
Expander Decomposition with Fewer Inter-Cluster
Edges Using a Spectral Cut Player
Daniel Agassy
Tel Aviv University, Israel

Dani Dorfman
Tel Aviv University, Israel

Haim Kaplan
Tel Aviv University, Israel

Abstract
A (ϕ, ϵ)-expander decomposition of a graph G (with n vertices and m edges) is a partition of V
into clusters V1, . . . , Vk with conductance Φ(G[Vi]) ≥ ϕ, such that there are at most ϵm inter-cluster
edges. Such a decomposition plays a crucial role in many graph algorithms. We give a randomized
Õ(m/ϕ) time algorithm for computing a (ϕ, ϕ log2 n)-expander decomposition. This improves upon
the (ϕ, ϕ log3 n)-expander decomposition also obtained in Õ(m/ϕ) time by [Saranurak and Wang,
SODA 2019] (SW) and brings the number of inter-cluster edges within logarithmic factor of optimal.

One crucial component of SW’s algorithm is a non-stop version of the cut-matching game of
[Khandekar, Rao, Vazirani, JACM 2009] (KRV): The cut player does not stop when it gets from the
matching player an unbalanced sparse cut, but continues to play on a trimmed part of the large
side. The crux of our improvement is the design of a non-stop version of the cleverer cut player
of [Orecchia, Schulman, Vazirani, Vishnoi, STOC 2008] (OSVV). The cut player of OSSV uses a
more sophisticated random walk, a subtle potential function, and spectral arguments. Designing
and analysing a non-stop version of this game was an explicit open question asked by SW.
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1 Introduction

The conductance of a cut (S, V \ S) is ΦG(S, V \ S) = |E(S,V \S)|
min(vol(S),vol(V \S)) , where vol(S) is

the sum of the degrees of the vertices of S. The conductance of a graph G is the smallest
conductance of a cut in G.

A (ϕ, ϵ)-expander decomposition of a graph G is a partition of the vertices of G into clusters
V1, . . . , Vk with conductance Φ(G[Vi]) ≥ ϕ such that there are at most ϵm inter-cluster edges,
where ϕ, ϵ ≥ 0. We consider the problem of computing in almost linear time (Õ(m) time)
a (ϕ, ϵ)-expander decomposition for a given graph G and ϕ > 0, while minimizing ϵ as a
function of ϕ. It is known that a (ϕ, ϵ)-expander decomposition, with ϵ = O(ϕ logn), always
exists and that ϵ = Θ(ϕ logn) is optimal [23, 2].

Expander decomposition algorithms have been used in many cutting edge results, such
as directed/undirected Laplacian solvers [27, 11], graph sparsification [9, 10], distributed
algorithms [6], and maximum flow algorithms [15]. Expander decomposition was also used [10]
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9:2 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

(in the deterministic case) in order to break the O (
√
n) dynamic connectivity bound and

achieve an improved running time of O(no(1)) per operation. It was also used in the recent
breakthrough result by Chen et al. [8], who showed algorithms for maximum flow and
minimum cost flow in almost linear time.

Given an f(n)-approximation algorithm for the problem of finding a minimum conductance
cut, one can get a (ϕ,O(f(n) · ϕ logn))-expander decomposition algorithm by recursively
computing approximate cuts (and thus splitting V ) until all components are certified as
expanders. In particular, using an exact minimum conductance cut algorithm ensures the
existence of an expander decomposition with ϵ = O (ϕ logn) as mentioned above. Using the
polynomial algorithms of [20, 4] which provide the best approximation ratios of O

(√
ϕ
)

and
O
(√

logn
)
, respectively, for conductance, gives polynomial time expander decomposition

algorithms with ϵ = O
(
ϕ3/2 logn

)
and ϵ = O

(
ϕ log

3
2 n
)

. However, these decomposition
algorithms might lead to a linear recursion depth, and therefore have superlinear time
complexity.

To get a near linear time algorithm using this recursive approach, one must be able to
efficiently compute low conductance cuts with additional guarantees. We get such cuts using
the cut-matching framework of [16] (abbreviated as KRV). In order to present our results in
the appropriate context we now give a brief background on the cut-matching framework.

Cut-matching. Edge-expansion is a connectivity measure related to conductance. The
edge-expansion of a cut (S, V \ S) is hG(S, V \ S) = |E(S,V \S)|

min(|S|,|V \S|) and the edge-expansion of
a graph G is the smallest edge-expansion of a cut in G.

The cut-matching game is a technique that reduces the approximation task for sparsest
cut (in terms of edge-expansion) to a polylogarithmic number of maximum flow problems.
The resulting approximation algorithm for sparsest cut is remarkably simple and robust.

The cut-matching game is played between a cut player and a matching player, as follows.
We start with an empty graph G0 on n vertices. At round t, the cut player chooses a bisection
(St, St) of the vertices (we assume n is even). In response, the matching player presents a
perfect matching Mt between the vertices of St and St and the game graph is updated to
Gt = Gt−1 ∪ Mt. Note that this graph may contain parallel edges. The game ends when
Gt is a sufficiently good edge-expander. The goal of this game is to devise a strategy for
the cut player that maximizes the ratio r(n) := ϕ/T , where T is the number of rounds and
ϕ = h(GT ) is the edge-expansion of GT . KRV showed that one can translate a cut strategy of
quality r(n) into a sparsest cut algorithm of approximation ratio 1/r(n) by applying a binary
search on a sparsity parameter ϕ until we certify that h(G) ≥ ϕ and h(G) = O(ϕ/r(n)).

KRV devised a randomized cut-player strategy that finds the bisection using a stochastic
matrix that corresponds to a random walk on all previously discovered matchings. Their walk
traverses the previous matchings in order and with probability half takes a step according to
each matching. They showed that the matrix corresponding to this random walk can actually
be embedded (as a flow matrix) into Gt with constant congestion. They terminate when the
random walk matrix is close to uniform (i.e. having constant edge-expansion), resulting in
GT for T = O

(
log2 n

)
, having constant edge-expansion.

Orecchia et al. [21] (abbreviated as OSVV) took the same approach but devised a more
sophisticated random walk and used Cheeger’s inequality [7] in order to show that GT , for
T = O

(
log2 n

)
, has Ω (logn) edge-expansion. That is, they got a ratio of r(n) = Ω

(
1

log n

)
.

Equipped with this background we now get back to expander decomposition, and focus
on the Õ(m/ϕ) time algorithm by Saranurak and Wang [23] (abbreviated as SW). Their
algorithm is randomized, follows the recursive scheme described above, and computes a
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(ϕ, ϕ log3 n)-expander decomposition in O
(

m log4 n
ϕ

)
time. Its number of inter-cluster edges

is off by a factor of O
(
log2 n

)
from optimal and off by a factor of O

(
log

3
2 n
)

from the
aforementioned best achievable polynomial time construction.

One core component of this algorithm is a variation of the cut-matching game (inspired
by Räcke et al. [22]). In this variation, the game graph Gt = (Vt, Et) may lose vertices
(i.e., Vt+1 ⊆ Vt) throughout the game and the objective of the cut player is to make VT

a near expander in GT (see Definition 9). The result of each round does not consist of
a perfect matching in Vt, but rather a subset to remove from Vt and a matching of the
remaining vertices. The game ends either with a balanced cut of low conductance, or with
an unbalanced cut of low conductance, such that the larger side is a near expander. This
allows SW to avoid recurring on the large side of the cut. Indeed, if the cut is balanced, they
run recursively on both sides, and if it is unbalanced, they use the fact that the large side is
a near expander and “trim” it by finding a large subset of this side which is an expander.
Then, they run recursively on the smaller side combined with the “trimmed” vertices. SW’s
analysis of the new cut-matching game is based on the ideas and the potential function of
KRV while carefully taking into account of the shrinkage of the game graph.

An open question, raised by SW, was whether one can adapt the technique of the cut-
matching strategy of OSVV to improve their decomposition. A major obstacle is how to
perform an OSVV-like spectral analysis when we lose vertices throughout the process and
need to bound the near-expansion of the final piece. This is challenging as the analysis of
OSVV is already somewhat more complicated than that of KRV: It uses a different lazy
random walk and a subtle potential to measure progress towards near expansion. Moreover
Cheeger’s inequality is suitable to show high expansion and the object we are targeting is a
near expander.

