδ + im/2 − δ − m/2 + p+ − (im/2 + m/2 − p−) + dδ

= (i + d)δ − δ − m + p+ + p−

≤ 2dδ − n + p+ + p− (since i ≤ d and n = m + δ)
n − 2dδ ≤ p+ + p− .

Recall that total frequency of the value i in y is p+ + p− ≥ n − 2dδ. This proves that y is a
(2dδ)-min-entropy point; finishing the proof. (We note that the calculations in Equation (4)
and Equation (5) are technically for i ∈ [d − 1]. For the corner cases of i = 0 or i = d, the
same logic will work and in fact with a better lower bound on frequency of i in y.) ◀

If for a set of points, each point lies on one side of a hyperplane, then all the points in
their convex-span also lie on that side. We prove this lemma below.

▶ Lemma 3.3 (Halfspace is convex). Let V = {v1, v2, . . . , vk} ⊆ Rn be a set of k vectors.
Suppose for some (a, b) ∈ Rn × R and for each i ∈ [k], a⊺ · vi + b ≥ 0. Then, for any
v ∈ CS(V ), a⊺ · v + b ≥ 0.

Proof. This follows because v is a convex combination of vectors in V . Let v = α1 · v1 +
. . . + αk · vk, where

∑k
i=1 αi = 1 and αi ∈ R≥0 for each i ∈ [k]. Thus,
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a⊺ · v + b = a⊺ ·

(
k∑

i=1
αi · vi

)
+ b

=
(

k∑
i=1

αi · a⊺ · vi

)
+

k∑
i=1

αi · b =
k∑

i=1
αi · (a⊺ · vi + b) ≥ 0.

In the second step, we use
∑k

i=1 αi = 1; while in the last step we use the hypothesis and
αi ≥ 0 for each i ∈ [k]. ◀

We are now ready to prove our structure theorem, which is restated below.

▶ Theorem 1.6 (Polytope entropy Theorem). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy set,
then CS(V ) ∩ Zn is a (2dδ)-min-entropy set.

Proof. In Lemma 3.1, we showed that every point v ∈ V belongs to the halfspace u⊺ ·v+dδ ≥
0. In fact, we proved it for every permutation σ ∈ Sn of u. Let y be any integral-point in
CS(V ). Thus by Lemma 3.3, (σ ◦ u)⊺ · y + dδ ≥ 0, for every σ ∈ Sn.

Let π ∈ Sn be the permutation which sorts y, i.e. yπ(1) ≤ yπ(2) ≤ . . . ≤ yπ(n). These
are integers in {0, . . . , d} due to convexity. Since the hyperplane cover holds for every
permutation, in particular it holds for π−1 ∈ Sn also, i.e. (π−1 ◦ u)⊺ · y + dδ ≥ 0. Thus,

(π−1 ◦ u)⊺ · y + dδ = u⊺ · (π ◦ y) + dδ ≥ 0 .

Now by Lemma 3.2, as π ◦ y is sorted, we deduce that π ◦ y is a (2dδ)-min-entropy vector.
Since min-entropy of a vector does not change on permuting it, we deduce that y is also a
(2dδ)-min-entropy point. ◀

▶ Remark. Note that Theorem 1.6 is fairly tight, i.e. a blow-up in min-entropy of internal
integral points by a factor of d is inevitable. To observe this, consider V = {σ ◦ (d, 0, . . . , 0) |
σ ∈ Sn}, with min-entropy δ = 1. It is easy to see that the integral vector v =

∑d
i=1 ei is

in CS(V ), where ei is the standard unit vector with a single 1 in position i and rest all 0.
Thus, v is a vector with 1 in first d coordinates and remaining all 0, and it has min-entropy
exactly d, for d ≤ n/2. Therefore, CS(V ) ∩ Zn is of min-entropy at least dδ. However, in
this work we are concerned with d = O(1), so even 2dδ blowup is fine.

4 Factor sparsity bounds: Proof of Theorems 1.3 & 1.5

We refer the reader to Appendix A for some basic observations that will be used for the
results in this section.

4.1 Polytope bounds
Using a simple counting argument below, we bound the total number of points in a given
δ-min-entropy set of integral points.