Our contribution. In this paper we answer this question of SW affirmatively. We present and
analyze an expander decomposition algorithm with a new cut-player inspired by OSVV. This
improves the result of SW and gives a randomized Õ(m/ϕ) time algorithm for computing an
(ϕ, ϕ log2 n)-expander decomposition (Theorem 18). This brings the number of inter-cluster
edges to be off only by O(logn) factor from the best possible.

To achieve this we overcome two main technical challenges: (1) We generalize the lazy
random walk of the cut player of OSVV and the subtle potential tracking its progress, to
the setting in which the vertex set shrinks (by ripping off of it small cuts as in SW). (2) We
show that when the generalized potential is small the remaining part of the game graph is a
near expander. This required a generalization of Cheeger’s inequality appropriate for our
purpose (see Lemma 33).

Our techniques may be applied in similar contexts. One concrete such context is the
construction of tree-cut sparsifiers. Specifically, one could try to use our technique to improve
the O

(
log4 n

)
-approximate tree-cut sparsifier construction of [22] by a factor of logn. (Note

that [22] in fact construct a tree-flow sparsifier, which is a stronger notion.)

The cut-matching framework [16] is formalized for edge-expansion rather than conductance.
Consequently, SW and others whose primary objective is conductance had to transform the
graph into a subdivision-graph in order to use this framework. The subdivision graph is
obtained by adding a new vertex (called a split-node) in the middle of each edge e, splitting
e into a path of length two. Consequently, the analysis has to translate cuts of low expansion
in the modified graph (the subdivision graph) to cuts of low conductance in the original
graph. This transformation complicates the algorithms and their analysis.

ICALP 2023



9:4 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

To avoid this transformation we revisit the seminal results of KRV and OSVV and redo
them directly for conductance. This is not trivial and requires subtle changes to the cut
players, and the matching players, and the potentials measuring progress towards a graph
with small conductance. In particular the matching player does not produce a matching
anymore but rather what we call a dG-matching, which is a graph with the same degrees
as G.

Our new cut-matching algorithm is then described using this natural reformulation of the
cut-matching framework directly for conductance, removing the complications that would
have followed from using the split graph.

We believe that our clean presentations of the cut-matching framework for conductance
would prove useful for other applications of cut-matching that require optimization for
conductance rather than expansion.

Further related work. Computing the expansion and the conductance of a graph G is NP-
hard [18, 25], and there is a long line of research on approximating these connectivity measures.
The best known polynomial algorithms for approximating the minimum conductance cut
have either O

(√
logn

)
[4, 24] or O

(√
Φ(G)

)
approximation ratios [20]. Approximation

algorithms for expansion and conductance play a crucial role in algorithms for expander
decomposition [23, 5, 10], expander hierarchies [12, 14], and tree flow sparsifiers [22].

In his thesis, Orecchia [19] elaborates on the two cut-matching strategies described in
OSVV, one based on a lazy random walk, called CNAT, and a more sophisticated one based
on the heat-kernel random walk, called CEXP. Orecchia proves (Theorem 4.1.5 of [19]) that
using CNAT or CEXP , after T = Θ(log2 n) iterations, the graph GT has expansion Ω(logn)
(and thereby conductance Ω

(
1

log n

)
, since it is regular with degrees Θ(log2 n)). Orecchia also

bounds the second largest eigenvalue of the normalized Laplacian of GT . However, Orecchia
does not show how to use cut-matching to get approximation algorithms for the conductance
of G.

In a recent paper [3] Ameranis et al. use a generalized notion of expansion, also mentioned
in [19], where we normalize the number of edges crossing the cut by a general measure
(µ) of the smaller side of the cut. They define a corresponding generalized version of the
cut-matching game, and show how to use a cut strategy for this game to get an approximation
algorithm for two generalized cut problems. They claim that one can construct a cut strategy
for this measure using ideas from [19].1

Both SW and our result can be implemented in Õ(m) time using the recent result of [17],
by replacing Bounded-Distance-Flow (Lemma 21) and the “Trimming Step” of [23] with the
algorithm of [17, Section 8]. This Õ(m) hides many log factors and requires more complicated
machinery.

The structure of this paper is as follows. Section 2 contains additional definitions. In
order to provide the appropriate context for our work, Section 3 gives an overview of the
cut-matching games in [16] and [21] and highlights the differences between them. In the full
version of this paper, we give a complete and self-contained description of these approximation
algorithms directly for conductance. A reader knowledgeable in the Cut-Matching game
can skip directly to Section 4. In Section 4 we present our new non-stop spectral cut player
and expander decomposition algorithm. Section 5 contains the analysis of our algorithm.
Due to the space constraints some of the proofs are omitted, and are available in the full
version of this paper [1].

1 The details of such a cut player do not appear in [3] or [19].
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To be consistent with common terminology we refer to a graph with conductance at least
ϕ as a ϕ-expander (rather than ϕ-conductor.) No confusion should arise since in the rest of
this paper we focus on conductance and do not use the notion of edge-expansion anymore.
In this paper we only focus on unweighted graphs, although our algorithm can be adapted to
the case of integral, polynomially bounded weights.

2 Preliminaries

We denote the transpose of a vector or a matrix x by x′. That is, if v is a column vector
then v′ is the corresponding row vector. For a vector v ∈ Rn

≥0, define
√
v to be vector whose

coordinates are the square roots of those of v. Given A ∈ Rn×n, we denote by A(i, j) the
element at the i’th row and j’th column of A. We denote by A(i, ), A(, i) the i’th row and
column of A, respectively. We define both A(i, ) and A(, i) as column vectors. We use the
abbreviation A(i) := A(i, ) only with respect to the rows of A. Given a vector v ∈ Rn, we
denote its i’th element by v(i). For disjoint A,B ⊆ V , we denote by EG(A,B) the set of
edges connecting A and B. We sometimes omit the subscript when the graph is clear from
the context. If A = V \B, then we call (A,B) a cut.

▶ Fact 1. Let X,Y ∈ Rn×n,m ∈ N, then Tr(XY ) = Tr(Y X).

▶ Fact 2. Let X,Y ∈ Rn×n be symmetric matrices and let k ∈ N. Then

Tr
(

(XYX)2k
)

≤ Tr
(
X2k

Y 2k

X2k
)
.

▶ Definition 3 (dG,volG(S)). Given a graph G, the vector dG ∈ Rn is defined as dG(v) =
degG(v). To simplify the notation, we denote d := dG whenever the graph G is clear from
the context. For S ⊆ V , we denote by volG(S) :=

∑
v∈S dG(v) the volume of S.

▶ Definition 4 (G{A}). Let G = (V,E) be a graph, and let A ⊆ V be a set of vertices. We
define the graph G{A} = (V ′, E′) as the graph induced by A with self-loops added to preserve
the degrees: V ′ = A,E′ = {{u, v} ∈ E : u, v ∈ A} ∪ {{u, u} : u ∈ A, v ∈ V \A, {u, v} ∈ E}.

▶ Definition 5 (d-Matching). Given a vector d ∈ Nn and a collection of pairs M =
{(ui, vi)}m

i=1. We say that M is a d-matching if the graph defined by M (i.e., the graph
whose edges are M) satisfies dM (v) = d(v), for every v.

▶ Definition 6 (dG-stochastic). A matrix F ∈ Rn×n is dG-stochastic with respect to a graph
G if the following two conditions hold: (1) F · 1n = dG and (2) 1′

n · F = d′
G.

▶ Definition 7 (Laplacian, Normalized Laplacian). Let A ∈ Rn×n be a symmetric matrix
and let d = A · 1n, D = diag(d). The Laplacian of A is defined as L(A) = D − A. The
normalized-Laplacian of A is defined as N (A) = D− 1

2 L(A)D− 1
2 = I − D− 1

2AD− 1
2 . The

(normalized) Laplacian of an undirected graph is defined analogously using its adjacency
matrix.

▶ Definition 8 (Conductance). Let G = (V,E) and S ⊂ V , S ̸= ∅. The conductance of the
cut (S, V \ S), denoted by ΦG(S, V \ S), is

ΦG(S, V \ S) = |E(S, V \ S)|
min(vol(S),vol(V \ S)) .

The conductance of G is defined to be Φ(G) = minS⊆V ΦG(S, V \ S).

ICALP 2023



9:6 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

▶ Definition 9 (Expander, Near-Expander). Let G = (V,E). We say that G is a ϕ-expander
if Φ(G) ≥ ϕ. Let A ⊆ V . We say that A is a near ϕ-expander in G if

min
S⊆A

|E(S, V \ S)|
min(vol(S),vol(A \ S)) ≥ ϕ.

That is, a near expander is allowed to use cut edges that go outside of A. Note that the
above definition applies to both directed and undirected graphs.

▶ Definition 10 (Embedding). Let G = (V,E) be an undirected graph. Let F ∈ RV ×V
≥0 be a

matrix (not necessarily symmetric). We say that F is embeddable in G with congestion c, if
there exists a multi-commodity flow f in G, with |V | commodities, one for each vertex (vertex
v is the source of its commodity), such that, simultaneously for each (u, v) ∈ V × V , f routes
F (u, v) units of u’s commodity from u to v, and the total flow on each edge is at most c. 2

If F is the weighted adjacency matrix of a graph H on the same vertex set V , we say
that H is embeddable in G with congestion c if F is embeddable in G with congestion c.

▶ Lemma 11. Let G,H be two graphs on the same vertex set V . Let A ⊆ V . Let α > 0 be a
constant such that for each v ∈ V , dG(v) = α · dH(v). Assume that H is embeddable in G

with congestion c, and that A is a near ϕ-expander in H. Then, A is a near ϕ
cα -expander

in G.

▶ Corollary 12. Let G,H be two graphs on the same vertex set V . Let α > 0 be a constant
such that for each v ∈ V , dG(v) = α · dH(v). Assume that H is embeddable in G with
congestion c, and that H is a ϕ-expander. Then, G is a ϕ

cα -expander.

Proof. This follows from Lemma 11 by choosing A = V . ◀

3 Approximating conductance via cut-matching

In preparation for our expander decomposition algorithm we give a high level overview of the
conductance approximation algorithms of [16] and [21]. [16] and [21] described their results
for edge-expansion rather than conductance. In the full version of this paper, we give a
complete description and analysis of these algorithms for conductance. This translation from
edge-expansion to conductance is not trivial as both the cut player, the matching player,
and the analysis have to be carefully modified to take the degrees into account. Here we give
a high level overview of the key components of these algorithms and the differences between
them so one can better absorb our main algorithm in Section 4.2.

The cut-matching game of [16] (in the conductance setting) works as follows.

The Cut-Matching game for conductance, with parameters T and a degree vector d:
The game is played on a series of graphs Gi. Initially, G0 = ∅.
In iteration t, the cut player produces two multisets of size m, Lt, Rt ⊆ V , such that
each v ∈ V appears in Lt ∪Rt exactly d(v) times.
The matching player responds with a d-matching Mt that only matches vertices in
Lt to vertices in Rt.
We set Gt+1 = Gt ∪Mt.
The game ends at iteration T , and the quality of the game is r := Φ(GT ). Note that
the volume of Gt increases from one iteration to the next.

2 This definition requires to route F (u, v) = F (v, u) both from u to v and from v to u if F is symmetric.
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Given a strategy for the cut player of quality r, one can create a 1
r approximation

algorithm for the conductance of a given graph G. To this end, the matching player has to
provide matchings that can be embedded in G.

The difference between the results of [16] and [21] is mainly in the cut player. They
both run the game for T = Θ(log2 n) iterations but [16]’s cut player achieves quality of
r = Ω

(
1

log2 n

)
whereas [21]’s achieves quality of r = Ω

(
1

log n

)
. Notice that the cut player

produces the stated expansion result in GT regardless of the matchings given by the matching
player.

3.1 KRV’s Cut-Matching Game for Conductance

The cut player implicitly maintains a dG-stochastic flow matrix (i.e., representing flow
demands) Ft ∈ Rn×n, and the graph Gt which is the union of the matchings that it obtained
so far from the matching player (t is the index of the round). The flow Ft and the graph
Gt have two crucial properties. First, we can embed Ft in Gt with O(1) congestion (See
Definition 10). Second, after T = Θ(log2 n) rounds, with high probability, FT will have
constant conductance.3 Since the degrees in GT are factor of O(log2 n) larger than the
degrees in FT (when we think of FT as a weighted graph) then it follows by Corollary 12 that
GT is Ω(1/ log2 n) expander. Note that the cut player is unrelated to the input graph G in
which we would like to approximate the conductance. Its goal is to produce the expander GT .

At the beginning, F0 = D = diag(d), and G0 is the empty graph on V = [n]. The cut
player updates Ft as follows. It draws a random unit vector r ∈ Rn orthogonal to

√
d and

computes the projections ui = 1
d(i) ⟨D− 1

2Ft(i), r⟩.4 The cut player computes these projections
in O(m log2 n) time since the vector of all projections is u := D−1FtD

− 1
2 · r and Ft is defined

(see below) as a multiplication of Θ(log2 n) sparse matrices, each having O(m) non-zero
entries. The cut player sorts the projections as ui1 ≤ ... ≤ uin

. Consider the sequence
Q = (ui1 , ui1 , . . . , ui1 , ui2 , ui2 , . . . , ui2 , . . . , uin , . . . , uin), where each uij appears d(ij) times.
Then, |Q| = 2m. Take Lt ⊆ Q to be the multi-set containing the first m elements, and
Rt = Q \ Lt to be the multi-set containing the last m elements. Define η ∈ R such that
Lt ⊆ {ik : uik

≤ η} and Rt ⊆ {ik : uik
≥ η}. Note that a vertex can appear both in Lt and

in Rt, if uij
= η. For a vertex v ∈ V , denote by mv the number of times v appears in Lt,

and by m̄v the number of times v appears in Rt. That is, except for (maybe) one vertex, for
any v ∈ V , either mv = 0 and m̄v = d(v) or mv = d(v) and m̄v = 0.

The cut player hands out the partition Lt, Rt to the matching player who sends back a dG-
matching Mt (we think of Mt as an n×n matrix with at most m non-zero entries that encodes
the matching) between Lt and Rt. The cut player updates its flow matrix using Mt and
sets Ft+1(v) = 1

2Ft(v)+
∑

(v,u)∈Mt

1
2d(u)Ft(u) (in matrix form Ft+1 = 1

2
(
I +Mt ·D−1)Ft).5

This update keeps Ft a dG-stochastic matrix for all t. The cut player also defines the graph
Gt+1 as Gt+1 = Gt ∪Mt. This completes the description of the cut player of [16] adapted
for conductance.

3 We think about Ft as a weighted graph on V = [n]. The definitions of conductance, expander and
near-expander for weighted graphs are the same as Definitions 8-9 where |E(S, V \ S)| is the sum of the
weights of the edges crossing the cut.

4 Recall that Ft(i) is a column vector.
5 Note that it is possible that some u ∈ V appears in the sum

∑
(v,u)∈Mt

1
2d(u)Ft(u) multiple times, if v

is matched to u multiple times in Mt.

ICALP 2023



9:8 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

The matching player constructs an auxiliary flow problem on G′ := G ∪ {s, t}, where s is
a new vertex which would be the source and t is a new vertex which would be the sink. We
add an arc (s, v) for each v ∈ Lt of capacity mv and we add an arc (v, t) of capacity m̄v for
each v ∈ Rt. The capacity of each edge e ∈ G is set to be c = Θ

(
1

ϕ log2 n

)
, where c is an

integer. The matching player computes a maximum flow g from s to t in this network.
If the value of g is less than m, then the matching player uses the minimum cut in G′

separating the source from the sink to find a cut in G of conductance O(ϕ log2 n). Otherwise,
it decomposes g to a set of paths, each carrying exactly one unit of flow from a vertex u ∈ Lt

to a vertex v ∈ Rt.6 Then it defines the dG-matching Mt as Mt = ((vj , uj))m
j=1, where vj

and uj are the endpoints of path j. We view Mt as a symmetric n × n matrix, such that
Mt(v, u) is the number of paths between v and u. The matching player connects the game to
the input graph G. Indeed, by solving the maximum flow problems in G it guarantees that
the expander GT is embeddable in G with congestion O(cT ) = O(1/ϕ). Since the degrees of
GT are a factor of O(log2 n) larger than the degrees of G and GT is Ω(1/ log2 n) expander,
we get that G is a Ω(ϕ)-expander (see Corollary 12). The following theorem summarizes the
properties of this algorithm.