▶ Lemma 4.1 (min-entropy sparsity upper bound). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy
set. Then, |V | ≤

(
n
δ

)
· (d + 1)δ+1.

Proof. Any v ∈ V has min-entropy ≤ δ and thus has atleast n − δ coordinates that are
equal. To specify v, one needs to specify the indices of these repeated coordinates (≤

(
n
δ

)
possibilities) and specify a total of δ + 1 values for all the coordinates of v (d + 1 possibilities
for each). Hence, we deduce that |V | ≤

(
n
δ

)
· (d + 1)δ+1. ◀
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We now show that a symmetric set of integral points is of somewhat low min-entropy.

▶ Lemma 4.2 (symmetry ⇒ low min-entropy). Let V ⊆ {0, 1, . . . , d}n be any symmetric set.
Then V is a δ-min-entropy set, for some δ < 2d · log |V |.

Proof. Consider the smallest possible δ, for which V can be a δ-min-entropy set. By
pigeonhole principle, for any point in V , there exists a coordinate-value with frequency
≥ n/(d + 1). Therefore,

δ ≤ n − n

d + 1 = n

(
1 − 1

d + 1

)
. (6)

Since δ is chosen to be the minimum possible, a non-empty V contains a vector v having
some integral value with maximum-frequency exactly n − δ. Since V is symmetric, it must
also contain all the distinct Sn-permutations of this vector v, which are at least

(
n
δ

)
many.

This implies that |V | ≥
(

n
δ

)
and further using Lemma A.3, we get that |V | ≥

(
n
δ

)δ. Then,

log |V | ≥ δ · log
(n

δ

)
≥ δ · log

 n

n
(

1 − 1
d+1

)
 [Using (6)]

= δ · log
(

1 + 1
d

)
> δ ·

(
1
d

− 1
2d2

)
[Using Lemma A.3]

≥ δ

2d
[As d ≥ 1] .

This proves that δ < 2d · log |V |. ◀

▶ Remark. We note that if we are promised δ ≤ n/2, then in the proof of Lemma 4.2, we get
|V | ≥

(
n
δ

)
≥ 2δ which implies δ ≤ log |V |. This will lead to an improved bound of |V |O(d log d)

in Theorem 4.4. In general however, δ can be higher than n/2. Consider for example the set
of all Sn-permutations of the string 0n/3 · 1n/3 · 2n/3, which has δ = n − n/3 = 2n/3.

We now show that convex span of a low min-entropy set has low number of integral
points.

▶ Theorem 4.3 (Low min-entropy polytope count). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy
set. Then, |CS(V ) ∩ Zn| ≤

(
n
δ

)2d · (d + 1)2dδ+1.

Proof. Theorem 1.6 proves that CS(V )∩Zn is a (2dδ)-min-entropy set. Note that CS(V )∩Zn

is also a subset of {0, . . . , d}n, since V is. Then by Lemma 4.1, |CS(V ) ∩ Zn| ≤
(

n
2dδ

)
·

(d + 1)2dδ+1. The conclusion then follows from Lemma A.3 by observing
(

n
2dδ

)
≤
(

n
δ

)2d. ◀

Using the counting arguments above, we now show that the gap between number of
vertices and total number of integral points in a symmetric polytope, is low.

▶ Theorem 4.4 (Symmetric polytope count). Let V ⊆ {0, 1, . . . , d}n be the vertices of a
symmetric polytope P . Then, |P ∩ Zn| ≤ |V |O(d2 log d)).

Proof. Consider the smallest possible δ, for which V can be a δ-min-entropy set. Since P is
a symmetric polytope, its vertex set V is also symmetric by Lemma A.2. By Lemma 4.2,
the min-entropy of V is at most δ ≜ O(d · log |V |). Then by Theorem 4.3, |CS(V ) ∩ Zn| ≤(

n
δ

)2d · (d + 1)2dδ+1. Observe that (d + 1)2dδ+1 ≤ dO(d2 log |V |) = |V |O(d2 log d). In Lemma 4.2,
we also proved that |V | ≥

(
n
δ

)
, since V is symmetric. Thus,

(
n
δ

)2d ≤ |V |2d and we get the
desired conclusion. ◀
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▶ Remark 4.5. We also prove that a symmetric polytope formed by taking convex hull of
a symmetric subset E of {0, 1, . . . , d}n must have many vertices (corner points), at least
|E|Ω(1/(d2 log d))-many, to be precise. We get this incompressibility result by substituting
P = CS(E) in Theorem 4.4 and observing that E ⊆ P ∩ Zn.