▶ Theorem 13 ([16]’s cut-matching game for conductance). Given a graph G and a parameter
ϕ > 0, there exists a randomized algorithm, whose running time is dominated by computing
a polylogarithmic number of maximum flow problems, that either
1. Certifies that Φ(G) = Ω(ϕ) with high probability; or
2. Finds a cut (S, V \ S) in G whose conductance is ΦG(S, V \ S) = O(ϕ log2 n).

If the matching player finds a sparse cut in any iteration then we terminate with Case
(2). On the other hand, if the game continues for T = O(log2 n) rounds then since the cut
player can embed FT in GT and the matching player can embed GT in G, and since Ft is an
expander, then we get Case (1).

The running time of the cut player is O(m log4 n). The matching player solves O(log2 n)
maximum flow problems. By using the most recent maximum flow algorithm of [8], we get the
matching player to run in O

(
m1+o(1)) time. Alternatively, we can adapt the cut-matching

game, and use a version of the Bounded-Distance-Flow algorithm (which was called Unit-Flow
in [23]; see Lemma 21), to get a running time of Õ( m

ϕ ) for the matching player. We can also
get Õ(m) running time using the recent result [17].

The key part of the analysis is to show that FT is indeed an Ω(1)-expander for any choice
of dG-matchings of the matching player. To this end, we keep track of the progress of the
cut player using the potential function

ψ(t) =
∑
i∈V

∑
j∈V

1
d(i) · d(j)

(
Ft(i, j) − d(i)d(j)

2m

)2
=
∥∥∥∥D− 1

2FtD
− 1

2 − 1
2m

√
d
√
d′
∥∥∥∥2

F

where the matrix norm which we use here is the Frobenius norm (sum of the squares of
the entries). This potential represents the distance between the normalized flow matrix
F̄t = D− 1

2FtD
− 1

2 and the (normalized) uniform random walk distribution dGd
′
G/2m. Let

P = I − 1
2m

√
d
√
d′ be the projection matrix on the orthogonal complement of the span of

the vector
√
d, then we can also write this potential as

6 Note that there can be multiple flow paths between a pair of vertices u ∈ Lt and v ∈ Rt. Furthermore,
if u ∈ Lt ∩Rt then it is possible that a path starts and ends at u.
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ψ(t) =
∥∥F̄tP

∥∥2
F

= Tr
(
(F̄tP )(F̄tP )′) = Tr(F̄tP

2F̄ ′
t ) = Tr(PF̄ ′

t F̄t).

The first equality holds since Ft is d-stochastic and the last equality is due to Fact 1 (and
that P 2 = P as a projection matrix).

The crux of the proof is to show that after T rounds this potential is smaller than
1/(16m2) which implies that for every pair of vertices u and v, FT (u, v) ≥ d(v)d(u)/(4m).
From this we get a lower bound of 1/4 on the conductance of every cut.

3.2 OSVV’s Cut-Matching Game for Conductance
The cut player of [21] also maintains (implicitly) a flow matrix Ft and the union Gt of the
dG-matchings it got from the matching player. Let P = I − 1

2m

√
d
√
d′ be the projection to

the subspace orthogonal to
√
d as before (hence P 2 = P ). Let δ = Θ(logn) be a power of 2.

Here the matrix Wt = (PD− 1
2FtD

− 1
2P )δ takes the role of D− 1

2FtD
− 1

2 from the cut player
of Section 3.1.

In round t the cut player computes the projections ui = 1√
d(i)

⟨Wt(i), r⟩, and defines Lt

and Rt based on these projections as in the previous section.7 Then it gets a dG-matching
Mt between Lt and Rt from the matching player. It defines Nt = δ−1

δ D + 1
δMt and updates

the flow to be Ft+1 = Nt ·D−1FtD
−1Nt. If we think of Ft as a random walk then D−1Nt

is a lazy step that we add before and after the walk Ft to get Ft+1. It holds that Ft+1 is
dG-stochastic and moreover that for all rounds t, Ft is embeddable in Gt with congestion
4
δ = O(1/ logn). Note that here we embed Ft in Gt with smaller congestion than in Section
3.1. We can still prove, however, that FT for T = O(log2 n) is a Ω(1) expander and therefore,
GT is a Ω(1/ logn) expander.

The matching player solves the same flow problem as in Section 3.1 but with an integer
capacity value of c = Θ( 1

ϕ log n ) on the edges of G. If the value of maximum flow is less than
m then it finds a cut of conductance O(ϕ logn), and otherwise it returns the matching that it
derives from a decomposition of the flow into paths. The matching player guarantees that the
expander GT is embeddable in G with congestion O(cT ) = O(logn/ϕ). Since the degrees of
GT are larger by a factor of O(log2 n) than the degrees of G and GT is Ω(1/ logn)-expander,
we get that G is a Ω(ϕ)-expander (see Lemma 11). The following theorem summarizes the
properties of this algorithm.

▶ Theorem 14 ([21]’s cut-matching game for conductance). Given a graph G and a parameter
ϕ > 0, there exists a randomized algorithm, whose running time is dominated by computing
a polylogarithmic number of maximum flow problems, that either
1. Certifies that Φ(G) = Ω(ϕ) with high probability; or
2. Finds a cut (S, V \ S) in G whose conductance is ΦG(S, V \ S) = O(ϕ logn).

The running time of the cut player is dominated by computing the projections in
O(m log3 n) time per iteration for a total of O(m log5 n) time. The matching player solves
O(log2 n) maximum flow problems. Again, we can modify the algorithm so that its running
time is Õ( m

ϕ ) or Õ(m), similarly to the previous subsection.

7 Computing these projections takes O(m log3 n) time since Ft is a multiplication of Θ(log2 n) sparse
matrices, each with O(m) non-zero entries. Therefore Wt is a multiplication of Θ(log3 n) matrices, each
of which is either P or a sparse matrix.
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9:10 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

As in Section 3.1, the key part of the analysis is to show that FT is indeed an Ω(1)-
expander for any choice of dG-matchings of the matching player. Here we keep track of the
progress of the cut player using the potential function

ψ(t) =
∥∥∥∥(D− 1

2FtD
− 1

2 )δ − 1
2m

√
d
√
d′
∥∥∥∥2

F

.

Recall that Wt = (PD− 1
2FtD

− 1
2P )δ, so we can rewrite the potential function as

ψ(t) =
∥∥∥(D− 1

2FtD
− 1

2 )δP

∥∥∥2

F
= Tr(P (D− 1

2FtD
− 1

2 )2δP ) (4)= Tr((PD− 1
2FtD

− 1
2P )2δ) = Tr(W 2

t ) ,

where equality (4) follows since Ft is d-stochastic and the fact that P 2 = P . A careful
argument shows that after T = O(log2 n) iterations, ψ(T ) ≤ 1/n. From this we deduce that
the second smallest eigenvalue of the normalized Laplacian of FT is at least 1/2 and then by
Cheeger’s inequality [7] we get that Φ(FT ) = Ω(1).

4 Expander decomposition via spectral Cut-Matching

To put our main result in context we first show how SW [23] modified the cut-matching
game of KRV [16] for their expander decomposition algorithm.

4.1 SW’s Cut-Matching for expander decomposition
SW [23] take a recursive approach to find an expander decomposition. One can use the
cut-matching game to find a sparse cut, but if the cut is unbalanced, we want to avoid
recursing on the large side.

In order to refrain from recursing on the large side of the cut, SW changed the cut-
matching game as follows. The cut player now maintains a partition of V into a small set R
and a large set A = V \R, where initially R = ∅ and A = V . In each iteration the cut and
the matching player interact as follows.

The cut player computes two disjoint sets Al, Ar ⊆ A such that |Al| ≤ n/8 and |Ar| ≥ n/2.
The matching player returns a partition (S,A \ S) of A, which may be empty (S = ∅),
and a matching of Al \ S to a subset of Ar \ S.