4.2 Factor-sparsity bounds
We start by proving the sparsity bound for a symmetric factor g of some sparse polynomial
f , which may itself not be symmetric. To get a poly(s) sparsity bound, we only require
individual degree of g to be constant, while f may have arbitrary individual degree.

▶ Theorem 4.6 (Symmetric factor sparsity bound). Let f ∈ F[x1, . . . , xn] be an s-sparse
polynomial. Let g be any symmetric factor of f , with individual degree at most d. Then, g

has sparsity at most sO(d2 log d).

Proof. Let Pg be the Newton polytope of g and Vg be its vertex set. Since g is symmetric,
Pg is a symmetric polytope. Now invoke Theorem 4.4 with P = Pg to note that |Pg ∩
Zn| ≤ |Vg|O(d2 log d). Observe that supp(g) ⊆ Pg ∩ Zn and |Vg| ≤ |Vf | ≤ s. Therefore,
∥g∥ ≤ sO(d2 log d). ◀

▶ Remark. In Theorem 4.6 (resp. Theorem 4.4), we do not require the whole of g (resp. P )
to be symmetric, rather we only need its vertex set Vg (resp. V ) to be symmetric, which is a
much weaker requirement. Similarly, as will be clear below, we don’t need f to be symmetric
in Theorem 1.3 but only Vf to be symmetric. In these cases, we will not require use of
Lemma A.2.

We will be needing the following observation for our main proofs below.

▶ Observation 4.7. Let f, g, h ∈ F[x1, . . . , xn] be polynomials such that f = g · h. Let Pf be
the Newton polytope of f . Then, ∥g∥ ≤ |Pf ∩ Zn|.

Proof. By Minkowski sum property, we have that Pf = Pg + Ph. For every u ∈ supp(g),
consider a fixed point v ∈ supp(h). Observe that u + v ∈ Pf , since u ∈ Pg and v ∈ Ph.
Moreover, since the support vectors are integral, u + v ∈ Pf ∩ Zn. In other words, Pf ∩ Zn

contains a translated copy of supp(g). This means that ∥g∥ ≤ |Pf ∩ Zn|. ◀

We have sufficient tools now to prove our main theorems below.

▶ Theorem 1.3 (Symmetric sparsity bound). Let f ∈ F[x1, . . . , xn] be an s-sparse, symmetric
polynomial with constant individual degree d, over any field F. Then, every factor of f has
its sparsity bounded by poly(s).

Proof. Since f is symmetric, its Newton polytope Pf will also be symmetric. Let Vf be
the vertex set of Pf . Then, invoke Theorem 4.4 with P = Pf to deduce that |Pf ∩ Zn| ≤
|Vf |O(d2 log d). The conclusion then follows from Observation 4.7 and |Vf | ≤ s. ◀

We note that Theorem 1.3 does not follow from Theorem 4.6 as a symmetric polynomial
f may not have symmetric factors. For example consider symmetric f = x3 + x2y2 + xy + y3

which factorizes as (x2 + y)(x + y2). Each factor considered individually, is not symmetric.
We also note that factors of a low min-entropy polynomial might have high min-entropy. But
we still get a nice sparsity bound for them below.

▶ Theorem 1.5 (Factors of low min-entropy polynomials). Let f ∈ F[x1, . . . , xn] be a δ-min-
entropy polynomial with individual degree d over any field F, such that d, δ are constants.
Then, every factor of f has its sparsity bounded by poly(n).
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Proof. Let Pf be the Newton polytope of f and Vf be its vertex set. Since f is of δ-min-
entropy, so is Vf , as Vf ⊆ supp(f). Then by Theorem 4.3, we deduce that |Pf ∩ Zn| ≤(

n
δ

)2d · (d + 1)2dδ+1 ≤ (nd)O(dδ). The conclusion then follows from Observation 4.7. ◀

▶ Remark. We note that the example in Claim 4.4 of [2] is a non-symmetric polynomial with
its vertices having exactly (n/2)-min-entropy such that its Newton polytope has at least
nΩ(log n)-many integral points. Therefore for high-entropy polynomials, a new technique is
required which goes beyond counting number of internal points in the Newton polytope.