The cut player computes the sets Al and Ar by projecting the rows of a flow-matrix F
that it maintains (as in KRV [16]) onto a random unit vector r, and applying a result by [22]
to generate the sets Al and Ar from the values of the projections. For the matching player,
SW use a flow-based algorithm which simultaneously gives a cut (S,A \ S) of conductance
O(ϕ log2 n) of G[A], and a matching of the vertices left in Al \ S to vertices of Ar \ S (S
may be empty when G[A] has conductance ≥ ϕ). If the matching player found a sparse cut
(S,A \ S) then the cut player updates the partition (R,A) of V by moving S from A to R.

The game terminates either when the volume of R gets larger than Ω(m/ log2 n) or after
O(log2 n) rounds. In the latter case, SW proved that the remaining set A (which is large) is
a near ϕ-expander in G (see Definition 9).

To prove that after T = Θ(log2 n) iterations, the remaining set A is a near ϕ-expander,
SW essentially followed the footsteps of KRV and used a similar potential. The argument is
more complicated since they have to take the shrinkage of A into account. SW did not use a
version of KRV suitable to conductance as we give in the full version. Therefore, they had
to modify the graph by adding a split node for each edge, essentially reducing conductance
to edge-expansion, a reduction that made their algorithm and analysis somewhat more
complicated. The following theorem summarized the properties of the cut-matching game
of [23].
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▶ Theorem 15 (Theorem 2.2 of [23]). Given a graph G = (V,E) of m edges and a parameter
0 < ϕ < 1/ log2 n,8 there exists a randomized algorithm, called “the cut-matching step”,
which takes O ((m logn)/ϕ) time and terminates in one of the following three cases:
1. We certify that G has conductance Φ(G) = Ω(ϕ) with high probability.
2. We find a cut (R,A) of G of conductance ΦG(R,A) = O(ϕ log2 n), and vol(R),vol(A)

are both Ω( m
log2 n

), i.e., we find a relatively balanced low conductance cut.
3. We find a cut (R,A) of G with ΦG(R,A) ≤ c0ϕ log2 n for some constant c0, and vol(R) ≤

m
10c0 log2 n

, and with high probability A is a near ϕ-expander in G.

SW derived an expander decomposition algorithm from this modified cut-matching game
by recursing on both sides of the cut only if Case (2) occurs. In Case (3) they find a large
subset B ⊆ A which is an expander (in what they called the trimming step), add A \B to R
and recur only on R. The main result of [23] is as follows.

▶ Theorem 16 (Theorem 1.2 of [23]). Given a graph G = (V,E) of m edges and a parameter
ϕ, there is a randomized algorithm that with high probability finds a partitioning of V into
clusters V1, . . . , Vk such that ∀i : ΦG{Vi} = Ω(ϕ) and there are at most O(ϕm log3 n) inter
cluster edges.9 The running time of the algorithm is O(m log4 n/ϕ).

4.2 Our contribution: Spectral cut player for expander decomposition
SW [23] left open the question if one can improve their expander decomposition algorithm
using tools similar to the ones that allowed OSVV [21] to improve the conductance approx-
imation algorithm of KRV [16]. We give a positive answer to this question. Specifically
we improve the cut-matching game of SW and derive the following improved version of
Theorem 15.

▶ Theorem 17. Given a graph G = (V,E) of m edges and a parameter 0 < ϕ < 1
log n ,10

there exists a randomized algorithm which takes O
(
m log5 n+ m log2 n

ϕ

)
time and must end

in one of the following three cases:
1. We certify that G has conductance Φ(G) = Ω(ϕ) with high probability.
2. We find a cut (R,A) in G of conductance ΦG(R,A) = O(ϕ logn), and vol(R),vol(A) are

both Ω( m
log n ), i.e, we find a relatively balanced low conductance cut.

3. We find a cut (R,A) with ΦG(R,A) ≤ c0ϕ logn for some constant c0, and vol(R) ≤
m

10c0 log n , and with high probability A is a near Ω(ϕ)-expander in G.

The proof of Theorem 17 is given in Section 5. Theorem 17 implies the following theorem

▶ Theorem 18. Given a graph G = (V,E) of m edges and a parameter ϕ, there is a
randomized algorithm that with high probability finds a partition of V into clusters V1, ..., Vk

such that ∀i : ΦG{Vi} = Ω(ϕ) and
∑

i |E(Vi, V \ Vi)| = O(ϕm log2 n). The running time of
the algorithm is O(m log7 n+ m log4 n

ϕ ).11

To get Theorem 17 we use the following cut player and matching player.

8 The theorem is trivial if ϕ ≥ 1
log2 n

, because any cut (A, V \A) has conductance ΦG(A, V \A) ≤ 1. We
can therefore assume that ϕ < 1

log2 n
.

9 G{Vi} is defined in Definition 4.
10 The theorem is trivial if ϕ ≥ 1

log n , because any cut (A, V \A) has conductance ΦG(A, V \A) ≤ 1. We
can therefore assume that ϕ < 1

log n .
11 Note that if ϕ ≤ 1

log3 n
, then the running time matches the running time of [23] in Theorem 16. In case

that ϕ ≥ 1
log3 n

, we get a slightly worse running time of O(m log7 n) instead of O( m log4 n
ϕ ).
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9:12 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

4.3 Cut player
Like in Section 3, we consider a d-stochastic flow matrix Ft ∈ Rn×n, and a series of graphs
Gt. F0 is initialized as F0 = D := diag(d), and G0 is initialized as the empty graph on
V = [n]. Here the cut player also maintains a low conductance cut At ⊆ V,Rt = V \ At,
such that after T = Θ(log2 n) rounds, with high probability, AT is a near expander in GT .
At the beginning, A0 = V , R0 = ∅,

Since the new cut-matching game consists of iteratively shrinking the domain At ⊆ V ,
we start by generalizing our matrices from Section 3 to this context of shrinking domain.

▶ Definition 19 (It, dt, Dt, Pt,volt). We define the following variables12

1. It ∈ Rn×n is the diagonal 0/1 matrix that have 1’s on the diagonal entries corresponding
to At.

2. dt = It · d ∈ Rn, i.e the projection of d onto At.
3. Dt = It ·D = diag(dt) ∈ Rn×n.
4. volt = volG(At).
5. Pt = It − 1

volt

√
dt

√
d′

t ∈ Rn×n.

We define the matrix Wt = (PtD
− 1

2FtD
− 1

2Pt)δ, where δ = Θ(logn) is set in Lemma 33,
that plays a crucial role in this section. This definition is similar to the definition of Wt in
Section 3.2, but with Pt instead of P . This makes us “focus” only on the remaining vertices
At, as any row/column of Wt corresponding to a vertex v ∈ Rt is zero. The matrix Wt is
used in this section to define the projections that our algorithm uses to update Ft. It is also
used in Section 5.3 to define the potential that measures how far is the remaining part of the
graph from a near expander. In particular, we show in Lemma 33 and Corollary 34 that if
W 2

T has small eigenvalues (which will be the case when the potential is small) then AT is
near-expander in GT .

Let r ∈ Rn be a random unit vector. Consider the projections ui = 1√
d(i)

⟨Wt(i), r⟩, for

i ∈ At. Note that because Pt

√
dt = 0, and Wt is symmetric:

∑
i∈At

d(i)ui =
∑
i∈At

√
d(i) ⟨Wt(i), r⟩ =

〈∑
i∈At

√
d(i)Wt(i), r

〉
=
〈
Wt

√
dt, r

〉
= 0

We use the following lemma to partition (some of) the remaining vertices into two
multisets Al

t and Ar
t .13 The lemma follows by applying Lemma 3.3 in [22] on the multiset of

the ui’s, where each ui appears with multiplicity of d(i).

▶ Lemma 20 (Lemma 3.3 in [22]). Given ui ∈ R for all i ∈ At, such that
∑

i∈At
d(i)ui = 0,

we can find in time O(|At| · log(|At|)) a multiset of source nodes Al
t ⊆ At, a multiset of target

nodes Ar
t ⊆ At, and a separation value η such that each i ∈ At appears in Al

t ∪Ar
t at most

d(i) times, and additionally:
1. η separates the sets Al

t, A
r
t , i.e., either maxi∈Al

t
ui ≤ η ≤ minj∈Ar

t
uj, or mini∈Al

t
ui ≥

η ≥ maxj∈Ar
t
uj,

2. |Ar
t | ≥ volt

2 , |Al
t| ≤ volt

8 ,
3. ∀i ∈ Al

t : (ui − η)2 ≥ 1
9u

2
i ,

4.
∑

i∈Al
t
miu

2
i ≥ 1

80
∑

i∈At
d(i)u2

i , where mi is the number of times i appears in Al
t.

12 These variables are the analogs of I, d,D,vol(G) and P (respectively) from Section 3.2 in G[At].
13 Note that this does not produce a bisection of V .
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Note that a vertex could appear both in Al
t and in Ar

t , if uij = η. The cut player sends
Al

t, A
r
t and At to the matching player.

In turn, the matching player (see Subsection 4.4) returns a cut (St, At \St) and a matching
Mt of Al

t \ St to Ar
t \ St (each vertex of Al

t is matched to a vertex of Ar
t ). We add self-loops

to Mt to preserve the degrees (that is, Mt is d-stochastic). Define Nt = δ−1
δ D + 1

δMt. The
cut player then updates Ft similarly to Section 3.2: Ft+1 = Nt · D−1FtD

−1Nt. Like in
the previous sections, we also define the graph Gt+1 as Gt+1 = Gt ∪ Mt.14. We define
At+1 = At \ St.

4.4 Matching player
The matching player receives Al

t and Ar
t and the current At. For a vertex v ∈ V , denote by

mv the number times v appears in Al
t, and by m̄v the number of times v appears in Ar

t . The
matching player solves the flow problem on G[At], specified by Lemma 21 below. This lemma
is similar to Lemma B.6 in [23] and is proved using the Bounded-Distance-Flow algorithm
(called Unit-Flow by [13, 23]). The details are provided in the full version of this paper [1].
Note that we can get running time of Õ(m) mentioned in the introduction by replacing this
subroutine is with a fair-cut computation as shown in [17, Section 8].

▶ Lemma 21. Let G = (V,E) be a graph with n vertices and m edges, let Al, Ar ⊆ V be
multisets such that |Ar| ≥ 1

2m, |A
l| ≤ 1

8m, and let 0 < ϕ < 1
log n be a parameter. For a vertex

v ∈ V , denote by mv the number times v appears in Al, and by m̄v the number of times
v appears in Ar. Assume that mv + m̄v ≤ d(v). We define the flow problem Π(G), as the
problem in which a source s is connected to each vertex v ∈ Al with an edge of capacity mv

and each vertex v ∈ Ar is connected to a sink t with an edge of capacity m̄v. Every edge of
G has the same capacity c = Θ

(
1

ϕ log n

)
, which is an integer. A feasible flow for Π(G) is a

maximum flow that saturates all the edges outgoing from s. Then, in time O(m
ϕ ), we can

find either
1. A feasible flow f for Π(G); or
2. A cut S where ΦG(S, V \ S) ≤ 7

c = O(ϕ logn), vol(V \ S) ≥ 1
3m and a feasible flow for

the problem Π(G− S), where we only consider the sub-graph G[V \ S ∪ {s, t}] (that is,
vertices v ∈ Al \S are sources of mv units, and vertices v ∈ Ar \S are sinks of m̄v units).

▶ Remark 22. It is possible that Al ⊆ S, in which case the feasible flow for Π(G − S) is
trivial (the total source mass is 0).
Let St be the cut returned by the lemma. If the lemma terminates with the first case, we
denote St = ∅. Since c is an integer, we can decompose the returned flow into a set of
paths (using e.g. dynamic trees [26]), each carrying exactly one unit of flow from a vertex
u ∈ Al

t \St to a vertex v ∈ Ar
t \St. Note that multiple paths can route flow between the same

pair of vertices. If u ∈ Al
t ∩ Ar

t then it is possible that a path starts and ends at u. Each
u ∈ Al

t \ St is the endpoint of exactly mu ≤ d(u) paths, and each v ∈ Ar
t \ St is the endpoint

of at most m̄v ≤ d(v) paths. Define the “matching”15 M̃t as M̃t = ((ui, vi))
|Al

t\St|
i=1 , where

ui and vi are the endpoints of path i. We can view M̃t as a symmetric n× n matrix, such
that M̃t(u, v) is the number of paths from u to v. We turn M̃t into a d-stochastic matrix by
increasing its diagonal entries by d− M̃t1n. Formally, we set Mt := M̃t + diag(d− M̃t1n).

14Gt+1 may have self-loops.
15 Note that this is not a matching or a d-matching, but rather a graph that connects vertices of Aℓ

t to
vertices of Ar

t , whose degrees are bounded by d.
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Notice that d − M̃t1n has only non-negative entries, so Mt also has non-negative entries.
Intuitively, we can think of Mt as the response of the matching player to the subsets Al

t and
Ar

t given by the cut player.

5 Analysis

This section is organized as follows. Subsection 5.1 presents in detail the algorithm for
Theorem 17. Subsection 5.2 shows that Ft is embeddable in Gt with congestion 4

δ and that
Gt is embeddable in G with congestion c · t. Subsection 5.3 shows that if we reach round T ,
then with high probability, AT is a near Ω(ϕ)-expander in G. Finally, in Subsection 5.4 we
prove Theorem 17.

5.1 The Algorithm
Similarly to Section 3.2, let δ = Θ(logn) be a power of 2, let T = Θ(log2 n) and c = Θ( 1

ϕ log n ).
We choose c to be an integer. The algorithm follows along the same lines as the algorithm
of SW in Section 4.1. The only modifications are the usage of our new cut player and that
the algorithm stops if vol(Rt) > m·c·ϕ

70 = Ω( m
log n ). In each round t, we implicitly update Ft

(see Section 4.3). Like SW, in order to keep the running time near linear, we use the flow
routine Bounded-Distance-Flow [13, 23] which is mentioned in Subsection 4.4. This routine
may also return a cut St ⊆ At with ΦG[A](St, At \ St) ≤ 1

c , in which case we “move” St to
Rt+1. After T rounds, FT certifies that the remaining part of AT is a near ϕ-expander.

5.2 Ft is embeddable in G

To begin the analysis of the algorithm, we first define a blocked matrix. This notion will be
useful when our matrices “operate” only on vertices of At.

▶ Definition 23. Let A ⊆ V . A matrix B ∈ Rn×n is A-blocked if B(i, j) = 0 for all i ̸= j

such that (i, j) /∈ A×A.

▶ Lemma 24. The following holds for all t:
1. Mt, Nt, Ft and Wt are symmetric.
2. Mt, Nt and Ft are d-stochastic.
3. Mt and Nt are At+1-blocked.

▶ Lemma 25. For all rounds t, Ft is embeddable in Gt with congestion 4
δ .

▶ Lemma 26. For all rounds t, Gt is embeddable in G with congestion ct.

5.3 AT is a near expander in FT

In this section we prove that after T = Θ(log2 n) rounds, with high probability, AT is a near
Ω(1)-expander in FT , which will imply that it is a near Ω(ϕ)-expander in G.

The section is organized as follows. Lemma 27 contains matrix identities and Lemma 28
specifies a spectral property that our proof requires. We then define a potential function
and lower bound the decrease in potential in Lemmas 29-32. Finally, in Lemma 33 and
Corollary 34 we use the lower bound on the potential at round T , to show that with high
probability AT is a near Ω(1)-expander in FT and a near Ω(ϕ)-expander in G.

▶ Lemma 27. The following relations hold for all t:
1. For any At-blocked d-stochastic matrix B ∈ Rn×n we have ItD

− 1
2BD− 1

2 = D− 1
2BD− 1

2 It

and Pt ·D− 1
2BD− 1

2 = D− 1
2BD− 1

2 · Pt.
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2. ItPt = Pt, I2
t = It and P 2

t = Pt.
3. PtPt+1 = Pt+1Pt = Pt+1.
4. Pt = D− 1

2 L( 1
volt

dtd
′
t)D− 1

2 (recall the Laplacian defined in Definition 7).

5. for any v ∈ Rn, it holds that v′L
(

1
volt

dtd
′
t

)
v =

∥∥∥D 1
2
t v
∥∥∥2

2
− 1

volt
⟨v, dt⟩2.