4.3 Tightness of sparsity bounds
We give two examples below where factors of a sparse polynomial have significantly high
sparsity, unless the individual degree is bounded.

▶ Example 4.8 ([40]). Consider the following polynomial f with individual degree d, which
factorizes as f = gh, where

f =
n∏

i=1
(xd

i − 1) , g =
n∏

i=1
(1 + xi + . . . + xd−1

i ) , h =
n∏

i=1
(xi − 1) .

Observe that ∥f∥ = 2n, while ∥g∥ = dn. If we let s ≜ ∥f∥, then ∥g∥ = slog d. Over fields
of characteristic 0, this is an example which exhibits highest known blowup in sparsity.
Moreover, it also shows that slog d is a lower bound on factor-sparsity. Note that f is a
symmetric polynomial and Theorem 1.3 shows that ∥g∥ ≤ sO(d2 log d).

▶ Example 4.9 ([2]). Over finite fields we have the following polynomial which has a higher
exponential blowup in factor-sparsity. Consider the following polynomial f ∈ Fp[x1, . . . , xn]
with individual degree p, for some prime p and let 0 < d < p. We have f = gh, where

f = xp
1 + xp

2 + . . . + xp
n = (x1 + x2 + . . . + xn)p ,

g = (x1 + x2 + . . . + xn)d , h = (x1 + x2 + . . . + xn)p−d .

Observe that ∥f∥ = n, while ∥g∥ =
(

n+d−1
d

)
≈ nd. If we let s ≜ ∥f∥, then ∥g∥ ≈ sd. The

factor-sparsity bounds in this work hold for any field F, finite or otherwise. Moreover, f is also
symmetric and falls under the purview of Theorem 1.3, which shows that ∥g∥ ≤ sO(d2 log d).
Hence, this example shows that in Theorem 1.3, we cannot do better than sd.

Note that this f is also a low min-entropy polynomial, in fact with δ = 1 as all the
exponent vectors in supp(f) have n − 1 coordinates having the same value 0. Thus, we can
use Theorem 1.5 for this f to get a factor-sparsity bound of (np)O(p) which is really close to
the actual sparsity nd.

5 Factoring algorithms: Proof of Theorems 1.2 & 1.4

A nice feature of the results in [2] is that once you prove a nice factor-sparsity bound, they
also show how to get a deterministic factoring algorithm for sparse polynomials which runs
in time polynomial in the sparsity bound proven. We restate this as Lemma 5.1 below.

▶ Lemma 5.1 (Theorem 5.8 in [2]). Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial with
individual degrees at most d. Let ξ(n, d, s) be the upper bound on sparsity for every factor of
f . Then given f , there is a deterministic algorithm that computes complete factorization of
f in (n · ξ(n, d2, sd))O(d2) · poly(cF(d2)) field operations.



P. Bisht and N. Saxena 9:15

Here cF(d) is the best known time complexity for factoring a univariate polynomial of degree
d over the field F. For F = Q, cF(d) ≤ poly(d, t) where t is the maximum bit-complexity of
the coefficients of f [23]. For a finite field F = Fpℓ , cF(d) ≤ poly(ℓ ·p, d) [1, 4]. In other words,
the above theorem shows a deterministic reduction from multivariate to univariate factoring
over any field F. In [2], they showed that ξ(n, d, s) ≤ sO(d2 log n) and then used Lemma 5.1
to get a factoring algorithm of spoly(d) log n time complexity, which is quasi-polynomial in
the bounded individual degree setting. In this work, we deal with symmetric and constant-
min-entropy input polynomials, for which we show that ξ(n, d, s) ≤ (ns)poly(d). Thus, we
can use Lemma 5.1 to get polynomial time factoring algorithms in the bounded individual
degree setting. The finer time complexities are discussed in the proofs of Theorem 1.2 and
Theorem 1.4 below. Also, note that ξ(n, d, s) is a lower bound on time complexity for sparse
factoring algorithms as we output each factor as an explicit list of monomials.