6. For any B ∈ Rn×n, Tr(ItBB
′) =

∑
i∈At

∥B(i)∥2
2.

We define the potential ψ(t) = Tr[W 2
t ] =

∑
i∈At

∥Wt(i)∥2
2, where Wt was defined as

Wt = (PtD
− 1

2FtD
− 1

2Pt)δ. This is the same potential from Section 3.2 with the new definition
of Wt. Intuitively, by projecting using Pt instead of P , the potential only “cares” about the
vertices of At. As show in Lemma 33, having small potential will certify that AT is a near
expander in Ft.

Before we bound the decrease in potential, we recall Definition 7 of a normalized Laplacian
N (A) = D− 1

2 L(A)D− 1
2 = I −D− 1

2AD− 1
2 , where A is a symmetric d-stochastic matrix.

▶ Lemma 28. For any matrix A ∈ Rn×n, Tr(A′(I−(D− 1
2NtD

− 1
2 )4δ)A) ≥ 1

3 Tr(A′N (Mt)A).

The following lemma bounds the decrease in potential. The bound takes into account
both the contribution of the matched vertices and the removal of St from At.

▶ Lemma 29. For each round t,

ψ(t) − ψ(t+ 1) ≥ 1
3

∑
{i,k}∈Mt

∥∥∥∥∥
(
Wt(i)√
d(i)

− Wt(k)√
d(k)

)∥∥∥∥∥
2

2

+
∑
j∈St

d(j)

∥∥∥∥∥Wt(j)√
d(j)

∥∥∥∥∥
2

2

Proof. To simplify the notation, we denote N̄t := D− 1
2NtD

− 1
2 and F̄t := D− 1

2FtD
− 1

2 . We
rewrite the potential in the next iteration as follows:

ψ(t+ 1) = Tr(W 2
t+1) = Tr

((
Pt+1D

− 1
2Ft+1D

− 1
2Pt+1

)2δ
)

= Tr
((

Pt+1D
− 1

2 (NtD
−1FtD

−1Nt)D− 1
2Pt+1

)2δ
)

= Tr
((

Pt+1D
− 1

2 (NtD
− 1

2D− 1
2FtD

− 1
2D− 1

2Nt)D− 1
2Pt+1

)2δ
)

= Tr
((
Pt+1N̄tF̄tN̄tPt+1

)2δ
)

(6)= Tr
((
N̄tPt+1F̄tPt+1N̄t

)2δ
)

(7)= Tr
((
N̄tPt+1PtF̄tPtPt+1N̄t

)2δ
)

= Tr
((
N̄tPt+1(PtF̄tPt)Pt+1N̄t

)2δ
)
,

where equality (6) follows from Lemma 27 (1) for Nt (which is At+1-blocked d-stochastic by
Lemma 24), and equality (7) follows from Lemma 27 (3).

By Properties (1) and (2) of Lemma 27 it holds that N̄t+1Pt+1 = Pt+1N̄t+1 =
Pt+1N̄t+1Pt+1. Therefore, the potential can be written in terms of symmetric matrices:

ψ(t+ 1) = Tr
((

(Pt+1N̄tPt+1)(PtF̄tPt)(Pt+1N̄tPt+1)
)2δ
)

≤ Tr((Pt+1N̄tPt+1)2δ(PtF̄tPt)2δ(Pt+1N̄tPt+1)2δ)
(2)= Tr((Pt+1N̄tPt+1)4δ(PtF̄tPt)2δ) = Tr((N̄tPt+1)4δW 2

t )
(4)= Tr(N̄4δ

t Pt+1W
2
t ) (5)= Tr(N̄2δ

t Pt+1N̄
2δ
t W 2

t ) (6)= Tr(WtN̄
2δ
t Pt+1N̄

2δ
t Wt)

(7)= Tr(WtN̄
2δ
t D− 1

2 L
(

1
volt+1

dt+1d
′
t+1

)
D− 1

2 N̄2δ
t Wt)

= Tr
((

D− 1
2 · N̄2δ

t Wt

)′
· L
(

1
volt+1

dt+1d
′
t+1

)
·
(
D− 1

2 · N̄2δ
t Wt

))
,
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where the inequality follows from Fact 2, equality (2) follows from Fact 1. Equalities (4) and
(5) follow from Properties (1) and (2) of Lemma 27 (and from the fact that Nt is At+1-blocked
d-stochastic, by Lemma 24). Equality (6) again uses Fact 1, and equality (7) follows from
Lemma 27 (4).

Let Zt = D− 1
2 · N̄2δ

t Wt. By applying Lemma 27 (5) we get

ψ(t+ 1) ≤ Tr
(
Z′

tL
(

1
volt+1

dt+1d
′
t+1

)
Zt

)
=

n∑
i=1

(Zt(, i))′L
(

1
volt+1

dt+1d
′
t+1

)
Zt(, i)

(2)=
n∑

i=1

(∥∥∥D 1
2
t+1Zt(, i)

∥∥∥2

2
− 1

volt+1
⟨Zt(, i), dt+1⟩2

)
≤

n∑
i=1

∥∥∥D 1
2
t+1Zt(, i)

∥∥∥2

2

=
n∑

i=1

∑
j∈At+1

(√
d(j)Zt(j, i)

)2
=
∑

j∈At+1

∥∥∥(D 1
2
t+1Zt

)
(j)
∥∥∥2

2

(5)=
∑

j∈At+1

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2

=
∑
j∈At

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2
−
∑
j∈St

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2
, (1)

where equality (2) holds by Property (5) of Lemma 27 and equality (5) holds since we only
sum rows in At+1. Since N̄t is diagonal outside At+1 (by the definition of Mt), we have that(
N̄2δ

t Wt

)
(j) = Wt(j), for every j ∈ St. Thus,∑

j∈St

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2 =
∑
j∈St

∥Wt(j)∥2
2 . (2)

By Lemma 27 (6), we get∑
j∈At

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2 = Tr(It · N̄2δ
t ·W 2

t · N̄2δ
t ) = Tr(N̄2δ

t · It ·W 2
t · N̄2δ

t )

= Tr(N̄2δ
t ·W 2

t · N̄2δ
t ) = Tr(N̄4δ

t W 2
t ) (3)

where second equality holds since Nt is At+1-blocked d-stochastic (by Lemma 24), so in
particular it is At-blocked d-stochastic, and we can use Lemma 27 (1). The third equality
holds because ItWt = It(PtF̄tPt)δ and ItPt = Pt (by Lemma 27 (2)), and the last equality
follows from Fact 1. Plugging Equations (2) and (3) into (1) we get the following bound on
the decrease in potential:

ψ(t) − ψ(t+ 1) ≥ Tr((I − N̄4δ
t )W 2

t ) +
∑
j∈St

∥Wt(j)∥2
2

= Tr(Wt(I − N̄4δ
t )Wt) +

∑
j∈St

∥Wt(j)∥2
2 ≥ 1

3 Tr(WtN (Mt)Wt) +
∑
j∈St

∥Wt(j)∥2
2

= 1
3 Tr((D− 1

2Wt)′L(Mt)(D− 1
2Wt)) +

∑
j∈St

d(j)

∥∥∥∥∥ Wt(j)√
d(j)

∥∥∥∥∥
2

2

= 1
3

∑
{i,k}∈Mt

∥∥∥∥∥ Wt(i)√
d(i)

− Wt(k)√
d(k)

∥∥∥∥∥
2

2

+
∑
j∈St

d(j)

∥∥∥∥∥ Wt(j)√
d(j)

∥∥∥∥∥
2

2

where the second inequality follows Lemma 28, and the last equality follows from by Laplacian
matrix properties. ◀

The following lemma states that the potential is expected to drop by a factor of 1 −
Ω(1/ logn).
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▶ Lemma 30. For each round t,

E

1
3

∑
{i,k}∈Mt

∥∥∥∥∥Wt(i)√
d(i)

− Wt(k)√
d(k)

∥∥∥∥∥
2

2

+
∑
j∈St

d(j)

∥∥∥∥∥Wt(j)√
d(j)

∥∥∥∥∥
2

2

 ≥ 1
3000α lognψ(t) − 3

nα/16

for every α > 48, where the expectation is over the unit vector r ∈ Rn.