▶ Theorem 1.2 (Symmetric factoring algorithm). Let f ∈ Q[x1, . . . , xn] be an s-sparse,
symmetric polynomial with constant individual degree d. Let t be the maximum bit-complexity
of the coefficients of f . Then, there is a deterministic algorithm that computes the complete
factorization of f in at most poly(s, n, t)-time.

Proof. Let f ∈ F[x1, . . . , xn] be an s-sparse, symmetric polynomial with individual degree
d. In Theorem 1.3, we show that ξ(n, d, s) ≤ sO(d2 log d). Plugging this value in Lemma 5.1,
we get a deterministic factoring algorithm for f . The time complexity T (n, s, d) for this
algorithm is:

T (n, s, d) = (n · ξ(n, d2, sd))O(d2) · poly(cF(d2))

=
(

n · sd·O(d4 log d2)
)O(d2)

· poly(cF(d2))

= sO(d7 log d) · nO(d2) · poly(cF(d2)).

This time complexity is poly(s, n, t) over the field of rationals Q, when d is a constant. ◀

▶ Theorem 1.4 (Low min-entropy factoring algorithm). Let f ∈ Q[x1, . . . , xn] be a δ-min-
entropy polynomial with individual degree d, for some constants δ, d. Let t be the maximum
bit-complexity of the coefficients of f . Then, there is a deterministic algorithm that computes
the complete factorization of f in at most poly(n, t)-time.

Proof. Let f ∈ F[x1, . . . , xn] be a δ-min-entropy polynomial with individual degree d. In
Theorem 1.3, we show that ξ(n, d, s) ≤ (nd)O(dδ). Plugging this value in Lemma 5.1, we get
a deterministic factoring algorithm for f . The time complexity T (n, s, d) for this algorithm
is:

T (n, s, d) = (n · ξ(n, d2, sd))O(d2) · poly(cF(d2))

=
(

n · (nd2)O(d2δ)
)O(d2)

· poly(cF(d2))

= (nd)O(d4δ) · poly(cF(d2)).

This time complexity is poly(n, t) over the field of rationals Q, when d, δ are constants. ◀
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6 Future directions

In this work, we show a positive evidence for resolving Question 1.1 by solving it for symmetric
and constant min-entropy polynomials with bounded individual degree. As discussed, the
constant individual degree restriction here is necessary for sparse factorization (Examples
4.8, 4.9). We leave it as an open question to study factors of sparse polynomials with high
min-entropy. For example, can one show an (snd)poly(d) factor-sparsity bound for s-sparse,
(log n)-min-entropy polynomial of individual degree d?
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A Preliminary observations for Section 4

We start by proving that a symmetric polynomial will have a symmetric Newton polytope.

▶ Lemma A.1 (Symmetric polynomials ⇒ symmetric polytopes). Let f ∈ F[x1, . . . , xn] be a
symmetric-support polynomial. Then the Newton polytope Pf of f is also symmetric.

Proof. Let supp(f) = {v1, . . . , vk}. Let v ∈ Pf be an arbitrary point. We need to show that
σ ◦ v ∈ Pf , for every σ ∈ Sn. Since Pf = CS(supp(f)), we can express v as:

v =
k∑

i=1
αi · vi.

Then for an arbitrary σ ∈ Sn, observe that:

σ ◦ v =
k∑

i=1
αi · σ ◦ vi.

Now, since f is a symmetric-support polynomial, σ ◦ vi is also in supp(f), for each i ∈ [k].
The above equation then implies that σ ◦ v ∈ CS(supp(f)), which means that σ ◦ v ∈ Pf . ◀

Next, we observe that a point is a vertex in a symmetric polytope P if and only if all its
Sn permutations are also vertices in P .

▶ Lemma A.2 (Vertices of symmetric polytope). Let P be a symmetric Newton polytope with
V (P ) being its vertex set. Then, for σ ∈ Sn: v ∈ V (P ) if and only if σ ◦ v ∈ V (P ).