The following two corollaries follow by Lemmas 29 and 30.

▶ Corollary 31. For each round t, E[ψ(t + 1)] ≤
(

1 − 1
3000α log n

)
ψ(t) + 3

nα/16 , where the
expectation is over the unit vector r ∈ Rn.

▶ Corollary 32 (Total Decrease in Potential). With high probability over the choices of r,
ψ(T ) ≤ 1

n .

The following lemma uses the low potential to derive the near-expansion of AT in FT .

▶ Lemma 33 (Variation of Cheeger’s inequality). Let H = (V, Ē) be a graph on n vertices,
such that FT is its weighted adjacency matrix. Assume that ψ(T ) ≤ 1

n . Then, AT is a near
1
5 -expander in H.

Proof. Recall that FT is symmetric and d-stochastic. Let k = vol(AT ). Let S ⊆ AT be a

cut, and denote dS ∈ Rn to be the vector where dS(u) =
{
d(u) if u ∈ S,

0 otherwise. Additionally,

denote ℓ = vol(S) ≤ 1
2k. Note that

∥∥√
dS

∥∥2
2 = ℓ.

Denote by λ̄ ≥ 0 the largest singular value of XT := PTD
− 1

2FTD
− 1

2PT (square root of
the largest eigenvalue of (PTD

− 1
2FTD

− 1
2PT )2). Because Tr(X2δ

T ) = ψ(T ) ≤ 1
n , we have in

particular that the largest eigenvalue of X2δ
T is at most 1

n , so we have λ̄ ≤ 1
n

1
δ

. We choose
δ = Θ(logn) such that 1

n
1
δ

≤ 1
20 , so λ̄ ≤ 1

20 .
In order to prove near-expansion we need to lower bound |EFT

(S, V \ S)|. We do so by
upper bounding |EFT

(S, S)| = 1
′
SFT1S . Note that 1′

SFT1S = 1
′
S(ITFT IT )1S . Observe the

following relation between XT and ITFT IT :

D
1
2XTD

1
2 = D

1
2 (PTD

− 1
2FTD

− 1
2PT )D 1

2

= D
1
2 (IT − 1

k

√
dT

√
d′

T )D− 1
2FTD

− 1
2 (IT − 1

k

√
dT

√
d′

T )D 1
2

= (IT − 1
k
dT1

′
T )FT (IT − 1

k
1T d

′
T )

= ITFT IT − 1
k
dT1

′
TFT IT − 1

k
ITFT1T d

′
T + 1

k2 dT1
′
TFT1T d

′
T .

Rearranging the terms, we get

ITFT IT = D
1
2XTD

1
2 + 1

k
dT1

′
TFT IT + 1

k
ITFT1T d

′
T − 1

k2 dT1
′
TFT1T d

′
T .

Therefore

|EFT
(S, S)| = 1

′
SFT1S

= 1
′
S

(
D

1
2XTD

1
2 + 1

k
dT1

′
TFT IT + 1

k
ITFT1T d

′
T − 1

k2 dT1
′
TFT1T d

′
T

)
1S .

We analyze the summands separately. The first summand can be bounded using λ̄, the
largest singular value of XT :
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1
′
SD

1
2XTD

1
2 1S =

√
d′

SX
√
dS =

〈√
dS , X

√
dS

〉
≤
∥∥∥√dS

∥∥∥
2

∥∥∥XT

√
dS

∥∥∥
2

≤
∥∥∥√dS

∥∥∥2

2
λ̄ ≤ ℓ

20 ,

where the first inequality is the Cauchy-Schwartz inequality. Observe that the second and
third summands are equal:

1
k
1

′
SdT1

′
TFT IT1S = ℓ

k
1

′
TFT1S = ℓ

k
1

′
SFT1T = 1

k
1

′
SITFT1T d

′
T1S ,

where the second equality follows by transposing and since FT is symmetric. We now bound
the sum of the second, third and fourth summands:

1
′
S

(
1
k
dT1

′
TFT IT + 1

k
ITFT1T d

′
T − 1

k2 dT1
′
TFT1T d

′
T

)
1S = 2ℓ

k
1

′
TFT1S − ℓ2

k21
′
TFT1T

≤
(

2ℓ
k

− ℓ2

k2

)
1

′
TFT1S ≤

(
2ℓ
k

− ℓ2

k2

)
1

′FT1S =
(

2ℓ
k

− ℓ2

k2

)
d′
1S = ℓ

k

(
2 − ℓ

k

)
ℓ,

where the first inequality follows since S ⊆ At. Note that ℓ
k ∈ [0, 1

2 ]. The last inequality
is true because for ℓ

k in this range,
(

2ℓ
k − ℓ2

k2

)
≥ 0. Moreover, because ℓ

k ∈
[
0, 1

2
]
, we have

ℓ
k

(
2 − ℓ

k

)
≤ 3

4 . Therefore, |EFT
(S, S)| ≤ 1

20ℓ+ 3
4ℓ = 4

5ℓ, and

|E(S, V \ S)| =
∑
u∈S

∑
v∈V \S

FT (u, v) =
∑
u∈S

∑
v∈V

FT (u, v) −
∑
u∈S

∑
v∈S

FT (u, v)

=
∑
u∈S

d(u) −
∑
u∈S

∑
v∈S

FT (u, v) ≥ ℓ− 4
5ℓ = ℓ

5 .

So ΦG(S, V \ S) = |E(S,V \S)|
vol(S) ≥ 1

5 , and this is true for all cuts S ⊆ A with vol(S)
vol(A) ≤ 1

2 . ◀

▶ Corollary 34. If we reach round T , then with high probability, AT is a near Ω(ϕ)-expander
in G.

Proof. Assume we reach round T . By Corollary 32 and Lemma 33, with high probability,
AT is a near Ω(1)-expander in FT . By Lemma 25, FT is embeddable in GT with congestion
O( 1

δ ). Note that GT is a union of T dG-matchings {Mt}T
t=1, each having dMt

= dG = dFT
.

Therefore, dGT
= T · dFT

. So by Lemma 11, AT is a near Ω( δ
T )-expander in GT . By Lemma

26, GT is embeddable in G with congestion cT . Together with the fact that dG = 1
T ·dGT

, we
get by Lemma 11 again, that A is a near Ω( δ

cT )-expander in G. Recall that c = O
(

1
ϕ log n

)
,

δ = Θ(logn), and T = O(log2 n). Therefore, A is an near Ω(ϕ)-expander in G. ◀

5.4 Proof of Theorem 17
We are now ready to prove Theorem 17.

Proof of Theorem 17. Recall that St denotes the cut returned by Lemma 21 at iteration t,
so that At+1 = At \ St.

Observe first that in any round t, we have ΦG(At, Rt) ≤ 7
c = O(ϕ logn). This is because

Rt =
⋃

0≤t′<t St′ and by Lemma 21, for each t′, ΦG[At′ ](St′ , V \ St′) ≤ 7
c = O(ϕ logn).

Assume the algorithm terminates because vol(Rt) > m·c·ϕ
70 = Ω( m

log n ). We also have,
by Lemma 21, that vol(At) = Ω(m) = Ω( m

log n ). Then (At, Rt) is a balanced cut where
ΦG(At, Rt) = O(ϕ logn). We end in Case (2) of Theorem 17.
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Otherwise, the algorithm reached round T and we apply Corollary 34. If R = ∅, then we
obtain the first case of Theorem 17 because the whole vertex set V is, with high probability, a
near Ω(ϕ)-expander, which means that G is an Ω(ϕ)-expander. Otherwise, we write c = c1

ϕ log n

for some constant c1, and let c0 := 7
c1

. We have ΦG(AT , RT ) ≤ 7
c = 7

c1
ϕ logn = c0ϕ logn.

Additionally, vol(RT ) ≤ m·c·ϕ
70 = m·c1

70 log n = m
10c0 log n , and, with high probability, AT is a near

Ω(ϕ)-expander in G, which means we obtain the third case of Theorem 17.
To bound the running time, note that the algorithm performs at most T = Θ(log2 n)

iterations and each iteration’s running time is dominated by computing Wt · r in O(t · δ ·m)
and by running the matching player (Lemma 21) in O( m

ϕ ). ◀
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