Proof. (⇒) Suppose V (P ) =: {v1, . . . , vk}. Let v ∈ V (P ). Consider any permutation
σ ∈ Sn. Since P is a symmetric polytope, we at least know that σ ◦ v ∈ P . For the sake of
contradiction, suppose σ ◦ v /∈ V (P ). Thus, it is an internal point which can be expressed as
a nontrivial convex combination of vertices. There exist, for i ∈ [k], 0 ≤ αi < 1,

∑k
i=1 αi = 1

such that:

σ ◦ v = α1 · v1 + . . . + αk · vk

σ−1 ◦ (σ ◦ v) = σ−1 ◦ (α1 · v1 + . . . + αk · vk)
v = α1 · σ−1 ◦ v1 + . . . + αk · σ−1 ◦ vk

Observe that σ−1 ∈ Sn and since P is symmetric σ−1 ◦ vi ∈ P for all i ∈ [k]. This means, v
is a nontrivial convex combination of other points in P , which contradicts the fact that v is
a vertex (Section 2). Therefore, σ ◦ v must also be a vertex.
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(⇐) Now we wish to prove that all permutations of a non-vertex point must also be
non-vertices. Let v /∈ V (P ). Then, for any σ ∈ Sn, we get a nontrivial convex combination:

v = α1 · v1 + . . . + αk · vk

σ ◦ v = α1 · σ ◦ v1 + . . . + αk · σ ◦ vk

Again, since P is symmetric σ ◦ vi ∈ P for all i ∈ [k]. Thus, σ ◦ v is a nontrivial convex
combination of other points, hence it must be a non-vertex. ◀

The lemma below mentions few standard bounds that we make use of.
▶ Lemma A.3 (Counting estimates).
1. For positive integers a, b with a ≥ b, (a/b)b ≤

(
a
b

)
.

2. For positive integers a, b, c with a ≥ bc,
(

a
bc

)
≤
(

a
c

)b.
3. For positive real x, log(1 + x) > ln(1 + x) > x − x2

2 .

Proof. For (1), see that
(

a
b

)
= a(a−1)···(a−b+1)

b(b−1)···1 ≥
(

a
b

)b.
For (2), we make use of

(
a

c+b′

)
≤
(

a
b′

)
·
(

a−b′

c

)
≤
(

a
b′

)
·
(

a
c

)
. Use this b times to get

(
a
bc

)
≤
(

a
c

)b.
For (3), observe that derivative of f is positive for x > 0, where f = ln(1 + x) − (x − x2

2 ),
and for x = 0, f(0) = 0. ◀

B Algebraic computational models

Below, we define various algebraic models for computation of a polynomial. For details, we
refer the reader to the excellent survey of [32].

An algebraic circuit is a directed acyclic graph where computation is done bottom-up,
with input leaves at the bottom and a single output node at top. The leaves are labeled
with variables or field constants while rest of the nodes are either addition or multiplication
nodes. The directed edges u → v are labeled with field constants, which get multiplied to
the polynomial computed at node u before feeding it to node v. The in-degree of a node
is called its fan-in and out-degree is called fan-out. Size of the circuit is simply size of the
directed graph. Depth of the circuit is length of the longest path from a leaf to the output
node. Degree of the circuit is maximum degree of a polynomial computed at any node in the
circuit.

A size s depth-2 ΣΠ circuit computes a sum of s-many monomials. Thus, depth-2 circuits
compute the class of sparse polynomials. The much more general class of poly(n)-sized and
poly(n) degree algebraic circuits is called VP, which is considered the algebraic analog of
complexity class P. The class VNP is considered the algebraic analog of complexity class NP.
It is the class of polynomials which can be expressed as an exponential sum of a projection
of a VP circuit family.

An algebraic circuit where fan-out of every node is one is called an algebraic formula.
The class of polynomial sized formulas is called VF.

An algebraic branching program (ABP) is defined using a layered directed graph with a
unique source and sink vertex. Each edge is directed from one layer to the next and has a
linear polynomial as its weight. The weight of a path is product of edge weights along the
path. The polynomial computed by the ABP is then simply the sum of all weighted paths
from source to sink. The length of an ABP is the length of the longest path from source to
sink and width of an ABP is the maximum possible number of vertices in a layer. The size of
ABP is the product of its length and width. VBP is the class of all polynomial sized ABPs.
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